
SCHUBERT CALCULUS IN GENERALIZED COHOMOLOGY

by

Paul Bressler

Submitted to the
Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology
May, 1989

@Massachusetts Institute of Technology, 1989

/
Signature of author

1-, K -- t_

Certified by
r Victor Guillemin
Thesis Supervisor

Accepted by A 1
PV-

Professor Sigurdur Helgason, Chairman
Departmental Graduate Committee

Department of Mathematics

MASSACHUSETTS INSTITUTE
OF TECHNO1.0GY

OCT 12 1989

ARCHIVES

Professo



ACKNOWLEDGEMENTS

The results contained in this thesis are a product of a collaboration with Sam
Evens, who I could not thank enough for the time we spent working together.

I would like to thank my advisor Roul Bott, who showed extreme patience and
tolerance in supervising the writing of this thesis.

It is my pleasure to acknowledge the tremendous help and support I recieved from
Haynes Miller. I am especially indebted to him for guiding me to and teaching me
most of what I am yet to fully understand about topology.

David Blanc and Hal Sadofsky I am grateful to for many helpful and illuminating
discussions. Finally I would like to thank all those people who generousely shared
their ideas with me and, perhaps unsuspectingly, helped me to clarify mine.



1.Introduction. Associated to a compact Lie group G and a maximal torus T is the
generalized flag variety G/T. The study of geometry and topology of the flag variety
is one of the central issues in Lie theory. One aspect of this study is the intersection
theory of algebraic cycles on G/T classically known as the Schubert Calculus.

The Schubert Calculus was studied in terms of rational cohomology by Borel,
Bott, Kostant and Bernstein-Gel'fand-Gel'fand and in terms of complex K-theory by
Demazure and Kostant-Kumar. Their work focused predominantly on the algebro-
geometric properties of the flag variety.

Here, on the other hand, we take the topological viewpoint. As a consequence we
are able to extend the classical results to complex-oriented multiplicative cohomology
theories. Examples of such are ordinary cohomology, K-theory, complex cobordism
and elliptic cohomology.

The flag variety is a smooth algebraic variety over the field of complex numbers. It
is endowed with the structure of a CW-complex by the Bruhat cellular decomposition.
The cells X, (which we shall call Schubert cells) are indexed by elements w of the
Weyl group W. The dimension of the cell X,, is equal to two times the length of
the corresponding word. The Schubert cells form a free basis for the cohomology
of G/T and the Classical Schubert calculus describes the multiplicative structure of
H*(G!T; z) in terms of this basis.

The closure Xw of a Bruhat cell X is an algebraic subvariety of G/T (possibly
singular) which is called a Schubert variety. Let iW denote the inclusion of the Schubert
variety Xw. Then i.Og is a coherent sheaf on G/T and defines an element of
Kcoh(G/T) - the Grothendieck group of coherent sheaves on GIT. By a theorem of
Grothendieck, Kcoh(G/T) coincides with K(G/T), the complex K-theory of the flag
variety. In this way Bruhat cells determine classes in K*(G/T).

In general the cells X, do not determine classes in h*(G/T) for an arbitrary
generalized cohomology theory. However, for a multiplicative cohomology theory h*
with complex orientation we construct a family of elements in h*(G/T) which

* generalize the classes determined by Xw (in ordinary cohomology and K-theory);

* generate h*(G/T) as a module over the ring of coefficients h*;

* arise from classical geometric objects.

These elements descend to h*(G/T) from MU*(G/T) under the complex orientation
MU -+ h. In MU*(G/T) they are represented by the Bott-Samelson resolutions of
singularities.



An algebra generated by operators which are in one to one correspondence with
the simple reflections in the Weyl group acts on h*(G/T). In fact any resolution
class arises by applying a product of these operators to the resolution of the zero di-
mensional Schubert variety. These operators were considered by Bernstein-Gel'fand-
Gel'fand, Demazure and Kostant-Kumar. Using a geometric description of the oper-
ators we define analogous operators on h*(G/T). The formula of Brumfiel-Madsen
for transfer in bundles of homogeneous spaces yeilds an expression for the operators
in terms of the Euler classes of line bundles on GIT. The formulas which we obtain
generalize those known in the classical cases.

The classical operators satisfy braid relations (the relations between two simple
reflections). This fact is responsible for existence of Schubert cycles in ordinary co-
homology and K-theory. We show that these are essentially the only cases. More
precisely we show that the braid relations are satisfied only for a generalized co-
homology theory with the associated formal group law of ordinary cohomology or
K-theory.

The operators enable us to express the resolution classes in terms of the charac-
teristic classes. We also describe a recursive procedure for calculation of products of
resolution classes with the Euler classes of line bundles which leads to a procedure for
calculation of products of resolution classes. The algorithm yields Schubert calculus
for any complex oriented cohomology theory but differs from known algorithms even
in the classical cases.

This paper is organized as follows. After recalling some facts about multiplicative
cohomology theories with complex orientation we give a short account of Quillen's
geometric interpretation of complex cobordism. In the following sections we use this
description of MU to define a family of classes in MU'(G/T) and give a procedure for
calculating cup and cap products. In the section on operators we give our definition
of the latter, derive the formula for the operators, and treat satisfiability of braid
relations. The resulting formulas describe Schubert Calculus for any multiplicative
cohomology theory with complex orientation.



2.Complex Oriented Cohomology Theories. In this section we shall recall the
basic properties of multiplicative generalized cohomology theories with complex ori-
entation.

A generalized cohomology theory h is a functor from topological spaces to graded
Abelian groups satisfying Eilenberg-Steenrod axioms except for the dimension axiom
[Dy]. A generalized cohomology theory h is called multiplicative if it is endowed with

1. an associative and graded commutative cup product (i.e. for every space X,
h*(X) is a ring (with unit) and a map of spaces induces a ring homomorphism);

2. a coherent choice of the generators for h*(S") ( for all n) over the ring of
coefficients so that the suspension isomorphisms and multiplication by these
generators coincide.

Let x be a point in X and E -+ X be a (real) vector bundle of rank n. The
inclusion of the fiber of E over the point x

R" -+ E

induces a map of Thom spaces
Sn -+ XE.

An element in h*(XE) which restricts to the generator of h"(S") under the induced
map for all points x in X is called the Thom class of E and will be denoted UE. A
bundle which has a Thom class in h is said to be orientable for the theory h.

Example: The complex cobordism theory MU is a multiplicative cohomology theory.
For a finite complex X an element of MU 2 9(X) is represented by a map

E 2"X -+ MU(n + q)

for a large positive integer n. A complex vector bundle E -+ X of (complex) rank q
has a classifying map

X -+ BU(q)

inducing the map of Thom spaces

XE - MU(q)

which represents the Thom class UE in AU 2g(XE).



The following properties of a multiplicative cohomology theory h are equivalent:

1. complex vector bundles are oriented for h;

2. the restriction map
h*(BU(1)) -+ h*(S 2 )

is surjective;

3. there is a natural transformation of multiplicative cohomology theories

MU -+ h

(also called the complex orientation or the Thom class).

A cohomology theory possessing these properties is called complex oriented (or en-
dowed with a complex orientation given by the map in 3). In a complex oriented
cohomology theory the Euler class and the Chern classes of complex vector bundles
are defined and satisfy the usual properties.

A complex orientation of a proper map of (smooth) manifolds

f :M --+ N

is a factorization
MCAEAN

where E is a complex vector bundle and i is an embedding with a stably complex
normal bundle. A compact manifold is said to be complex oriented if and only if the
map to a point is complex oriented (equivalently the tangent bundle is stably com-
plex). A great number of examples of complex oriented maps comes from analytic
maps between complex manifolds.

Let h be a complex oriented theory. A proper complex oriented map

f: M -+N

induces the Gysin homomorphism

f. : h*(M) -+ h*+k(N)

of degree k = dinN - dimM.



With proper choices of complex orientations made the Gysin homomorphism en-
joys the following properties:

1. The projection formula holds (i.e. with notations as above f. is a map of h*(N)
modules).

2. Naturality (i.e. (f o g). = f, o g.).

3. Base change. Consider a Cartesian square

W -9- Y

X -!+Z

Then f* o r. = ,og * .

To a cohomology theory h with complex orientation corresponds a formal group
law defined over the coefficient ring h*, i.e. a power series F over h* in two variables,
say X and Y, satisfying

1. .F(X, Y) = F(Y, X);

2. .F(X, 0) =X;

3. F(X, F(Y, Z)) = F(F(X, Y), Z).

The group law expresses the Euler class of the tensor product of two complex line
bundles in terms of the Euler classes of each, i.e.

x(L1 0 L 2 ) = Y(x(Li), x(L 2)).

For example the group law of ordinary cohomology is additive, i.e .F(X, Y) = X + Y,
and the group law of complex K-theory is multiplicative, i.e. F(X, Y) = X + Y +
uXY, where u is a unit. As Quillen showed in [Q] the group law associated with
complex cobordism is the universal group law.



3.Geometric interpretation of complex cobordism. In this section we shall
recall a geometric definition of the generalized cohomology theory of complex cobor-
dism and of the corresponding homology theory of complex bordism and describe
the associated notions (e.g. the induced maps, products, duality) in terms of these
definitions.

We shall define the (co)bordism groups for a smooth manifold (not necessarily
compact). A finite CW complex is homotopy equivalent to an open subset of Eu-
clidean space. All maps will be assumed to be smooth.

Complex bordism theory AIU was originally defined by geometric means as bor-
dism classes of maps of stably complex manifolds. More precisely for a space X the
underlying set of the group MU,(X) is the set of equivalence classes of maps

M -f X.

M is closed, stably almost complex manifold. This means that M is a compact
smooth manifold without boundary of dimension q with TM stably complex. Two
such maps (M, f) and (N, g) are considered equivalent (bordant) if and only if their
disjoint union extends to a map

W -+ X
of a compact stably almost complex manifold I of dimension q + 1, whose boundary
is the union of M and N. It is also required that the stably almost complex structures
on M and N induced by the embedding into W and the original ones are equivalent.
The Abelian group structure on MU,(X) is given by the operation of disjoint union.
By a theorem of Rene Thom the resulting groups coincide with those obtained by a
homotopy-theoretic construction [S].

The dual cohomology theory MU called complex cobordism was given a geometric
description by D.Quillen [Q]. We present an outline of his construction below.

For a manifold X of dimension n an element in MUn-q(X) is represented by a
proper map

M - X

of a (not necessarily compact) manifold Ml of dimension q together with an equivalence
class of complex orientations. Two such are equivalent if and only if they are bordant
as maps with complex orientations.

A map of spaces



induces a map
g. : MU,(X) -> MU,(Y)

in bordism by composing: g,[(M, f)] = [(M,g o f)]. It also induces a map

g* : MU*(Y) -+AIU*(X)

in cobordism by the following construction. Let (M, f) represent an element in
MU*(Y). The map f can be chosen to be transverse to g. Then g*[(M, f)] is repre-
sented by the left vertical arrow in the diagram

MxyX - M

I I f
X -9+ Y

Complex cobordism is a multiplicative cohomology theory. The external product

MU*(X) 0 MU*(Y) -+ MU*(X x Y)

is defined by taking the Cartesian product of maps. For a space X, MU*(X) is a
(graded) commutative ring with unit under cup product defined by

[(M, f)][(N, g)] = A*[(l x N, f x g)],

where A is the diagonal embedding of X into X x X. In other words the cup product
is represented by the fiber product (i.e. by the "geometric intersection of cycles").
The unit element is represented by the identity map.

There is a cap product pairing

MU.(X) 0 MU*(X ) -> MU.(X)

given by the fiber product of maps. Let

represent a bordism class and let
N "-+ X

represent a cobordism class and let these representatives be chosen so that they are
transverse to each other. Then the cap product of [(Al, f)] and [(N, g)] is represented



by the fiber product of maps. Since the map g has a complex orientation and N is
stably almost complex, MxxN inherits a stably almost complex structure.

As was shown in Section 2 MU is complex oriented by the identity transformation.
In fact a stably almost complex manifold X has a fundamental class in MU.(X)
represented by the identity map. Poincare duality can be described as follows. Let
(M, f) represent an element in MU*(X). The complex orientation of f and the
stably almost complex structure on X induce a stably almost complex structure on
M. With this structure (M, f) represents an element in MU.(X) of complementary
(with respect to the dimension of X) degree which is the Poincare dual.

For a proper complex oriented map

X -f+ Y

the Gysin map
f.: MU*(X) --+ MU*(Y)

is defined by composing with f. In presence of Poincare duality this is the adjoint to
the induced map in bordism.

Stably complex vector bundles are oriented in complex cobordism. For a vector
bundle E -+ X with the zero section ( the Thom class UE in MU*(XE) is defined by
UE = (*(1), where XE denotes the Thom space of E and ( denotes the zero section.
The Euler class X(E) in MU*(X) is defined by x(E) = (*(,(1). In other words the
Euler class is represented by the inclusion of the submanifold of zeros of a generic
section.



4.Geometry and toplogy of the flag variety. In what follows G is a compact
simply-connected Lie group. We shall fix a maximal torus T C G. The complexified
Lie algebras of G and T will be denoted by g and t respectively. Let 1R denote the
set of roots of G and R+ the set of positive roots with the corresponding simple roots
A = {a1,... , al;}. The compact group G can be embedded in a complex group Gc

with Lie algebra g. In Gc we choose the Borel subgroup B containing T and having
1+ for the roots. We shall denote its Lie algebra by b.

The inclusion

(G, T) <-+ (Gc, B)

induces an isomorphism
G/T -+ Gc/B

and a complex structure on G/T (see [BH]). In fact G/T is a smooth projective
algebraic variety over the complex numbers. Since the flag manifold is a homogeneous
space we have the identification

TG/T = G XT g/b.

As a representation of T the Lie algebra g decomposes as

g = b e @c,

where C, denotes the character of T defined by the root -a. Therefore the tangent
bundle of the flag manifold decomposes into a sum of line bundles

TG/T = @ L(-a).
aE7Z+

Here and in what follows the line bundle L(A) is defined by

L(A) = G XT CA

for a weight A of t.
Let W denote the Veyl group of G. The flag variety can be decomposed into a

union of B-orbits (under the left B-action):

Gc/B= U XW
wEW



where X,, = BwB and dimX. = 21(w) (1(w) denotes the length of the word w)
([BGG]). This decomposition gives G/T a structure of a CWN complex. The closure X,
of the cell X, is an algebraic subvariety of GIT (usually singular) called a Schubert
variety. Its boundary is a union of cells corresponding to shorter words in the Weyl
group (in fact to all the words which are smaller then w in Bruhat ordering). This
means that it is made up of cells of codimension at least two. Consequently X,
defines a cycle on G/T of dimension 21(w). Therefore the integral colomology of the
flag variety is free with basis Xw, w E W and is concentrated in even degrees.

Since MU* is also evenly graded the Atiyah-Hirzebruch spectral sequence

H*(G/T; MU*) -=> MU*(G/T)

collapses at the E 2 term and there is an isomorphism of abelian groups

MU*(G/T) H*(G/T) 0 MU*.

Let h be a multiplicative complex oriented cohomology theory. Then the orientation
MU -+ h induces a map of corresponding Atiyah-Hirzebruch spectral sequences which
commutes with the differentials and products. The fact that the spectral sequence
for M U collapses at E2 implies that the spectral sequence for h collapses also. Con-
sequently h*(G/T) is a free module over the coefficient ring h* on a basis of elements
of even degree. It is also clear that the image of MU*(G/T) in h*(G/T) generates
h*(G/T) over the ring of coefficients. It follows that we can restrict our attention
to complex cobordism. The results for other cohomology theories are obtained by
specialization using the Thom class map.

The Schubert cycles X, which generate the associated graded group
H*(G/T) 0 MU* of MWU*(G/T) do not have canonical liftings to cobordism classes.
However, we can use the resolutions of singularities of Schubert varieties to represent
liftings. The canonical family of such cobordism classes is provided by Bott-Samelson
resolutions of singularities of Schubert varieties (also known as the canonical reso-
lutions). They appeared in the context of Schubert calculus in the work of Bott-
Samelson [BS], Demazure [D], and Arabia [A].

The Weyl group W of G is generated by reflections si, ... , s1 which are in one to one
correspondence with the simple roots. We shall also consider subgroups H1 ,..., H of
G of maximal rank. The subgroup Hk can be described as the subgroup of maximal
rank with roots ak and -ak. It is a product of T with a copy of SU(2) in G.

We give a brief account of the construction and the properties of the Bott-Samelson
resolutions below. A detailed study is presented in the paper by Bott and Samelson
in Chapter 3.



Let I = (i1 , ... , i,) be a multiindex with 1 < iJ < 1. The space RI of the resolution
is given by

R1 = Hi, XT Hi2 XT ''' XT HiJ|T

where T acts by multiplication on the right on Hi, and by multiplication on the left
(by the inverse) on Hi,+,. There is a map

R 1  G|T

induced by group multiplication:

(h1,I...,I hn) hi --- hn - T.

Suppose the multiindex I indexes a decomposition of a word w E W into a product
of simple reflections

w = si, - s12 ... Sin

with 1(w) = n (such a decomposition is called reduced). Then (RI, rJ) is a resolution
of singularities of X, i.e. the map rJ, is proper and birational ([D]).

The spaces RI are towers of CP' bundles. For example for a multiindex of length
one we have

R~ii, = Hi,/T ' CP 1 .

In general let I be as before and let J = (i 1 ,... , in 1 ). There is a natural projection

R 1 -+ Ri

which is a projective line bundle. In fact RI is the projectivisation of a complex rank
two vector bundle on Rj. This makes h*(RI) easily computable for any complex ori-
ented theory h. For example h*(RI) is generated (as an algebra over the coefficients)
by the degree two part. The latter fact plays an important role in what follows.

The resolution R, is a complex manifold and the map r, is a holomorphic map,
and, therefore, naturally complex oriented. The pair (RI, rj) represents a complex
cobordism class which we shall call a resolution class and denote ZI in what follows.
By Ze we shall denote the cobordism class represented by the inclusion of the zero
dimensional cell which corresponds to the empty multiindex.

The resolution class corresponding to a reduced decomposition of w C W de-
scends to the class of the Schubert variety X, in ordinary cohomology and complex
K-theory. If the multiindex I indexes a nonreduced product of reflections the corre-
sponding resolution class descends to zero. The cobordism classes corresponding to



different choices of reduced decompositions are different and, in fact, usually descend
to different classes under complex orientation. This follows from results in [BE2] and
will be discussed in more detail in the following sections.

There is an ample supply of complex line bundles on GIT which account for all
of its rational cohomology. These line bundles are associated to the characters of T.
They are induced by the map

G/T -+ BT

classifying the principal bundle
G --+ GT.

The induced homomorphism in cohomology is called the "characteristic homomor-
phism"

X : H*(BT) -+ H*(G/T).

The cohomology ring of BT with complex coefficients can be naturally identified with
the completion of the ring of complex valued polynomial functions on the complexified
Lie algebra of T. The linear functionals are Lie algebra characters which exponentiate
to characters on T. Under the characteristic homomorphism they are mapped to Euler
classes of line bundles on G/T associated to the corresponding characters of T.

The characteristic homomorphism is surjective in rational cohomology. Conse-
quently it is surjective in any complex oriented theory whose coefficients form an
algebra over the rational numbers. In that case there is a short exact sequence

0 -+ (h*(BT 1 ) --* h*(BT) -+ h*(G/T) -+ 0

which identifies the kernel of the characteristic homomorphism with the ideal in
h*(BT) generated by the Weyl group invariants of positive degree.



5.Operators on MU*(G/T). In this section we define operators Ai which gen-
erate an algebra acting on MU*(G/T). This action makes MU*(G/T) into a cyclic
module generated by the class Z, represented by the inclusion of the zero dimensional
cell. The operators allow us to express the resolution classes in terms of the image of
the characteristic homomorphism. They are used in conjunction with the cap product
formula to describe the multiplicative structure of MU*(G/T).

For each i = 1,..., 1 there is a holomorphic fiber bundle

x; : G/T -+ G/Hi

with fiber isomorphic to CP'. Using these we define a family of operators A, (MU*-
module endomorphisms) on MU*(G/T) by

Ai = 0* o ri, : MU*(G/T) -- MU* 2 (G/T).

These operators appear in the work of Bernstein-Gelfand-Gelfand, Kostant-Kumar,
and Demazure and play an essential role in Schubert calculus. This largely stems
from their action on the resolution classes as described in the following proposition.

Proposition 1. Let I = (ii,.. .,in) and J = (i1 , ... , in 1 ). Then

1. Ai,, Z1 = Z

2. A? = Ai(1)Ai

Proof: 1.From the description of MU given earlier we find that ri,1+*Zi is rep-
resented by the map (RI, 7ri.+ o r1 ). Since 7is is a submersion it is transverse to
ri, o ri. Therefore A,,+1 Z1 is represented by the left vertical arrow in the diagram

Hi, XT --- XT Hi,/T xG/Hi CIT -+ R1

GIT f G|Hn

There is an isomorphism

Hi , XT ... XT Hin+,/T ~ Hil XT ... XT Hi,/T XG|Hi G/T

(hil ,..., hin+1) (hil ,..., hil - hi2 - - -hi. )



The inverse is given by

(his , . . . , hi., g) - (his,.. hin, (hil h2 -2 - his)4 )

2. This follows directly from the projection formula.

Corollary 1: ZI = At-, o ... o Ai,,Ze, where Ze denotes the class represented by the
inclusion of the zero dimensional Schubert variety.
Corollary 2: The operators A- acting on ordinary cohomology satisfy A2 = 0.
Proof: This follows from the observation that A(1) is an element of degree -2 of the
ring of coefficients.

The operators defined above allow us to relate the classes of the form ZI to the
characteristic classes of line bundles on G/T as follows. For a complex vector bundle
E let X(E) denote the Euler class of E (in MU). As we explained in the preceeding
section, the tangent bundle of the flag variety decomposes as a sum of line bundles

TG/T = ) L(-a).
GxEJZ+

The Euler characteristic of the flag variety is equal to the order of the Weyl group

(as follows from the description of the cellular structure of G/T). Therefore we have
the following equalities

W|Ze= x(TG/T)= f x(L(-a)).

The second one follows from the Whitney sum formula. The first one follows from
the fact that there is a vector field with the number of simple zeros equal to the Euler
characteristic. Since the flag manifold is path connected all points define the same
cobordism class.

As follows from Proposition 1 other resolution classes are generated from Ze by
repeated application of operators A;. That is if I = (ii . in)

Z0 = Ai, o -.. o AiZe.

Using the previously obtained expression for Ze we arrive at

1
Z1 = Ai ... Ai, H X(L(-o)).

IWi CE)Z+



The operators Ai have natural liftings to operators Ci on MU*(BT). Let

p, : BT -+ BH

be the CP' fiber bundle induced by the inclusion T -+ Hg. Then define

C; = p* o p. : MU(BT) --+ MU- 2 (BT)

Naturality properties imply that the characteristic homomorphism intertwines the
actions of Ci and Ai.

The operators C acting on a suitable localization of MU*(BT) are given by the
formula of the Proposition 2 below. The formula is derived in [BE2] using homotopy
theoretic considerations.

Proposition 2:

Ci = (1+ s)
x (L(- aj))

Proof: We apply the formula of Brumfiel-Madsen for transfer in bundles of homoge-
neous spaces with compact structure group (see e.g. [BM]) to the map pi and use the
relationship between transfer and the Gysin homomorphism for smooth fibre bundles
(see [BG]). See [BE2] fo details.

The operators discussed above are in fact defined for any complex oriented coho-
mology theory and are given by the same formula where the Euler class should be
interpreted as the Euler class in that theory. The examples below show that in the
classical cases the familiar formulas are recovered.

Examples:

1. (Ordinary cohomology.) The cohomology ring of BT is naturally isomorphic to
the ring of polynomial functions on the complexified Lie algebra of T. The latter
is generated by the weights which are assigned degree two. The isomorphism
is established by mapping an integral weight to the Euler class of the dual of
the line bundle on BT associated to the corresponding character of T. It is
customary to identify the two rings and to set symbolically x(L(A)) = A. In
this notation the operator C is given by the following formula:

Ci = (1+ sj)

which appears in [BGG] and [KK1].



2. (Complex K-theory.) K-theory of BT is naturally isomorphic to a completion
of the representation ring of T. Under this isomorphism a character is identified
with the dual of the associated line bundle. Recall that the Euler class of a line
bundle L is given by 1 - L. Denoting by e' the character corresponding to the
weight A we obtain the following formula for the operator C; in K-theory:

Ci =(1+ si) 1
1 - e-

which is used for example in [KK2].

The operators in the examples above satisfy braid relations as can be checked directly.
Recall that the braid relations are the relations, satisfied by the simple reflections in
the Weyl group. This implies that an ordered product of the operators indexed by a
reduced decomposition of an element of the Weyl group is in fact independent of the
choice of reduced decomposition and depends only on the Weyl group element itself.
Corollary 3: For a multiindex I = (ii,..., i,) consider the decomposition of a word
w = s-- si in the Weyl group. If the decomposition is not reduced then the
corresponding product of operators acting on ordinary cohomology is zero.
Proof: Since the operators acting on ordinary cohomology satisfy braid relations a
product corresponding to a reduced decompositions is equal (by repeated application
of braid relations) to one involving a square of an operator. The claim follows now
from Corollary 2.
Corollary 4: The image of class ZI in ordinary cohomology is zero if and only if I
indexes a reduced decomposition.
Proof: This follows directly from Corollaries 2 and 3.

The following theorem show that these are essentially the only two cases in which
it is true.

Theorem:([BE2]) Let G be a compact connected Lie group with at least two nonorthog-
onal roots and let h be a multiplicative cohomology theory with complex orientation
with torsion-free coefficient ring h*. Then the operators C for i = 1,... , defined
above satisfy the braid relations if and only if the formal group law associated with
h is polynomial.
Proof: For complete proof see [BE2]. Here we present a rough outline. Since the
braid relations involve only pairs on nonorthogonal roots the question reduces to the
rank two simple groups and we proceed by examining cases. For example suppose we



have the identity

C1C2C1 = C2C1C2.
This is the case SU(3). Using the formula for the operators of the preceding propo-
sition we expand both sides into a linear combination of products of reflections with
coefficients in the fraction field Q of h*(BT). In doing so it is important to remember
that reflections act on Euler classes by acting on the roots. Since the elements of the
Weyl group act on Q in a linearly independent fashion the identity on the operators
is checked by equating the coefficients in the expansion. This leads to the functional
equation

g(a 1 )g(a 2 ) + g(-ai)g(a1 + a 2) = g(ai)g(-ai)

where g(a) stands for X(L(-a;)). Such an equation implies vanishing of coefficients
of the formal group law. It turns out that only the additive and the multiplicative
group laws satisfy it. The argument relies on the technical results of [BEl] and their
extension in [G].

Remark:It should be pointed out that the theorem does not imply the result for
the operators on h*(G/T). One must show that the difference of the two sides of
the braid relation acting on a resolution class lies in the kernel of the characteristic
homomorphism. This can be done in interesting cases (e.g. elliptic cohomology) using
the Schubert calculus developed in the next section.



6.Cap product formula and Schubert calculus. In the preceding section we
developed a method for expressing resolution classes in terms of the image of the
characteristic homomorphism. We shall presently describe a method for computing
the products of resolution classes with characteristic classes of line bundles on G/T.
Combined with the results of the previous section this yields a method for computing
products of resolution classes.

Let I = (i1 ,... ,i) be a multiindex with 1 < ij< 1. Recall that the cobordism
class Zi E MU*(G/T) is represented by the map

r1 : RI -+ G/T.

Let L(A) be the line bundle associated to a weight A. It has the Euler class X(L(A))
in MU*(G/T). The cap product formula expresses the product ZIx(L(A)) in terms
of other resolution classes.

Lemma 1.
ZIx(L(A)) = rIx(r*L(A)).

Proof: The equality is a direct consequence of the projection formula for the Gysin
homomorphism. We can rewrite the right hand side as

ri.x(r*L(A)) = rIrr*x(L(A)) = rI,(1)x(L(A) = ZIX(L(A)).

Lemma 1 shows that the cap product formula comes from a formula for Euler
classes in MU*(RI). We shall be dealing primarily with the space RI. The line
bundle r*L(A) will be simply by L(A). The space R 1 has the advantages of being
much more simple in structure than the flag variety. As was pointed out in Section 4
it's integral cohomology is generated (as an algebra over the ring of coefficients) by
classes of degree two, and the same is true about complex cobordism.

In order to perform calculations in MU*(RI) we need to establish some notation.
Given a multiindex I = (ii,..., i,) we define new multiindecies I<k, I>k, Ik by:

Ick = (ii,... -, ik_1)

Iy k = (ik+1, -. -O n)

IP = (ii, . .. , iik_1,ik+1, - - -,. )

There is a natural projection

?<k :RI -- + R



given by

A subindex J of I of length k is determined by a one to one order preserving map

or : 1 . . k} - {1 . ,n}

by the rule Jm = zo(m). For the subindex J of I of length k there is a natural
embedding

iI: Rj --+ R

defined by converting a k-tuple (h,,,... , hj,) to the n-tuple having hjm in the i,(m)th
slot for 1 < m < k and the identity element elsewhere. Observe that rj = r1 o ij, 1 .

A pair (Rj, iji) represents an element of MU*(RI). We shall denote it as well as
the integral cohomology class it determines by [Rj). In view of the observation above
we have

Lemma 2.ri,[Rj] = Zj

In view of the lemma the classes of the form [Rj] are precisely the classes in terms
of which we want to obtain the expression for x(L(A)).

A complex line bundle is determined up to isomorphism by its first Chern class
c1(L) in integral cohomology. The group of line bundles on R 1 denoted Pic(RI) is
isomorphic to H 2(RI; z), which is free and has a convinient basis of elements, whose
liftings to MU*(RI) can be chosen to be [Rik].

The isomorphism
Pic(R1 ) -+ H 2 (R 1 ; Z)

is given by the first Chern class. The target group is free with basis consisting of
classes [R1k] with 1 < k < n. Therefore we can choose a basis for Pic(RI) consisting
of line bundles Lk (where 1 < k < n, satisfying

cl(Lk) = [RIk].

In fact the line bundles Lk can be constructed to satisfy

x(Lk) = [Rjk]

in complex cobordism. One only needs to make sure that Lk has a section vanishing
precisely on Rjk. This basis is useful in calculation of Euler class for it yields the



answer in terms of classes [R1 k]. In case of ordinary cohomology the answer is just a
linear combination, but in general will be a sum of products of classes [Rjk] computed
according to the group law associated with the cohomology theory.

Proposition 3. Let A be a weight. Let I = (i 1 ,...,i) be a multiindex and let sJ

denote the corresponding product of reflections. Then the line bundle L(A) on Ri
decomposes as

L(A) L1>'
k=1

Proof: Let

L(A) = @LOak
k=1

be the decomposition of the line bundle L(A) in terms of the basis consisting of the
line bundles Lk described above. To compute the exponents ak we use ordinary
cohomology.

Taking the first Chern class of both sides of the above formula we obtain

n
ci(L(A)) = Zak[Rjk].

k=1

Poincare duality implies that the coefficients ak are exactly the solutions of the system
of linear equations (over the integers) obtained by multiplying both sides of the above
by the classes [RJ,] for 1 j n:

n

c1 (L (A)) [Ri.,] E ak[Rk] [ R i,]
k=1

The intersection numbers which appear in the equations are determined in the Lem-
mas 3 and 4 following the proposition giving

n

k=j+1

Lemma 5 shows that the same system of equations is satisfied by < sI>A, at. >.
Therefore the ak's are given by

ak =< sI>kA, aik >



Remark: Similar calculations appear in [BS] Chap. 3.

Lemma 3.c( L(A))[R,] = - < A, ai, > if j < k and is zero otherwise.
Proof:If j < k, then

r14, 0 x<k 0 2 (i,),I = ri .

If j > k, then ri< 0 r<0 i(i ,), is a constant map.
Using the projection formula as in Lemma 1 it is easy to see that cl(7 ]<k

is equal to the degree of the line bundle ii ,),1rkz r*L(A) on Ri,. If j > k then the
line bundle iZ1 ), rk<, L(A) is trivial, hence of degree zero. If j < k consider the
line bundle rIL(A) on Ri,. By Proposition 1 the map

ri, : R, + GIT

can be identified with the inclusion

i : Hi, /T G|T.

Under the identification of Hi,/T with the projectivization of the two dimensional
representation of Hi, with highest weight Ai, (the dual fundamental weight) the line
bundle i*L(A., ) corresponds to Ocp(-1) - the tautological line bundle of degree -1.
A line bundle associated to a weight A is a tensor power of i*L(Ai,) with exponent
the multiplicity of Ai, in A which is precisely < A, a, >.

Lemma 4.The following integral cohomology intersection numbers arize:
if j > k then [Ryk][R,] = 0;
if j = k then [Rik][R 1,] = 1;
if j < k then [RIk][R4, =< aCice >.

Proof: In the second case we have a transverse intersection at Re (one point) so
[Ryk][Ri,] = 1. In the remaining cases R,, is contained in R1 k. The normal bundle of
RIk in RI is easily seen to be kr<kL(-ai,). Then the intersection number can be
computed by

[RIk;][JRi, = cl(r<k<,-Oaik))I7,]

in which case the answer follows from Lemma 1.

Lemma 5.Let I = (i 1 ,...,in) be a multiindex with 1 < i < 1, and let sJ be the
corresponding product of simple reflections. Then for any weight A the following



identity holds:

A=s1 A + E < SI->kAl aek > aQk.
k=1

Proof: The identity is easily verified by expanding s1 A.

As an immediate corollary of the proposition we obtain the cap product formula
in ordinary cohomology.

Theorem:Let A be a weight and let L(A) denote the associated line bundle on GIT.
Let I = (ii, ... , iin) be a multiindex indexing a reduced decomposition of w = s, in
the Weyl group (i.e. l(w) = n). Then the cap product of ci(L(A)) with the homology
class of the Shubert variety Xw is given by the formula

ci(L(A)) n X = Z < A, s1i > X,
k

where k satisfies 1 < k < n and l(sk) = l(w) - 1.

Proof: Take the resolution RI of the Schubert variety X, given by the multiindex
I and let L(A) also denote the pullback of the line bundle to RI. Then according to
the proposition L(A) decomposes as

L(A) =9 Lk > .
k=1

Computing the first Chern class of both sides we obtain

n

c1(L(A)) = < A, sIka1k > [Rk].

k=1

Now, since the expression on the right hand side does not contain any products,
pushing it forward by the Gysin map r1 , yields

ri*c1(L(A)) = < A, sI,,i, > Zjk.
k=1

Here Z1 denotes the class in ordinary homology which arises from the class Z1 in
complex bordism represented by the resolution (RI, r1 ). The left hand side is equal
to cI(L(A))ZI by Lemma 1.



As was noted earlier (see corollary to Proposition 1) under the Thom class map the
bordism class Z, descends to XI if the multiindex I indexes a reduced decomposition
of si and to zero otherwise. Thus we obtain the cap product formula.

We shall now present a procedure for calculation of products x(L(A))ZI in com-
plex cobordism. The method outlined in the proof of the cup product formula in
ordinary cohomology breaks down when followed in cobordism because the group law
in cobordism is not additive like in ordinary cohomology. Consequently when we
compute the Euler class of

n <A' >

L(A) =( Lk I
k=1

we obtain an expression for X(L(A)) containing products of classes of the form [RA;].
The Gysin map rj, is not a ring homomorphism and we have to compute the products
before applying it. Since the products can contain more than two factors we will have
to compute products of the form [Rjk][RJ] where J is a submultiindex of I. We shall
reduce the computation of products to the computation of the Euler classes of line
bundles on Ri. The latter are computed using the formula of the proposition and the
group law. Notice that Rj is of strictly lower dimension than RI. Although every
application of the group law yields new products the dimension of the ambient space
decreases. This means that the group law will eventually give product free result to
which a pushforward can be applied.

It remains to reduce the computation of [Rjk][RJ] to a calculation of characteristic
classes. Two cases arise, namely either IkUJ = I or J is a subindex of 1k. If IkUJ - I
the intersection is transverse and the homological intersection coincides with the set
theoretic one, i.e.

[Rpc][Rj] = [Rjinnj].

Otherwise we have J c Ik and

R +j Rm I R 1 -' G/T.

Let v denote the normal bundle of Rjk in R 1. Then

[R ] [Rk = iJIk*X i"V).

We next observe that
ZiAV= Zi,ikwr<k rI<kL( k)'



The following cases arise. If J C I>k then RJ is contained in the fiber of i<4. In that
case tikv is trivial and the intersection is equal to zero. If J C I<k then

lr<k 0 ZJ,Ik J,

and

iJ,JkV = rGI(-ai ).

Finally if neither of the above is the case there is an index m such that J<m C I<k

and J>m C I>k. Then

7<k 0 iJIk = 2J<m,I<k 0 7<m

and for the line bundle we have

ZJIkVW * i * j~,~rL( crlk) - i rvL(-aij.

This completes the discussion of the cap product formula in complex cobordism.
We now have the means to express a resolution class ZI in terms of the characteris-

tic classes (using the operators A,) and to calculate the products of resolution classes
with characteristic classes (using the cap product "formula" described above). These
combined yield a method for calculation of products of resolution classes in terms of
resolution classes. We summarize all of the preceding discussion in a theorem.

Theoren: Let G be a compact connected Lie group with maximal torus T. Let h
be a multiplicative cohomology theory with complex orientation. Then there is an
algorithmic procedure for computing products in h*(G/T) in the set of generators of
the form ZI. The procedure depends only on the root system data and the formal
group law associated with the cohomology theory.



Calculation. In this section we present the results of the calculations in the case
of the group G = SU(3). The flag variety is (complex) tree dimensional and has six
cells.

There are two simple roots a1 and a 2. The positive roots include the simple roots
and their sum. The Weyl group is generated by two reflections si and 8 2 satisfying
s1 S2s 1 = S2 S1s 2 . Below we list the resolution classes in terms of the characteristic
classes for all reduced decompositions of the elements of the Weyl group. To simplify
notation we shall write X(A) for X(L(A)).

Ze = }X(-a1)X(-a 2 )X(-a 1 - a2)

Z31 = 3X(-ai)X(-Ca1 - a 2 )

Z3 2 = 3X(-a2)x(-ai - a2)

1= (X(-a1) - X(-ai - a 2 ))

Z821= I(X(-a 2 ) - X(-ai - a 2 ))

33 1(X(-Ii-02) + x( 2) +2)
121 3 xC(-ai) xVoi)

Z 3  = X1(x 0~1~02) + x(-ai) + 2)
2-132 3( x(-a2) x(012)

For dimensional reasons the following products vanish:

ZeZS = ZeZs2 = ZeZS1S2 = ZeZ 2S1 = 0.

Let aij denote the coefficient of the monomial X 2 Y' in the universal formal group law
so that

F(XY) = ( aiX t Y'.

Commutativity implies that ag. = aji.



The remaining products are:

Z., 1 ZS1 2  ZS2 ZS2 31 = Ze

Z31 ZS231 - S2 Z,3.,2 0

Z2 -
Z3132 =ZS2

ZV2 1 =z ,

Z. 13 2 Z8231 = Zs + Zs2 + aiZe

ZZ.,1S231 = Zjf orI = e, 1, 2, 21

Zs1s2 s1s2.1 - Zsi s2 + al2Ze

Z , 2.1 = Z813231 + a1 2 Z.,
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