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Abstract

Observations of phenomena on the surface of the sun of widely

varying time and space scales are reviewed. Some of the physical and

mathematical models for the larger, more slowly changing solar features,

namely the solar cycle, large scale magnetic regions, and the differ-

ential rotation, are also surveyed. Motivated by Ward's sunspot dis-

placement statistics, and Bumba and Howard's synoptic charts of solar

magnetograms, we propose that a plausible alternative to these models

could result from suitable hydromagnetic generalizations of the equations

and models which have proved fruitful in understanding the earth's atmo-

spheric general circulation. On the basis of recent work by Veronis,
it is suggested that the granulation and supergranulation scale motions

in the sun may produce available potential energy for larger scale

motions.

To see the possible consequences of this energy source, the problem

is reduced to the study of large scale adiabatic disturbances in an invis-

cid, perfectly electrically conducting hydromagnetic circumpolar vortex.

The equations governing the mechanics, electromagnetics, and thermodynamics

of such motions are scaled, and expanded in powers of the Rossby number,

observed to be much less than unity. The scaling isolates quasi-helios-

trophic, hydrostatic, potential energy converting modes on a "i plane".

Due to the horizontal magnetic field, the potential vorticity is no longer

conserved. Vertical magnetic fields can be produced, but their feedback

on the motions and horizontal fields is excluded. Thus the system in this

simple form cannot complete a dynamo cycle.

The scaled equations are perturbed about a steady axially symmetric

zonal flow and zonal (toroidal) magnetic field. Changes in the initial

state are inferred from products of perturbation quantities. These include

the growth in the meridional plane of axially symmetric circulations and

magnetic fields. The energetics of the system are examined. Bounds are

placed on the complex phase velocities of unstable normal mode disturbances

for both continuous and two-layer zonal flows and magnetic fields. For

flows with vertical and horizontal shear, these bounds are the same as

found by Pedlosky (1964a) for the nonmagnetic case. For the two-layer

case, bounds are also placed on the phase velocities of neutral waves.



The stability of two-layer purely baroclinic flow (no horizontal
shear) in a uniform zonal magnetic field is studied. The minimum vertical
shear needed for instability no longer depends on theI6 effect or the
static stability, but rather is determined by the zonal field strength.
Short waves are destabilized by the magnetic field, long waves stabilized.
All unstable waves convert available potential energy to kinetic energy of
the disturbances, part of which is in turn converted into disturbance mag-
netic energy. Nonmagnetic changes in the initial state are similar to

those of Phillips (1954). A single celled meridional (poloidal) field is
produced. Properties of the solutions are compared to solar observations.
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At gas densities -10 gm/cm a ^03eK equator-pole temperature differ-
ence is enough to give baroclinically unstable disturbances in a zonal
field of 100 gauss. The eddy vertical fields produced from this magnitude
zonal field are "ll gauss and wave number of about six around a latitude
circle, consistent with the magnetograms.

The stability study is generalized to include a parabolic flow
profile in the upper layer. Singularities may be present in the equations
even when there are no extrema in the potential vorticity, when the magnetic
field is increased beyond a certain strength. Below this strength, power
series solutions show that, just as in the nonmagnetic case, horizontal
shear renders shorter waves unstable. Reynolds stresses are seen to trans-
port momentum up the gradient, while smaller Maxwell stresses oppose them.
This net upgradient momentum transport could maintain the solar differential
rotation. The perturbations show a tilt upstream away from the maximum of

zonal flow, most pronounced in the vertical fields, suggestive of the tilted

patterns in Bumba and Howard's charts.

Suggestions are made for improvements and generalizations of the

model, and for other studies.

Thesis Supervisor: Victor P. Starr

Title: Professor of Meteorology
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1. The physical state of the observable sun

Introduction

The sun is dynamically an extremely active celestial body, and

without doubt the most extensively studied. But while most types of

solar events have been observed in great detail, theoretical explana-

tions and especially numerical models for these events are in most

cases incomplete. This is quite understandable, since the observations

show that solar events are highly complex phenomena. It is my hope

that in this thesis I can demonstrate how some of the theoretical models

which have been useful in understanding the dynamics of the earth's

atmosphere may be fruitfully carried over, with suitable generalization

to include hydromagnetic effects, to the solar problem. The effort

will be directed toward developing equations and models for the very

large scale, slowly changing features of the sun, specifically those

which have much larger horizontal dimensions than sunspots, and which

have observable lifetimes longer than a solar rotation. But before

concentrating on the larger more slowly changing features, to the ex-

clusion of others, it is important to set the stage by describing

briefly the physical state of the observable sun on a much wider range

of time and space scales.

Observations of the sun consist primarily of measurements of its

electromagnetic radiation, although particle fluxes are also measured,

especially since the advent of artificial satellites. From these radia-
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tion measurements not only can one infer approximately the local inten-

sity, temperature, composition and state of ionization, but one can also

estimate the local magnetic fields and fluid velocities. The magnetic

fields are found by analyzing spectral lines with pronounced Zeeman

splitting, while fluid velocities are inferred by two means: from the

Doppler shifting of the spectral lines, and from the movement of ident-

ifiable solar features. However, in addition to the usual difficulties

encountered in spectrographic and photographic measurements of distant

objects, there are several other limitations to these techniques. For

example, although recent attempts to measure the transverse Zeeman

effect have been made, (Severny, 1964) the great bulk of Zeeman split-

ting measurements have been of the easier to measure longitudinal com-

ponent, which yields only the line of sight magnetic fields. Thus one

obtains different components of the fields at different locations on

the solar disk. Similar difficulties arise in the interpretation of

Doppler shift measurements, since they, too, yield only the line of

sight velocity. In tracking the movement of solar features, it is often

difficult to resolve what is proper motion of the feature from its devel-

opment or decay. Furthermore, it is not clear how well the movement of

a solar feature reflects the motion of the gas surrounding it. And

finally, in using any of the above mentioned techniques, discerning the

mean level to which the measurements refer usually is an uncertain

process. But despite these difficulties, it is apparent that from the

measurements a great deal may now be said about the magnetic structure

and motion which exists in the solar atmosphere.
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Layers of the solar atmosphere

Before discussing some of the observations, it is pertinent to

state some general properties of the solar atmosphere. The observable

region of the sun is conventionally divided up into three rather loosely

defined layers: the photosphere, chromosphere, and corona. We shall be

describing observations primarily of the innermost layer, the photosphere,

but some properties of the higher layers will also be included, since

many photospheric features are known to extend to much higher levels.

The photosphere is that layer which extends inward from the solar

limb (the edge of the solar disk) to the greatest observable depths.

Its thickness is only -,400 km, but it is the direct source of nearly

all the solar radiation. Although there is some variation according to

the height convention used, the temperature at the limb is about 45000K

increasing to around 80000K at a depth of 400 km. Gas pressures inferred

for this layer range from 102 dynes/cm2 at the top , to 105 dynes/cm2 at

the bottom, (here radiation pressures are negligible by comparison)

-8 -7 3
while densities are between 10 and 5xlO gm/cm3. In the upper 300 km,

the optical depth reaches unity, below which it increases much more

rapidly (Minnaert, 1953).

The chromosphere is the lowest layer outside the solar disk. Its

depth is usually taken as about 20,000 km, through which the temperature

increases from a minimum of -o4500 K at the bottom to %.106 oK at the top.

Above this level is the corona, reaching to several solar radii, in which

temperatures are in excess of 106 oK (Van de Hulst, 1953).

MOM"
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The principle constituents in photospheric and adjacent layers

are fairly well known. By number, approximately 92% of the photo-

spheric gas is atomic hydrogen, 8% helium, with less than 0.1% made up

of a large number of heavier elements. In the photosphere, hydrogen

and helium are prodominantly in the neutral state. Below the photo-

sphere, the hydrogen should be 50% ionized at temperatures ~-17,0000K,

while helium should be half singly ionized near 25,000K0 and half

doubly ionized around 80,0000 K (Schwarzschild, 1958). Both constituents

are also primarily ionized above the lowest 6,000 km or so in the chro-

mosphere (Van de Hulst, 1953). The ionization of hydrogen and helium

below the photosphere is chiefly responsible for the rapid increase in

opacity with depth.

Granulation

Since nuclear energy production in the sun is confined to the

core, there must be, in the mean, no net flux divergence of heat at

any point in the outer layers. However, locally, over relatively short

time periods, deviations from this mean requirement will occur, and

intensity fluctuations in the spectra will be observed. These fluctua-

tions are observed to have time periods from a few minutes to many solar

rotations, and to range in horizontal scale from a few hundred kilometers

(the resolution limit of present instruments) up to the solar radius it-

self. Most of these fluctuations are obviously associated with motion

fields of the same scale; some are also linked to magnetic field confi-

gurations of like dimensions.
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The smallest and shortest lived of these fluctuations represents

a non-steady small scale convection, known as the "granulation". This

granulation covers the whole solar globe almost uniformly at all times,

giving it a mottled appearance in high resolution photographs. Its ex-

istence has been known for several decades, but significantly better

pictures of it were obtained around 1958 from Project Stratoscope's

balloon borne telescopes. From these photographs, Schwarzschild (1959,

1961) found the average diameter of the granulations to ber%.700 km, and

the average life time (defined as twice the time for the autocorrelation

to drop to 1/2) to be ^.o8 minutes. The root-mean-square temperature

fluctuations were found to be + 920K (Schwarzschild and Bahng 1961).

Summarizing earlier work of several authors, Schwarzschild (1961) described

the typical line of sight velocities from Doppler shift measurements as

having a minimum of 300 m/sec at optical depth 0.1, rising to 2-3 km/sec

a few hundred km above and below that level. In the levels above the

minimum velocities, the motions appear to be penetrating the layer where

the temperature actually increases with height (gravitationally highly

stable).

More recently, Evans and Michard (1962a, b); Evans, Main, Michard

and Sevajean (1962); and Leighton, Noyes and Simon (1962) found the

fluctuations had a pronounced periodic component, with periods of 200-300

seconds, and with root-mean-square velocities -- 0.4 km/sec at low levels,

n-0.8 km/sec at high levels. Their dimensions were somewhat larger than

found by Schwarzschild. Little or no evidence was found for' magnetic

field structures associated with the brightness and velocity fluctuations

on this scale.
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Supergranulation

In addition to convective motions with horizontal diameters

-103 km, much evidence has recently been found for convection with

much larger time and space scales. The doppler shifts for these

motions have been observed primarily near the limbs. Near the center

of the disk, the more intense granulation scale vertical motions

apparently prevent observation of the larger modes. This fact has

led most observers to the conclusion that these larger scale motions

are quasi horizontal in nature.

The first measurements of these motions were apparently made by

Hart (1954, 1956), who detected horizontal velocities '-0.3 km/sec with

4
horizontal correlations across 3-7x10 km. More extensive, detailed

measurements by Evans and Michard (1962ab); Leighton, Noyes and Simon

(1962), and Simon and Leighton (1964), now characterize the flow as quasi-

cellular in nature, with horizontal outflow velocities from the centers

of cells -,.,0.5 km/sec. The average diameters of the cells is calculated

to be 32,000 km, and the average lifetime 20 hours (Simon and Leighton

1964). In addition, there are some faint indications of rising motion

at the cell centers, and sinking at the edges, ,-.0.l km/sec (ibid.).

Despite the difficulties of observing it near the center of the

disk, this "super granulation," as it is now called, appears, like the

granulation, to be spread rather uniformly over the globe, requiring

about 5,000 cells to cover the observable hemisphere. Unlike the granu-

lation, however, it seems to have associated with it several other

phenomena. For example, Simon and Leighton (1964) have shown that the
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bright spots in the well known chromospheric "network" of brightness

patterns seen in calcium lines tend to occur at the boundaries of the

supergranulation cells. They showed further that vertical magnetic

fields also seem to be concentrated at these boundaries.

Finally, the spectrographic information seems to indicate

(Leighton, Noyes and Simon 1962) that the granulation and supergranu-

lation are not just different parts of a smooth spectrum of scales of

motion, but rather represent distinct phenomena, with comparatively

little energy present in intermediate wavelengths and periods. The

fact that the supergranulation has associated with it magnetic and

additional spectral effects, while the ordinary granulation apparently

does not, would tend to support this conclusion.

Sunspots

The observational features discussed so far are fairly homogene-

ously spread over the solar globe. There are many others, however, which

show marked preference for certain latitudes and longitudes. Most of

these appear to be associated in some way with the solar cycle. The most

familiar of these is undoubtedly the sunspot. A sunspot has basically

two characteristics which distinguish it from the surrounding granulation

and supergranulation. It has a much lower temperature, and it possesses

a strong vertical magnetic field. A typical spot may be only 40% as

bright as its surroundings, and possess a magnetic field of up to about

3000 gauss (Abetti 1957), compared to background fields of 1-100 gauss

(Bumba and Howard 1965ab). The spot field is not entirely vertical,
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as Severny (1964) has shown. Though darker than its surroundings, it is

far from quiescent. Turbulence is known to be present (e.g. de Jager

1964). There is also usually a systematic outflow toward the edges of

the spot, a typical magnitude being 1 km/sec, known as the Evershed effect.

There is evidence for inflow at higher levels, and for rotational motion

around the spot, the latter being of smaller magnitude than the Evershed

velocities (Abetti, 1957). The rotational motion, at least at high levels

where there is inflow, is usually in the sense given by the turning of

the inflow due to the Coriolis force.

Sunspots often occur in groups. Usually in such groups one or two

spots are much larger than the others. Almost all groups have bipolar

magnetic fields, most with fairly well defined lines separating the regions

of opposite polarity. Most groups are elongated in shape, with the long

axis oriented nearly east-west. The leading end of the group (closest to

the west limb or right edge of disk) is almost always closer to the equator

than the trailing end. The major spot at the leading end of a group vir-

tually always has opposite polarity in the northern hemisphere as compared

to the southern.

Sunspot and sunspot group areas vary considerably. The smallest

single spot (sometimes called a "pore") is of order one millionth the area

of the solar disk, while the largest group is about 3000 times that in

size. More than half the spot areas are between 30 and 300 millionth's

(Ward 1965b). Thus the dimensions of a typical spot are comparable to

that of the supergranulation. The larger spots usually show a more
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complex structure, possessing a dark central region, called the umbra,

surrounded by a lighter, annular shaped region known as the penumbra.

Spot lifetimes vary widely, with the larger spots and spot groups

tending to live longer. Small single spots may last only a day or

two, while large spot groups are known to remain in some identifiable

form for a few solar rotations.

Active regions

Well developed spots virtually always have associated with them

numerous other hydromagnetic and thermal structures. Taken together

with the sunspots, the sum total of these features constitute what is

known as an "active region" or "center of activity". The principal

features observed in an active region are the so-called faculae (and

plages) 1, filaments (called prominences when seen projecting from the

limb) and flares, as well as fairly strong (--100 gauss) magnetic fields

exterior to the spots themselves.

The plages are large bright blotchy or stringy areas usually near

sunspots, though they may occur in areas which have no spots. In general,

their brightness, as seen in Ca II and Het emission lines, is 5-15%

greater than the surrounding granulation (Abetti, 1957), representing

a temperature excess of ^-100 0K. The larger plage regions can extend up

lSome astrophysicists distinguish faculae as those bright areas obser-
vable in white light, seen only near the limb, plages as observable in
Ho of hydrogen, K of calcium II, seen all over the disk, but this con-

vention is apparently not universal. For example, Kiepenheuer (1953)
calls them all faculae. The differences seem immaterial for this work,
and so will not be stressed.
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5
to 10 km in at least one direction. Their raised appearance when viewed

near the limb suggests that they are largely chromospheric phenomena.

The plages have much fine structure, which, like the chromospheric network

which stretches over the whole globe, in which they are imbedded, is

strongly correlated with the supergranulation patterns. The faculae and

plage regions in the neighborhood of sunspots have also been shown (Howard

1959, Leighton 1959) to be the seat of quasivertical magnetic fields of

5
magnitude 10-100 gauss. These field regions may also extend up to 10 km

in one horizontal direction, and their fine structure is well correlated

with that of the plage regions. Typically, the plage regions last much

longer than the sunspots with which they are associated, appearing before

them, and remaining often several rotations after the spots have dis-

appeared. However, the fine structure within the plage regions shows much

shorter time variations, on the scale of the supergranulation.

There is another kind of magnetic structure often present in an

active region, known as a "filament", or as a "prominence", if it is

observed extending from the limb. These are primarily chromospheric

phenomena. They consist of twisted or looped magnetic fields and may

take on many shapes. Some resemble fan-jet like fountains, some, strands

of rope. They may change markedly in a few hours, or they may endure for

long periods of time. The average lifetime of a filament is 2-3 rotations.

They generally are very thin compared to their length. Typical dimensions

are: length, 200,000 km; height, 50,000 km; thickness, 10,000 km (Abetti,

1957). These structures are found near all spot groups, and may form

arches between neighboring spot groups. About one third of those spot
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groups which contain a spot > 200 millionths the solar disk area show

filaments with a vortex like structure in the chromosphere (Kiepenheuer

1953).

Finally, in addition to the relatively long lived faculae and

plages, there are brightness fluctuations of very short duration, known

as flares. These have dimensions comparable to large sunspots, but life-

times of only one hour or less. They occur quite often, at the rate of

a few hundred per rotation.

From the observations, it is also possible to say a lot about the

evolution of a typical active region, although there are, of course, con-

siderable variations in individual cases. A concise chronology of this

process has been given by Kiepenheuer (1953), although some more recent

work, particularly Bumba and Howard (1965a), has elucidated the early

parts of the evolution in greater detail. Basically, it is characterized

by a rapid growth and expansion to maximum development, followed by a

slower decay.

In summary, a new active region always appears in an area of pre-

existing weak background magnetic field and plage, but paradoxically the

magnetic flux in the new region does not seem to be an amplification of

this background field (Bumba and Howard 1965a). At first the rather

round brightness elements in the chromospheric network become elongated

and oriented systematically, rather like iron filings in the influence

of a magnet. Simultaneously a bright facular region appears, rapidly

becoming oriented approximately east-west, but with the western or lead-

ing edge somewhat closer to the equator. By the second day, the first



-12-

spot is found, close to the west end. The faculae brighten close to

the spot, and the chromospheric brightness and magnetic field fine

structure expands rapidly (-,# 250 m/sec - Bumba and Howard 1965a) with

individual strands grouping themselves around the facular region. It

very often appears up to this stage that the magnetic polarity of the

developing active region is unbalanced locally. By the fifth day a

second spot has usually formed near the eastern edge, and several

smaller spots have appeared between the leading and following spots.

More filaments appear in the chromosphere, and the first flares appear.

On the limb, fountain-like spot prominences are evident. The spot

group becomes most developed, with large penumbrae, by about the llth

day, but the brightness and extent of the facular and plage region

continue to grow, exceeding 150,000 km in horizontal dimension.

During this development of the active region, the spots which

are formed appear in the ring of faculae surrounding a supergranule.

The fully developed groups show that larger spots appear to be occupying

the space originally held by one or two supergranules, while the smaller

spots are still in the intersupergranular spaces.

By one rotation, most spots in the group, except the large lead-

ing spot which developed first, have disappeared. The facular region

has further increased, while flares have subsided. There is usually a

well developed, stable filament present on the poleward side of the

facular region, connected to the remaining spot, forming an angle of

^-1400 with the meridian. The chromospheric fine structure has aligned

itself with the filament. By two rotations, all the spots are gone
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and the facular region is decreasing, but the filament continues to grow,

while turning toward an east-west alignment. By four rotations the

faculae have dissolved completely, while the chromospheric fine structures

are relatively unchanged. The filament has reached maximum length and is

almost east-west. By five rotations, the fine structure blends into its

surroundings. The filament shrinks and appears to migrate poleward at

an irregular rate. Finally, beyond six rotations, the filament approaches

a large group of filaments at the pole, and is eventually incorporated

into it.

It is notable that many of the evolutionary features described

above are also reflected in changes in the corona.

The solar cycle

The rate at which new active regions appear, the intensity to

which a typical active region develops, and the most favored location

for its development, vary in a quasi cyclic way, known as the solar or

sunspot cycle. At any given time in the cycle, spots appear in latitude

belts of width 150-200 in each hemisphere, which never extend poleward

of about 400. At the beginning of a new cycle, spots appear at the higher

latitudes. As the cycle progresses, new spots appear preferentially

closer and closer to the equator in each hemisphere. Near the end of

the cycle, spots will form within 2 0-3 of the equator. The time between

successive reoccurrences of spots at high latitudes is variable, but

generally falls between 9 and 13 years. Often a new cycle will begin

before the previous one is finished.
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As measured by sunspot numbers and areas, at the start of a new

cycle sunspot activity grows rapidly, reaching a maximum in about three

years, after which it decreases at a slower rate until the end of the

cycle. These intensity changes are also reflected in the rate at which

flares occur, and in the intensity and extent of the faculae and fila-

ments. Of course, these other featuresusually being part of an active

region,also occur preferentially in lower latitudes as the cycle pro-

gresses, but they are not so restricted as the spots.

By studying many successive cycles, some further interesting

effects become evident. Differences in intensity of activity between

hemispheres are seen in some cycles. But more importantly, the leading

spots in spot groups in a new cycle are seen to have the opposite polar-

ity from those in the previous cycle, a phenomenon first discovered by

Hale in 1913. Thus a complete cycle in the magnetic field really com-

prises two sunspot cycles.

Proper motions of spots: Differential rotation and eddies

In addition to their complex structure and variation with the

solar cycle, individual sunspots and active regions are also observed

to have significant proper motions. Sunspots and sunspot groups show

translation both in longitude and latitude. In addition, within sun-

spot groups, divergence of individual spots from one another is usually

observed during early stages of group development, while convergence is

often seen as the group decays. In general, all during the lifetime of
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the spot group, positions of individual spots and their areas are conti-

nually fluctuating. When one attempts to interpret these motions, how-

ever, some difficulties immediately arise. For example, one would like

to assume that the translation of a spot or spot group traces fairly well

the motions of the surrounding gas which have much larger horizontal sacle

than the spots. However, since these groups have finite size and flow

fields of their own, they will probably interact with the flow in which

they are imbedded in a more complicated manner. Furthermore, since they

are known to have considerable vertical extent, even if they do follow

the flow, one must ask to what mean level this flow corresponds. If the

larger spots extend deeper into the sun, their movement will presumably

reflect the flow at a deeper level.

In addition to these ambiguities, there are further problems in

tracking sunspot groups. For example, the Greenwich Observatory, which

has made the most extensive measurements of spot motions, proceeds by

charting the positions of the "center of gravity" of a group on succes-

sive days. (The center of gravity is found by a linear weighting of

the sunspot areas according to position, in the same way as one would

find the center of gravity of a two-dimensional heterogeneous distribu-

tion of mass). This technique will thus produce spurious motions in

the direction of developing parts of the group (and away from decaying

parts). Ward, who has made by far the most comprehensive statistical

analysis of spot motions (Ward, 1964, 1965a,b) has also attempted to

estimate the import of some of these obscuring effects. His results,

L
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along with some of the earlier work, will be disccused in the following

paragraphs.

The fundamental contribution of all earlier work (reviewed, for

example, in Goldberg 1953) was to show that the sun does not rotate at

its surface like a solid body, but rather possesses a differential rota-

tion, the angular velocity being a maximum at the equator. This result

was first established by Carrington in 1863. Since that time, a great

deal of work has been done to refine the result with further sunspot

data. Newton and Nunn (1951) used recurrent spot (spots seen on more

than one rotation) displacements obtained at the Greenwich Observatory

for the six cycles between 1878 and 1944, from which they derived for

the rotation the empirical formula (in degrees per day)

14.380 - 2.770 sin2

where 0 is the latitude. Thus the period is about 25 days at the

equator, 27 days at 350 latitude. This result agreed with Carrington's

and other earlier work very well. Newton and Nunn also found no meas-

urable variation in the rotation with alternate cycles, or between

hemispheres. There is evidence from trackings of filaments that the

rotation continues to decrease toward higher latitudes beyond the sun-

spot zones, with the period extending to perhaps 30 days.

There have also been numerous attempts to measure the differ-

ential rotation by spectroscopic means, (again see Goldberg 1953 for

review) whose results confirm its existence, but show poorer agreement
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with each other. This should be expected, however, since the spectro-

scopic determinations represent averages over much shorter periods of

time. In any case, systematic errors of several kinis seem to make up

the difference compared with the spot determinations. That there is

fair agreement between spectroscopic and spot measurements of the

differential rotation indicates that, at least for the mean longitudinal

component, the spots do in fact trace the motion rather well.

Some attempts were made, both by tracking other solar features

such as filaments and by observing spectra coming from different levels,

to determine the rotation as a function of height. These are summarized,

for example, in de Jager (1959), and seem to indicate a tendency for

faster rotation rates in the chromosphere and corona but the magnitude

is not large enough to be free of doubt on statistical grounds. Ward's

results may shed further light on this question.

In addition to the differential rotation, some calculations have

been made, primarily from spot displacements, attempting to show the

existence of a mean meridional motion (e.g. Tuominen, 1955; Klyakotkov

1958; Chistyakov, 1960). However, as discussed by Ward (1964, 1965a),

and in later paragraphs here, none of these results appear to have

statistical significance.

As previously mentioned, the most extensive statistical analysis

of sunspot displacements has been made by Ward (1964, 1965a,b). To date,

he has completed analysis of five cycles (private communication) including

the period 1905-1954. All of his results are based on observations made
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at the Greenwich Observatory. Newton and Nunn used only recurrent single

spots, which are generally spots only of the largest area, representing

a total of less than one thousand observations. By comparison Ward has

used spots and groups of all areas and lifetimes, which, for the five

cycles completed so far, represent a collection of almost fifty thousand

observations. His major results are presented in graphical form in the

Appendix. Ward's statistics easily reconfirm the shape of the differ-

ential rotation as found by Newton and Nunn and others previously,

(Figure A-1). However, the rotation obtained from all spots by Ward is

at every latitude somewhat larger than that found from the recurrent

spots alone. Furthermore, grouping the spots into four categories

according to area yielded, in general, a slower rotation rate for the

larger spots at all latitudes except very near the equator. As Ward

points out, then, if one were to assume that the larger spots extended

further into the sun, these results would indicate a rotation rate

increasing with height, in agreement with the tendency seen in other

solar features. The magnitude of this effect, however, is not so large

as to render it conclusive.

Although this result raises interesting possibilities, it is far

overshadowed in immediate importance by another of Ward's findings.

This is the systematic correlation of longitudinal and latitudinal spot

displacements. Ward found that in each 5 degree latitude belt in each

hemisphere, the correlation was such that movement of the spots toward

the west limb (in the direction of the rotation) tended to be accompanied

by movement toward the equator (Figure A-2). The amount of this cor-
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relation is seen to have a maximum of about 0.32 in the 25 - 30 latitude

belt, dropping off to 0.08 in the 0 - 5 belt, and also decreasing slight-

ly toward higher latitudes. The 5% limits, as indicated in Figure A-2,

clearly show that this correlation is statistically highly significant at

all latitudes.

If one interprets the spot displacements as reasonable tracers of

the flow in which the spots are imbedded, then this correlation has im-

portant physical consequences. The covariance of the spot motions (Fig-

ure A-3), which is just the correlation multiplied by the standard

deviations, represents the horizontal eddy momentum flux, and with the

correlation taking the sign found by Ward, this flux would be directed

toward the equator in each hemisphere. Thus, as Ward points out, and

as discussed further by Starr and Gilman (1965ab), this flux could be

the mechanism by which the differential rotation is maintained against

frictional and magnetic torques. The magnitude of the flux is certainly

large enough, since, if it were cut off, and all other torques remained,

solid body rotation would be achieved in just a few rotations.

There are, however, some objections to this interpretation of the

correlation. For example, Leighton (unpublished manuscript) argues that

since almost all spot groups' axes are tilted such that the leading end

is toward the equator, even random fluctuations in the spot areas and

positions within the group will produce such a correlation. Leighton esti-

mates that this effect could explain a large part or all of the covariance.

Ward (unpublished; also Ward 1965b) agrees that the effect is undoubtedly

present but feels Leighton overestimates its magnitude. He notes
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that single spot motions are correlated with the same sign, but somewhat

smaller magnitude than all spots together. Ward takes the difference

between correlations as a measure of the effect Leighton proposes, and

concludes that it amounts to only 20-30% of the total.

Just as with the mean longitudinal motion, Ward finds (Figure A-4).

that the root mean square longitudinal and latitudinal displacements vary

inversely with the area. For all four area categories the longitudinal

daily displacements are about double those in latitude, being 0.8 deg/day

and 0.4 deg/day, respectively, for all spots together.

Finally, Ward calculated the mean latitudinal displacements (Fig-

ure A-5) and found that even for the five cycles together, only the value

in the 0-50 latitude belt is statistically different from zero (equator-

ward) at the 5% level. Thus Tuominen's (1955) values, being based on a

much smaller data sample, must be considered highly doubtful.

The basic picture presented by Ward's results, then, is one in

which the general circulation is not simply made up of symmetric motions,

but rather one in which there are also large quasi horizontal eddies,

playing a fundamental part in the maintenance of the average symmetric

flow, i.e., the differential rotation. If one follows this view, then,

the instantaneous zonal flow could look quite different from the average,

with relatively narrow meandering currents present. These currents, to

provide the proper momentum flux could possess "tilted troughs" analogous

to those in the upper level westerlies, first discussed by Starr (1948).

This intriguing similarity to the dynamics of the earth's atmospheric

general circulation is the motivation for a considerable part of the

theoretical studies undertaken in later sections.
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Large scale magnetic regions

As discussed earlier, the active regions always grow in locations

of pre-existing "background" fields and plages. These background fields

are also of interest in themselves, since they too exhibit dynamic

properties.

The first reports of such a general" solar magnetic field were

made by Hale around the time he discovered sunspot fields. He claimed

to have found a field strength 50 gauss near the poles. However, later

measurements by others failed to confirm his result. At that time, ins-

trument resolution allowed only fields greater than ~-30 gauss to be

detected, and conclusive evidence for a general field had to await the

development of the solar magnetograph by H.D. and H.W. Babcock in the

early 1950's. They reported (Babcock and Babcock, 1955) a unipolar

field oIl gauss poleward of about 550. They also found large regions

of mixed polarity at lower latitudes, far more numerous than sunspots.

These areas, which they named Bipolar Magnetic Regions (BMR's), also

had fields typically of a few gauss, with regions of one polarity having

horizontal dimensions much larger than spots or spot groups. The magne-

tograms also suggested that these fields are primarily radial, since the

line of sight field strengths drop off near the edge of the disk.

In 1959, H.D. Babcock reported that he had observed a reversal of

polarity in the weak polar field. This reversal took place near the max-

imum of solar activity, with the southern pole reversing in the middle of

1957, the northern waiting until November 1958. Since then, several

authors have shown that the polar fields have retained their new polarities,

but that often the field is difficult to detect.
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Recently Bumba and Howard, (1965b), in a companion paper to their

work on active regions, published an extensive synoptic study of the

large scale solar fields. Their work was done with an improved magne-

tograph, giving 23" angular resolution as opposed to 70" for the original

Babcock instrument (the whole solar disk subtends an angle of about 30').

The synoptic charts made were "global", each representing a whole solar

rotation. The field value, which represents the average field over the

area subtended by the aperture, had a threshold of + 2 gauss. Isogauss

contours were drawn for 2 gauss, and in varying increments, up to 25

gauss. Two typical such charts, one representing the fields near the

maximum of solr activity, the other near activity minimum, are reproduced

in the appendix (Figures A-7, A-8).

Several general features of these charts are immediately evident.

Some of them have been discussed in Starr and Gilman (1965b). Just as

with active regions and sunspots, the area covered by observable fields

( > 2 gauss) varies according to the solar cycle. Near the maximum act-

ivity of the cycle studied (the year 1959), about half the disk was

occupied by integrated fields greater than 2 gauss. By contrast, near

activity minimum (around 1964) only about 5-10% of the disk showed such

fields. The patterns near minimum are much more fragmented than near

maximum, but the regions containing a single polarity, at least at low

latitudes, appear to be comparable in size.

Equatorward of about 40 , the fields are generally bipolar, with

the polarity varying in a quasi-regular way along a latitude circle.
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One might assign a typical longitudinal wave number of 6 or so to these

variations. Although they are most evident in the charts drawn near

activity maximum, some indications of their presence is seen also in

charts from near minimum.

Poleward of 400 the fieldsthough still possessing large scale

variations, are almost entirely unipolar, of opposite sign in the two

hemispheres. This high latitude effect is clearly discernible only

fairly near activity maximum, as one would expect, since radial fields

are more difficult to see near the poles than in lower latitudes. These

unipolar regions are usually quite elongated, sometimes stretching for

1000 longitude or more. Many of the unipolar regions seem to be exten-

sions of a particular region of like polarity in the bipolar region

nearer the equator, while others seem to be connected to several such

regions. Each unipolar magnetic region which could be observed clearly

showed that the region leading it of opposite polarity had the same

general shape, but with the poleward extension much weaker in strength.

Often a quiescent filament separated the two regions.

Virtually all of the magnetic regions, regardless of the phase

of solar activity, show a characteristic tilted shape, as a function of

latitude, upstream and away from the equator. This tilting occurs both

in the bipolar regions at low latitudes, and the unipolar regions in high

latitudes, and tends to follow the parabolic shape of the differential

rotation.

Another feature, which is peculiar to this solar cycle, although
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it has happened before, is the much greater area covered by magnetic

regions in the northern than in the southern hemispheres. This effect

is very clear near activity maximum, but is much less pronounced near

minimum. It reflects the greater solar activity of the northern hemi-

sphere observed for the cycle.

Finally, just as with smaller, active regions, the areas occupied

by the stronger large-scale fields, both at low and high latitudes, are

also usually the seat of plages.

The way in which some of the features typically found on the synop-

tic charts evolve was also studied by Bumba and Howard, by means of close

examination of charts for successive rotations. They found that many

large features change greatly over a few rotations, but the main charac-

teristics of the patterns could usually be traced for about a year

( ~ 13 rotations). Just as with the active regions, discussed earlier,

particular features in the large scale fields developed more rapidly

than they decayed. Also, generally speaking, the larger was the feature,

the longer was its lifetime. They attributed many of the movements and

expansion of features to the "stretching and twisting" of the differential

rotation, but many could not be so related. In some cases, the change

of features was too fast to be ascribed to the differential rotation,

and occasionally features moved across the equator. In general, addition

and cancellation of vertical fields was taking place. That is, fields

of like polarity often approached each other and merged, while fields of

opposite polarity did not appear to move together. Occasionally certain

certain areas would entirely lose observable fields.
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The unipolar magnetic regions at higher latitudes seemed to develop

from "complexes of activity" or several neighboring active regions. The

trailing parts of these regions appeared to contribute the major part of

the flux. Lifetimes of the unipolar magnetic regions were difficult to

distinguish during the years of high activity, but during less active years,

the unipolar regions typically took 2 or 3 rotations to form, whereafter

they could be followed for six or seven rotations. The tails of these uni-

polar regions typically drifted toward the pole. This process seemed to be

responsible for the production and subsequent reversal of the polar field

observed by the Babcocks. However, the amount of flux reaching the pole

appeared to be too large, suggesting that some other mechanisms must also

be at work near the pole.

In concluding our description of these large scale magnetic regions,

it is interesting to point out some recent work by Wilcox and Ness (1964,

1965), which indicates that these features have extensions not just into

the chromosphere and corona but probably also into the interplanetary mag-

netic field at least as far out as the earth itself.

Just as with Ward's results for spot motions, several of the proper-

ties of the magnetic fields just described should strike familiar chords

for the dynamic meteorologist. In particular, the large horizontal scale

of the fields, their tilted structure, and relatively long life compared

to the rotation period, all suggest they might be hydromagnetic manifesta-

tions of the "tilted trough" often seen in the upper level jet streams in

the earth's atmosphere and suggested by Ward's spot correlations. This

possibility has been discussed in some detail by Starr and Gilman (1965b),
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and will be examined more fully in Chapter 3. Added to Ward's results,

this interpretation of the field measurements comprises the second major

motivation for the theoretical calculations made in later sections.

Temperature structure

Most calculations of the temperature structure in the solar atmo-

sphere are based on observations of the so-called "limb darkening". An

observer looking at the sun receives radiation from shallower layers at

the limb than at the center of the disk, since the optical distance the

light must travel from the same geometrical depth is greater at the limb.

Since the brightness is less at the limb, the temperature must increase

with depth. Also, since the light is redder at the limb, the opacity of

these layers must be greater for shorter wavelengths. To actually cal-

culate a temperature profile with depth, however, requires additional

assumptions about the composition and state of ionization in order to

estimate the opacity as a function of depth. A typical calculation of

this type is that of Pagel (1961). From this calculation and many others,

it has been deduced, as stated earlier, that a temperature minimum exists

in the upper photosphere. Pagel, for example, finds it to lie at an op-

-3
tical depth of 7xlO at a wavelength of 61900 A, with an effective temper-

ature of 43000K + 1000 K. The vertical temperature gradients from such

calculations are on the order of 10K/km.

In addition to these vertical temperature gradients, it is of con-

siderable interest to know whether larger scale horizontal temperature
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gradients exist in photospheric layers. The presence of large bright plages

in the vicinity of active regions suggests that such gradients may exist,

at least in the chromosphere. There is also the possibility of temperature

differences between equator and pole, and in principle, such differences

could be estimated by comparing the limb darkening at different latitudes.

This has been done using various techniques, by many authors, but, infortu-

nately, the results are not conclusive. Measurements indicating poles both

hotter and colder than the equator have been reported, as well as several

failures to find any measurable differences. Beckers (1960, 1962) has re-

viewed most of the earlier work and conducted further measurements of his

own, on certain temperature sensitive Fraunhofer lines. He found the pole

warmer than the equator by about 600K, with a temperature minimum around

450 latitude. By plotting results of earlier work from other authors and

his own as a function of the solar cycle, he concluded that the equator to

pole difference might be a function of the solar cycle, with the poles much

colder than the equator near activity minimum, and slightly warmer near

activity maximum. However, recent measurements by Mulders and Slaughter

(1965) at the new actix0ity minimum have failed to confirm Beckerst sugges-

tion, as they could find no observable difference.

At present, then, it is really not known for sure whether such equator

to pole differences exist. However, present instruments cannot do better

than about + 20 K, so temperature differences less than this amount cannot

be precluded. Beckers (private communication) has stated that increased

accuracy in these measurements by photoelectric techniques should be forth-

coming soon. In any case, these measurements do not preclude such temperature

differences existing at deeper levels in the sun. This possibility will be

discussed further in Chaper 3.
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2. Brief history of theories of solar phenomena

In the previous chapter, an admittedly bewildering variety of

solar phenomena were briefly described. From even this cursory sketch,

it is obvious that all theoretical models of necessity have been, and

will continue to be, highly oversimplified, both as regards the kinds of

physical processes included, and the time and space scales covered. Let

us now examine some of these models. Just as with the observational

material, the emphasis will be directed toward theories for the larger

scale, longer lived phenomena, from which chapter 3 will attempt to pre-

sent a possible alternative approach. Discussion of theories relevant

to the smaller scale phenomena, which form a large subject in themselves,

will be limited to a few rather general remarks.

The granulation and supergranulation

Theoretical models for the granulation and supergranulation are

seriously complicated over studies of convection in a liquid by several

additional physical factors present on the sun. Among the obvious are

rotation, magnetic fields, compressibility, radiative transfer, and ion-

ization. In addition, of course, the solar convection has finite ampli-

tude and is turbulent. Without attempting to review the literature on

these complicating effects here, let it suffice to say that work is being

done to elucidate the influence of each of them on the convective process.

It is generally agreed that the existence of the convection layer

is due to the high opacity of these layers, which arises from the partial
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ionization of hydrogen just below the photosphere, and of helium of some-

what deeper levels. For radiative transfer to carry all the energy pro-

duced in the core through these layers would require superadiabatic

temperature gradients. These layers would then be unstable to perturba-

tions, and convective overturnings would develop. Throughout most of

the convective layer the gas is so opaque to radiation that almost all

the heat transport outward is by the convection. The thickness of this

convective layer is, of course, uncertain, but on the basis of stellar

structure theory for stars of solar mass and luminosity, it is generally

believed to be one to two tenths of the solar radius. Considering reason-

able estimates of temperatures in these layers, this thickness represents

a great many scale heights.

As mentioned earlier, the observations seem to indicate that the

granulation and supergranulation are distinct phenomena. Theories for

the supergranulation are only in the suggestion stage, the principal

one being that because of their large size, they are due to the ionization

of helium deeper down (Simon and Leighton 1964). Theories of the granula-

tion are split between those which assume the observed granules are actual

convective cells, (Schwarzschild 1961) and those which assume they are

acoustic-gravity waves propagating from the convective layer through a

gravitationally stable layer above (Whitney 1963).

Some work has been done on the effect of the granulation and super-

granulation on magnetic fields, largely by Parker (1963a,b) and Clark

(1965). Parker showed that those eddy motions with lifetimes shorter

than, or comparable to, the advective time scale, tended to give r.m.s.
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fields amplified over the general fields, but by a factor less than ten.

The fields thus produced fall short of energy equipartition with the

motion. Somewhat larger scale eddy motions, with lifetimes longer than

the advective scale but shorter than the magnetic diffusion time, tended

to concentrate fields into sheets or filaments. The supergranulation is

probably of this type, concentrating the fields at the edges of the cells.

Here equipartition of-energy is approached in the areas of concentrated

fields. Finally eddy motions with longer lifetimes than the magnetic

diffusion time, tended to exclude the field from the region of motion.

Clark (1965) concentrated on the effect of the supergranulation on verti-

cal magnetic fields, finding the convective modes which were capable of

maintaining steady vertical fields at the cell boundaries.

Sunspots, magnetic regions, and the solar cycle

Sunspot formation is conveniently discussed in the context of the

solar cycle, the former being but one manifestation of this quasi-periodic

redistribution of magnetic flux. The great majority of solar astrophysi-

cists now believe that the dynamics of this redistribution is confined to

a relatively thin outer shell of the sun, probably not extending deeper

than the bottom of the convective layer. This belief is based on the

assumption that the convective layer plays an essential role in the

dynamo maintenance of the field. Furthermore, maintaining a field through-

out the star would require tremendous kinetic energies in the interior,

due to the high density there.
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Among the early theories of the solar cycle, reviewed, for example,

in Cowling (1953), probably the best known are those of V. Bjerknes (1926,

1937) and H. Alfven (1945ab). Bjerknes envisioned that two rings of

strong magnetic field, one of each polarity, toroidal about the axis of

rotation, were carried in a symmetric meridional circulation which extended

to undetermined depth. The magnetic field in each ring was supposedly

maintained by strong circular motion in meridional planes around the to-

roidal field. When one ring was near the surface, local instabilities

could cause loops or bumps in the ring to develop, which then protruded

into the visible photosphere as bipolar sunspot groups. The beginning

of a new solar cycle would be marked by the appearance of a new toroidal

ring near the surface in higher latitudes.

Alfven, on the other hand, pictured the formation of sunspots as

due to the propagation of hydromagnetic "whirl rings" from the core to

the surface along the flux lines of the sun's "general" magnetic field,

which Alfven believed (as did many others at that time) was basically

a dipole field extending throughout the sun. Since it took longer for

these hydromagnetic disturbances to reach the surface near the equator

than in high latitudes, spots would appear first nearer the poles,

marking the beginning of a new cycle. However, enough strong objections

have been raised to both Bjerknes' and Alfven's theories (again, see

Cowling 1953 for review), whichtogether with more recent and detailed

magnetic field data, make them only of historical interest now.

Present theories of the maintenance of the solar magnetic field

center about hydromagnetic dynamo theory. This branch of theoretical
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physics is directed at a somewhat more general problem, namely, how mag-

netic fields in fluid masses can be maintained by internal motions against

dissipation by Joule heating. Most work along this line considers motions

in rotating, spheroidal, self gravitating fluid bodies, for the obvious

reason that most of the major examples in nature (the sun and many magnetic

stars, the earth and some other planets) are of this type.

This field has a long and distinguished list of contributors, most

of whose work is reviewed in Elsasser (1956). Among the early papers,

work by Cowling (1934) (later extended by Bachus and Chandrasekhar 1956)

and Ferraro (1937) are of particular importance. Cowling showed that it

is not possible to maintain magnetic fields in meridian planes (usually

called poloidal fields) which are steady and symmetric about the axis of

rotation by motions in meridian planes which are also steady and symmetric.

Bachus and Chandrasekhar (1956) extended this theorem to encompass all

steady axisymmetric fields and motions, i.e. to include symmetric zonal

fields (usually called toroidal) and flows. In brief, steady, axisymmetric

dynamos are not possible. Consequently all subsequent work has been con-

centrated on nonaxisymmetric and/or unsteady models.

Ferraro (1937) was the first to show that in a perfectly conducting

fluid mass rotating non-uniformly the only configuration of magnetic field

which results in a steady state is one in which the field lines are every-

where parallel to the streamlines. Needless to say, if the fluid has

finite conductivity, from Bachus and Chandrasekhar's work, this state can-

not remain steady unless the field is everywhere uniform and is completely

enclosed by perfectly conducting walls.
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With these results known, the major effort was then directed toward

finding steady nonaxisymmetric dynamos. This search was formulated in a

systematic manner by Bullard and Gellman (1954). The approach was to

assume a steady motion field which looks favorable for giving a dynamo,

and then to try and find a magnetic field configuration which can be main-

tained by it (described by a stationary eigenvalue). So far, however, this

approach has failed to produce convergent series for a dynamo solution.

The next step was then to look for nonaxisymmetric dynamos which are

steady only in some statistical sense, a much less restrictive requirement.

Due to the complexity of this problem, virtually all work of this type up

to now has been forced to be of a rather qualitative nature. Several phy-

sical processes, usually suggested from observed patterns, often occurring

on widely different scales, are put together in sequence to provide enough

feedbacks to maintain finite amplitude fields. But from this technique it

cannot, of course, be proven that in an actual model the sequence would

proceed in the manner suggested.

The main elements in this succession of physical events have been

put forth, with some variations and alternatives, by Alfven (1950, 1961),

Dungey and Loughhead (1954), and Parker (1955ab), and Elsasser (1956).

More specific application of some parts of this approach to the sun were

made by Babcock (1961) and Leighton (1964).

As outlined in Elsasser (1956), there are basically three prere-

quisites for a system to act as a hydromagnetic dynamo. The first is

that the motions must have large enough linear scale so that the advective
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time scale associated with them is short compared to the decay time of

a current due to ohmic dissipation (i.e., the magnetic diffusion time).

In other words, the conductivity must be sufficiently high. Otherwise

the feedback mechanisms will not have time to be effective. The second

is that, since from Cowling's theorem and its extension, dynamos cannot

have symmetry in one dimension, the dynamo must possess some mechanism

for keeping a low degree of symmetry. An obvious possibility is rota-

tion, through the action of the coriolis forces on the motion. Lastly,

the dynamo needs an internal source of energy to generate the motion needed

to maintain the fields. This energy source is without doubt a combination

of potential and internal energy, arranged in some way as to make it

"available" for conversion into kinetic energy of motion. The mode of

this conversion therefore must be some form of convection.

Most dynamo schemes then start with a magnetic field confined to

meridian planes (i.e., a poloidal field). This field is stretched out

into the zonal direction by nonuniform rotation, principally by the

horizontal shear. When the toroidal field produced in this manner becomes

strong enough, some form of instability is postulated which will bring

flux loops to the visible surface. This instability may take the form

of a "kink" formed in a toroidal magnetic flux tube due to twisting of

the flux lines about a zonal axis (Alfven 1950, 1961; Dungey and Loughhead

1954), a rising up of portions of flux tubes due to "magnetic buoyancy"

1. We know from the Taylor column theorems, however, that the rotation

cannot be too large, or else two dimensional motion will again result.
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of the tube (Parker, 1955a), or simply of convective motions on the scale

of the granulation and sapergranulation dragging up flux loops with them

(Parker 1955b, Elsasser 1956), or some combination of these three effects.

During this rising up process, it is further required that some twisting

of the flux loops about a vertical axis take place, so that there will be

loops again in the meridional plane. This would be a natural consequence

of the kink instability; the influence of rotation on the convective mo-

tions might also produce it.

Once the new vertical flux loops in meridian planes are produced,

still another process is needed to carry flux to the pole. In the case

of the sun, this flux must be of the proper sign to reverse the sense of

poloidal field from which the process began. This new poloidal field is

then again stretched out into a toroidal field, eventually changing the

sign of the original toroidal field, and the whole sequence is repeated.

The means by which this poleward migration is effected has been alterna-

tively postulated to be meridional "drift currents" (e.g. Babcock 1961),

and diffusion by the supergranulation motions (Leighton 1964).

Parker (1955b) added a new element to the dynamo scheme by consider-

ing the hydromagnetics of a plane of fluid instead of a spherical shell.

He found that, given small scale twisting motions producing vertical flux

loops, when horizontal shear in the flow was present, unstable "migratory

dynamo waves" could be produced, which traveled toward the direction of

increasing zonal flow. If the conductivity of the fluid was high enough,

these waves grew exponentially. Parker suggested that this migratory

property might be related to the migration toward the equator of the zone

of sunspot activity as the solar cycle progresses.
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Babcock (1961) used essentially the dynamo sequence described above

(except for Parker's migratory dynamo waves) to explain the solar magnetic

features, designating the bipolar magnetic regions as the required vertical

flux loops. He made rough calculations of the magnitudes of the various

processes, using as a basis the observed total polar flux, from which he

found that the times required for the various processes to act fitted

reasonably well into the solar cycle.

More recently, Leighton (1964) has taken a somewhat different view

of the processes affecting the vertical fluxes. He assumes that the sun-

spots and sunspot groups are the precursors to new unipolar and bipolar

magnetic regions. The supergranular motions, by a kind of random walk

process, are supposed to erode the sunspots, diffusing smaller flux tubes

away from them. These tubes are then spread out to form the larger scale

magnetic regions. In the presence of the differential rotation, the areas

of diffused fields become tilted in a manner not unlike the observed

fields. If a doublet source is used, representing a bipolar sunspot

group, and if this doublet is initially placed with its axis tilted to

the meridian in accordance with the observations, the diffusion of the

field results in the flux from the trailing portion of the doublet extend-

ing further toward the pole than does that from the leading part. Leighton

identifies this effect with the formation of the large unipolar regions

poleward of 40 discussed in Chapter 1.

As mentioned earlier, Leighton further shows that the cumulative

action on many of these spot groups should lead to the production of a

poloidal field, which will fit into the rest of the quasicyclic dynamo
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process outlined earlier. If the spots originated from an initial sub-

surface toroidal field, as is assumed in the dynamo, then the poloidal

field produced by Leighton's mechanism will cancel the original poloidal

field and form a new one of the opposite sign, as is desired. With the

proper value of the diffusion coefficient for the magnetic field,

Leighton also can fit his calculations fairly well to the timing of the

solar cycle.

Differential rotation

Early ideas on the origin of the solar differential rotation stemmed

largely from work by von Zeipel (1924ab) and Eddington (1925). Von Zeipel

was considering the problem of radiative equilibrium in a rotating star.

He assumed that the composition of the star was still constant on a level

surface, as it would be in the nonrotating case. He then found that in

order for the star to satisfy statically the conditions of radiative and

gravitational (hydrostatic) equilibrium, the nuclear energy production e
within the star Must at every point depend on the rate of rotation JC2-

and the local density p in a form

e ~. - CY r er

where CT is the universal gravitational constant. He also found that

under these conditions the effective surface temperature of the star (the

temperature of a black body with the same radiative flux) varied with

latitude on a level surface, being warmest at the pole and coldest at the

equator. The density was a function of latitude in such a way that the

pressure on a level surface was constant.
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Eddington (1925) argued that it was physically unreasonable to

expect the nuclear energy production within the star to obey such a

peculiar law (which in general even requires a sink of energy in outer

layers). Instead, it seemed much more likely that its conditions would

be violated, in which case the pressure would no longer be constant on

a level surface. In this case, the horizontal pressure gradient would

cause fluid to move along meridians, i.e., a system of meridional cir-

culatory currents would be set up. Since these meridional motions would

be acted upon by the coriolis force, zonal currents would be produced,

and in general a state of nonuniform rotation would result. Eddington

implied that this might even be the means by which the observed differ-

ential rotation of the sun was maintained. The idea of meridional cur-

rents maintaining the differential rotation was also suggested around

the same time by Bjerknes (1926) (see also Bjerkness, 1937) in connec-

tion with his theory of the solar cycle, mentioned briefly earlier.

Bjerknes postulated that the interior of the sun might have a higher

angular velocity than observed on the equator at the surface, which

through a meridional circulation could serve as a source of supply for

the differential rotation.

However, subsequent calculations (e.g., Opik 1951, Cowling 1953)

have shown that Eddington's currents would be much too small ( ~10~9 cm/

sec) to play any role in the angular momentum balance even over a time

as long as the present assumed age of the sun. Furthermore, it is dif-

ficult to see how symmetric meridional motions could put the maximum of

angular momentum at the equator at the surface. If the interior were
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rotating faster than every point on the surface, it would exert a net

torque due to frictional coupling on the surface layer, an imbalance

which certainly could not last over the whole age of the sun.

The possibility that the differential rotation is an equilibrium

condition in a rotating star was further examined by Schwarzschild (1947).

He considered a star in which the core was in convective equilibrium1 and

in solid rotation due to the turbulent mixing, surrounded by an outer

shell in radiative equilibrium in which viscosity was negligible. In both

the radial and meridional directions, the pressure gradient, gravitational

and the centrifugal forces were assumed to be in static balance. The radia-

tive (convective, in the core) flux divergence of heat was balanced by

nuclear energy production. In addition to the vanishing of the temperature

at the surface, all the variables were required to be continuous at the

interface between the convective core and the radiative outer shell.

Schwarzschild claimed to have found by numerical integration a solution

which contained an equatorial acceleration, actually twice as large as

that observed. This solution stood for almost two decades, until Roxburgh

(1964) showed that an approximation made by Schwarzschild in satisfying

the interface continuity condition on the pressure was not valid. Roxburgh

solved the problem without this approximation, and showed that the rotation

was a function of radius only, so that on any concentric spherical shell,

the rotation was sensibly constant.

1. From more recent stellar structure theory, stars of solar mass and

luminosity are now thought to have cores in radiative equilibrium.

M
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The work of Schwarzschild and Roxburgh did not include viscous dis-

sipation, so no energy source was necessary to maintain the motion. Work

on the steady state symmetric balance problem in which viscous effects are

included has been done by Randers (1938, 1942), Schwarzschild (1942),

Krogdahl (1944), and recently by Kippenhahn (1963). Randers early work

relied on the release of potential and internal energy by Eddington currents

arising as a result of the lack of satisfaction of the earlier mentioned

condition on nuclear energy production found by von Zeipel. However, as

we have already said, the estimated velocities in such meridional currents

are far too small to be effective. His later work (Randers, 1942) pertained

to nonuniform rotation in stars with convective cores, since as already

stated at the time the sun was thought to fall into that class. His argu-

ment, however, if valid for convective cores, would be equally valid for

convective envelopes, as in the case of the sun. Randers believed that in

convection on a rotating sphere, the motion and therefore the heat transport

would tend to take place preferentially along the axis of rotation, i.e.,

parcels of gas would move as closely as possible along surfaces of constant

angular momentum. Parcels trying to move along the angular momentum gradient

would be restrained by the centrifugal force. Randers then argued that the

excess polar heating brought about in this way would produce a mean merid-

ional circulation, which he claimed could be balanced only by an increased

centrifugal force and consequently increased angular velocity in equatorial

regions. However, Randers contention that convective motions along the

gradient of angular momentum are suppressed can hold only for modes axi-

symmetric about the axis of rotation. In fact, we now know (Chandrasekhar

(1953) that at least the onset of convection should be inhibited near
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the poles rather than near the equator. Randers did correctly show that

as a consequence of his polar heating, the angular velocity should de-

crease with height above the equatorial plane (a kind of thermal wind),

but it does not necessarily follow from this that the angular velocity

decreases with increasing latitude.

Krogdahl (1942) looked into the problem of maintenance of the dif-

ferential rotation against viscosity in a more mathematical way, and

showed that in autobarotropic stars (in which the pressure and density

are functionally related) the only possible steady state is one of uniform

rotation. Essentially the same result was found also by Schwarzschild

(1942). Krogdahl showed that if the star were instead baroclinic, non-

uniform rotation could in general exist in the equilibrium state. In the

baroclinic star, the isobaric and equipotential surfaces would not in

general, coincide, so that there would be pressure forces and consequently

accelerations in the meridional plane. This would again give a set of

meridional currents, which, when turned by the coriolis force, could give

a differential rotation. (However, he did not find an actual solution

which gave the equatorial acceleration.) Krogdahl felt that uniform rota-

tion itself directly gave rise to the force to maintain a differential

rotation. But it appears that all such a direct effect could produce

would be the Eddington currents, which, as we have already said, are much

too small. If one considers the influence of rotation on the cellular

convection more carefully than was done by Randers, however, there appears

to be another way in which the baroclinic state required by Krogdahl might

be obtained. This possibility will be discussed in the next chapter.
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An attempt to include more sophisticated effects of the granular

convection was made by Kippenhahn (1963). He reasoned that since the only

steady solution for a barotropic rotating star when the viscosity (which

could be molecular or eddy viscosity) was uniform and isotropic was one of

solid rotation, it might be better to assume an anisotropic eddy viscosity.

He justified this assumption partially on the grounds that since the con-

vective turbulence is driven by gravity, it has a preferred direction.

With such an assumption, it was no longer necessary to require the star to

be baroclinic to obtain nonuniform rotation. He therefore assumed the ver-

tical temperature gradient to be adiabatic (with uniform temperature in the

horizontal). In this case, since pressure force has no curl, taking the

curl (only the zonal component contributes)of the equations of motion gives

a balance between just the inertial and the viscous terms. Kippenhahn exam-

ined this balance for a spherical envelope, taking an anisotropic viscosity

which distinguished the radial (vertical) from the lateral directions.

With this anisotropy, uniform rotation was not a solution. In addition,

the solution always contained symmetric meridional motions. If the vis-

cosity in the radial direction is assumed smaller than in the lateral

directions, the meridional circulation produced gives rising motion at the

poles and sinking at the equator. For larger radial than lateral viscosity,

the meridional currents circulate in the opposite sense. For small radial

viscosity, he shows that an equatorial acceleration will result. However,

in his approximate formulation, the influence of the derived meridional

circulation on the distribution of angular velocity is neglected.

Kippenhahn stated that for the sun, his approximations to linearize the

problem do not hold too well, but he felt that solution of the nonlinear

balance equations would still give an equatorial acceleration.

M
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Although the convective layer may well possess an effectively ani-

sotropic viscosity, it seems difficult to say on either physical or math-

ematical groundswhich component should be the strongest. In Kippenhahn's

solution, if the radial viscosity were assumed larger than the lateral,

apparently an equatorial "deceleration" would result. Moreover, it is not

inconceivable that eddy viscosities in such thermally driven turbulence

could be effectively negative (transporting momentum up, rather than down

the gradient).

At this point, the meteorological reader should be struck by the

similarity in reasoning between some of the theories of the differential

rotation of the sun, and some of the earlier theories for the maintenance

of the westerlies in the earth's atmospheric general circulation. In

particular, the complete reliance on axisymmetric motions, except possibly

for turbulence parameterized on the basis of mixing length concepts, stands

out. Modern theories of the terrestrial general circulation have of neces-

sity gotten away from these ideas, to recognize the foundamental role played

by a particular kind of thermally driven turbulence, namely the cyclones

and anticyclones. And as we saw earlier in this chapter, hydromagnetic

dynamo theory has had to consider the unsteady, asymmetrical motions as

well. Possibly, then, it is time to consider asymmetric, unsteady theories

for the solar differential rotation. The statistical work of Ward (1964,

1965a) appears to lend considerable support to this idea. It is even tempt-

ing to think that the differential rotation problem and the dynamo problem

might be considered as one. The theoretical analysis presented in the re-

maining chapters appears to fortify this conjecture.
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3. A possible alternative approach

It should be evident from Chapter 2 that our theoretical under-

standing of large scale hydromagnetic and hydrodynamic processes on

the sun is far from complete. For one thing, there seems to have been

too much emphasis placed on the possible (and in several cases, specu-

lated) role of axisymmetric processes in accounting for the differential

rotation. Other difficulties are also apparent. Most of the models are

energetically incomplete. For example, in the hydromagnetic dynamo theory

for the solar magnetic fields (e.g. Babcock, 1961) the differential rota-

tion is assumed to be given, but the energy source required for its main-

tenance is not specified. In addition, other motions may be postulated to

bring about desired configurations in the magnetic field, but again the

energy sources for such motions are often only vaguely suggested, or not

specified at all.

A similar energetic incompleteness also pervades theories of the

differential rotation. None of these theories attempts to take into

account the possibility of work being done on the motion by electromag-

netic forces. It is generally assumed that such forces are too small

to significantly affect the motion, but it does not appear that this can

be unequivocally proven from the observations.

A further possible weakness of many of the theories is their often

crucial reliance on parametrized diffusion processes to bring about the

desired effects. The differential rotation theory of Kippenhahn (1963)

and the large scale magnetic field model of Leighton (1964), both discussed
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in Chapter 2, are examples. In Kippenhahn's work, which depends on the

eddy viscosity being anisotropic, as we pointed out, it is just as easy

to obtain an equatorial "deceleration" as "acceleration", according to

the type of anisotropy assumed, and there appears to be little independent

physical justification for picking the anisotropy which gives the right

answer. In Leighton's work, the value chosen for the magnetic diffusivity

is really justified primarily by how well the resulting diffusive trans-

port of vertical magnetic fields fits into the timing of the solar cycle.

But aside from the uncertainty as to the proper value of the eddy

viscosity or magnetic diffusivity to be used, reliance on such schemes

may fundamentally oversimplify the physical nature of the system. That

is, countergradient transport processes will not be allowed. It is now

well known that, such processes commonly occur in geophysical fluid

systems. For example, countergradient horizontal transports of momentum

predominate in maintaining the westerlies in the earth's lower atmosphere,

and countergradient horizontal transports of heat are observed in the

lower stratosphere, just to name two.

In the light of the above remarks, it seems desirable, as an alter-

native approach for modelling the differential rotation and large scale

magnetic phenomena, to formulate and examine a dynamical system in which

motions need not be axisymmetric, where hydromagnetic forces may influ-

ence the motions (and also motions may change the magnetic fields), and

where parameterized diffusion does not necessarily predominate in deter-

mining the character of the motions and magnetic fields. By this I do

not mean to argue that diffusive processes are unimportant, or even neces-

sarily less important than other effects, but simply that other possible

mechanisms should be examined.
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A beginning in this direction has been made by Starr and Gilman

(1965a,b). As mentioned in Chapter 1, they discussed (Starr and Gilman

1965a) the energetic implications of Ward's spot correlation statistics.

They showed that the countergradient transport of momentum implied by

Ward's correlations effects a conversion of energy from the implied

horizontal eddy motions to the mean zonal flow, and suggested that this

process could be responsible for maintaining the differential rotation

against dissipation by friction. They also speculated on the nature

of the required energy source for the horizontal eddy motions, suggesting

baroclinic conversion of eddy available potential energy, and nonlinear

interactions with the smaller scale convective motions, as possibilities.

In Starr and Gilman (1965b), the energetic considerations were

extended to include some magnetic effects. The principal point was that

horizontal Maxwell stresses, the magnetic analog of horizontal Reynolds

stresses, might under certain circumstances act as a significant brake

on the differential rotation, thereby opposing the action of the Reynolds

stresses. They further showed how both conversions could be taking place

as a result of the same hydromagnetic disturbance. This disturbance would

be a wavelike distortion of the mean zonal flow which took on the charac-

teristic "tilted trough" pattern so commonly seen on upper air weather

maps, first suggested by Starr (1948), and now well known to be primarily

responsible for the horizontal eddy flux of momentum in the earth's atmo-

sphere. In the hydromagnetic analog of this disturbance, a tilted struc-

ture would appear not only in the stream lines, but also in the magnetic

flux lines. These flux lines would originally be part of the subsurface
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toroidal field, which, due to the high electrical conductivity of the

solar gases, would tend to follow the fluid particles, resulting in

the tilted shape. Starr and Gilman put forth Howard's (Bumba and

Howard 1965b, discussed in Chapter 1 and reproduced in the appendix)

solar magnetograms of the line of sight fields, showing patterns of

large scale, tilted in the desired sense, as observational evidence

for this kind of disturbance. They further speculated that the energy

taken from the differential rotation by the Maxwell stresses, which

goes into "eddy" magnetic energy, might be one of the principal energy

sources for some of the solar magnetic activity. No further light was

shed, however, on a possible energy source for the eddy motions them-

selves. However, it is obvious that whatever its nature, it must be

able to supply energy at a greater rate than the Maxwell stresses are

taking it away.

With the addition of the work of Starr and Gilman (1965ab) to the

previous theories for the differential rotation and solar cycle phenomena,

it appears that there are basically two possible directions for further

research to take, both of which merit considerable attention.

On the one hand, if one rejects Ward's interpretation of the spot

correlations, as does Leighton (see Chapter 1), then one really must

require that the granular and supergranular motions be responsible not

only for the large scale magnetic field patterns, but also for maintain-

ing the differential rotation. It may in fact be possible for these mo-

tions to accomplish both these tasks, but present theory of turbulent

convection in a basic flow with shear is not developed nearly enough to

tell.
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On the other hand, if one accepts Ward's interpretation of the spot

correlations, the work of Starr and Gilman follows quite naturally, and

one is then led to the conclusion that the source of energy for the large

scale eddy motions and zonal flow is most likely to be of comparable scale.

If this is so, then the obvious source is the same as in the terrestrial

atmospheric case, namely available potential energy associated with large

scale horizontal density variations. It is the possible consequences of

this kind of energy source which we wish to examine in this thesis.

In the case of the earth's atmosphere, we know that the required

horizontal density variations are set up as a result of differential

heating by the sun. It is obvious that no analogous differential heating

by an external source takes place on the sun. Furthermore, as discussed

in Chapter 1, the attempts to measure meridional temperature gradients by

means of differential limb darkening have proved inconclusive. But these

two considerations do not necessarily rule out differential heating by an

internal source, namely the convection itself.

In considering this possibility, the work of Lorenz (1955) is help-

ful. Lorenz defined "available potential energy" as the difference between

the total potential energy present and the minimum value which could be reached

by adiabatic redistributions of mass. In order for the available potential

energy to be positive, the stratification of the fluid must not be both

exactly horizontal and gravitationally stable. If the stratification is

horizontal but gravitationally unstable, then the potential energy avail-

able can go only into ordinary convective motions. If the stratification

is gravitationally stable but not exactly horizontal, then the available

then he avilabl
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potential energy can go only into Hadley cell motions or unstable baro-

clinic waves (i.e., cyclones and anticyclones). If the stratification

is gravitationally unstable and not horizontal, some combination of these

motions should result.

In the case of the sun's convective layer, it is obvious that

available potential energy due to a gravitationally unstable stratifica-

tion is being released. But due to the sun's rotation and finite ampli-

tude effects this may not be the whole picture. Chandrasekhar (1952,

1953) has shown that the onset of convection of a liquid between parallel

horizontal planes is inhibited by the vertical component of rotation

(the critical Rayleigh number increases with the Taylor number). Recently

Veronis (to be published)has studied steady finite amplitude convection

in a liquid with free boundaries, using a truncated fourier series model.

He shows that in general the horizontally averaged vertical temperature

gradient depends upon both the Rayleigh and Taylor numbers. The implica-

tion for the solar case from this albeit vastly simpler system is that,

since the normal component of rotation is a function of latitude, the

Taylor number would be a function of latitude, so that meridional temper-

ature gradients, and therefore, in general, density gradients, could be

set up. Thus the convection, responding to one kind of available potential

energy, namely that due to a gravitationally unstable density stratifica-

tion, could conceivably produce the other kind, that due to horizontal

density variations. This could be the baroclinic atmosphere that Krogdahl

(1944) was searching for, as discussed in Chapter 2. Unfortunately, it is

virtually impossible to estimate the magnitude of this effect for the sun,

due to the uncertainty of many of the parameters involved.
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Even if the above scheme could produce significant horizontal

density variations, a further theoretical problem would necessarily

remain, were it not for the additional results of Veronis. That is,

if the convective layer remained gravitationally unstable everywhere,

it would be very difficult in regard to the equations to deal with

baroclinic overturnings, since the unstable convective modes would still

be present. To get at the baroclinic effects separately, we need to

deal with a fluid layer that, over time periods long compared with the

convective time scales, is gravitationally stable. In the light of some

further results of Veronis, it may not be unreasonable to assume this,

for at least some levels in the solar convection layer. Veronis found

that over a wide range of Taylor number and supercritical Rayleigh number,

the mean vertical temperature gradient was actually gravitationally stable

through a large part of the interior of the fluid, with highly unstable

layers occurring at the upper and lower boundaries. Possibly, then, the

time averaged vertical temperature gradient in the interior of the con-

vection layer on the sun is also stable. (If so, this would be still

,another example in which a transport process, in this case vertical heat

transport, could not be represented meaningfully as parameterized diffu-

sion).

Parenthetically, we should remark that in stellar structure theory,

it is generally assumed that convective layers have adiabatic temperature

gradients. The implications for stellar models of stable gradients in

such layers are probably not very great, since the stable regions are not

very thick compared to the stellar radius, and because the deviations from

an adiabatic gradient are not large.

OFF,

0
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So far, then, we have suggested that the small scale convection

could produce a layer which was gravitationally stable over times long

compared to the convective time scales, and that within this layer large

scale meridional temperature gradients could be established due to the

varying normal component of rotation. The available potential energy

associated with these meridional temperature gradients is usually called

mean zonal available potential energy. To get from this energy source

to potential energy converting baroclinic or cyclone waves, however, one

further difficulty must be considered. The difficulty is in how long

zonal, as opposed to meridional, temperature gradients can exist in the

sun in the face of the eddy conduction of heat. These zonal temperature

gradients, which represent what is usually called eddy available potential

energy, are essential to the growth of baroclinic waves.

To illustrate the difficulty most clearly, we turn to a setting

seemingly far removed from the solar problem, namely the laboratory.

Energy converting disturbances that can grow from zonal available potential

energy have been studied extensively in the laboratory, by Hide (1958) and

Fultz (1961) and many others. These studies comprise the so-called rotating

dishpan and rotating annulus experiments. In these experiments, well known

now to most dynamic meteorologists, a cylindrical or annular shaped con-

tainer is filled with liquid (usually water). The container is then allowed

to rotate at a controllable rate about its axis of symmetry, and by means

of thermal reservoirs exterior to the container, a temperature difference

is established between the center and edge, in the case of the cylinder,

or between the inner and outer side walls, in the case of the annulus.
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The motions of the liquid which result in response to this differential

heating are then examined for different rotation rates and horizontal

temperature contrasts. Depending on these, and other parameters which

are fixed once the fluid is chosen (e.g., the thermal conductivity and

viscosity) several different modes of motion may result. The simplest

is the so-called Hadley regime, in which the motions are axisymmetric,

consisting of a meridional cell (with rising motion at the warm wall and

sinking at the cold wall) with an associated zonal flow produced from

the meridional flow by the coriolis force. For other rotation rates and

temperature contrasts, the so-called Rossby regime, results, in which the

motion is asymmetric, consisting of horizontal waves or meanders on a

zonal flow. In this case, the isotherms also have a wavelike structure,

and are positioned relative to the streamlines in such a way that warm

liquid is being carried toward the cold wall, and vice versa. Within the

waves, eddy available potential energy is being converted to kinetic

energy, through the rising of liquid in the warm parts of the wave, and

sinking in the cold parts. For still other conditions, more complicated

regimes may be found.

One of the requirements for the existence of energy converting

wavelike motions of the Rossby regime described above is that the mole-

cular thermal conductivity of the liquid be relatively low. That is,

it should be low enough so that the zonal temperature perturbations are

not virtually destroyed before the eddy heat transport and energy con-

version processes have a chance to take place. This requirement is

easily met for most fluids used in the laboratory. It is also satisfied
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fairly well for the analogous situation in the earth's atmosphere. That

is, the potential energy converting cyclone waves are observed to grow

much faster than radiation or eddy heat conduction can dissipate them.

In the solar case, on the other hand, since the convection is so

vigorous, it may be more difficult to maintain such gradients. That is,

Veronis' work implies that along a given latitude circle, the convection

will tend to make the mean vertical temperature structure the same, even

if it is gravitationally stable. Consequently zonal temperature gradients

would tend to be wiped out. If this effect is strong enough, then the

only kind of large scale motion which could result would be of the Hadley

regime type. However, considering the possibility of nonlinear inter-

actions between the small and large scales of motion, to expect zonal

gradients to last may not be completely unreasonable. To see how the

two scales of motion might interact and compete, it would be interesting

to extend the annulus experiments, imposing a temperature gradient between

top and bottom as well as at the inner and outer walls. On the sun, one

might be tempted to cite the plage and facular regions as observational

evidence for zonal temperature gradients and hence eddy available potent-

ial energy, but these temperature fluctuations may be specifically due

to the presence of the magnetic fields, as discussed by Simon and

Leighton (1964).

In summary, then, we propose to reduce the problem of the solar

general circulation to consideration of the dynamics of a gravitationally

stable baroclinic circumpolar vortex, which is confined to a relatively

thin spherical shell in the convection layer. To include hydromagnetic
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effects, we shall assume with most previous authors that there exists a

subsurface mean toroidal magnetic field, everywhere parallel to the mean

zonal flow. From both a thermal and a magnetic point of view, then, the

real seat of the large scale dynamics will be somewhere in the interior

of the convection layer, rather than near its upper boundary to which

most of the observations previously discussed refer. Nonetheless these

observations could all fit fairly well into such a picture. The merid-

ional temperature gradients, not conclusively seen at the surface, could

instead be present in the deeper layer. Veronis' work would suggest this

since the temperatures in his convection model (and almost all others)

are fixed at the top and bottom boundaries. Furthermore, it is only in

the interior of the convecting layer that the stable mean vertical tem-

perature gradients can occur. The fact that the observed large scale

magnetic fields at the surface are primarily vertical is also consistent.

These could be just the vertical parts of closed or helical flux loops

whose lower horizontal parts are associated with the toroidal field in

the interior layer, with the upper parts being in the chromosphere or

corona. The sunspot fields could be similarly anchored. The horizontal

Maxwell stresses discussed by Starr and Gilman (1965b), then, would be

distortions of the toroidal field, and as such would be confined to the

interior layer. The motions of the sunspots and their correlations,

could also be evidence for the presence of horizontal eddies and their

associated Reynolds stresses which are really produced in the deeper

layer. The differential rotation itself could easily be supposed to

extend at least this deep, if not all the way to the bottom of the con-

vective layer.
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In order to study this baroclinic hydromagnetic circumpolar vortex

mathematically, however, many further assumptions, some of them physically

not very realistic, will have to be made. These will be discussed in detail

with the formulation of the equations in Chapter 4. The principal effort

in later chapters will be directed toward the stability properties of this

vortex with respect to normal mode disturbances, the structure of unstable

disturbances that can be produced, and their energy conversion properties.

As such, it constitutes a direct generalization of work that has been done

on the nonmagnetic baroclinic vortex problem by Phillips (1954), Charney

and Stern (1962), and particularly by Pedlosky (1964ab). The ultimate

goal of this investigation will be to see whether the dynamics of large

scale disturbances on such a hydromagnetic vortex include processes that

would maintain an equatorial acceleration and at the same time act as a

dynamo to simulate the solar cycle. While the results that follow do not

answer this question completely in the affirmative, they indicate a good

possibility of such a regime.
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4. Formulation of the equations governing large scale hydromagnetic

flow.

Physical and scaling assumptions

Several assumptions are needed to simplify the physics of our

problem. Some of these assumptions agree quite well with the actual

conditions in the solar convection layer. Others exclude physical

effects which are undoubtedly quantitatively important in the actual

dynamics, but which do not appear to add any qualitatively crucial

processes. We shall assume then,

1. Local thermodynamic equilibrium exists through the layer.

This should hold very well in the interior of the convection layer.

2. No nuclear energy production anywhere in the layer. This

holds very well throughout the convection layer.

3. The medium is a perfect gas, which consists of partially

ionized hydrogen and helium, rendering it very highly electrically

conducting, and very opaque to radiation. These should hold quite

well. However, the thermodynamic effects of partial ionization will

be neglected. That is, the equation of state for the system will be

written for an unionized gas, and the heat of ionization will be omitted

from the thermodynamic equation. Obviously, the thermodynamic effects

would make a quantitative difference in the dynamics, (e.g., the avail-

able potential energy for a given temperature distribution would be

changed), but they do not seem to introduce any important new phenomena.
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4. The thickness of the layer is small enough so that gravity may

be taken as a constant, and so that divergence of radii from the center

of the sun may be neglected. The self-gravitation of the region will also

be neglected.

In addition to these assumptions about the physical nature of the

system, we also must make several assumptions about the time and space

scales of the hydromagnetic disturbances to be described by the equations.

These restrictions encompass the well known "filtering" approximations

(e.g. Thompson 1961) of dynamic meteorology, but go a step further to allow

for hydromagnetic effects.

To retain continuity with the nonmagnetic problem, the notation of

Charney and Stern (1962) and Pedlosky (1964a,b) will be largely retained.

The scaling arguments for the nonmagnetic aspects will be parallel to

those works, though admittedly some of the assumptions are less supported

by observational evidence in the solar case.

If we accept the spot displacements as measures of the large scale

flow, then the horizontal scale of the typical disturbance in this flow

must be larger than typical sunspot or sunspot group dimensions. Let us

take this scale, denoted by L , to be L ^- 10 km. L of course,

is not the characteristic wavelength of the disturbance, but rather the

distance over which the perturbation variables are changed by an amount

equal to their typical values. That is, the inverse of the wave number

_k or tTr/ > , where is the wavelength, would be a reasonable

measure of the scale. Taking L.-,-lo km corresponds on the sun to about

six complete wavelengths around a latitude circle in middle or low latitudes,

which fits well with the observed magnetograms cited earlier.
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Letting OL be the radius of the sun, we note then that L/ << I

since 0. = 7x10 5 km. This allows us to use a local cartesian rather than

spherical coordinate system, a considerable simplification. The constraint

due to the variation in the normal component of rotation with latitude

(the so-called 1 effect) remains, but the variation becomes linear in the

meridional coordinate. Obviously, then, we are not able to handle very

well disturbances which extend nearly from the pole to the equator.

In the terrestrial case, the horizontal flow is conventionally

assumed to be geostrophic. That is, to the lowest order there is a balance

between horizontal pressure gradient and Coriolis forces. Inertial and

viscous forces are generally assumed to be of higher order. These approx-

imations are well supported by observations of the actual dynamics of the

earth's atmosphere. In the solar case, we cannot, of course, measure

either the pressure gradient or the viscous forces directly. However,

if our abstraction of the solar general circulation problem to the consider-

ation of a baroclinic circumpolar vortex has any validity, we would still

expect the horizontal pressure forces to play a key role.

As for the viscous forces, if one were to argue on the basis of

mixing length theory, using the granulation velocities and dimensions

discussed in Chapter 1, one could claim that viscous forces due to small

scale vertical stresses are actually as strong or stronger than coriolis

forces associated with the large scale flow. However, since the granula-

tion and supergranulation are thermally driven, mixing length arguments

applied to mechanical transport processes, e.g., transport of momentum,

may not be applicable. In any case, the question of the magnitude of
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the magnitude of the viscous forces can be argued from another point of

view. That is, they cannot dissipate the kinetic energy of the mean

flow any faster than the energy sources renew it. This renewal time

has been estimated by Ward and by Starr and Gilman from the conversion

of eddy to zonal kinetic energy, as from one to several rotations.

Starr and Gilman (1965b) pointed out, the inclusion of horizontal Maxwell

stresses may increase the renewal time appreciably. Therefore, at least

to be consistent with the interpretation of spot displacements as reflecting

large scale motions, we should, as in the terrestrial case, assume that the

viscous forces are of higher order.

The inertial forces can be estimated from Ward's data. They will

be small compared to the coriolis force, and the geostrophic balance (or,

more appropriately, heliostrophic) will be complete in the absence of

electromagnetic forces, if the time scale of the disturbances is the

advective scale \f , where V is the characteristic horizontal

velocity, and if the Rossby number l ~S_ L (( I

where ._ is the angular rotation rate of the sun. At least in sunspot

-6 -1
zones ..Q ~3x10 sec , and from Ward's data, U ~ 50m/sec, so that

Ro ~ 101.

When electromagnetic forces are included, an additional assumption

is needed to give a heliostrophic balance, namely, that the Alfven velocity

M /(4rp) , where M is the characteristic horizontal magnetic

field strength and the density, is of the same size or less than If

We shall use the parameter i/Y4IfrjOU , the ratio of typical
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horizontal magnetic to horizontal kinetic energy in the system. Thus

if we assume ,P the motion will be heliostrophic to lowest

-7
order. Near the top of the convection layer, say for j - 3xlO gm

-3<
cm-, we would have to take M1u 10 gauss. For a deeper interior layer,

such as we are assuming, for which, say, -,o we are allowed

Mil 200 gauss, which is the same order as is generally assumed to

exist at such depths. Although the assumption that P ) appears to be

ad hoc, it is supported a posteriori by the results in Chapters 8 and 9.

Given that the motion is quasi-heliostrophic, and that - <

we may easily show that the motion will also be horizontally nondivergent

to lowest order. Therefore to lowest order we shall be able to represent

the horizontal velocities by a stream function. Because the motion is

quasi-heliostrophic, gravity waves will effectively be "filtered out" of

the system (e.g. Thompson 1961).

Since there are no known magnetic monopoles, the magnetic field is

always nondivergent in three dimensions. But, as a consequence of the

heliostrophic and horizontally nondivergent nature of the motion, we can

show that the magnetic field will also be horizontally nondivergent (to

the present order of approximation). This important simplification will

be demonstrated when the hydromagnetic equations are derived. As a con-

sequence, we can also represent the horizontal magnetic field to lowest

order by a "stream" function. In this case, the streamlines are simply

the magnetic flux lines.
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Since the system is gravitationally stable, we shall assume the

horizontally averaged pressure and density to be in hydrostatic balance.

For the perturbation pressure and density to be hydrostatically related,

it is sufficient to assume that the vertical scale of the disturbances,

D , is much smaller than the horizontal scale L ; i.e. S - D/L t<. I

The assumption that P < is then enough to keep the magnetic fields

from entering into the balance. Since L ^-- /0 At all disturbances

except those which extend through the entire convective layer will be

hydrostatic.

For simplicity, the perturbations will be assumed to be adiabatic.

Therefore the specific entropy, or equivalently the potential temperature

(see (4-33)), of a parcel will be conserved. Intuitively, this does not

seem like a very good assumption, since there is so much small scale ver-

tical mixing. That is, as discussed in Chapter 3, the maintenance of eddy

available potential energy may be difficult. We do not know how large an

effect this will be, but we shall assume that it is not so strong as to

completely wipe out the perturbations. In order to be potential energy

releasing, the particle trajectories in the perturbations must have slopes

that are less inclined to the horizontal than are the potential temperature

surfaces. That is, we must have

where W is a typical vertical velocity, 0 the potential temperature,

and and 4 are horizontal and vertical coordinates. Since the motion

is horizontally quasi-nondivergent, the numerator is of order S 0

The denominator may be estimated from the thermal wind relation. That is
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2-f~ 1 -Q 2QU/ D . where is gravity. If we let

) /t 0 be a measure of the static stability, then we

have that for potential energy releasing

motions. For the terrestrial troposphere, K gives

e / , but for the sun, since ./ ,

need be no larger than 10 4. That is, the solar mean vertical temperature

gradients need not be nearly so much less than the adiabatic as their at-

mospheric counterparts. For simplicity, S is assumed to be a constant

in time and space.

It is necessary primarily on mathematical grounds to limit the ver-

tical extent of the disturbances according to the ",quai-Boussinesq" assump-

tion (Charney and Stern, 1952). This assumption does not rule out effects

of compressibility altogether, but rather excludes those disturbances whose

vertical scale is much greater than the scale height I)7_1 , .where

is the temperature. That is, letting ID/ =/A- , we assume

that r/A , where is the ratio of specific heats.

On the sun, at the depths we are considering, -'~ 2000 km, so it is

difficult to say how bad a physical approximation this is, but neither

baroclinic stability theory nor convection theory have proceeded very far

without it.

A summary of the nondimensional numbers which define the approxima-

tions made above is presented in Table 1.

The filtering approximations customarily used in dynamic meteorology

effectively screen out sound waves (with the hydrostatic approximation) and
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Table 1. Scaling Assumptions

Ro0= U <<\
c2-Q.L

heliostrophicM- <

P=r .U3

potential energy

converting

horizontally

nondivergent

(if heliostrophic)

~= <<~I hydrostatic

quasi-Bouss inesqYr D
5

L < <
CL.
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gravity waves (with the geostrophic approximation). In magneto-

hydrodynamics, a similar procedure is often used to filter out electro-

magnetic waves. It is sufficient that all the characteristic velocities

of the system, i.e., the flow,Alfven, sound, and gravity wave velocities,

be nonrelativistic, a requirement that is easily satisfied for the sun.

When these conditions hold, there is no relativistic correction to the

density, displacement currents are negligible, and advection of charge

by the flow does not contribute significantly to the total current.

In addition, the body force due to finite charge densities in an electric

field may be neglected. (See Hide and Roberts (1962), or Elsasser (1956)

for the detailed scaling arguments).

Unscaled equations

Incorporating all of the physical assumptions made above, we may

now write down the unscaled equations governing inviscid, adiabatic,

perfectly conducting hydromagnetic flow. Let us define 1k to be the

velocity vector, -p the pressure, OC the specific volume, the

electric field, 74 the magnetic field, the electric current density,

the solar latitude, X, , & the local zonal, meridional and ver-

tical directions, and R the gas constant/unit mass. Cgs and electro-

magnetic units are used, and since the material is not ferromagnetic, the

magnetic permeability is unity. Asterisks are used to distinguish dimen-

sional variables. Then the equation of motion is given by

(4-1)
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The equation of mass continuity is

AP = 0*D

The thermodynamic equation is

--- AO O0

The equation of state is

The relevant Maxwell's equations are

C~nt -r*,

C.Ak 0* -a E
and

OUA - V *=- (4-7)

Since the electrical conductivity is infinite, the conduction current precise-

ly balances the induction current. That is

(4-8)

We can eliminate consideration of the current density and the

electric field from the problem, by substituting from (4-5) into (4-1),

and from (4-8) into (4-6). Thus we have

Ot42 3W_

CLt*_

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

(4-9)
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and

C"/Lt(4-10)
de

Equation (4-10) is a mathematical expression of the well known fact

that when the conductivity of the medium is infinite, the magnetic field

lines are attached to fluid particles. This may be seen more clearly if we

note the vector identity

(4-11)

From (4-7), the first term on the right in (4-11) vanishes. Using (4-11),

we may write (4-10) as

C~ *.-~- (4-12)

From (4-12), it is evident that the field strength following a certain

particle of fluid can be changed only by either twisting the lines of force

by shearing motion (the first term on the right in (4-12)), or by squeezing

together or pushing apart of field lines by divergent motions (the second

term). In both of these processes the field lines are dragged with the fluid

as it moves.

We may equivalently argue that the total magnetic flux through an

element of area made up of a small group of fluid particles is conserved

as these particles move and the element is distorted.
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In order to nondimensionalize the equations in terms of the para-

meters defined earlier, it is convenient to separate the vertical from

horizontal components, and to expand some of the vector products by mean

of appropriate vector identities. Thus we define

(4-13)

where

V (. VJ (4-14)

7- H + (4-15)

where

H H4-16)

We also split the operators

S=+ "Id x (4-17)

- *(4-18)

01 * (4-19)

The horizontal equation of motion becomes

( v tX 4 e X V--COS4W-2L

*~7~x,5x L(4o-20)
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while the vertical equation is

+ V* vi )7 *+ .4 jCO

(4-21)

The mass continuity equation (4-2) becomes

(4-22)

The equation for the horizontal magnetic field may then be written as

(4-23)

while the vertical magnetic field equation becomes

V v+ *'~ _a- ~ 7V
(4-24)

Here use has again been made of the vector identity (4-11), and (4-7).

Equation (4-7) becomes

-t (4-25)

Finally, the thermodynamic equation (4-3) is written as

.j0 (4-26)

The equation of state (4-4) remains the same.
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Scaled equations; their expansion in the Rossby number

Anticipating the horizontal quasi-nondivergent nature of the flow

and the magnetic fields, it is helpful to split these horizontal fields

into irrotational and nondivergent parts. That is, we define

4= V +
W4%f - ++ V,(4-27)

where \/ - S \7 cr (4-28)

is then the stream function for the flow, and is the velocity

potential.

Similarly, we define

H X - (4-29)

where

U =4x17/x (4-30)

Using the scaling parameters defined earlier, we may define non-

dimensional independent variables for the system as

L .:::- t (Jt (4-31)

The nonmagnetic dependent variables may be nondimensionalized in

ing way

R* =OvJ

w* = $ RoU w

_P*= 7( !+KE1?o6

1= fs' + K eRo p

InG*.I+ k E- Ro cx

the follow-

(4-32)

He
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where the subscript, s , denotes a horizontal average.

The log of the potential temperature, which is proportional to

the specific entropy of the gas, is related to the pressure and specific

volume according to the formula

hI VI9 = r1P&( + hk .15f (4-33)

Then from (4-32) and (4-33) it immediately follows that

(9.= -AfA (4-34)

As stated earlier, the horizontally averaged pressure and density

are in hydrostatic balance. That is,

-O (4-35)

To obtain guidance in scaling the magnetic field, we should examine

equation (4-24) for the vertical magnetic field. When this equation is

made nondimensional, the left hand side is at most of order I0 However,

the right hand side, since one term contains the vertical motion and the

other the horizontal divergence, will be at most of order RO . Therefore,

when and the other dependent variables are expanded in powers of RO

as will be done in the next section, the terms first order in P0 would

give simply

(4-36)

That is, the vertical magnetic field attached to the quasi-horizontally

moving particles will be conserved. Thus if the vertical fields are
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initially zero everywhere, they will remain zero. In our perturbation

study the flow and magnetic fields initially must satisfy Ferraro's law

(c.f. Chapter 2) in order to be steady, i.e., they must be coplanar.

Since, in general, the flow will have vertical shear, the vertical mag-

netic fields must therefore initially vanish everywhere, so that, from

(4-36), to first order in Ro , they will remain zero. But from (4-25),

this implies that the horizontal divergence of the horizontal field is

zero to lowest order. Consequently, just as with the horizontal velocity

field, the horizontal magnetic field can to lowest order be represented

by a "stream" function. In this case, the "streamlines" represent the

magnetic flux lines. In view of the assumption of infinite conductivity,

this is a reasonable result. That is, since the field lines will be

attached to fluid particles, fluid motions which are horizontally non-

divergent to lowest order should tend to produce field patterns which

are also horizontally nondivergent.

From the above reasoning, thenwe can nondimensionalize the magnetic

fields as follows

. R PH(4-37)

With the scaling equations (4-32) and (4-37), and the relations

(4-33), (4-34), and (4-35), then, we may nondimensionalize equations (4-20)-

(4-26), respectively, in the form
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V *-RoV =
%Wb + MOL

x +RO ) -R cs 4

Ro +(y4,Ol Re 99

-(i+I~cRoco)lV- +-(H-keRoct)

X(H-gOyx>Igoh±( *Ru

+ Ro +) V±o w -)w

RO I

JRoVX)

(4-39)

±f(Y+--o Y) v ) p + -Ra/6. I+ Ro lk ep) V',O

p*( I +R. ) W)

(V0+ go MO).R v i ) (H -t o-1 \

(4-41)

Ro ( 14,xRa U1) l.V R Y7 F-y) v

L

(4-38)

= 0

Ro (I

(4-40)

= a +o(iiR9

t(v +.RoYa).V+Pow4-1 %1% i4-)(

cos +( V +-RO yq) 0(*s 0 + K C- X000 'I ZE - c cvftv a-I 0134
;"p, Cmx+ P,

4?t

+ P0 S4-( Ht*Ro

+ Q+ K,& Roof,) -P

RO f4k

+ Ro

*Ro R a h -! t R-o Yc),df-
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ftO 6 ( + t noVa) V

Ro [(H,+o H. - ?w -Ro k v- Yj

Re + 1 "-e-Qr
( I t olk - go -r

I+ /(E- ReOec

W f-wo v d
e 40-Z

Consistant with the scaling, the sine of the latitude is expanded about a

fixed latitude, i.e.

= (4-45)

Defining

L - S~o
Ro

we may write

(4-46)

(4-43) as

Sin #= sin+,. (4-47)
+ A p - e

(4-42)

(4-43)

(4-44)

+ KOV4

+t-( V, -Re 0 Yc) .V7)oa

RO ( V. Yar

0Co 4
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Then all the dependent variables are expanded in powers of the

Rossby number, i..e. in the form

X = X ) RO (4-48)

where X represents any of the variables. The so-called "O'th order"

equations, representing the geostrophic and hydrostatic balances, are

then immediately found from (4-38) and (4-39) to be

(0) (0)
X Vf(4_49)

and

(4-50)

From (4-49) and the definition for \/4 (4-28) we see that the

stream function LO) is given by

___ (4-51)

If we remind ourselves that S and KE are much less than unity, and

note that ,then we may write the first order equations as

(0) 0)+

V)(y (4-53)
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+&

3 (4-54)

SE (4-55)

Taking the vertical curl, i.e. *(t'X ) , of (4-52), using

the definitions of and 1 and (4-53), we may obtain the vorti-

city equation (here, the superscripts (o) have been dropped for convenience).

- e V -l - 5L5 X.) (4-56)

From (4-32), (4-34), (4-49), (4-50) and (4-51), and the fact that

' , we may show that

(0) 
f(0)

-- SI a (4-57)

Taking the gradient of (4-57) would give us the nondimensional form of the

so-called "thermal wind" equation. Using (4-57), we may write (4-55) in

the form

P z Oe V,(4-58)

Equations (4-54), (4-56) and (4-58), together with appropriate

boundary conditions, form a closed system. Equation (4-54) is actually

redundant in vector form, since only one of the two components is needed
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to relate to . Thus we need only

(Tt ~' 4 d X X (4-59)

For energy computations, however, it is useful to retain (4-54).

Several properties of this set of equations should be noted. We can

see that with the presence of the horizontal magnetic fields, the potential

vorticity will no longer be conserved. It can be changed by vertical elec-

tric currents, if these currents vary along the direction of the horizontal

magnetic fields -- which they must, since the current loops must close.

As one might expect, the nonconservation of potential vorticity will make

it difficult to obtain a useful necessary condition for instability of

the vortex, such as was found in the nonmagnetic case by Charney and Stern

(1962). This difficulty will be demonstrated in greater detail in Chapter 6.

Although the horizontal electric currents will, in general, be much

larger than the vertical currents, they do not enter the horizontal equations

of motion to this order. This is because that part of the horizontal com-

ponent of the electromagnetic body force which arises from the coupling of

the horizontal currents and the vertical magnetic field is too small.

Just as in the nonmagnetic case, the vertical motion provides the

primary link between the mechanical and thermodynamic processes in the

system, acting to keep it in quasi-heliostrophic and hydrostatic balance.

The manner of this linkage, however, is modified in several respects by

the vertical electric currents, as will be seen more clearly in later

chapters.
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The vertical magnetic fields do not assume a function comparable

to the vertical motion. In fact, they do not enter into the system at

all to first order. However, by looking at the second order equation

for the vertical field, it can be seen that vertical fields can be pro-

duced by the vertical motion. That is, from equation (4-42), collecting

terms which are second order in RO gives

( 9(0) 
1 (0) . PV (0) )

a .X(4-60)

Thus vertical magnetic fields can be produced by the tilting of horizontal

fields into the vertical by the vertical motion. In the first approxima-

tion, this calculation can be made independently of the other second order

equations, since all the required input is of lower order.

3. The fact that the vertical fields can be separated out in this way

obviously represents a considerable mathematical simplification of the

problem, while at the same time retaining a means of producing them. The

system we have arrived at is a system in which no account is taken of

the feedback of the vertical fields on the processes which produced them.

While this is probably acceptable in a perturbation study, for long term

integrations, it would be a serious drawback, because the system could

not act as a dynamo in the usual sense. This will be discussed in the

next section.

Boundary conditions and energy conversions

If our scale analysis to obtain the system (4-54), (4-56), (4-58)

is consistent, the total energy should be conserved, except for fluxes
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across the boundaries. By appropriate choice of boundary conditions, we

can eliminate these fluxes. Since we are using a local cartesian coor-

dinate system, we represent a closed latitude circle by taking all

variables to be cyclic in X . Virtually any additional choice of

boundary condition is subject to criticism on physical grounds, since

the convective layer on the sun does not have any well defined boundaries.

Consistent with the scale analysis, however, we should limit the extent

of the disturbances in the meridional direction so that they do not cover

the whole spherical shell. We therefore introduce rigid, perfectly con-

ducting vertical walls, at : J .

As for boundary conditions at the top and bottom of the layer,

about the only guidance we have is the theoretical desirability of iso-

lating the layer energetically from its surroundings. That is, we would

prefer to exclude the possibility that work may be done on the layer

under consideration by forces originating frcm adjacent strata. This can

be achieved in several ways. One is to bound the layer by rigid, perfect-

ly conducting horizontal walls, taking the vertical velocity and vertical

magnetic field to be zero at these walls. If we extend the upper boundary

to infinity, we can require that the kinetic and magnetic energy density,

and vertical energy flux vanish at infinity. The same could apply to the

lower boundary, although the resulting bounds on the stream function would

have to be stronger, due to the increasing density.

These boundary conditions would effectively limit the dynamics to

a "?rotating channel". The closing of electric current loops would be brought

about by skin currents in the side walls, and in the top and bottom, if they
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are rigid. Such a channel model is obviously not too realistic a repre-

sentation of the solar problem, but the degree of success attained with

such models in simulating the earth's general circulation (e.g. Phillips

1956) suggests that useful results might also be obtained in the solar

case.

Mathematically, the side wall boundary conditions are that

,* d(4-65)

where the angular brackets denote an average with respect to X . The

condition on <+> is found by averaging the zonal equation of motion

at V-o,. , and is needed to eliminate the time dependence of the

stream function at the walls (Phillips, 1954).

If rigid, perfectly conducting horizontal top and bottom boundaries

are assumed at = , and 2 , the condition is simply that

\I=o0 )vo at := (4-66)

or, from (4-58)

( .± VO (4-67)

If the top boundary is extended to infinity, then we must require

S ~(4-68)
sC)CL _
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Using these boundary conditions, and appropriate integration by

parts, we may write the energy balance equations for the system, from

equations (4-54), (4-56), and (4-58). From (4-58), after multiplying

by 5 i , we may obtain in this way the available potential

energy equation

-- S n * -- L r= -1 * sm, v W'{ e*&d -a( ) (4-69)

where the integral is understood to be over a volume of the channel of unit

length in the A direction.

Similarly, from (4-56), after multiplying by we may obtain the

kinetic energy balance equation for the region

Ps V _ S()(4-70)

Finally, from (4-54), after taking the scalar product with

we obtain the magnetic energy balance equation

~J~2 VxJ -sIFV (Vx7 ) (4-71)

From adding (4-69)-(4-71), it is evident that the total energy is conserved,

i.e.,

(4-72)

We note that the integral J I~t appears in (4-69)
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and (4-70) with opposite signs, while the integral

P, 7 ( x appears in (4-70) and (4-71).

The first integral represents the conversion from available potential to

kinetic energy, through the rising of relatively warm and the sinking of

relatively cold gas. Alternatively this could have been written as the

work done by diverging motions against the pressure. The second integral

gives the conversion from kinetic to magnetic energy as the work done by

the motion against the horizontal electromagnetic body force. Thus we

have a system in which, even in a single disturbance, conversion of energy

from available potential to kinetic, whence from kinetic to magnetic energy,

is possible. Unfortunately, as intimated earlier, this is not enough to

allow the system to act as a dynamo. This can be seen by considering

equation (4-54). We may write it in component form as

(4-73)

Partially integrating each of the equations gives

----- is a functi~f -- -~ i - f(4-74)

where T is a function only of 4 , and is a function only of .



-82-

Equations (4-74) can be satisfied simultaneously only if

(x) constant. (4-75)

Without loss of generality, we may set this constant equal to zero, in which

case (4-74) becomes

~X (4-76)

Equation (4-76) states that the magnetic flux is simply advected by the hori-

zontal flow. But if we multiply (4-76) by X , and integrate over the

volume, applying the boundary conditions (4-65), we can easily show that the

averaged square of the flux is an invariant, i.e.

(4-77)

Suppose that magnetic dissipation is then added to the system, i.e., the

electrical conductivity in the fluid is no longer infinite. In that case,

for any reasonable mathematical representation for the diffusion of flux

lines due to the finite conductivity (e.g. proportional to the vector

Laplacian of the field strength), the time tendency of the average square

of the flux will be negative. That is, (4-77) would become

~ (4-78)

This result would prevent the system from attaining a statistically steady

or quasi-periodic state in which dissipation of the fields by Joule heating
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was balanced by conversions from kinetic energy. The magnetic energy

present in any initial state would always be lost to heat at a faster

rate than it could be resupplied. Thus the initial magnetic fields

could not be maintained.

The invariance of the mean square horizontal flux with infinite

conductivity, and its decay with finite conductivity, are consequences

of the fact that our scaling restrictions have ruled out feedbacks from

the vertical fields. These feedbacks are essential to regenerate the

horizontal fields, i.e. to complete the dynamo cycle. Therefore, in

long term integrations., such as we might eventually hope to use to

simulate a solar cycle, these feedbacks from the vertical fields must

be included. But is is encouraging that the system in its present form

seems capable of producing the vertical fields needed for the feedbacks.

Finally, it should be pointed out that time integrations of intermediate

length, for which dissipation by Joule heating might be neglected, could

still yield useful information about the growth and structure of the

large scale disturbances.
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5. Equations for perturbations about an initially steady state

We wish to study the stability properties, structure, and energetics

of small disturbances on an initially steady hydromagnetic circumpolar

vortex. Therefore we need to split the dependent variables into two parts,

a zonally averaged part, (an average in X , which is denoted by an angular

brackets) and a deviation from that average. For the perturbation analysis

to be valid, we must begin with a zonally averaged state that is steady in

the absence of any perturbation. When magnetic fields are present, this

state has to satisfy Ferraro's Law of Isorotation (c.f. Chapter 2), namely,

that the magnetic flux lines and the streamlines must everywhere be parallel.

Thus we wish to perturb an initially steady state in which we have only a

zonal component of velocity, < ) - , and only a

zonal (toroidal) component of magnetic field, <H>

and a mean potential temperature field, >I , which

are functions of and . . The changes in the initial flow, temperature

gradients, and magnetic field as the disturbances grow can be examined with

the aid of the second order equations for their time derivatives.

Expanding about this mean state, then, using primes to denote the

deviations from the mean state, the vorticity, thermodynamic, and magnetic

field equations for the perturbations may be written from (4-56), (4-58),

(4-54) respectively, in the forms

___ X A g; (5-1)

- .J>VtX P, dka H> SY-
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+< U X +td& 2 - (5-2)

with the redundant equation

_ ? H> 2 ±+/>* <H ~Lb~

C X d * X (5-4)

to be used for energy calculations.

The time rates of change of the initial meridional temperature gra-

dient, the initial zonal flow, and the initial toroidal magnetic field are

found by retaining the time derivatives of the zonally averaged variables

and the products of perturbation quantities in the expansions of (4-54),

(4-56), and (4-58), and then averaging the expanded equations with respect

to ' , thereby eliminating all the terms that are linear in perturbations.

In this way (analogous to Phillips, 1954) we obtain the tendency equations

for the zonally averaged state in the form

C- S- (5-5)

9_ d(LJ) C)_~ (5-6)
at~ S ~-a? dYy>

- snq ~ p-dv
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(5-7)

Expanding (4-60) we may also obtain an equation for the perturbation

vertical magnetic field , which is given by

(4 < >= k <H > ' 5-8)

By retaining the products of perturbation quantities, and

in the expansion of (4-60) and then averaging with respect to X , we can

get a tendency equation for the mean vertical magnetic field <Ii> , which

is given by

T b

The boundary conditions at the side walls, from (4-63) become

(5-9)

,;4-' 
)

OX a.x dt

For rigid, perfectly conducting top and bottom boundaries, the condi-

tions are, from (4-67) (or from 5-2))

KU>3) ,ax

If the top boundary is taken to infinity, from (4-68) the kinetic and mag-

netic energy densities, and the vertical energy propagation must vanish

separately for the initial steady state and for the perturbations.

(5-10)

dt (5-11)

-- (H> = - -? - + - --/ --?%
43 0< O dt d _ X

(5-8)

.)j =0L
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Using these boundary conditions, we can as before eliminate the

boundary fluxes of energy. Each form of energy will now have a zonally

symmetric and an eddy component, so that there will be six types to

consider. For convenience, let the volume integrals of the available

potential, kinetic, and magnetic energies be represented respectively

by A M and the various conversion terms by the operator

Then the energy balance equations may be written as

a<A)=

A'=49 <K>
'I-(

(<A>, A') +(<K (A))

(K',>)

The six forms of energy are defined as (the integral is again understood to

be over the channel volume with unit length in the X direction)

<A> P itS-m E7)e!

<K> =5 p7 H> /

1; &.=fi S§#. (d P>
(5-18)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)

(5-17)
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In equations (5-12)-(5-17) all the conversion terms are defined so that

they are positive when there is a conversion of energy from the first

form in the parenthesis to the second. The definitions of these conver-

sions then are:

(5-19)

((A> ) A')

(A') Kz')

(K IK)4o

4x0)
V* I

es

(5-20)

(5-21)

(5-22)
sw1J

s

(KI M
- JePK

d~pe e)
ax /a (5-25)

x> if
(5-23)

(5-24)

O;" X

< H)

(K' <rl>) - Pfps "
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To better visualize the energy conversion processes, we represent

equations (5-12)-(5-17) by the energy flow diagram (analogous to Phillips

1956) pictured in Fig. 1. From the definitions (5-19)-(5-22), we see

that a positive value of:

a)((A> A) arises from the meridional eddy flux of heat

from warm to cold latitudes, which is manifested by a phase difference

between the perturbation streamlines and isotherms.

b) (A', I) is due to the rising of warm gas and sinking

of cold gas at different longitudes.

c) is due to the eddy flux of momentum by the

horizontal Reynold s stresses against the gradient of mean zonal momentum,

requiring the perturbation streamlines to tilt upstream away from the max-

imum of mean zonal momentum.

d) (/<> 1<A>) arises from the net sinking of warm gas and

rising of cold gas due to the mean meridional motions.

The top part of Fig. 1, including only these four conversions,

represents the energy cycle as it is known to exist in the earth's atmo-

sphere, the four conversions having been shown from calculations based on

extensive observations to be in the directions indicated by the arrows.

The measurement of these conversions has recently been reviewed by Oort

(1964). For the sun, it has been possible so far to estimate only

which, as discussed in Chapter 3, was done by Starr and

Gilman (1965a). Using sunspot displacement and correlation statistics of



ENERGY BALANCE

(<K>,<A>)

(<A>, A)

( K',<K>)

(<K), M')

( K', M')

(K',<M>)

Fig. 1. Energy flow diagram for scaled system of equations. A, K, M,
denote available potential, kinetic, and magnetic energies respec-

tively. Angular brackets denote energy of zonally symmetric compo-

nent; primes denote energy of eddy component. Arrows are in the

direction of a positive value for conversion designated. For math-

ematical form of conversions, see equations (5-19)-(5-25), and also

(7-16)- (7-22).

(A', K')
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Ward (1964), they found a conversion from eddy to mean zonal kinetic energy

just as in the earth's atmosphere, but requiring a smaller number of rota-

tions over which dissipation must act to give balance than is needed for

the earth.

Turning to the lower part of Fig. 1, the conversions between kinetic

and magnetic energy, from the definitions (5-23)-(5-25) we see that a

positive value of:

e)( ) is due to a transport of momentum by the hori-

zontal Maxwell stresses in the direction of the gradient of momentum,

requiring a tilt in the perturbation magnetic flux lines in the same sense

as for the streamlines in c). That such tilts would probably be separate

manisfestations of the same hydromagnetic disturbance, and that the hori-

zontal Maxwell stresses would then act as a brake on the differential ro-

tation, was suggested by Starr and Gilman (1965b) (c.f. Chapter 3).

f) (K 'IN) arises from the work done by the horizontal

eddy motions against that part of the electromagnetic body force which

is due to the coupling between vertical perturbation currents and the

mean zonal magnetic field. It thus requires a phase difference between

the perturbation stream lines and perturbation magnetic flux lines.

g) (K',KM>) arises from the work done by the horizontal

eddy motions against that part of the electromagnetic body force due to

the coupling between the mean vertical electric current, associated with

the mean toroidal field, and the horizontal eddy magnetic fields. This

cross correlation of the eddy flow and magnetic fields, taking a functional

form similar to the Maxwell and Reynolds stresses, might conveniently be
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called a "mixed" stress. This conversion also requires a phase shift

between the perturbation streamlines and flux lines.

In Chapter 2, we sketched the present state of hydromagnetic dynamo

theory and its application to the solar cycle problem. It is possible in

principle to discuss the physical processes comprising this theory in the

context of energy balance equations like equations (5-12)-(5-25) and Fig. 1.

If we were to do this, we would find that (5-19)-(5-25) do not contain all

of the conversions present in the dynamo theory, and also that they contain

a few not present there. Obviously, due to the scaling restrictions imposed

in our system, we do not have conversions corresponding to the "kink instab-

ility" or "magnetic buoyancy" of the magnetic flux tubes, or to the dragging

up of such flux tubes by the granulation or supergranulation scale motions.

These have been replaced by a second order process, represented in equations

(4-60) and (5-8), namely, the tipping of the large scale horizontal fields

into the vertical by the large scale vertical motion. We have thus enlarged

the horizontal scale on which the vertical flux loops are being produced.

While this may be at variance with the actual mechanisms for generating such

loops on the sun, as suggested by the observations, it has the considerable

advantage of allowing us to deal with them concurrently with other aspects

of the large scale dynamics since they have the same time and space scales.

This will be particularly important when more advanced models are developed,

in which the feedbacks of these vertical fields are included.

Our system also contains a higher order effect which corresponds to

the "drift currents" postulated by Babcock (1961) to bring one branch of

the vertical flux loops to the polar regions. This process is defined by

the second term on the right in equation (5-9). The first term on the
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right defines a process not explicitly included in dynamo theory, namely

the production of jmean poloidal fields by eddy vertical transports of eddy

meridional fields.

To first order, our system does not contain a process analogous to

the one conventionally used to begin the dynamo process, namely, the twisting

of the mean meridional (poloidal) magnetic field into a mean toroidal field

by the differential rotation. This is the reason for the absence of a con-

nection between X and <NH> in Fig. 1. It is present to second

order, from an expansion of equations (4-41) and (4-42), for example, but

obviously would be quite difficult to calculate.

The reason this process is not included to the first order is clearly

the quasi-nondivergent nature of the motion and, as we showed in Chapter 4,

consequently of the magnetic fields. If the assumption that L-l KCI I
from which this property follows, is relaxed, requiring the use of spherical

coordinates, the twisting of the poloidal field into a toroidal one will be

present to first order. Since for L '-' I , the advective time scale

LA) - 200 days, so that to describe long period changes, such as the

progression of the solar cycle, we would have to include this twisting process.

Finally, we point out that present dynamo theory does not include a

conversion of the form (5-25). That is, the maintenance of the toroidal

field is looked upon as a purely axisymmetric process, comprising the twisting

from the poloidal field which we just discussed. While it is true that the

conversion (5-25) cannot accomplish the maintenance alone, as implied from

the discussion at the end of Chapter 4, it can still make a significant con-

tribution to the total. When both processes are included, as they would be

if L1/_&-/, it is difficult to tell which would be the more important.

1.
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6. Integral theorems

In this chapter we prove several theorems concerning the stability

of the hydromagnetic circumpolar vortex with respect to asymmetric disturb-

ances. The techniques follow closely those of Pedlosky (1964a) for the

nonmagnetic case.

Relation between stresses and symmetric state required for instability

The first theorem follows immediately from the energy balance equa-

tions (5-13), (5-15), and (5-17). By definition, the perturbation on the

vortex will grow only if

-(A'+ K '- /in') >o(61
(6-l)

But by simply adding equations (5-13), (5-15), and (5-17), using the defi-

nitions (5-18)-(5-25), dropping the angular brackets and primes in the con-

version terms without confusion, we obtain

1 ~=f )-6=Si d d (6-2)

_A' K'+ MX) PS

- P X 011

Therefore, for the perturbations to grow, we must have that

S
- ~ / -(6-3)
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In the absence of a toroidal magnetic field, this of course reduces to

Pedlosky's (1964a) result, namely

C_ .' 39a rl& (6-4)

Comparing (6-4) with (6-3) can give us some insight into the role played

by the magnetic field. Suppose that there is no horizontal shear in the

toroidal field, i.e. d k/d E 0 . Then the last term in (6-3)

vanishes. Consider, then, a disturbance which is baroclinically unstable,

but barotropically stable, such as found, for example, by Pedlosky (1964b).

For this kind of disturbance, in the nonmagnetic case, (6-4) will be

satisfied by the first term giving a larger positive contribution than the

second gives a negative one. That is, for the perturbations to grow, the

conversion from zonal to eddy available potential energy through down-

gradient eddy heat transport, must be greater than the resulting conversion

from eddy kinetic to zonal kinetic energy, achieved through upgradient

momentum transport by the Reynolds stress. When the magnetic field is

added, the resulting Maxwell stress in the perturbation will tend to have

the opposite sign to the Reynolds stress, since due to the infinite con-

ductivity the magnetic flux lines should distort in the same way as the

streamlines. Thus the conversion to mean zonal kinetic energy will be

reduced. Consequently the Maxwell stresses should have a destabilizing

effect on this kind of flow. This is borne out in Chapter 10 by calcu-

lations for a parabolic flow in a uniform field, the simplest.hydromagnetic

generalization of Pedlosky's (1964b) solution.
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Conversely, it would appear from (6-3) that toroidal fields with

no horizontal shear would, through the Maxwell stresses, tend to stab-

ilize flows which were barotropically unstable but baroclinically stable.

Relation (6-3) would also appear to suggest the existence of an

instability in which "available magnetic energy associated with horizontal

shears in the toroidal field would be released into kinetic energy and even

potential energy. However, the bounds obtained on growh rates and phase

velocities of unstable waves later in this chapter argue against this

possibility.

Necessary conditions for instability

Charney and Stern (1962) and later, with some increase in generality,

Pedlosky (1964a) derived necessary conditions for instability of a baro-

clinic circumpolar vortex to wavelike disturbances. These conditions

involved the zonal flow and its potential vorticity. In particular, one

condition was that if the vertical shear of the zonal flow vanishes on

the top and bottom boundaries (or its kinetic energy density vanishes at

the top if the top extends to infinity), the flow could be unstable if

the potential vorticity gradient changed sign somewhere in the region.

In this section we attempt to generalize this theorem to the magnetic

case, showing that the same condition is no longer necessary. Unfortunately,

the new necessary condition does not appear to have any simple or useful

interpretation.
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Between equations (5-1) and (5-2) we may eliminate the vertical

velocity, forming the so-called potential vorticity equation, written

in the form

(6-5)

4 - 9CL C) ?

SXwhere

adCL (6-6)

is the gradient of potential vorticity for the flow.

Since all the coefficients in (6-5) are independent of

we may write a separated solution in the form

A X -c-)

(6-7)

corresponding to a traveling wave

and (complex) phase velocity C

with wave number =

, i.e. C=Cv-4-C.

Substitution of the solutions (6-7) into (6-5) then gives

20 k (6-8)

ea)( &4at_ -t-

3

Tj
6slyl

d 3r
X,3 dX

6.St

2

-P, H( -Ps

.+ 0
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To complete the system, may be related to by substituting

from (6-7) into (5-3), giving

(u-c)X = i-v.0(6-9

Let us assume that Cj 4 0

Using (6-9), and noting that

. Then we may divide by ( U - C)

X -10
d'ax dc~

we may write the right hand side of (6-8) in the form

T ay U-C (wUi-)C)

Then we may write (6-8) as

+ ef~st4-

u-c;)L

(6-10)

(6-9)

Y

j Z

4-
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In passing, we note that if we took E . O (infinite static

stability) and c =-0 , equation (6-10) would yield ordinary

Alfven waves. If the effect were retained, some combination of

Rossby and Alfven waves would result. This case has been studied by

Hide (1964). His results should be extendible to include static stab-

ility by keeping E = const =- 0. This is planned for later work.

The side wall boundary conditions (5-10), after substituting

from (6-7) and recalling the relation (6-9), become simply

(6-11)

while the top and bottom boundaries, if rigid, give, from (5-11)

- ,(6-12)

If the top is taken to infinity, the condition is

(6-13)

ZZ- D

where the subscript asterisk denotes the complex conjugate.

If we now multiply (6-10) by , and integrate by parts,

applying the boundary conditions just stated, we have
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U(V-C)9

(6-14)

(-) 3

From (6-14), it is evident that setting H 0 everywhere, we may

recover the necessary conditions for instability found by Pedlosky (1964a).

With the magnetic field present it is obvious that these conditions will no

longer hold, so that instability could occur even if 9Z.. does not

change sign. But unfortunately, rather little further information can be

obtained from (6-14). To see this, let us separate real and imaginary

parts of (6-14) which must separately equate. For the imaginary part,



-101-

we have

1'S - . (6-15)
C~5 L s f + &1'

(oU /, / U C

-[U -C|

Then if ci , the necessary condition for instability is

that the expression in brackets vanish. This condition thus depends ex-

plicitly on the phase velocity of the disturbance, and also on its struc-

ture (from the term containing ) which makes its usefulness

limited.

We can,however, say more about disturbances of short wavelength.

There is just one term within the brackets in (6-15) that is proportional

to . It can be written as

dt (6-16)

We would thus expect the magnetic field to dominate in determining the

stability criteria at short wavelength. In the specific cases studied

in Chapters 8 and 9, we shall see that this is indeed the case.
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In closing, we note that the real part of (6-15), which we omit

here, tells us only, as we might expect, that the positive correlation

between the zonal flow and potential vorticity gradient required for

instability is not necessarily required in the magnetic case.

Bounds on phase speeds and growth rates of unstable waves.

In a manner very similar to that of Pedlosky (1964a), we may place

bounds on the phase speeds and growth rates of the unstable waves. Begin-

ning from equations (6-8) and (6-9), we introduce the transformation

(U--C) Q (6-17)

Then, from (6-9), is related to the new function according to

(6-18)

Then substituting (6-17) and (6-18) into (6-8), rearranging some derivatives,

we can obtain

+ J - dLIIG(6-19)

-Lu~f 9 C~ r4 6( C)- P

The boundary conditions transform to

a( 0
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We then multiply (6-19) by 0, and integrate over the channel

cross-section, integrating by parts once, applying the boundary conditions

(6-20) to eliminate boundary terms. If we define

- E(6-21)

I Cr I 
SL

S

then the result may be written in the form

(u-)"[ -+R) = (V -C) 5 1J H Q (6-22)

where again the integral is understood to be over the channel cross-section

of unit length in the )k direction. The last integral in (6-22), namely

S Q , represents the only addition due to the magnetic field.

Now the real and imaginary parts of (6-22) must separately equate.

The imaginary part gives

C P SjS - (U-_c')XQ + rt) <-3c~(~~sS 5(. ~ V($1 R.)% (6-23)

since C -0 ,we must have

( -Cr Q+ R.) = ( s (6-24)
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This is precisely the condition arrived at by Pedlosky (1964a) for the non-

magnetic case. Therefore the phase velocities have the same bounds as in

the nonmagnetic case, namely,

(6-25)

z+1LTfbW~

where and are the maximum and minimum velocities in

the flow, respectively.

The real part of (6-22) gives

(6-26)

SCc) CI(L~ AfLYv: S +JS P,

If we follow exactly the procedure used by Pedlosky (1964a) for all the non-

magnetic terms, we can easily show that

0 ~f(cr -;- - 2-V 7F Ubt4O4( 4h.4h4.

- U u {I HL

but since f H, is positive definite,

0 (crU u<L4~ kt4TrhQ

(6-28)

(6-27)

U- 4
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Thus the complex phase velocity must lie inside the same semicircular area

as in the nonmagnetic case. From (6-28), the bound on the growth rate is

still

}b -1L (6-29)

The inequality (6-27) suggests that in the magnetic case, the actual

growth rates are probably less than in the nonmagnetic case. This is cer-

tainly true if the flow is barotropic. In this case, R 0 , so that

(6-27) may be reduced to

<X \ K(6-30)

Thus in the barotropic case, the square of the radius of the semi-

circle in which the complex phase velocity must lie is reduced by an amount

P H')
due to the presence of the magnetic field. If this field is strong enough,

all disturbances will be rendered neutrally stable, i.e., if

6-31)

___ __ U -Uk

The inequality (6-30), of course, does not say that the magnetic

field can never be destabilizing, since the bounds set are not necessarily
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sharp. Examples of destabilization of barotropic flow by magnetic fields

can be found in the literature, e.g. Stern (1963).

It is interesting to note that if we set A 0 , (6-30) has

precisely the same mathematical form as the semicircle theorem proved by

Howard (1961) for normal mode disturbances in two dimensional incompress-

ible stratified shear flow. In that case, the gravitationally stable

stratification is the stabilizing influence corresponding to the toroidal

magnetic field in our case.

The fact that the bounds on the growth rates and phase velocities

do not depend on the presence of the toroidal magnetic field suggests,

although it does not prove, that a hydromagnetic circumpolar vortex of

this type is not capable of producing unstable disturbances in which the

impetus is the release of "available magnetic energy" associated with the

horizontal shear in the toroidal field. From (6-31) we can see that this

is true in the special case when = . If this also could

be proved in the general case, it would have considerable implications

for the theory of the solar cycle, since one conceivable mechanism for

limiting the strength of the toroidal field would be ruled out.

In closing this chapter on integral theorems, it should be pointed

out that Pedlosky (1964a) was able to find other bounds on growth rates

of unstable waves by introducing a transformation of the form

q - (o K (6-32)

In the magnetic case, this kind of transformation does not appear

to be useful, since the magnetic terms become very complicated. The trans-

formation (6-17) worked well because of the simplicity of the resulting

relation (6-18).



-107-

7. Formulation of a two-layer model; integral theorems

Perturbation and energy equations

In general, to get actual solutions representing disturbances on

a hydromagnetic vortex whose flow and magnetic fields are continuously

varying functions is a very difficult problem. Even if, for example,

equations (6-8) and (6-9) were simplified to study a vortex with purely

baroclinic flow (i.e., one in which 4 everywhere), and a

uniform magnetic field, and which was incompressible, the resulting

equation would be a confluent hypergeometric equation If, to simplify

further, the 19 effect were neglected, a Bessel's equation would result,

but the order of the Bessel functions would depend on the magnetic field

strength, becoming imaginary for fields above a certain strength. (This

equation will be derived and discussed briefly in Chapter 10).

Because of the computational difficulties in dealing with such

equations, it was decided first to remove some of the complications by

examining instead a two layer model. This will truncate vertical varia-

tions as severely as possible without completely destroying the baroclinic

character of the motion. All vertical derivatives are replaced by finite

differences, but all horizontal derivatives remain continuous.

Following the usual construction of such layer models in meteor-

ological studies (c.f. Thompson 1961), the various dependent variables

are evaluated at the levels indicated in Fig. 2. The mean zonal flow IU

and toroidal field N are evaluated at two levels, labeled 1 and 3, as

are the perturbation stream function * and magnetic flux X .



w =0, h =0

U3 , H *3 X3
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Fig. 2. Levels at which the various dependent variables are evaluated

for the two-layer model.
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The temperature 9 vertical motion W , and vertical magnetic field

h are evaluated at one level, level 2. The assumed rigid perfectly

conducting top and bottom require that W and h be zero at levels 0

and 4. The levels are spaced equally and the total nondimensional dis-

tance between top and bottom is assumed to be unity. The static stability,

represented by 6 , remains a constant. The fractional difference in

mean density of the two layers is assumed much less than unity.

Using the variables defined in Fig. 2 then, we may write the per-

turbation equations (5-1)-(5-4) and (5-8) in the form

S - a0

-i U (7-)d -=0

+d L

dK (7-)
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dH 3

d U,

a s

d X,
ax

a X

Ua U)

(7-6)

(7-7)

(7-8)

To eliminate extra primes and angular brackets, in the above equations

and those that follow, we have written the perturbation variables (except WJ

and k ) in terms of the stream and magnetic flux functions, while the mean

state variables are in terms of the potential temperature, zonal flow and

toroidal magnetic field.

The tendency equations for changes in the initial state, equations (5-5)-

(5-7) and (5-9), can similarly be written as

to
- - ___ (7-9)

_p -2sin )a dU,
at 0a (7-10)

;~
(7-11)

+ HI d -r

H,- H3

.3 --)'Jo C? - dX-3-L a + --!ELI > R '. a '3 -tXs 1 no <w,>
X 20
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3 Ha a &2

at d~d

, 4
(7-12)

(7-13)

The boundary conditions (5-10) for the side walls become

0 )3 3O X_'ax 3at
~O) L

(7-14)

(7-15)

Finally, the energy balance equations (5-12)-(5-17) of course have

the same form as in the continuous case. The energy conversion terms (5-19)

to (5-25) may be written as (analogous to Phillips 1956).

(<k ><A) 0JS '

(<A>) A') - -j pei1<( 4)3(4 4>

(7-16)

(7-17)

A---~' "<I- (7-18)

-L 1 2 * +1 C) ke(K' <K>)
0 5 >
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/dYd 7 d2
05( 

-0

(KM') -~P SKd x H& .. (7-_

0

(k"l>
(7-22)

-L 5}

L p 3

oP <K

e6
a

3 >3

Integral theorems

It is obvious that for the two level model, there is a relation between

the perturbation stresses and the mean state required for the perturbations

to grow that is analogous to (6-3). It has the form

S rr
(7-23)

ax J

-- X a+{x 1

tX 3 SO
x

3 _ x, C? QdjP/1

,ax 4 i
> 0

dxl- d4j, O)G

d r dix dA

._~p a XL),3s

-S

'aa 'a--
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The inference from (6-3) that the horizontal Maxwell stresses should act

to destabilize disturbances which are baroclinically unstable but baro-

tropically stable obviously applies to the two layer case as well (indeed,

the disturbances of this type for the nonmagnetic case found by Pedlosky

(1964a) were for the two layer model).

As in the continuous case, the necessary conditions for instability

involving the potential vorticity and zonal flow (Pedlosky 1964a) no longer

hold with the toroidal magnetic field present. Because of the length of

the new conditions, and the obscurity of their interpretation, we omit them

here.

Again, just as in the continuous case, the bounds on the phase velo-

cities and growth rates of unstable disturbances in the two layer model can

easily be shown to be the same as in the nonmagnetic problem. That is, the

conditions (6-25), (6-28) and (6-29) for the continuous case apply equally

n
well to the two-layer case. To see this, we first form the potential vorti-

city equation for levels 1 and 3 by substituting for W from (7-3) into

(7-1) and (7-2), from which we obtain

V -b ---U (7-24)

(+~ L) (7-25)
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0 LI U
where

|3 - - /sinV (U,-U,)7

Then, assuming normal mode disturbances of the form

-1%.-, Z 4 0- i..P -toQ j e )
and substituting them into (7-24) and (7-25) gives

/3-z 40V^.

SH,

-
CU3- C)( (7-30)193 - 7 () --

Substitution of (7-28) into (7-4) and (7-5) gives

13 / J-

Analogous to the transformation (6-17), we define

(UC) c,

3=( 3-~-

(7-26)

(7-27)

(7-28)

(7-29)

(7-31)

(7-32)

(7-33)

(7-34)

49

-,%.0

43 ( " I - -'k?-X 3
or IY3
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so that ~hq~ (7-35)

(7-36)H3

The boundary conditions (7-15) become

y = j=0 (7-37)

Substituting (7-33)-(7-36) into (7-29) and (7-30), and using the relations

(U s * u.cxcK1 - (Vc)

-4V& H

di I
d XA

(7-38)

b~= f~3

we get

4Rc C)lK

Fc I.; tV1dj v CYI3j

-( -
(7-39)

S 1&(0 -c)Q3

Then if we multiply (7-39) by , (7-40) by I integrate over

the cross section from ..- O to I , rearrange by parts, applying the

-30)

o = I

Cr.. A'-UnCL 4 x

Hj d A4

as n 'ZO(Ul C U.3 YC'
-A'71

-- CP (1'l( .. (7-40)

CLI4- - j'(UI -401-0( C qI) = Ps*6S in ?- P (Hc'dCr').kaPT.3 J-4d- I d-4x rHa
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boundary conditions (7-37), and add, defining, analogously to the con-

tinuous case,

(7-41)

fl= 1.3

we find that

d'T + (7-42)

NO(10& U-C')S) (V r]c O~ -(
0 0

The imaginary part of (7-42) gives, since

U R

Ci *0,

(7-43)

+Q S Cr)(±.)* K
But (7-43) is obviously just the two level representation of (6-24).

Therefore it follows that in the two level case, we still have

4- r2-/~
~Cr v)Wt OC

AAII

(7-44)

n.

qVt 1 0'-

+ Psi (H

; J+ S.3)lt
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From the real part of (7-42), we can also easily show that the semicircle

theorem

O C U M0 + UW~) t~ U~a)c-LA..'K (7-45)

- JM (U - UM;

still holds, and that the bounds on the growth rate

C i Uw~~ +v~ * U (7-46)
.2k Z-4+Tf/J 2 c2-

remain the same as in the continuous case. It goes without saying that if

the flow is barotropic, the semicircle radius is again reduced by an amount

As a final integral theorem, we can place limits on the phase velo-

cities of neutral waves in the vortex. Since these waves will in general be

some combination of Alfven and vorticity waves, unlike the unstable waves

their bounds will be different from the nonmagnetic case, in which only vor-

ticity waves are allowed. The procedure for finding the bounds in the mag-

netic case is, however, similar to that of Pedlosky (1964b).

Let us assume that C, (which is real, in this case) is outside the

range of U and 03 . Then the transformations (7-33) and (7-34) are per-

missible. From (7-39) and (7-40), multiplying the former by Cj and the

latter by Q43, integrating by parts, applying the boundary conditions (7-37),

and adding the result, using the definitions (7-41), we get
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j 5 ~1CY PS ~~~~, -4 jci 3 -T 5- I'?Q 3ds5 5 3

-i f (U, - C)(U, -C() Rd,, = (0 -C) S,(U -C) S

Now suppose C > Then the right hand side of (7-47) will be

negative. Therefore, from the left hand side, C cannot be so large that

both

(Ue -c)w - tPs H 

everywhere., so that we must have

(7-48)

C it follows that we must have

Um0, -C *> - J4 P- H| / k#
(7-49)

(7-50)

But

We denote it by

is simply the maximum Alfven velocity in the system.

A w , so that C has an upper bound given by

C .< UVMb )e- + VA mao (7-51)

In words, the phase velocity of a neutral wave cannot exceed the sum of the

maximum flow and Alfven velocities in the system.

To find the lower limit on C , we note that if C ( UM

then (7-47) implies

(7-47)

But since

or that

-~ SI+ >0
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[5U

From (7-41)

.9

--

k
f3)drt 5\(4) (+ i (7-53)

but by a well known theorem of calculus

(d Q 3jj- (7-54)

In addition

)j49Z PSHIj,
(7-55)

From (7-53)-(7-55), then,

(UM, -C)1s(H 0 s(UY-c )
(7-56)

from which we have

Tz 5 Uh4 ) UNA

Therefore the lower limit on C is

c0 I' A _ _

(7-58)

M'1w)P U'WA]

U- uA) (7-57)

0

- C) d- -

lOM ~AM Y

Tf-., - C jL ,I.

,



-120-

Thus the presence of the zonal magnetic field widens the range in which

phase velocities of neutral waves can lie. We note as a check that if

(- O 0 and U =0 , we obtain from (7-51) and (7-58)

UA C v (7-59)

for Alfven waves alone, which is what we would expect.

The limits (7-51) and (7-58) will prove to be useful in isolating

marginally stable waves in flows with both horizontal and vertical shear,

as we shall do for one such flow (parabolic in the upper layer) in Chapter 9.
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8. Stability of two layer baroclinic flow in a uniform

zonal magnetic field

Derivation of the eigenvalue equation

Up to now, study of the stability of the hydromagnetic circumpolar

vortex has been limited to rather general theorems. In this chapter and

the next we turn to the examination of the stability of particular zonal

flow and toroidal magnetic field profiles, and the structure and energetics

of the unstable disturbances which result. In general, such stability

problems are quite hard to solve unless (although sometimes even when) one

limits the available energy sources for perturbations to a single kind.

In principle there are three possibilities in our system, namely available

potential associated with meridional temperature gradients, available

kinetic associated with meridional shears in the zonal flow, and available

magnetic associated with meridional shears in the toroidal field. The

question is which one to choose. In accordance with Chapter 3, we will

be considering available potential energy as the source for perturbation

growth. In Chapter 6 we pointed out that it may be impossible for the

shears in the toroidal field to provide the primary energy source for

perturbations. In the light of this possibility, and for simplicity, we

may, at least as a start, take the toroidal field to be uniform. In this

chapter, then, we consider the further simplified case in which the flow

is purely baroclinic i.e. no horizontal shear in the zonal flow. In

Chapter 9, we examine one case where the zonal flow has horizontal as well

as vertical shear, in particular, a parabolic profile. In both cases, in

accordance with the remarks at the beginning of Chapter 7, we limit our-

selves to the two level model.
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With these simplifications, the purely baroclinic problem can be

reduced to solving a quartic equation for the complex phase velocity C

This equation may be found from equations (7-29)-(7-32). Since the initial

state is independent of , (to satisfy the boundary condition at the

side walls) the amplitude functions may be written

in the form

A AA

3 (8-1)

where, since the walls are artificial, we consider only the lowest mode.

(The lowest mode should also give the highest growth rates). The ampli-

tudes with carrits are then (complex) constants. Then substituting (8-1)

into (7-29)-(7-32), setting HI H constant we get

( - X (8-2)

A'

93f3 3  (8-5)

Then, substituting from (8-4) and (8-5) into (8-2) and (8-3) for and
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we get

(, H - (,- A+ P)
(8-6)

+ sil U c)

_k24E -) 4(- L) d9.3

=0

yi (U3
-C)

The system (8-6)-(8-7) has a solution if and only if the determinant of the

coefficients of and

U0= U3 -LU

C0= C-

A~~~ y K+

vanishes. Let us define

U,+ U3

so that from (8-6)-(8-8) after rearranging, we obtain the eigenvalue equation

for Cv

c' + A ( (A+ C-20)C'- (A

Art

rA 4v2 c i JL (8-9)

2 9 (I-AY~jjC
/U

(8-7)

(8-8)

(A-i+i

+(w -C) ' Vesi'#, (,-c)

(U3-0 *I)-(
C Sin

Q5 14
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Stability criteria

To find the stability criteria, we must therefore solve a quartic

equation for C. . This can be done by using standard procedures in,

for example, mathematical tables by Burington (1953). But we can outline

the regions of instability rather well by considering (8-9) for several

limiting cases. The results which follow are presented also in Fig. 3.

As the simplest of limiting cases, suppose we set CT 0 (noA effect)

and P 0 (no magnetic field). Then (8-9) reduces to

C1 - (8-10)

The first factor was introduced by the magnetic field, and need not concern

us. The second factor is readily solved for C , giving

S -A(8-11)

Thus one wave will grow exponentially if

A > (8-12)

This result is represented graphically in Fig. 3a.

The onset of instability in this case is thus independent of the ver-

tical shear. In terms of the wave number, (8-12) may be written as

(8-13)
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This is the two level analog of the result for the continuous case

with linear vertical shear, the so-called Eady problem (Eady, 1949). In

the continuous case, the criterion is approximately k +7W/ < 5.76

E sin 2 , so there is good correspondence. Expression (8-11) says that

for a given static stability ( 6 = const) and latitude, if the channel is

not too narrow, all wavelengths longer than some critical value will be

unstable. However, if the channel is narrow enough ( JL small enough) then

all wavelengths will be neutral. Physically, this is, in some sense, because

potential energy releasing trajectories can no longer fit into the channel.

Since from (8-11), C . 0 for the unstable waves, they all move

with the average velocity of the zonal flow, i.e. C, (U~ +L-3)/; .

The growth rate for unstable waves is given by ' C-' . As a function

of A , it will be a maximum where

-- ( C ) (8-14)
dLA

From (8-11) and the defining relation for A in (8-8), we may write

(Co) UA ' - Ak -- (8-15)

A A+

where I, ; Kz = -1r2/4c

Then substitution of (8-15) into (8-14), noting that

2( f, we get

A J(8-16)
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or

(max growth rate) = -

(8-17)

We can see that for f. < I

far from that where . = 04 , i.e.

, the location of the maximum is not

A (max growth rate, = o4 ) = I + \ (8-18)

From the magnetograms of Howard and Bumba (1965b) the most appropriate ratio

probably lies in the range 1/2L < \/j < I

What does the presence of a toroidal magnetic field do to the very

simple stability criterion (8-10)? From (8-9), again setting q- ,

but retaining -P we obtain the equation

(A+~ ~~~ 0C- -+ AC +(0) (8-19)

Since (8-17) is biquadratic (the odd powers of

can be treated as a quadratic for C! so that the

+ I ;a_(A A-1)

C! are missing), it

solution is

A a ) (8-20)

Instability can occur only if the minus sign is chosen. We can show that the

argument of the square root is always positive.

L
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Thus the right hand side of (8-18) will be negative, and therefore instab-

ility will occur, if and only if

( )(Y -A))< 0 (8-21)

Therefore the unstable region is defined by

) P>..( A) (8-22)

or

(8-23)

The second condition in (8-22) contains the limiting case (8-10) for

The unstable region defined by (8-23) is sketched in Fig. 3b. We can

see, then, that the principal effects of the toroidal magnetic field are to

render the flow neutral to wavelike disturbances for small shears at all wave-

lengths, and to destabilize the flow for moderate shears at short wavelengths.

The stabilizing effect on small shears is seen to be independent of wavelength.

It is interesting to compare this latter result with the condition

(6-31), which holds equally as well in the two level as in the continuous

case. For 0 and a uniform magnetic field, (6-31) reduces to the state-

ment that if

(8-24)

all disturbances are rendered stable (neutral). Now expression (8-24) is



SCHEMATIC STABILITY DIAGRAMS

Fig. 3. Schematic stability diagram showing qualitative effects of
a uniform zonal magnetic field (P) and/or 13 effect (G) on the
stability criteria for baroclinic disturbances in the two layer
model. Solid lines define boundaries of unstable regions;
dashed lines denote asymptotes or minimum points of the stability
boundaries. Ordinate is the vertical shear of the zonal flow,

V 0  ; abscissa A = , where :: Zrr/A
A the zonal wavelength, A the nondimensional channel width.
E (defined in Table 1 and text) is inversely proportional to the
static stability.
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a condition on barotropic flow, but if we identify Un~ay - UM'44 with

U) it is identical with the condition on baroclinic flow given by the

first inequality in (8-22), namely that for

--- (8-25)

the magnetic field renders all baroclinic disturbances neutral. Thus at

least for the two level model, the minimum shear necessary for instability

is the same for purely baroclinic and purely barotropic flows.

From (8-20), we can see that, just as in the nonmagnetic case, the

phase velocity of the unstable wave is just the mean velocity (Urv 3

of the shear flow. Thus the two unstable modes (one growing, one decaying)

are in no sense Alfven waves, but rather baroclinic waves whose stability

characteristics are somewhat altered by the presence of the magnetic field.

The two neutral modes in (8-20), arising when the positive sign is chosen,

do represent Alfven waves, but whose phase velocities are altered by the

zonal flow present, and which are made dispersive by the stable stratifica-

tion. These phase velocities must fall within the bounds found for neutral

waves in Chapter 7, i.e. (7-51) and (7-58).

Let us now see how including theji effect C affects the

stability curves. As a reference point, let us again consider the non-

magnetic case. With P 0 cj 4  0 (8-9) reduces to (neglecting the

common factor ( -- )
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Solving by the quadratic formula again, we get

(8-27)

c'= -Ar-(A+.2) + (A A -(A+.2) -'A+A Ar*q+ AL U

There will be instability if the argument of the square root becomes negative.

This reduces to the requirement

0A -| (8-28)

for instability. Thus, the short wavelength ( A small) boundary of the un-

stable region is asymptotic as U --> 00 to the neutral curve for C : O

(see Fig. 3a). For long wavelengths ( A large) the neutral curve is asymp-

totic to

I(JUI A CT (8-29)

There is a minimum shear required for instability, which we can find by setting

the derivative of (8-28) with respect to A equal to zero. This gives

at A 2=1 (8-30)

All of these results are shown graphically in Fig. 3c.

Since cj -o ({3#o) the phase velocities of the unstable waves

are no longer equal to (U, + U3)/a but rather lag, by an amount

~A r(A +ca) 
(8-31)

as () hi)

as we can see from (8-27). This is the well known property of Rossby waves.

UO (M; WO = d q )
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The neutral curve for this case (see Fig. 3c) has, as we would expect, a

shapte quite similar to that found by Phillips 1954.

When neither P nor vanish, we would expect a neutral curve

which in some way combines the characteristics of Figs. 3b and 3c to result.

We can argue plausibly that it should take the schematic form given in

Fig. 3d. The left hand edge of the neutral curve will still be asymptotic

to A= i , as a 00 . That is, if in (8-9), we divide by Vq

and assume that C /U remains finite, we obtain

(A + ) u - -(8-32)

which has as solutions,

1. a U0  g,'
0 -i -A (8-33)

the same as for the case P 0, 9
The cusp at U 2. also remains, as we can see by letting

A -o0 in (8-9). This gives

9!+- (8-34)

for which the solution is

C +?- i (8-35)

With 0 ,we saw that C. 0 everywhere in the unstable
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region. Even when 0 , this will still be the case along the

line A=O . If the cusp remains, there should be only one point

along A= 0 where Cr.=O ( Ci =0 there also, since the point

will be part of the neutral curve). From (8-35), this will be only at

the point satisfying the equation P + U/ - .0P =0 ,which

is given by U0 = 2 .

At the cusp, the slope of the right hand part of the neutral curve

will still be horizontal. For A large, this segment of the neutral curve

will be asymptotic to the curve for =0 , i.e. - ) = ACT- . We

can see this by letting U. and A become large in (8-9) in such a way

that U6/4 remains of order unity (and again assuming C ,

remains finite). We get, again dropping the common factor(C oq)

C -- A Cy C + O (-C -iA§~C * vo 1~o(8-36)

with solution

[A C UO'j (8-37)

so that, as before, the unstable region lies above the curve U0

This curve will be approached asymptotically from higher (lower) values of

U0  if the ratio is greater than (less than) one.

In general, then, the minimum shear required for instability no

longer depends on the effect, or on the static stability (6,) , but
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rather is determined only by the magnetic field strength. This is in

accordance with the general theorems of chapters 6 and 7, where it was

shown that the vanishing of the potential vorticity gradient (in one of

the two layers, for the two layer case) was no longer a necessary condi-

tion for instability. The minimum shear occurs for the limiting case

of -> O . This confirms our conclusion from expression (6-16)

that at the shortest wavelengths, the magnetic field should dominate in

determining the stability criteria.

Finally, it is notable that the requirement for instability that

'l)0a- K /' justifies a posteriori our scaling assumption on _P

made in Chapter 4, namely P

Figure 3 then gives a schematic picture of how the various physical

parameters determine the stability curves. To facilitate comparison of

the resulting composite curve (Fig. 3d) with results in the nonmagnetic

case (e.g. Phillips 1954, Pedlosky 1964b) we have plotted it for several

values of ? with a fixed - , in Fig. 4. These numerical results were

found using the standard algebraic technique found in Mathematical Tables

and Formulas by Burington, and an IBM 7094 computer. The abscissa, A
again involves the width of the channel as well as the wavelength of the

disturbance. In calculating the curves, we have taken 6SisiV

= 0.707, so that 9 = 0.177. (The values corresponding to Pedlosky's

1964b calculations would be - = 0.250).

We can see from Fig. 4, then, that, for a given shear (and a channel

wide enough so that (A/), increasing the magnetic field can render
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Fig. 4. Numerical evaluation of stability diagram for Q = 0.177,

( f = 0.707), ES7I1l, = 0.5, for various values of .

Ordinate and abscissa same as in Fig. 3. Number of waves VI
around latitude circle 450 plotted as second (lower) abscissa for

I= 04. For Al i , 0 , where X is in units

of 105 km. Solid lines denote stability boundaries; dashed lines
denote most unstable disturbances.
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a wide range of long waves neutral, while destabilizing short ones. The

wave length of maximum instability is also shifted toward shorter wave-

lengths, as indicated by the dashed lines. We can also see that the neutral

curve takes on a rather peculiar shape for very small magnetic field

strengths. That is, the neutral curve for P = 1/256 adds only a small

tail to the curve in the nonmagnetic case. Presumably as 0

this tail shrinks to a line.

If the channel has infinite width, or at least is wide enough so

that ,then the abscissa in Fig, 4 is approximately

In channels with finite widths, A will be bounded as

so that in Fig. 4, only the region to the left of the

limiting value of A will apply. For example, if f = 2, A (max) = 1.6.

For relatively narrow channels, then, Fig. 4 does not give a very good

0 representation of the region of instability. Therefore, since in Chapter 9,

we will have to consider only narrow channels, we shall plot the stability

curve as a function of A for different channel widths. Also, since

0 1we are primarily interested in the effect of the magnetic field, we shall

I use as the ordinate the parameter P, which we may call a magnetic
010

Richardson number. The growth rates are then in units of c

the phase velocities (measured relative to the flow in the lower layer i.e.,

we set U, 0 ), as G r / A), . Three channel widths are chosen:

are40, X, . The values E Sin' =I = 0.177 are used again.

The results are plotted in Figs. 5 and 6. The values t / were chosen

for ease of comparison with the results of Chapter 9, where the horizontal

n shear is included.
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Figures 5 and 6 demonstrate clearly how much the stability of the

waves and their phase velocities depend upon the channel width and the

toroidal field strength. Maximum growth rates decrease strongly with

decreasing channel width, ranging from 0.3/solar rotation for

to 0.06/solar rotation or so for J

Even more striking are the changes in the neutral curves which

bound the unstable region. For the narrow channels, the stabilizing

effect of for long waves is much reduced. In contrast, short wave-

lengths, particularly for relatively weak magnetic fields, become stable

for the narrow channels. For example, with tz=0 Z , for small magnetic

fields (P/ 0 '<< 'iq) the shortest unstable wavelength is almost doubled.

For / , all wavelengths are neutral for P < ~ 0.15.

On the other hand, contrary to the Eady case, a narrowed channel does

not render all wavelengths neutral for all magnetic field strengths. However

narrow the channel, there is a finite range of magnetic fields of which dis-

turbances longer than a certain wavelength are unstable. For very wide

channels, increasing the field strength while holding the shear constant

results in a reduced growth rate for long waves ( sA - 15) but can

lead to increased growth rates at small and moderate field strengths at

short wavelengths ( 15). For the narrow channels, at almost all wave-

lengths the maximum growth rate occurs at some intermediate value of

Finally, consistent with the reduced / effect on the neutral curves,

the narrow channels also have much smaller ranges of phase velocities (Fig.

6). For a given shear and wavelength the phase velocities increase with the

magnetic field strength.
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Structure of disturbances and energy conversions

In addition to defining the regions of instability, it is of interest

to examine the structure of the unstable disturbances, and the energy con-

versions this structure implies.

The structure will be described completely when the relative phase

angles and amplitudes of all the dependent variables are found. Let us

measure these relative to , the stream function at the level 1. That

is, we set 4 /

The amplitude and phase of 3 can then be found from either (8-6)

or (8-7). Using the definitions (8-8), we may write, from (8-7)

A 0

(8-38)

From (8-4), (8-5) and (8-8), we may write

A

(8-39)

3U0  (8-40)

01

To find the amplitudes and phases of the vertical motion and vertical

magnetic field, we first define

W) h L L W A A, ( xe (8-41)
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Then substitution for , 3S , from (8-1) and (7-28), and for Ng

from (8-41), into (7-3), using the definitions (8-8), gives

AA A~ &UOI/,1
3 (8-42)

Finally, substituting for VJ , from (8-41) into (7-8), we get

AA

42= ~HW w( 8_43)

C

To simplify matters, let us in calculating the phases neglect the

3 effect and take the channel to have infinite width. It is then easy

to relate the cases of positive and negative zonal flow. Since (3 0

Cy - . Then substitution for C' from (8-20) into (8-38),

after considerable algebraic manipulation, yields

(8-44)

Thus the stream function amplitudes are the same in the two layers. From

(8-39) and (8-40), then, it follows that

3 J/ (8-45)

Therefore the magnetic flux functions have the same amplitudes in the two

layers.
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Let us define the phase angles of the dependent variables in the following

manner:

* = H MI e
AJ1 : (8-46)

x,1 I X, e

Then, from (8-39) and (8-40)

(8-47)

The phase angles for positive and negative but equal magnitude shears can

be easily related. Using a bar to distinguish between the two cases, the

phases are related according to

0(3 =3

(8-48)

7 r -"3

We have calculated the phase angles of the various dependent vari-

ables for the case ZO , oO ,and again S 'M = C ;

along the curve of maximum growth rate. These are presented in Figs. 7b, c.
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Figure 7a gives the unstable region and the curve of maximum growth rate

(dashed). These are for positive shear 14 (cold pole, warm equator)

and positive toroidal field.

It is easiest to interpret these phase relationships in terms of

the energy conversions they imply. Since the zonal flow and toroidal mag-

netic field are initially independent of , , the only non zero conver-

sions of energy initially will be (()>) A') A% K9
(kc ) M) . In the absence of a magnetic field, the first wo conver-

sions are positive for baroclinically unstable waves. That is, there is

a conversion from zonal available potential to eddy available potential,

some of which in turn is converted into eddy kinetic energy. With the

toroidal field present, we would expect these two conversions to go on

qualitatively as before, though altered somewhat by the toroidal field,

and to have an additional process, represented by (ir, ti') , in which

part of the eddy kinetic energy is further converted into eddy magnetic

energy. From Figs. 7a, b we can see that this is indeed the case for the

most unstable waves. The generally stabilizing effect of the toroidal

field strength as it is increased is also quite evident.

In order for the first link in this chain of energy conversions to

be in the desired sense., the mean temperature field t - + ,7 must

lag the mean stream field M2+ 40 I , so that there will be

an eddy heat flux from warm to cold latitudes. From Fig. 7c, it is evident

that the amount of this lag is 90 , no matter what the magnetic field

strength. As this field strength is increased, this conversion nontheless
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decreases toward zero. This is effected through the tending toward zero

of the mean stream field (.3 +.+ . That is, although

the angle c( -- 180 (see Fig. 7b), so that

A

The second conversion, (A, will be positive only if

there is net rising of warm and sinking of cold gas. In terms of the

phase angles, this will be true if 0 < a(W - ofV/jv< TT~ . From

Fig. 7c, it is evident that this is always the case. The stabilizing

effect on this conversion of increasing the magnetic field strength

results in o4, - -+ 0 ; i.e. the phase difference between

the vertical motion and temperature perturbations approaches 90 , shutting

off the conversion. In addition, the magnitude of the vertical motion
A

approaches zero, since ' - , and C > 0 , as we can see

from (8-42). (If the effect were included, this would no longer be

the case).

Finally, the conversion (k'I, tit will be positive if

T ( ( (from which it follows that 0 < Kot < T ,

by 8-47). From Fig. 7b this is true for the most unstable waves. Since

S = CC /(c , it will be true for all waves for

which CL >0 , i.e., for all unstable waves. As the field strength

is increased, -+ 1800, since -> 0 , thus shutting off this

last conversion.

Although the above discussion was applied directly to the case of

U'>O, 1+>o , using the relations (8-48), we may easily carry
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it through for negative shears and/or negative toroidal fields. Inclusion

of the P effect will make the phase relations somewhat more complicated,

but should not alter the fundamental result. In short, in the unstable

baroclinic hydromagnetic disturbances we have found, zonal available po-

tential energy is converted into eddy available potential energy, some of

which is further converted into eddy kinetic energy, some of which in turn

is converted to eddy magnetic energy.

Changes in the initial zonally symmetric state

The phase relations presented in Fig. 7, and discussed in the previous

section, also imply changes in the initial zonally symmetric state. These

changes are defined by the tendency equations (7-9)-(7-14). In the absence

of horizontal shear in either the zonal flow or the toroidal field, the

relative phases of the various variables are, of course, independent of

latitude. This means that the unstable waves are not tilted, so that the

Reynolds and Maxwell stresses vanish. From equations (7-9), (7-10) and

(7-11), then, we can see that we may solve for the time tendency in the

mean stream function as if the magnetic field were not present. Its effect

is, of course, still felt, since the phase relations are a function of the

magnetic field strength.

The solution of the closed system (7-9)-(7-11) for and

thus is formally precisely the same as that found by Phillips

(1954) for the nonmagnetic case. We may solve for d 1L31., t separately

at levels one and three, from (7-12) and (7-13). Since II

they will give the same answer. Finally, as we saw from (8-43), the unstable
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disturbances produce an exponentially growing perturbation magnetic field

. From equation (7-14) we can also find the symmetric meridional

(poloidal) magnetic field produced by the disturbances.

In the absence of Reynolds and Maxwell stresses, and noting that

the tendency equations (7-9)-(7-11) for

the flow and temperature fields may be written in terms of the mean and

perturbation stream functions as

(8-49)4KI 41

(8-50)

?~ 2.

i.e.

(8-51)

From equations (8-50) and (8-51), and the boundary condition (7-15);

3 3</d t-at =OsI it is evident that

(8-52)

Then substituting (8-52) and (8-50) into (8-49) for and KW )>

respectively, and evaluating the eddy heat flux term, we obtain a single

equation for

2-

4? 4->/ -6 namely

IVq (8-53)

02/8

d<4 .>
t

4.~ ~ / 1 )

t, oA

<W7

- ->



where we have defined

2=

Since 0) 0 at

tion of (8-53) is of the form

, the complete solu-

sin ; zfJ /;S

-1IT
(8-56)

(8-57)where

d& #> c)+ is thus determined by the sign of ,

which, from (8-55), is determined by Siin 0(3

(8-56) then implies that, for '>0

Together with (8-52),

(cold pole, warm equator)

< < 0
(8-58)

For O (warm pole, cold equator), the inequalities in (8-58) are

reversed. They are unaffected by a change in sign of the toroidal field.

Thus from (8-58) the meridional eddy flux of heat is raising the temperature
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(8-54)

?ib1 - c-
(8-55)

The sign of

( = 0" 1

49 <-P

0 <

-,q <
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in the cold latitudes, and lowering it in warm latitudes, just as in the

nonmagnetic case.

Substituting (8-56) into (8-50), we may calculate the symmetric

vertical and meridional circulation which results, given by

(VL'a > 7TW4- IFM4 Zt x- +&2J (8-58)

7 sin 2-O

(8-59)

Equation (8-59) is found from integrating the symmetric continuity equation

(8-60)

applying the boundary condition < VO1at 3 > 0 at

From (8-58) and (8-59), then, we can see that just as in Phillips

(1954), a three celled symmetric meridional circulation developes, with

thermally direct (warm gas rising, cold gas sinking) cells in low and high

latitudes, and a thermally indirect one in middle latitudes.

Finally, by equations (8-50) and (8-51), we see that the mean ver-

tical circulation alters the zonal flow in each layer. For positive shear

.O , the flow in the upper layer (level 3) is decreased in middle latitudes,

and increased in low and high latitudes. The opposite is true at level 1.

(The flow in each layer remains unchanged at , since d 1 -3

there).
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As stated, the changes in the toroidal field can be found from

(7-12), (7-13). Substituting the real parts of the separated solutions

for from (8-1) and (7-28), we get, from both (7-12),

(7-13)

(8-61)

0761

Thus only the unstable disturbances, for which a , can change

the toroidal field. Since, from (8-48), the angles for positive and nega-

tive vertical shears are related according to =

Sin - , so that the toroidal field tendency is independent

of the sign of the shear in the zonal flow.

From (8-61), then., we see that the unstable disturbances., through

the mixed stress", act to decrease the magnitude of the toroidal field

in middle latitudes, and increase it near the poles and equator. Since

the total toroidal flux must remain constant (easily seen by integrating

(7-12), (7-13) from wall to wall and applying the boundary conditions

(7-15)), the disturbances must carry flux from middle into low and high

latitudes.

Lastly, from (7-14), we may calculate the symmetric poloidal field

produced by the disturbances, which we may write as

(8-62)14 77 2. 0(/3~~-~'~ /J-4.)
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For the most unstable disturbances, from Fig. 7c, we can see that

both terms in the brackets of (8-62) are positive (for both positive and

negative vertical shear in the zonal flow). Therefore if H> 0

L'> < 0 0 < .< z (8-63)
;t > 0<

For /<O , the inequalities are reversed.

Maximum amplitude occurs at 3 . The meridional

component associated with (8-62) is easily found from

00431 >X 4 (8-64)

Using the boundary condition I at 0 E .

The horizontal fields are of opposite signs in the two layers, a all of

one sign within each layer, of the form

--I _ -H- (8-65)

where K stands for the factor in square brackets in (8-62).

Thus the disturbances produce a single celled poloidal field, such

that the vertical field is of the same sign in high latitudes as the original

toroidal field, and of the opposite sign in low latitudes.
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Application to the sun

Because this is a perturbation study, and because of the many simpli-

fying and restricting assumptions made, application of the results to the

solar observations cannot be very precise. We should instead limit ourselves

to comparison of qualitative effects and orders of magnitude.

First of all, we can see that unless UO is only slightly larger

than 02 Jj , the most unstable disturbances have wavelengths comparable

to those of the field patterns in Bumba and Howard's (1965b) magnetograms

(see also the Appendix). For example, in Fig. 4, if we assume /
DI 5A -Az t , where is in units of 105 km, so that for = 1/8,9

V = 1.2, the most unstable wavelength is about 4x10 km, corresponding

to a zonal wave number (lower abscissa scale in Fig. 4) of about 8, as

compared to a crude estimate of 6 or 7 from the magnetograms. For an initial

state in which U0 is only slightly above '2J) , the most unstable wave-

length becomes significantly shorter. These short waves are, however, of

more limited significance, since for them some of the scaling approximations

break down (the Rossby number becomes too large).

The condition U >2JfP required for instability can be looked

upon as a magnetic constraint on unstable waves. For a given magnetic field

then, a certain minimum amount of available potential energy will be needed

to overcome this constraint. Within the scaling assumptions of our model,

we can estimate how large a meridional temperature gradient would be needed

to give unstable disturbances in the presence of a reasonable solar toroidal

field.
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Suppose we take = 100 gauss. Since we are applying our model

A-' 4 3
to a layer deep in the convection layer, we take ^' 10 gm/cm

Then? = 3/16 corresponds to a scale velocity L/ ̂ 65 m/sec. In setting

down the scaling requirements in Chapter 4, we assumed the vertical scale

D in the flow is of the same order or less than the scale height

We may take 10 3 km at these depths, so that if 7 4 ' , the shear

-5 -1 -2
aL Z *-.d6.5xlO sec . This is about 10 of a typical terrestrial

atmospheric value. The dimensional form of the thermal wind relating the

shear to the meridional temperature gradient may be written approximately

as

1,4T (8-66)

4 -2 5-6 -1

For the sun 2.7xlO cm sec , 22s ivl) = 3x10 sec , so that

the fractional temperature difference A6 f'- between equator and pole

would be about

x 1 q (8-67)

Thus for an average temperature T -50,000 K, the equator to pole temper-

ature difference need be only Fi 350K. This value is well within the

spread of values summarized by Beckers (1960) for the photosphere.

It does not seem too implausible to expect the small scale convec-

tion, in the manner outlined in Chapter 3, to produce a iF of this size,

since the 'ratio ATIT is so small (only about 1/300 of its value for

the sun - imposed gradient in the earth's atmosphere).
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The interpretation of the requirement U0 > 2,r- for instab-

ility can, of coursebe turned around. If we can place limits on the

equator to pole temperature differences, then we can place an upper limit

on the uniform toroidal field strengths attainable. If we use the maximum

photosphere temperature difference reported (-%/100 K) as an upper bound

on the value in the deeper layer we are considering, the maximum uniform

toroidal field strength is about 400 gauss.

The perturbation vertical magnetic fields produced by the

unstable disturbances, though of second order, are important because they

may be compared directly to the magnetograms. We already know they will

have the proper horizontal scale. In magnitude if o-10 R-g,10 -1

14 - 100 gauss, then the perturbation vertical fields will be of order

SRol 1 10-1 gauss, about one order of magnitude less than observed.

This difference is probably not significant, since taking --el(aE

o X o , -- 200 gauss gives SRo M '-1 1 gauss. Thus the

vertical fields produced by our model are consistent with the observed

values both in magnitude and horizontal scale.

By our scaling arguments, the symmetric poloidal field <

produced should be an order of magnitude smaller than , i.e. 10-2

-1
to 10 gauss. However, the observed value for the sun is often as large

as 1 gauss. This discrepancy is not unreasonable if the observed value

is the cumulative result of several successive disturbances.

On the sun, the unipolar field is seen only near the poles, while

our model has it just as strong near the equator. However, if the poloidal
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field produced in the model is still single celled when spherical geometry

is introduced, the vertical fields would be much stronger near the poles,

due to the convergence of meridians.

There is another property of these poloidal fields that is of interest.

In the sun, the lower horizontal branch of the poloidal field is presumably

much more concentrated than the upper branch, which extends into the corona

and even beyond. It is this lower branch which Babcock (1961) has postulated

is drawn out into the zonal direction by the differential rotation. This

process was supposed to produce the new toroidal field from which a new sun-

spot cycle emerged.

In our model, we can see from (8-65) that the lower branch of the

poloidal field (Hie.> is such that, if it were stretched into the

zonal direction in the manner put forth by Babcock, it would create a

toroidal field of the opposite sign from the original field. Thus, if in

accordance with our remarks at the end of Chapter 5, we relax the scaling

restriction <AL , Babcock's process will be taking place in our

system. Since we know that the conversion defined in (5-25),

which involves the "mixed stress", cannot over long time periods maintain

the energy in the toroidal field by itself (c.f. the end of Chapter 4 and

the end of Chapter 5), the energy conversion implied by

Babcock's process may indeed give the necessary boost.

However, the reappearance of sunspots and the progression of the

favored latitude for their formation toward the equator would seem to be

more strongly determined by the "mixed stress" in (5-7) and (7-12), (7-13)



-155-

than by Babcock's process. That is, we showed in equation (8-61) that

the effect of the large scale baroclinic disturbances is to decrease

the magnitude of the toroidal field in middle latitudes, and increase

it in low and high latitudes. If sunspots preferentially form where

the subsurface toroidal field is strongest, as is often assumed, then

this effect could give rise to the equatorward progression of the zone

of sunspot formation. Admittedly, this process also allows for sunspots

forming closer to the poles as the cycle progresses, but this may be

suppressed by other factors, such as the spherical geometry, when they

are included.

In closing, then, we see that even in this simple case, the

structure of the unstable baroclinic hydromagnetic disturbances have

many properties of interest for the solar problem. In the next chapter,

in which we include horizontal as well as vertical shear in the zonal

flow, several other features of interest will come to light. Most impor-

tantly, we shall see how the horizontal Reynolds stresses could maintain

the differential rotation, though opposed by the Maxwell stresses, and

how the magnetic fields in the disturbances take on a tilted structure

not unlike that observed on the magnetograms.
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9. Stability of two layer baroclinic flow with horizontal shear

in a uniform zonal magnetic field.

Derivation of the eigenvalue equation

Because we know the sun has a differential rotation, it is desirable

to generalize the stability study in Chapter 8 to include horizontal as

well as vertical shear. In particular, given the form of the differential

rotation defined by its average state over several sunspot cycles (Fig.

A-1), we would like to examine the stability properties of a flow which is

parabolic at least in the upper layer.

In general, the mathematical approach to be employed in a stability

study of flow of continuously varying shear depends critically on the

possible existence and number of singularities in the equations which fall

within the region of interest. If there are no such singularities, then

the solution, while it may be computationally tedious, is straightforward:

the dependent variables may be expanded in a power series in the meridional

coordinate (-) , and the coefficients calculated from the resulting

recursion relation, after applying the proper boundary conditions.

In essence, this is what Pedlosky (1964b) did for the nonmagnetic

case. He chose to confine the horizontal shear to one, the upper, layer,

taking the flow in the lower layer to be uniform. In this nonmagnetic case,

singularities will become a problem only if, on the neutral curves which

bound an unstable region (often called curves of marginal stability), the

phase velocity lies in the range of the zonal flow in the upper layer.

Pedlosky showed that for profiles in the upper layer which had no extremum
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of potential vorticity, the phase velocity of marginally stable waves must

be less than the minimum velocity in the upper layer. Thus this type of

flow profile would not give rise to singularities in the equations, and

the power series technique could be used to completely define the unstable

region.

Pedlosky then analyzed numerically one profile of this type, which

was of parabolic shape in the upper layer, and uniform (for definiteness,

zero) in the lower layer. In our notation, this flow is of the form

U30 (9-1)

where 0 b< f .

He found that the same minimum value of vertical shear was required

for instability as when no horizontal shear was present (just enough ver-

tical shear to make the potential vorticity in the lower layer negative).

However, the wavelength at which this minimum vertical shear gave unstable

disturbances was shorter, as was, in general, the most unstable wavelength

and range of unstable wavelengths for any given shear. In general, for a

given shear, the phase velocities were smaller, reflecting an increased

effect due to the positive mean zonal vorticity in the flow. The imaginary

part C was also smaller, but due to the shift of the unstable region toward

shorter wavelengths the growth rate 4 (, was not necessarily smaller.

Examination of the structure of the unstable disturbances indicated

that horizontal Reynolds stresses were acting to increase the horizontal

shear, i.e. they were transporting momentum against the gradient. In order

to do this, these disturbances took on a characteristic tilted structure,
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upstream away from the maximum of mean zonal flow. At the same time, just

as in the case of no horizontal shear, the disturbances released zonal

available potential energy by transporting heat from warm to cold latitudes,

and converted the resulting eddy available potential energy into eddy kinetic

through rising motion at warm and sinking at cold longitudes. Thus these

disturbances were in a sense baroclinically unstable and barotropically

stable, and as such were performing the energy conversions in basically the

same manner as do the cyclones and anticyclones in the actual atmosphere.

We would like to extend Pedlosky's analysis to the magnetic case, to

see whether disturbances still exist with this chain of energy conversions,

but which in addition show the action of horizontal Maxwell stresses in

braking the mean zonal flow as suggested in Starr and Gilman (1965b), and

which produce vertical fields whose gross horizontal structure is similar

to the solar magnetograms of Bumba and Howard (1965b).

However, with the addition of a zonal magnetic field, even a uniform

one, we are no longer able to classify the flow profiles according to the

marginally stable waves they allow, as Pedlosky did. Thus, for flows without

potential vorticity extrema, such as the parabolic flow we wish to consider,

we cannot be sure there are no marginally stable disturbances with phase

velocities which lie within the range of the flow, giving us singularities

in the equations. This difficulty is closely related to the fact that in

the magnetic case, the potential vorticity is no longer conserved.

In addition, inclusion of the magnetic field introduces new singular-

ities into the equations, which we will discuss in detail when the equations

are derived.

L6.
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Nevertheless, since we may increase the magnetic field strength con-

tinuously from zero, it seems reasonable to expect that we can find one

class of unstable waves whose curves of marginal stability remain within

Pedlosky's classification at least for moderate or small magnetic fields.

This proves to be the case, although the singularities introduced by the

magnetic field serve to reduce considerably the range of over

which the power series expansion is valid, by an amount which increases

with the horizontal shear parameter b . The series solutions we are able

to find do give us the Reynolds and Maxwell stresses acting in the desired

manner, and the vertical fields tilted in a way qualitatively similar to

the magnetograms.

With a flow profile defined by (9-1) let us now reduce the problem to

one equation, which most conveniently is written in terms of . Let us

define

= GSiA9 (9-2)

I = { C (9-3)

Then, using (9-1) for the profile and remembering that ~~ 3  H

we may write (7-31) and (7-32) as

(9-4)

(9-5)
3 H

Then, substitution of (9-2)-(9-5) into (7-29) and (7-30), using (7-26), (7-27),

and remembering that , gives
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(21±C

We may solve (9-6) for in terms of and its derivatives and

subtitute into (9-7). If we, for convenience, further define

= C

kj% t-.3 C
(9-8)

the final result may be written as

+P

+[ ( cr (,

3

-r'1l)

C(-

(9-9)

N 1 - Z-LU Sam C A42 1 3 )

EL 3( gVA C+ 3) + )VCzujX o
a~e

+[cc P)' r r-

d-k 3)4, 
-7)=0(9.34

+ r(
4:R-

B I"d(I"OA-70
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To obtain the series solution, the coefficients in (9-9) will have to be

)

expanded in powers of , but first, let us look at the possible singu-

larities. They will occur whenever any of the factors multiplying

vanish, i.e. where

/ C(9-10)

(9-11)

T (9-12)

The first of these equations gives the possible singularities in the non-

magnetic case. Pedlosky (1964b) showed that no neutral wave could have a

phase velocity greater than the maximum flow velocity in the system, so

that in order for this singularity to be avoided, we must have Cr less

than the minimum velocity in the upper layer, i.e.

cly < UO (9-13)

In the magnetic case, we have proved in Chapter 7 that the phase

velocity of a neutral wave cannot exceed the sum of the maximum flow velocity

and the maximum Alfven velocity in the system (see (7-50)). For parabolic

flow in a uniform field, then, this requires Cr ( U + . Therefore,

to avoid the singularities defined by (9-11), we must require (for ,,>O )

Thus if (9-14) is satisfied, (9-13) will be also, and both singularities will

be avoided.
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Finally, from (9-12), we must also have

Cr * J

With these restrictions in mind, let us now write equation (9-9) in

a form more suitable for expansion in a power series. For convenience, we

define the following symbols

F

p-3

F=

FI0

Uo-

knC

C *k42L(CzP)

2 c + 2 7( U

(19-16)

)
Then the coefficients in equation (9-9) may be expanded out in the form

Q*11'9 3-'

RP~~~fl~O

(9-17)~et

b1~O

(9-15)

Sc PL- (AsA c +!+200 ')(1- +AP

M C A 0(S C k ( c) P))

= (C- -I>Xgm C +A +.7,0.4)

0=.

W 61 n

--7004
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Where we have defined

, F P FF

2'F,PF 3

Q4= 6FF| *-, F, F 8F 3 7i.PF

02 =3.F Z >P

T-P r8 F3jP-

1:3

t =P F- Ft. Fs

W k= ' P F, r,

S,= -ZF F-, -P, F.+ Fa F, + P~ +.2PrF1 3

5 O= 1=14 F& +F3 3F F-,+ zPF r-, -p

2, .0 FT -- 6 F, F,' +P F

s6.zo 4 Fg p' ep , p3

58= to F.6 F,'*- F( F,

s,, A

=o 3 .F-4~

T = 'l8Fy F, F|

Ti=3 FFg

w,= -a PF
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We then assume a solution to (9-17) of the form

B5 f

(9-23) into (9-17) yields the following lengthy recursion

relation for coefficients .

S s- Xs-2)(5 - 3) 'Es2

(S 4-(5 - -) 3)(s --9) R 13

s - .(S-Z-S-) Sj

+ +(s-)(S-5-)(s-) R3
+( -)( S -5) S .

s -q) Tj

+ WO

+ s - ()( -

+

-~~sq

BS-C
Q2 -

+ + ( s -s)T 5
+

4- (S-10) T7 85-10

(S-1 -)(5-3)
+ S

L-

Substitution of

(9-23)

F5-4

-I-
~IQ

BS-I ;I_

-o0

A,

00

ot 10" S-N1
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Because this recursion relation contains only even subscripts, the

solutions will be either symmetric or antisymmetric about the point O

Which solution we choose depends upon the boundary conditions. In either

case, we require 3 all to vanish at the wall at

-- / . For (9-17) for alone, this requires

(9-25)

If we wish to put the other wall at 0 , we require

X_ (0) 0 (9-26)

Conditions (9-25) and (9-26) will result in the solution containing only odd

powers of , i.e. the antisymmetric solution.

We could instead require

) -Z0 (9-27)

which would give us the symmetric solution. This boundary condition is

equivalent to taking the symmetric solution when we require

0- = (9-28)

giving us a channel between walls at t / . The symmetric solution,

from conditions (9-25) and (9-27) was the one calculated in the nonmagnetic

case by Pedlosky(1964b We shall consider both the symmetric and antisym-

metric solutions. While the antisymmetric solution is probably physically
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more relevant to the solar problem, as we shall discuss at the end of this

chapter, the symmetric case is the more unstable, and can be found for

larger horizontal shears, so that we have carried the symmetric case further.

The antisymmetric solution should in the absence of horizontal shear

be simply the series for S/h n7/ = lp-- in the range O <

The symmetric solution with no horizontal shear will represent (4 4

~- I, ---- in the range-I < or equivalently, Si n A3

in the range O .. +-.7- (to conform with Chapter 8). We plotted the

stability diagrams showing the marginally stable curves, growth rates and

phase velocities for the lowest modes of both of these cases in Figs. 5 and

6. We expect, then, that the stability diagrams for the lowest mode when

horizontal shear is present, will evolve continuously from Figs. 5 and 6

as the shear parameter b is increased. The higher modes can also be

calculated, although they are of less interest, because they will, in

general, grow more slowly, and because the walls are artificial. In the

actual computations, some care must be exercised to keep the modes separate.

We can see in Figs. 5 and 6 that only the short wavelength edge of

the unstable region is discernible for these narrow channels. This will

remain the case when shear is added. Therefore there is only one marginally

stable curve to be considered. Examination of this curve in Fig. 6 shows

that for Jr 2 , and j, everywhere along it Cr -> 4p . This

result allows us to define more closely the bounds on Cr required to

avoid singularities. For if CJ, > when ,= , it must remain

so when 6 >O -- otherwise at some value of Lh we would have to have



-167-

Cr- P , in violation of the restriction (9-15). Therefore, from

this deduction and (9-14), the phase velocities of marginally stable waves

in the absence of singularities must be bounded according to

<C < V0  -- 6 (9-29)

One can see that these bounds can be highly restricting. For example, if

b = 0.5, the largest value of i/U 0  for which a marginally stable

wave satisfying (9-29) can exist is P/Ut =///g (for which we must

have C = 0.25). In the case without shear, the highest value would

be -L , so that for b = 0.5, at least three-fourths of the

range of P/ would contain singularities. Despite this great re-

duction in range, we can still obtain interesting results within what is

left.
Our first job, then, is to try to find marginally stable curves as

functions of and Xo for various values of 1 whose phase

velocities fall within the range defined by (9-29). The manner in which

this is done is essentially the same as that used by Pedlosky (1964b).

In the antisymmetric case, one solution is obtained from (9-24) by setting

'B) the other results from taking B 0 ;

BBB3 = I . Let us denote these two solutions, respectively, by

-=S 6 (9-30)

4 (3) Ist)

:z 5 1-(9-31)
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Similarly, the symmetric solutions are obtained by setting I

;, 132 j Analogously, we denote them by

.6

- 0(9-32)
DO 5=0 25S

(Zb

-8 Z (9-33)

Then satisfaction of the boundary condition (9-25) requires

D7 3(i) 0 (9-34)

Thus C>Q is the eigenvalue equation

for the problem, with the complex phase velocity C the eigenvalue.

Stability criteria, phase velocities, growth rates

Just as in the nonmagnetic case, the marginally stable curves will

be characterized by the coalescence of two roots of (9-34). For one of

these roots, as one enters the unstable region from the marginal curve,

the imaginary part will be positive, denoting an exponentially growing mode.

The other will give its complex conjugate, an exponentially decaying mode.

To find the neutral curves, we first fix values for some of the parameters,

setting /i = / ; (3 = 0.707, the same values we used in the no shear case.

We then set Ci = 0, and for different shears ,vary Cr/U in

P/) space to look for zeros of F. The locus of points where
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two such roots coalesce for a given defines the curve of

marginal stability. In doing this, we are guided by some of Pedlosky's

(1964b) results. For example, as we have stated, he found the region of

instability shifted toward shorter wavelengths when horizontal shear was

included. Analogously, we should expect our unstable regions do to the

same, so that we should look to the left of the marginally stable curves

in Figs. 5 and 6. Pedlosky also found the phase velocity C. to be less

positive when shear was added, due to the increased " effect" of the

positive vorticity in the mean flow. We should expect the same in the

magnetic case. Using these guidelines, and the restrictions imposed by

(9-29), we have evaluated P numerically on the IBM 7094 at the MIT Com-

putation Center and have found new marginally stable curves for both the

symmetric and antisymmetric cases, for several shears, as plotted in Fig. 8.

We can see from Fig. 8 that for both the symmetric and antisymmetric

cases the region of instability is shifted toward shorter wavelengths. In

the symmetric case, for a given shear, the percentage reduction in wave-

length is virtually independent of the magnetic field strength. In the

antisymmetric case, this reduction is strongly dependent on the field

strength in the narrow range of parameters for which it could be calculated,

decreasing for increasing field strength.

For each shear, there was a short wavelength limit beyond which the

curve of marginal stability could not be computed by using power series,

because the singularity defined by (9-11) was within the channel. The light

solid lines in Fig. 8 denote the locus of the limit of the marginally stable
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Fig. 8. Marginally stable curves (heavy solid lines) for the parabolic flow
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disturbances symmetric (upper figure) and antisymmetric (lower figure)
in the range - 04 :5f+ . Light solid lines denote short wave limit as

a function of the shear parameter b to the left of which singularities
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curves for different shears. On the short wavelength side of this limiting

curve, we do not know whether the series solution converges. However, since

the machine must always work with a truncated series, it may give roots on

the short wavelength side. The heavy dashed lines are extensions of the

curves of marginal stability found from such calculations. It is not clear

whether they represent convergent solutions.

We can see more clearly the approach of the curves of marginal stab-

ility to the singularities by plotting the phase velocity 
0 y against

P/ U6 , as we have done in Fig. 9. From Fig. 9, we see that indeed

just as in the nonmagnetic case, the phase velocities at the edge of the

unstable regions decrease with increasing horizontal shear. For a given

shear, they also increase with increasing magnetic field, just as they do

when no shear is present.

The light solid lines in Fig. 9 represent the limits on C" to

avoid singularities, set by (9-29). Thus the marginal curves for a given

shear must remain below the tent shaped limiting curve for that shear.

One can see, then, that the singularity encountered is that defined by

(9-11) in all cases. The heavy dashed lines again show the extensions of

the marginal curves with truncated series beyond the boundary of the

singular points.

One can also see from Figs. 8 and 9, as we have already pointed out,

that for increasing shear, the range of (/ua over which we can find

solutions by the power series technique can be greatly reduced. This is

most severe in the antisymmetric case.
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In addition to calculating the marginal curves for different hori-

zontal shears, we have also computed the growth rates and phase velocities

of unstable waves for several cases. To do this, we evaluate F for a

grid of values of Cr and . The root values Cy Ci occur where

the real and imaginary parts of F go to zero simultaneously. These results

are presented in Fig. 10. In Fig. 10a, b, we present the phase velocities

and growth rates of symmetric and antisymmetric disturbances for equal

P/ U. 57 3 7 and ( = 0.1). The symmetric disturbances are

seen to be much more unstable, and unstable for shorter wavelengths. The

phase velocities for the symmetric case also drop off much faster with

increasing wavelength. These results are qualitatively equivalent to those

for b , from Figs. 5 and 6, as we would expect, since we are not able

to put in very much shear. We would expect the antisymmetric mode to be

the less unstable whether or not there is horizontal shear, because the

cross-channel scale is smaller than for the symmetric case.

In Figs. 10c, d, we show the effect of increasing the magnetic field

strength for a given shear ( b = 0.3) in the symmetric case. We can see

that, just as with no shear, increasing the magnetic field increases the

phase velocity, and shifts the most unstable wavelength toward shorter waves.

The most unstable wave is more sharply defined, but the magnitude of the

growth rate remains nearly the same (increasing slightly), the decrease in

C1j being slightly overbalanced by the increase in k .

Finally, in Fig. 10e, f, we compare the symmetric no-shear case with

a shear case = 0.3) for equal magnetic field strengths. Here, just as

in the nonmagnetic problem, increasing the shear decreased the phase velocity

and made the most unstable wave shorter, but about as unstable as without shear.
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We can see that the effects on the growth rate of increasing the

magnetic field and increasing the horizontal shear are about the same.

Their effects on the phase velocities, however, are opposite. The simi-

larity of effects on the growth rates is reasonable, since both increasing

the field strength and increasing the horizontal shear effectively decrease

the baroclinicity of the flow relative to the constraint of the magnetic

field.

Structure of disturbances; stresses, energy conversions, and changes in

initial state

It is interesting also to look at the structure of the unstable

disturbance for which we have just calculated the curves of marginal stab-

ility, phase velocities, and growth rates. Since we have the two solutions

or 0D , which together satisfy respectively the sym-

metric or antisymmetric boundary conditions, we may write the whole solution

for in the form

+ 3 (9-34)

where

(9-35)

Once we have the complete series for it is a simple matter to calculate

term by term the series for , U and , to give us

the complete structure of the disturbance. In Figs. 11 and 12 we have pre-

sented the results for the symmetric solution for the point (L)0 = 1/16,
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Fig. 11. Phases of dependent variables as a function of for the case

P/ = >b=o.3, Cr =0-17( 0=.7*)> = I(e si'= os) = o

for which Gr 0, = 0.3376, CLU. = 0.1124. Labeled arrows on abscissa

indicate phases of most unstable wave for same PA) I W\ , but with

6= o (for which A % 2.1) taken from Fig. 7. Phases plotted increasing
to left so that phase curves give crests of a wave advancing to the right
(in the same sense as the sun's rotation).
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= 0.707, hi = b1, = 0.3, = 20. At this point, Cr()L = 0.3376,

C/0, = 0.1124 come closest to satisfying the boundary conditions.

The series were calculated to the 48th power in , and converged at a

satisfactory rate.

Figure 11 gives the phases of the disturbances as a function of .

For convenience of comparison with the no-shear case, we have plotted the

phases relative to *(0) . They are defined in the same way as the no-

shear case, i.e. by equations (8-46). We have furthermore plotted along

the axis the phases of a disturbance with the same magnetic field strength,

but with no horizontal shear in the flow, and no ( effect (from Fig. 7).

The phases are plotted increasing toward the left (the opposite of Fig. 7)

so that the constant phase lines represent the wave crests of a wave ad-

vancing toward the right (in the same sense as the sun's rotation).

We can see from Fig. 11 that, with the exception of , the relative

phases, and particularly the phase differences, do not change a great deal

when the effect and horizontal shear are added. Thus we would expect all

the energy conversions dependent upon these phase differences, i.e.(A, A9

(A', K) (K('M ) to have the same signs as in the no-shear case, as

indeed we shall see that they do. Also, the changes in the initial state

should proceed in an at least qualitatively similar manner to the no shear

case. In addition, the increase in the phases with implies the existence

of Reynolds and Maxwell stresses, and consequently non-zero values for the

energy conversions (K (K>). The amount of this "tilt"

in the crests of the variables with is about 3 times as large in and

as in and K,. This is understandable since the horizontal
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shear is confined to the upper layer. The phase shift with is still

more pronounced in A/b, and is most pronounced in tl, ,being around

70 0, or 1/5 of a wavelength.

The amplitudes of the various variables are plotted in Fig. 12.

We can see that the horizontal shear does not drastically change the

amplitude as a function of over the no-shear case. That is, the

curve for O -, the amplitude function in the no-shear

case, fits quite closely to in the shear case. 3 )-

departs somewhat more strongly from X , but still not radically.

The poleward eddy flux of heat still renders ((A) A') posi-

tive, while a vertical eddy flux of heat makes positive.

These fluxes are respectively represented in the form

3 (3> i~r)3((9-36)

3 ZX 3 1(9-37)

where, as usual, the subscripts r and 1 denote the real and imaginary

parts. Both (9-36) and (9-37) are positive everywhere in the channel

(indicating poleward and upward heat transports), as we can see from

Fig. 13. Both transports are a maximum at : . In the antisymmetric

case, both would be zero there.

The conversion (K' N) is still positive, indicating the per-

turbation magnetic fields are growing, because and are not exactly

in phase or exactly 1800 out of phase with each other in either layer.
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The Reynolds stresses for the upper and lower layers may be evaluated

according to

(9-38)

by substituting in, respectively, and . Similarly, the Maxwell

stresses for each of the two layers may be found from

- 5 (9-39)

These stresses are plotted in Fig. 14. With the coordinate system used, a

positive value for the stress indicates momentum transport toward higher

values of (higher latitude). The Reynolds stresses are thus in each

layer transporting momentum toward 6 = , i.e. toward the latitude of

maximum zonal velocity. Since the Reynolds stress is antisymmetric about

Y d , the transport in the range - I S 3 5 will also be toward the

maximum of the zonal flow. This upgradient transport of momentum would

thus tend to increase the horizontal shear in the flow. In terms of energy,

eddy kinetic energy would therefore be converted into mean zonal kinetic

energy. This conversion , as we can see from its definition

(7-19), would be taking place initially only in the upper layer (level 3)

since that is the only layer with shear. This energy conversion is the

same as what Pedlosky (1964b) showed to be happening in the non-magnetic

case. But in the magnetic case, we can see from Fig.14 that there is an

additional conversion process which opposes this. That is, the Maxwell

stresses are acting to transport momentum away from the maximum of zonal



0.01

0.0

-001

-0.02
0.0

y -

0.2 0.4

Fig. 14. Reynolds and Maxwell stresses

Amplitudes relative to -71(o)

0.01

(M.S)3

(M. S.)i

0.0

R. .S.)

(R. S.) 3

1 - 1-0.02
0.6 0.8 1.0

for same case as Fig. 11.

-711-4



-183-

flow, though at a smaller rate than the Reynolds stresses are adding it.

As the Maxwell stresses are also antisymmetric, this is true in the

range as well. Thus the energy conversion

defined by (7-20), is positive. This means that the perturbation magnetic

fields are growing not only directly at the expense of eddy kinetic energy

(i.e. from ) but also indirectly through conversion from mean

zonal kinetic energy, which in turn, as we just showed, is supplied from

eddy kinetic energy by the Reynolds stresses.

For this particular case, the magnitude of the Maxwell stress trans-

ports are about one-third as large as the Reynolds stress fluxes. Although

we have not yet had time to look extensively, there may be other values of

the parameters for which the Maxwell stresses are still larger relative to

the Reynolds stresses.

Let us finally turn. to the changes in the initial state produced by

these disturbances. In principle one can generalize the analysis of

Chapter 8 where and <(\2A]g were found, but higher

derivatives of the Reynolds and Maxwell stresses and the meridional heat

flux would have to be taken, which would be computationally difficult.

Rather than try to do this, it seems reasonable to argue as Pedlosky (1964b)

did that the resulting mean meridional circulation and change in zonal flow

would not be markedly different from the no-shear case (which we showed in

Chapter 8 was very similar to the nonmagnetic case, i.e. Phillips,1954).

The changes in the magnetic structure are much easier to compute.

The original toroidal field will be changed by the negative gradient of
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what we have called the mixed stress (see (7-12), (7-13)). This mixed

stress may be evaluated for each level in the form

(9-40)

The results are presented graphically in Fig. 15a. It is interesting to

see that the mixed stress is smaller in the upper layer than in the lower,

in contrast to the Reynolds and Maxwell stresses.

The tendency equations (7-12), (7-13) for the toroidal field can be

written in short form as

043 M (M eA S) it 3 (9-41)

From (9-41) and Fig. 15a, then, we can see that in each layer, the ampli-

tude of H will be decreased at low values of ? (low latitudes) and

increased at high values of (high latitudes). If one pictures the

complete channel - / , .5fj, the magnitude of H is therefore de-

creasing in the middle of the channel and increasing near the edge, because

the mixed stress is antisymmetric about -O . This is the same as

for the no-shear case. The primary difference from the no-shear case is

that in the upper layer, the positive tendency is confined to a narrower

band next to the walls.

Finally, we may calculate the production of a mean poloidal field

from (7-14). There are two effects which contribute to the tendency

S<7>.. . Both have been plotted in Fig. 15b. We can see that



EDDY TRANSPORTS OF MAGNETIC FIELDS

0.14

Y -~

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

y -- +-

Fig. 15. a) Mixed stresses or same case as in Fig. 11. Amplitudes
relative to 4() .

b) Eddy meridional transport of eddy vertical magnetic fields
(middle curve); twisting of horizontal fields into vertical
by vertical motion (upper curve); and their sum. These pro-
cesses together determine the production of the mean poloidal
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by far the major contributor to this production is the eddy meridional

transport of eddy vertical magnetic fields. Thus in this case the time

tendency is approximately

(9-42)

From (9-42) and Fig. 15b, then, we can see that in the range O

the poloidal field tendency is everywhere positive. That is, the disturb-

ances are producing an upward directed poloidal field. It is also evident

that the tendency is antisymmetric about = 0 , so that a downward

directed poloidal field would be produced in the range - / S .

This is again just what we found in the no-shear case. For a channel of

nondimensional width 2, this field was proportional to SIn 7T for

a range --/ 5 f- . From Fig. 15b, it is obvious that the form of

' 2 does not change much when horizontal shear is added.

Application to the sun

To apply our results to the sun, it would probably have been more

realistic to have examined in detail the antisymmetric rather than the

symmetric solution. That is, the antisymmetric solution would be for a

channel of nondimensional width / , for which the maximum of zonal

flow would occur at the equatorward boundary of the channel. This would

simulate in a crude way the actual mean zonal flow profile for the sun

deduced from the various spot displacement statistics. (The narrower
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channel, would, on the other hand, be less realistic). The difficulty

was that with the antisymmetric solution, we were not able to put in

very much horizontal shear ( b 2^6/ before the singularities would

enter the domain. Therefore we chose to examine the symmetric solution

instead, to demonstrate the effect of a more reasonable amount of hori-

zontal shear (even in this case, we could not take A> much greater

than 0.3).

The symmetric case corresponds to a flow profile in which the max-

imum zonal flow is in the middle of the channel. To fit this configuration

to the sun, we would have to assume the channel to straddle the equator.

This would violate some of our scaling assumptions, for example that we

could take the sine of the latitude as a constant to lowest order when

solving for the stream function. In addition, the solution applied in

this way would give the maximum of meridional heat transport at the equator,

as if one solar hemisphere were colder than the other. But there are no

grounds, observational or theoretical, for expecting such an asymmetric

temperature distribution to exist on the sun.

The symmetric solution would correspond more realistically to the

situation when the maximum of zonal flow was in middle latitudes, as it

is in the earth's atmosphere. But even so, we can reasonably expect that

the Reynolds, Maxwell, and mixed stresses, which are antisymmetric about

for both the symmetric and antisymmetric solutions, will be

qualitatively similar in the two cases. The production of mean poloidal

fields would be different for the antisymmetric solution, as the eddy

meridional flux of vertical fields would vanish at 0 , rather

than be a maximum there, as it is in the symmetric case. This would just
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result in a single celled poloidal field being produced between 0

and L (i.e. one complete cell within each hemisphere) instead

of between -j and 1-/ (one cell for the two hemispheres).

Given these reservations, the solutions we have found basically

include all of the desirable structural properties contained in the solu-

tions of Chapter 8 for the case of no horizontal shear. But in addition,

they possess additional important properties, properties which meet the

characteristics of large scale hydromagnetic disturbances that Starr and

Gilman (1965b) (c.f. Chapter 3) sought to explain the differential rota-

tion. That is, these disturbances produce horizontal Reynolds stresses

which transport momentum up the gradient, but which are partially offset

by horizontal Maxwell stresses transporting momentum down the gradient.

Starr and Gilman then invoked unpublished magnetograms of Howard (see also

Chapter 1 and Appendix) as evidence that large scale disturbances with the

tilted structure required to give these momentum fluxes might be present

on the sun. Their argument was that the tilted pattern seen in the

essentially vertical magnetic fields represented by the magnetograms

suggested that a similarly tilted structure would be found in the hori-

zontal streamlines and magnetic flux lines, if they could be measured.

In the structure of the disturbances we have found, as we have already

seen in Fig. 11, the streamlines and magnetic flux lines are indeed tilted

upstream away from the maximum of zonal flow in the same way as are the

vertical fields that the disturbances produce, though the tilt in the

vertical fields is more pronounced. Thus these baroclinically unstable
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hydromagnetic disturbances appear to be quite capable of producing the

desired qualitative correspondence with the observations and of main-

taining the differential rotation in the manner put forth by Starr and

Gilman (1965b). Whether the disturbances on the sun really are of this

type is, of course, another question.
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10. Criticisms and possibilities for further work

There are obviously many grounds on which this work can be criti-

cised. Hopefully many of these criticisms may be met by improvements

and generalizations of the models and results we have put forth in the

previous chapters.

One obvious fault is the use of a two-level model. This has yielded

us many interesting results, but we need to know how well these carry over

to the physically more realistic continuous case. To get very far at all,

we would probably have to limit ourselves to the purely baroclinic problem,

i.e. to zonal flows with no horizontal shear. Suppose, then, that the

mean zonal flow U = U(Z), and that the magnetic field parameter

'P ?() (The variation in ' with R could come about by either

a variation in the magnetic field strength, or the density, or both).

Then it is fairly easy to show that for wavelike disturbances of the form

(10-1)

between walls at O A the equation for the amplitude function

() is given by

+'1)+ -- P~ (10-2)

where 0( 7. As a particular example, if is constant

and U is linear in 7 (direct hydromagnetic generalization of the Eady

case) equation (10-2) is a confluent hypergeometric equation. If
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it reduces to a Bessels equation. However, the order of the Bessel func-

tions will be dependent upon the magnetic field strength, becoming imagi-

nary for large enough field strength (or small enough wavelength). Such

functions have not been studied very much, but they could be evaluated

on the computer from series representations. The job would again be to

solve for Cr for appropriate boundary conditions to find the regions of

instability.

As another possibility, we could look more at the continuous baro-

tropic problem, to see, for example, how the criterion for barotropic

instability might be altered for certain flows by the presence of the

magnetic field.

In addition to looking for unstable modes in the continuous case,

it would be interesting also to pursue in greater detail the neutral modes

that are possible, both in the continuous and two level cases. In general,

these would be some combination of internal Rossby and Alfven waves. As

we have already pointed out, some work has been done along these lines by

Hide (1964).

Finally, as another extension of the perturbation approach, it would

seem worthwhile to try to find out, for the two level case, the significance

of the singularities introduced by the magnetic field, in particular, the

singularity defined by (9-11), which we encountered in the numerical calcu-

lations of Chapter 9. As one speculation, could it be that flows with this

singularity within their domain are barotropically unstable, even if the

potential vorticity has no extremum within the domain? As another possib-

ility, could the Maxwell stresses over-balance the Reynolds stresses in
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some flows of this type, thus depleting both available potential and

available kinetic energy of the zonal flow? Unfortunately, due to the

complexity of the equations, it may be quite difficult to pursue analyt-

ically the effect of these singularities very far or in any very general

way.

As we discussed at the end of Chapter 9, the antisymmetric solution

for the inverval between *=0 and =/ would in several respects

be more applicable than the symmetric case to the solar problem. However,

because of the presence of the singularities, we could not calculate this

solution for a case which had very much horizontal shear (we chose 1 = 0.1)

To get around this difficulty, it would seem worthwhile to solve numerically

on a horizontal grid the initial value problem for the same set of scaled

equations (both the linear and nonlinear cases could be done), instead of

assuming a wavelike or exponentially growing disturbance at the outset.

This could be done for a much wider channel than was feasible for the

power series approach, and could be done for a number of initial flow

profiles, including the one which probably most closely simulates the

solar differential rotation, namely the half parabola with its maximum

flow velocity at =0 , i.e. (9-1). In this way, we could study in

more detail the structure of a growing disturbance for a wider range of

initial conditions. Finite amplitude nonlinear effects could also be

examined.

Several variations of this approach could also be made. For example,

we could restrict the disturbances to a single or restricted number of

zonal wavelengths, retaining grid points in the meridional (cross channel)

coordinate. If we also restricted the wave numbers in the meridional
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coordinate, we could examine in a simple way the nonlinear interactions

between waves of different scales, analogous to the nonmagnetic work of

Lorenz (1960a, b, 1962, 1963).

Another unsatisfactory feature of the present system of equations,

one which we have not discussed before, is the difficulty of applying them

near to the equator where the Coriolis parameter 2.&LsnI approaches

zero. Because we have expanded in a Rossby number defined by I0 -

rather than by RO U/ QLSi4 , we have left the problem of the van-

ishing of Sin in the heliostrophic balance itself, i.e. equation (4-49),

which we repeat below

-1 in (4-49)

Professor E.N. Lorenz of this department has suggested to me one relatively

simple way of getting around this difficulty. He points out that if we

retain the variability of SiA4 in (4-49), we can still arrive at system

of equations which possesses an energy invariant in the absence of heating

and dissipation.

The difference will be, of course, that the stream function will no

longer be linearly proportional to the perturbation pressure, expressed by

(4-51). Consequently the vertical derivative of the stream function will

no longer be proportional to the potential temperature through (4-57), but

through a more complicated formula. While it can be shown that the new

system of equations would not be entirely consistent from the point of view

of scale analysis (i.e. some terms would be neglected which are as large or

larger than some terms retained), this system would have the advantage of
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allowing us, at least in a mathematically reasonable way, to deal with

flows which straddle the equator.

The physical description implied by the new equations thus may

not be very accurate within a few degrees of the equator. However, this

might not be of too great importance, since at least the mean-solar

equatorial jet is so broad in latitude. That is, these equations could

still give reasonable results for the middle and low latitudes taken as

a whole.

With the variability of the Coriolis parameter explicitly included

in the heliostrophic balance, it would probably be quite difficult to find

wavelike solutions analytically, but again the initial value problem could

be tried. Since the modified equations if heating and dissipation are

suppressed retains an energy invariant, any increase in the total energy

for a numerical time integration would have to be due to computational

sources (for a general discression of the importance of energy invariance

in hydrodynamical modeling, see Lorenz (1960b)).

Once we have included the equator into the system, it is a relatively

simple matter to eliminate another undesirable feature of our earlier systems,

namely the lateral boundaries. This can be done by writing the equations

with the same approximations as before, but in spherical rather than cartesian

coordinates. The resulting system could then be applied to a complete spher-

ical shell. Professor Lorenz is now developing such a system for the non-

magnetic problem, to be solved numerically on the LGP 30 computer. In its

present form, it has two layers in the vertical, with zonal wave numbers
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assigned, but grid points for the meridional coordinate. It should not

be difficult to generalize this model to include the effect of horizontal

magnetic fields.

Unfortunately, none of the above generalizations will give a system

which allows for the feedback of the vertical magnetic fields, which, as

we have already discussed, is needed before we can have any hope of simu-

lating a solar cycle. To get these feedbacks, it appears that we will have

to at least go to some hydromagnetic generalization of the so-called "balance"

equation models (c.f. Charney, 1962))or even of the so-called "primitive"

equations (also Charney, 1962),in which the heliostrophic assumption is

dropped, but the hydrostatic assumption retained. There are now fairly

good stable finite difference schemes for numerical solution of such equa-

tions (Lilly, 1965). However, as evidenced by the analogous numerical

general circulation models for the terrestrial atmosphere (e.g. Smagorinsky

(1963), Mintz (1965)), this would be a very considerable undertaking.

Before embarking on such a course, it would appear to be prudent to first

study in greater detail some simpler models.

In the above discussion of criticisms and possibilities for further

work, we directed our attention to specific defects and possible generali-

zations of the systems of equations developed in earlier chapters. Even

if these changes were made, the resulting systems would remain within the

more general theoretical framework we postulated for the convective layer

of the sun in Chapter 3. That is, the essential link between the available

potential energy of the system and the kinetic energy of the large scale
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motions would be some form of baroclinic instability. However, in the

final analysis, there may be other mechanisms which are also reasonable

in the light of the solar observations taken as a whole. Probably the

most likely atternative possibility is that of nonlinear interactions

of the large scale motions inferred from the spot statistics with the

smaller scale modes of motion known to be present, particularly the super-

granulation. That is, there may be a reverse cascade of kinetic energy

flow from the supergranulation scale eddies to the suprasunspot scale

eddies. If this were so, then the reverse cascade would proceed all the

way from the supergranulation scale to the differential rotation itself.

This possibility was briefly suggested also in Chapter 3, and in Starr

and Gilman (1965a). If this were in fact the mechanism, then the problem

of producing the necessary meridional temperature gradients, and the

gravitationally stable (in the mean) vertical stratification would be cir-

cumvented. Leighton's theory of the dynamics of the large scale magnetic

regions would fit naturally with such a scheme. For these reasons and

others, it would be well worth while to look into this possibility much

more deeply.

In closing this thesis, it can be remarked that although we have

directed our modeling attempts toward the solar problem, the same approach

may be applicable in some form to the dynamics of other cosmical magnetic

fields, such as those of the planets Earth and Jupiter, and of magnetic

stars.
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Appendix

In this appendix we present, in graphical form, data on sunspot

displacements (Figs. (A-1)-(A-5)) and the large scale line of sight

magnetic fields (Figs. (A-6)-(A-7)). The sunspot displacement statistics

we compiled by Dr. F. Ward from Greenwich Observatory data, for five

solar cycles, including the years 1905-1954 (the averages for 5 cycles

are unpublished). Each plotted point in Figs. (A-1)-(A-5) represents

an average value for the northern and southern hemispheres, for latitude

belts of 50 centered about the latitude of the plotted point. Figures

(A-6) and (A-7) are two of many synoptic charts of solar magnetic fields,

published by R. Howard and V. Bumba in the Astrophysical Journal of

May 15, 1965. These charts were compiled by them from their solar magne-

tograms. The magnetograms are records of the line of sight magnetic

fields seen on the sun, as deduced from the Zeeman splitting of selected

spectral lines. To compile the charts, magnetograms are taken each day,

atmospheric conditions permitting, primarily along the central meridian

of the sun. The fields are generally strongest at the center of the

solar disk, falling off toward each pole and toward the east and west

limbs, strongly suggesting that these fields are primarily radial. For

other details, see the figure legends, and Chapter 1 of the text.
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Solid contours and cross hatchings represent positive polarity,
(toward the observer) dotted contours represent negative polarity.
Isogauss contours are for 2, 6, 10, 15, 25 gauss. On the abscissa,
10 intervals of solar longitude are also plotted. Because the synop-
tic patterns show many persistent features on successive rotations,
we can think of the time coordinate as longitude, plotted increasing
to the left Therefore in a qualitative sense this chart represents
the large scale fields everywhere on the sun at a given time. With
longitude as a coordinate, the solar rotation is from right to left
in the figure. Thus the magnetic field patterns are tilted up stream
away from the equator. For further discussion, see Chapter 1.

(By permission from the Astrophysical Journal, Vol. 141,
University of Chicago Press).



SOLAR MAGNETOGRAM AT ACTIVITY MINIMUM

( Bumba and Howard , 1965 )
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Fig. A-7. Synoptic chart at activity minimum (rotation No. 1477,
February 1964). Details same as Fig. A-6, except that no
data is plotted poleward of 400, due to the weakness and
therefore lack of reliability of the fields there.

(By permission from the Astrophysical Journal, Vol.
University of Chicago Press).

141,

I I

I I f 115 I 1 1 120 1 I 1 1 125



-211-

Biographical Note

The writer was born on May 28, 1941 in Hartford, Connecticut.

Until college he lived in Storrs, Connecticut, still his family home,

where he attended local schools. He studied at Harvard College from

1958 to 1962, receiving a B.A. degree magna cum laude in Physics in

June 1962. He was enrolled at M.I.T. in September 1962, and received

an M.S. degree in Meteorology in February 1964.

He is presently engaged to Miss Susan Hartman of Harleysville,

Pennsylvania, and plans to be married on July 9, 1966. Beginning in

September 1966, he will be an assistant professor in the Department

of Astro-Geophysics at the University of Colorado in Boulder, Colorado.



-212-

Publications by the author

"On the vertical transport of angular momentum in the atmosphere".

Pure and Applied Geophysics 57, 161 (1964).

"On the mean meridional circulation in the presence of a steady

state, symmetric, circumpolar vortex". Tellus 16, 160 (1964).

"The mean meridional circulation of the southern hemisphere inferred

from momentum and mass balance". Tellus 17, 277 (1965).

(With V.P. Starr) "Energetics of the solar rotation". Astrophysical

Journal 141, 1119 (1965).

(With V.P. Starr) "On the structure and energetics of large scale

hydromagnetic disturbances in the solar photosphere". Tellus 17,

334 (1965).


