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ABSTRACT

The Hodge Laplacian acting on differential forms is

examined for a certain class of complete Riemannian

manifolds of dimension n. This class consists of the

interiors of compact manifolds with boundary, each endowed

with a 'conformally compact' metric. Such a metric, by

definition, is of the form g = p- 2h where h is any

smooth nonsingular metric and p is a defining function

for the boundary. These manifolds are all negatively

curved near infinity; examples include the hyperbolic space

H n and those of its quotients which have no cusps.

A parametrix is constructed for the Laplacian acting

2 1
on the space of L k-forms for all degrees k n

(n11). Thus, in these degrees the Laplacian is Fredholm,

and in particular its null space is finite dimensional.

The space of L2 harmonic k-forms is then identified with

the relative and absolute deRham cohomology of the manifold

when k < L(n-1) and k > 1L(n+1), respectively. It is



also shown that the range of the Laplacian is closed when

k = n/2, although its null space is of infinite dimension.

The parametrix construction is microlocal: the

Laplacian should be thought of here as a degenerate ellip-

tic operator on a compact manifold, and a space of

pseudodifferential operators large enough to contain its

Green operator is defined and studied. A fairly complete

calculus, including L continuity properties, is

developed along the way.

Thesis Supervisor: Richard B. Melrose

Title: Professor of Mathematics



Acknowledgements

Among the many people who have bettered my life in

some way during the past several years I wish especially

to thank my family, Chet Roys, John Cohn, Diane Mariano,

Joanne Murray, Dr. Michael Smith, Jimmy Page, Rick

Kreminski, Chris Wendel and John Ostlund. For the mathema-

tics they have taught me I am grateful to Woody Lichten-

stein, Ted Shifrin, Victor Guillemin, Gunther Uhlmann and

particularly David Jerison. Thanks also to Viola Wiley for

a magnificent typing job.

Finally, well deserving a paragraph of his own is

Richard Melrose. No amount of gratitude on my part would

suffice for all that he has done on my behalf.



5

"Don't brood too much on the superiority of

the unseen to the seen. It's true, but to

brood on it is mediaeval."

- from Howards End

by E. M. Forster
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Introduction

The many recent advances in the analysis of partial

differential equations notwithstanding, the study of

general linear elliptic operators on unbounded domains

remains as yet inchoate. The lack of a systematic theory

is due no doubt to the fact that the geometry of the domain

and the asymptotic degeneracies of the equation each can

radically affect the analytic nature of the operator. A

natural class of problems in which the geometry and analy-

sis are rather intimately intertwined is in the study of

Laplace's operator on a complete Riemannian manifold, act-

ing either on functions or differential forms. Even this

case is far from well understood.

A typical question here is whether, on a complete non-

compact Riemannian manifold M, there exist functions, or

k-forms, which are both harmonic and square-summable (or

bounded). As was widely suspected from the classical sepa-

ration of Riemann surfaces into those which do or do not

admit bounded harmonic functions, the operative feature is

the curvature. (Of course, the L2 class is not well

defined in the conformal geometry of Riemann surfaces,

whereas boundedness is an invariant concept, so long as

attention is restricted to functions.) The first general

theorem of this type in higher dimensions is due to Yau



[28], and asserts the nonexistence of nonconstant bounded

harmonic functions on complete manifolds of nonnegative

Ricci curvature.

Negative curvature produces the opposite effect, as

may be discerned from the harmonic analysis of the hyper-

n 2
bolic space 1H. Although this space has no L harmonic

functions, it admits many bounded harmonic functions--in

fact, by a Poisson-type representation theorem, there is

one corresponding to each continuous function on Sn-1_

aBH n (and others with less regular boundary values).

Much attention over the past several years has focused

on the Laplacian of complete negatively curved manifolds,

and some quite general results have been obtained. Let us

discuss some of these, first for the Laplacian on func-

tions. Here the concern is only with bounded harmonic

functions since there are no nontrivial L2 ones. In

fact, if u E L2 n dom A is harmonic, an integration by

parts-which relies on the completeness of M to ensure

the lack of a boundary term-implies that du = 0. Thus u

is constant, and must vanish if the volume of M is

infinite.

If M is simply connected and has all sectional curv-

atures KM negative, then the theorem of Cartan-Hadamard

asserts that exp : T M -- M is a diffeomorphism for
pp

each p C M. It is possible to define a sphere at

infinity, S.,9 for such manifolds, cf. Eberlein-O'Neill



[15]. Each point x E S. is identified with a set of

geodesics all asymptotic to one another, and these are said

to converge to x. S. itself is the aggregate of such

mutually asymptotic classes of geodesics. There is a

natural topology which makes M = M U S. into a compact

topological manifold with boundary (in fact, a disc). The

asymptotic Dirichlet problem may then be posed: for any

given continuous function f on S., find a function u

on M which is harmonic and assumes the boundary values f

asymptotically. It should be remarked that it is insuffi-

cient merely to require

lim u(-Y(t)) = f(x)
t -W

for any geodesic T(t) converging to x E So,; instead,

the convergence must occur in the topology of M, which is

stronger than this 'radial' convergence.

This asymptotic Dirichlet problem was posed by Choi in

[7] and partially solved. For various technical reasons

one must assume that the sectional curvatures are bounded

away from zero: KM -a2 < 0. Choi proved the result with

this hypothesis, but also assuming a convexity condition at

infinity-namely that for two distinct points x, y E SW

there are disjoint geodesically convex neighbourhoods U ,

U with x E U , y E U . This extra condition is
y x y

unnecessary when M is a surface. Mike Anderson finished



the proof [1] by showing that if there is a two-sided bound

on curvature, -b2 < KM ( a2 < 0, then M satisfies the

convexity condition. Sullivan independently proved the

result [27] using probabilistic methods.

This positive resolution has the consequence that M

carries many bounded harmonic functions. In fact, the

asymptotic maximum principle of Yau asserts that, in this

situation, the infimum and supremum of u are attained on

So, hence coincide with those of f. At this juncture it

is reasonable to seek a Poisson-type representation

formula. This was accomplished in Anderson-Schoen [3].

Their paper also addresses a quite interesting and

relevant question: namely, to what extent may M be con-

sidered a smooth manifold? Inasmuch as there is a

homeomorphism between the unit sphere S M in the tangent
p

space at any point and S0., one may form the composite map

T : S -M S 0 S M
pq p q

and study its regularity. Anderson and Schoen prove that

this map is Hlder continuous with exponent a, with a =

a/b depending only on the curvature bounds. Little else

is known one way or the other about this question, though

it seems likely that T is rarely C . We note, how-

ever, the result of Fefferman [16] concerning the Bergman

metric in the interior of a smoothly bounded strictly



pseudoconvex domain. This metric has asymptotically

constant holomorphic sectional curvatures, and he proves

that each T (which is only defined locally) is C ; in
pq

fact, the map from S M to the boundary of the domain is
p

C.

Finally, on a spectral note, it is also known that the

spectrum of the Laplacian (on functions) is contained in

2 2
the interval (n-1) a /4,co), cf. McKean [21]. In addi-

tion, if M (is simply connected and) has sectional curva-

tures tending uniformly to -o, its Laplacian has pure

point spectrum, cf. Donnelly-Li [13].

Much less is known about the Laplacian acting on

differential forms. Of course, when M is compact the

Hodge theorem provides topological meaning to the dimension

of the space of harmonic forms in each degree. When M is

complete but noncompact, it is natural to allow the

Laplacian to act on

L2fQk = f Ek = F(AkM) : 1w1 2 < ,

the space of L2 k-forms over M. The subspace of harmon-

ic forms is denoted

k ={ EL2nk n dom A Aw = 0}.

Recall that wE dom A means dw E L2 Qk+1, EL 2 k-1



2 kand 6dw, d6w E L 2k. The (by now) classical theorem of

Andreotti-Vesentini [4] allows one to integrate by parts,

as on a compact manifold, to deduce that

Ik = (wE L2Qk : dw = 6( = 0}

provided M is complete. Notice that this implies w E

dom A if w E L 2k and Aw = 0 pointwise. We shall call

9 k the Hodge cohomology space of degree k.

Another similar, but perhaps more widely studied,

space is the L2 cohomology space of degree k:

L2Hk = {w E L2Qk : d = 0}/d{7 E L 2k-1 : dr E L 2 k

Since each (o E 9k is closed, there is a natural map

Ik > L2 Hk for each k. However, unlike the compact

setting, the two spaces are rarely isomorphic. A gauge of

their relationship is afforded by Kodaira's weak Hodge

decomposition [9]:

L 2k = d{L 2k-1 n dom d} @ 6{L 2Qk n dom 6} D Wk

which is valid quite generally. The summands here are pair-

wise orthogonal. From this it is easy to see that

Wk ~ {w E L2 Qk : dw = 0}/d{L2Qk-1 n dom d}



whence the map Ik - L2 k is always injective.

Furthermore, the two spaces coincide precisely when the

range of d is closed.

The L2 cohomology will rarely be mentioned again.

The bulk of this dissertation is devoted to the computation

of Ak for a certain class of manifolds. It has been sus-

pected for quite a while that if M is simply connected,

and its sectional curvatures satisfy -b2 < KM a2 < 0,

then most of the harmonic spaces *k should be trivial.

It is straightforward to do the necessary calculations

n
for the hyperbolic space 1n, or in fact for any complete

rotationally symmetric manifold (which need not satisfy the

curvature constraints), see Dodziuk [10], to arrive at the

following conclusion: if in polar coordinates the metric

2 2 2 2
of such a manifold has the form ds = dr + f(r) dG2, r E

+ n-1
IR, 0 CS ,then

1 if k = 0, n and f(r)n-1 dr < 0
%0

dim Ik = if k = n/2 and < O

0 otherwise.

The first line simply asserts that constant functions are

in L2 iff the volume of M is finite. The second is



more interesting; it reflects the fact that both the kernel

of the coboundary operator and the L2 norm are conformal

invariants on n/2. The finiteness of the integral means

that M is conformally equivalent to a Euclidean disc of

rr dt
finite radius: introduce R(r) = exp J ft) as the new

radial variable. Then one only need note that there cer-

tainly is an infinite dimensional family of smooth harmonic

forms on such a disc.

It is striking that in this proposition, the important

geometric feature is the growth of the metric rather than

the curvature. This is unexpected since the spaces :k

implicitly depend on the derivatives of the metric, by way

of the coefficients of the Laplacian. If g' is uniformly

equivalent to g, c1 g g' c2 g, then its Laplacian has

domain different than that for g unless g' is uniformly

C2 close to g. In contradistinction, the spaces L2 Hk

are patently stable under such a C0  perturbation of the

metric.

Further support for the conjectured vanishing of Hodge

cohomology outside of the middle degree(s) was given by the

discovery of Donnelly-Xavier [14] that, so long as the cur-

vature is (negative and) tightly enough pinched, Ia/b-1| <

e(n,k), then Ak = 0 for all k such that Ik-n/21 >

1/2. Donnelly-Fefferman [12] extended the method to show

that for the Bergman metric of a strictly pseudoconvex



domain in Cn, where k splits as Cqp+q=k ', then

O p + q # n

dim Wpfq

- p + q = n

Recall that the Bergman metric has holomorphic sectional

curvatures asymptotically constant at the boundary of the

domain.

It was thus quite surprising when Mike Anderson [2]

constructed counterexamples to the conjecture; there exist

simply connected manifolds with -b2 KM -a2 < 0 for

which Xk is infinite dimensional for any given k. Fur-

thermore, it is seen that the curvature pinching ratio of

Donnelly-Xavier is sharp.

Many questions are thereby raised dealing with how one

might recognize the negatively curved manifolds with suit-

able vanishing of the harmonic spaces. It appears that the

key to this problem lies in the (intrinsic) regularity of

the sphere at infinity. The characterization of those man-

ifolds for which S., is smoothly attached is very likely

quite difficult, so a first step might be to a priori

assume some regularity at infinity. Among the many forms

this assumption could take, we pursue the course of consid-

ering manifolds with metric differing from that of the

interior of a compact Riemannian manifold with boundary by



a singular conformal factor; these we call conformally

compact.

More explicitly, let M be a compact manifold with

boundary, h a metric nondegenerate and smooth up to am,

and p a function defining 8M (so that dp IBM s 0).

Consider the metric g = p-2h. The singular factor p-2

has the effect of pushing aM to infinity. It is not hard

to see that, like the Poincar6 metric on the unit ball

after which it is patterned, this metric is complete and,

more importantly, negatively curved near aM. There are

other ways to produce metrics with 'inverse-square asymp-

totics' and the correct geometry. In particular, the

Bergman metric is obtained as the complex Hessian of

c log(S p n-1 + 2 log p)

with *i., *2 smooth, 1 nonvanishing, and p the dis-

tance to the boundary. (For the unit ball, $1 = 1 and

02 = 0.) But, were it to be written as p h, the metric

h then partially degenerates at aM -in fact, precisely

in the directions of the CR bundle in TaM.

Our principal result is the

Theorem (4.8): For the metric g = p 2 h on M, as

described above, there are natural isomorphisms



Ik kM,6M) k <n-i

Ak ~ Hk k n+l

obtained by sending a (necessarily closed) form w E Ik to

its de Rham class. By virtue of conformal invariance, Ik

is infinite dimensional when k = n/2.

This is proved by constructing a parametrix for A ,

i.e. a pseudodifferential operator E such that

A E = I - Q, E A = I - Q
g g

where Q and its adjoint Q are compact and smoothing on

L2 (dg). From a fairly explicit knowledge of the Schwartz

kernels of Q and Q , it is possible to deduce the

k
boundary asymptotics of elements of Ik. This, in turn,

allows the isomorphisms of the theorem to be proved. A

closely related 'Poisson' operator solves the asymptotic

Dirichlet problem, but due to constraints of time and space

this will not be developed here.

The main difficulty in the construction of E arises

from the fact that the principal symbol of A degenerates

quadratically at 8M. The Schwartz kernel of E must

therefore have a fairly complicated singularity at the

corner of M x M. The systematic introduction of singular



coordinates at this corner allows one to adequately

'resolve' this singularity. In effect, the degeneracies

are transferred from the Schwartz kernel of the operator in

question to the geometry of the new 'blown up' manifold

which replaces M x M. This type of construction was first

developed by Melrose [22] to deal with differential opera-

tors degenerating somewhat less thoroughly than the ones

considered here. Melrose-Mendoza [23] studies that class

of operators further, in particular proving Fredholm prop-

erties for the elliptic elements. Both that work and the

present one are part of a more general construction, to be

contained in the, as yet mythical, Melrose-Mendoza [24]--

from which inspiration for the following pages comes.

The interest in these methods as presented here lies

perhaps in the ease of their applicability to a natural

geometric question (albeit in a somewhat artificial set-

ting). It seems likely that similar techniques will prove

effective in other related geometric problems. For in-

stance, Mazzeo-Melrose [20] employs essentially the same

construction as here to deduce the meromorphic extension of

the resolvent and Eisenstein series for certain quotients

of Hn

This paper is organized as follows. The first chapter

examines conformally compact manifolds from a differential

geometric point of view. Their curvature is seen to have

fairly simple behaviour, and in particular is negative at



infinity. Asymptotics of the geodesics are also studied,

and it is shown that in a special case the ideal boundary

has an intrinsic regularity structure. In the second chap-

ter, the V operator calculus is developed, including L2

continuity of its elements, and the parametrix construction

is outlined. In Chapter 3, a certain model for A is

analyzed. In these circumstances this model is nothing but

the (constant curvature) hyperbolic Laplacian; however we

require some rather unusual mapping properties of it.

Finally, the hard work now complete, the actual construc-

tion and proof of the Main Theorem are contained in the

brief last chapter.

In conclusion we recall an old conjecture of Heinz

Hopf's, for it has stimulated much of the work directed

toward the computation of Xk on negatively curved mani-

folds. One formulation of the classical uniformization

theorem classifies surfaces by which constant curvature

metric they admit. Motivated both by this and the higher-

dimensional Gauss-Bonnet Theorem, Hopf proposed the

generalization:

Conjecture: If M2 m is compact and admits a metric with

strictly negative sectional curvatures, then

(-1)mz M) > 0.



The corresponding query for compact flat manifolds is

trivial, and the one for compact manifolds of positive

curvature is likewise unresolved. The proposed methods of

proof are quite different for the positive and negative

cases; in the positive case much work has been devoted

toward showing that the Gauss-Bonnet integrand-the

Pfaffian-is pointwise positive. This was shown to be a

hopeless task by Geroch [17] (who gives a local counter-

example) and Bourgouignon-Karcher [6] (who give a global

one).

Following a similar pattern of history, Anderson's

counterexample [2] likewise dashed hopes that the negative

case could be resolved by settling the hopefully less

complicated issue of determining the L2 harmonic spaces

on complete noncompact negatively curved manifolds. In

fact, Singer had suggested that combining Atiyah's index

theorem for covers [5] with suitable vanishing of the Hodge

cohomology would settle Hopf's conjecture. This index

theorem equates the alternating sum of the Betti numbers of

a compact manifold M, which of course is just the Euler

characteristic, with the alternating sum of certain L2

Betti numbers on the universal cover M:

Y(M) = (-1)kbk(M) = (-1)( k(

F = w 1(M). These b are nothing but the (normalized)



dimension of the Xk. Thus, since if the curvature is

negative M is simply connected, if one could show that

k 1
Wk = 0 for k A m = dim M for the negatively curved

pullback metric on M, it follows that

x(M ) = (-1)kb(M) = (-1)mb F

The bk are always nonnegative, and it is not hard to show

that b is strictly positive, so the conjecture is
m

proved.

This method of proof does work when the curvature is

close to being constantand in particular when M is

hyperbolic-by virtue of Donnelly-Xavier's work. We remark

also that Anderson's counterexamples are not universal

covers of compact manifolds since their isometry groups

have no cocompact subgroups. Thus it may well still be

true that such periodic covering manifolds have vanishing

Hodge cohomology outside the middle degree, but to prove

this would likely be quite difficult. It is, I think, a

question that warrants attention.



Chapter 1. Conformally Compact Metrics

A. Definitions

The interior of a compact manifold with boundary M

may be endowed with a complete Riemannian metric, and thus

becomes a complete open manifold. The general effect is

that 8M is placed at infinity; geodesics take an infinite

time to reach it. The seminal example, and model, for us

n
is the Poincar6 metric on the unit ball Bn. In local

coordinates near the boundary the components of the metric

become arbitrarily large. The rate of this blow-up is

essentially fixed by balancing the requirements that the

metric be complete and that its sectional curvatures be

negative and bounded away from zero near aM. Explicitly,

suppose

h is a nondegenerate smooth metric on the

(closed) manifold M.

(1.1) p is a defining function for OM: p 0,

P~ (0) = BM, and dp is nonvanishing on N"BM\O

and set

g = p -h, a > 0.

Then, from computations in sections B and C of this chapter
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it will follow that g is complete for a > 2, whereas

its sectional curvatures are bounded above by a negative

constant only when a < 2. In fact the curvature diverges

to negative infinity if a is strictly less than 2.

This thesis focuses on a study of the analytic proper-

ties of

(1.2) g = p 2 h

which is both complete and negatively curved near 8M, and

in particular of its Laplacian. Let us however mention

that there are other examples of metrics of this general

form which are both complete and negatively curved, but

which are not "conformally compact"-i.e. as in (1.2) with

p and h satisfying the hypotheses of (1.1). For exam-

ple, the Bergman metric on the unit ball in Cn has the

correct geometry (and there is a vanishing theorem for its

Hodge cohomology), but in Cartesian coordinates it blows up

as (-Iz12)-1 in directions converging to the complex

subbundle of TB n and as (1|z| 2 )-2 only in the other

two directions. It would be quite interesting to under-

stand the ways p and h could degenerate so that p2 h

still is complete and of bounded geometry.

This chapter is devoted to a discussion of the geome-

try of (M,g), g as in (1.2). In particular, we examine



the behaviour of diverging geodesics fairly thoroughly, as

well as asymptotic properties of the curvature tensor. All

computations use p and h routinely, but note that, in

addition, g = (p)- 2 2h for any strictly positive * E

C (M). All formulae for the geometric quantities of g

must therefore be invariant under such a transformation.

B. Geodesics at Infinity

1 n
Introduce coordinates (z ,---,zn) near a point p E

OM such that zn = 0 on the boundary and 8/azn is the

1 n-i
inward pointing h-unit normal. z = (z ,-,z ) are

then coordinates on BM. It is more convenient to work

with the co-geodesic flow, the equations for which, in

terms of z and the dual coordinates f ,---,n are

-i 2 ijE

z =p h f

- _g pq 1 2 Bh pq
(1.3) = -P h f - - p

iz p q 2 Bz '

1 _p 1 2 h _ f

p 1 ~ 2 i p q

Here all indices vary between 1 and n, the summation

convention on repeated indices is used, and attention is

restricted to the energy surface



(1.4) p h = 1.

Notice that (1.4) implies

C1/p |f C2 /p 2 _ 2 +---+ E2

1I n*

Ci, C2 depend only on the largest and largest

of the matrix h'3 .

Now consider a maximally extended geodesic

(z i(t),---,zn t)) and suppose

p(r(O)) < e,

where e is sufficiently small.

projection of a Hamiltonian curv

which solves (1.3). By virtue c

nates,

Op/8z = ai(z)p(z), i = I

eigenvalues

r(t)

zn(O) < 0

-r is, of course, the

1 n
,e (z ,---,z , y,---,fn)

f the choice of coordi-

.,***,n-1, ap/azn > 0

for some C

is smooth up

functions ai,

to 8M. Using

t. = 0(1)
1

and

(1.5)

in particular p1 Op/Oz

in (1.3) one concludes

i = 1,---,n-1

(1.6)

-k1/p i n -k2

(1.5)
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where k1 , k2  depend only on e. We first prove

(1.7) Lemma: If r(t) is a geodesic as described above,

and e > 0 is sufficiently small, then -n(t) < 0 for all

t > 0.

n 2 ni 2 na nn
Proof: By (1.3) zn p h p (h a + h n) where

the sum in a is from 1 to n-1. Set F(t) = h na +

hnn n; then F(0) < 0 by assumption, and we compute

na +hnnn + h a a + Bhnn i
Pz + 8 z

a -n i a i n

By (1.5) and (1.3), z = O(p) so z fa, z n are 0(1).

Thus

F'(t) = h nnn + 0(1) < h nt + C

where C again depends only on the metric but not on -r.

By applying the bound (1.6) and assuming e is small

enough we may ensure that

n(t) < -K if zn (t) < zn(O)

where K is chosen so that - -K + C < -1. Now set
2
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t0 = inf{t > 0 : n (t) > 0}.

If 0 < t < t0  then zn(t) < zn(O), so En(t) < -K.

Finally, if hnn > 1/2 in {z p(z) < e}, we conclude

that

F'(t) hnn + C ( -!K + C < -1n 2

for all 0 < t < t0 . Hence F(t0 ) < F(O) < 0, i.e.

zn(t0) < 0, a contradiction.

(1.8) Proposition: g is a complete metric. In

particular, if 7(t) is a geodesic with p(-Y(O)) < e,

z (0) < 0, and e is small enough, then Y can be

extended to infinite length.

Proof: First observe that the function zn of our

coordinate system may be defined on a collar neighbourhood

of the full boundary. On this neighbourhood there is a

product metric

k = (zn -2 h lm + (d(nh2i

Clearly for some c, g > ck. This implies that



1 = |r'(t)| 1 clzn|/zn = -cZn/zn

tt

4 t = |t'(r)| dT (-c) Z (T) dT
0 0 Z(T)

which by Lemma (1.7) reduces to

n

t > c ()dn = c log(zn(o),z (t)).

z n (t)

In other words, t tends to infinity as zn (t) tends to

0, and consequently i has infinite length.

Notice that completeness still obtains if (zn)- 2  is

n -a
replaced by (zn)-, a > 2, in k and the rest of the

proof is modified accordingly. Now, as might be hoped, it

is also true that geodesics approach definite points of the

boundary. More is true:

(1.9) Proposition: -(t) tends to a definite point of the

boundary as t - o . Furthermore, taking zn as the new

variable, the reparametrized geodesic is tangent to the

h-unit normal /8 zn at the boundary.

Proof: Since n - -n, we may use in as a

nonsingular parameter, and then
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Oz /8f = p2h f./(-2 - +
n 3 p

= p3h 'j /(-2pn + O(p)) = O(p2 ),

i = 1,---,n-1, pn
n

= p/Oz From (1.5) it follows that

|Bzj/afn I C -2

1 n-1
Hence -(t) tends to (zo ,---zW ,0),

z
i
Z0 + 0

where

zi(t) t

= z (0) +

En (0)

(Blz/afn Oan

is well-defined since the integral converges.

Next, (1.5) and (1.6) imply

En -C/p,

* Ofn/t

Recalling that < 0, this differential inequality

integrates to

0(1))

n 2-k2

k > 0.kn ,
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< -Ce

On the other hand, a = O(1),

|fa(t)|

a = 1,---,n-1, and thus

< Ct.

Finally,

dz i/dzn = n _ 2h Ei./Phnj

By assumption h

estimates above,

dz i/dz > 0.

hia n)

h na(Ea /f n)a n

a 0, hnn

fa n 0.

+ hin

+ hnn

--- 1 , and

We conclude

C. Curvature Asymptotics

The conformally compact metric g of (1.2) is

patently modelled on the Poincar6 metric on the unit ball

in IRn The obvious desire is that much of the well

understood hyperbolic geometry (and analysis) will be

reflected in this more general setting. Indeed, this is

the case with geodesic behaviour at infinity, as we have

demonstrated in the last section. It is also true that the

sectional curvatures of g are negative when p is small;

by the

that



in fact there is a well defined limiting curvature tensor

for which OM is isotropic.

(1.10) Proposition: Let '-(t) be a geodesic which

approaches p E OM. The sectional curvatures in any direc-

tion at -Y (t) tend to - (8p/8zn) (p) as t > o.

Here, as usual, i8 zn is the h-unit normal to BM at

p.

Remark: Since pn 0 on BM, this proposition implies

that the sectional curvatures are bounded between two nega-

tive constants in some collar neighbourhood of the bound-

ary. Also, recall from the end of section A that we may

replace p by Op, h by 02 h, for any strictly positive

function + without altering g. The quantity ap/azn is

invariant under this transformation at p = 0. Indeed, the

new '2 h-unit normal is 0 a/azn and

-1 -1 n
0 a (Op) = p + 0 9ao/az p = p at p = 0.

nn n
z

Proof: For the duration of the proof only, we use coordi-

1 n
nates (z ,.--,z) which are normal with respect to h,

for which p corresponds to 0, and such that a/azn is

orthogonal to BM at p. Thus ap/az i(p) = 0, i =

1,- ,n-1, ap/zn (p) > 0. and
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h.. = 6..
13 13 + O(|zI).

Set u = log

derivatives,

h. .. Notice
13

of g are

p, with subscripts

and denote by Tk

that F = O(Iz|).ii

on u referring to z

the Christoffel symbols of

The Christoffel symbols

k u k ekh
- u6 + h

Insert these into the formula exp

the curvature tensor in terms of

atives. A straightforward but me

-2
R .. = p-{R i.. + u ii
iji~j 131l 11

ressing the components of

the F's and their deriv-

ssy calculation shows that

- 2u 6. + u .ij ij ja

2 2 22
+ Ivu| (6. .-1) + u. - 2u.u 6 + u. + O(|x| )}.

13 1 1j ij

Here R, R are components of the curvature tensor

respectively h. Substitute

for g,

ui = p /p, =2PP 2 2u =pp p -pu/p

and assume i j to get

R. .. = p R .. + p { - Ivp| 2 + p 2 0(|z12 )}.

(1.11) k ~kTi =
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Therefore, the sectional curvature in the i-j plane is

R-2 vpI 2  -
n ]2

p (h..h. .-h . ) LznJ
311 ja3

as t -+ C.

It is easy to follow through this proof using the

metric p ah, for any a > 0, instead. Indeed, the new

kF.. are obtained from those for a = 2 by replacing u
13

with au. The sectional curvature in the i-j plane now

becomes

2aP7 2a a a-2 2 -1
- 1p2 vp 2 + F({1)p (-2 p +p ) + 2p (p +p + O(pU).

This substantiates the claim of section A that only when

a = 2 is the curvature bounded between two negative con-

stants near BM.

D. Boundary Regularity

By their very definition, conformally compact mani-

folds have Co compactifications, but it is quite unclear

to what extent this regularity is intrinsic to the metric

g. In the present section we partially resolve this issue.

Geometric regularity of an 'ideal' boundary is natu-

rally gauged by the asymptotic properties of diverging geo-

desics. In this particular setting, let p E M and i(t)

be a geodesic ray emanating from p and tending toward the
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boundary. Define

V : w -- lim exp (tw).
p t-+) p

This maps a neighbourhood of r'(0) in S M (the unit
p

sphere in T pM) to 8M. Since g has negative curvature

bounded away from zero in the cone around r(t), the re-

sults of Eberlein-O'Neill [15] imply that vP is a local

homeomorphism. To impose an intrinsic smoothness structure

on 8M it is sufficient to show that the composition maps

V ~ 'ir S M > S M all possess a certain fixed regular-
q p p q

ity. Anderson-Schoen [3] prove quite generally that each

such map is Ca, where the H~lder exponent a depends

only on the upper and lower curvature bounds. Here, how-

ever, we are able to strengthen this considerably, but only

with the strong proviso that the limiting sectional curva-

ture function on 8M - (p/zn )2 is constant in a neigh-

bourhood of r (-'(0)) = r.. This bears marked resemblance

to Fefferman's analogous result [16] for the Bergman metric

of a strictly pseudoconvex domain, in which case the curva-

ture is asymptotically constant along the whole boundary.

I do not yet understand how essential this hypothesis is

for conformally compact metrics.

(1.12) Proposition: Suppose, for the metric g = p 2h,

that - (ap/azn )2 is constant on a neighbourhood of
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Tr (-,'(O)) = 7. in aM. Then r maps a neighbourhood of

7'(0) E S M diffeomorphically to a neighbourhood of -r,p

in 8M.

Proof: The technique, inspired by [16], is to reparamet-

rize the geodesic equations (1.3) so as to obtain a nonsing-

ular system on a finite interval. It is convenient to

choose coordinates so that hnn = 1, han = 0. Here and in

the following, we assume all Greek indices a,Iv,-r-- vary

between 1 and n, while i,j,---- take the values

1,---,n. By renormalizing we also assume p(-r(O)) = 1.

1 n
Introduce new functions v ,---,v by

(1.13) za 2va -n n

so that

(1.14) va = hap n = n'

From the relationship (1.4) we have

2 af3 n 2p h v v + (v) =1.

By differentiating (1.14) and using this last equation, a

bit of algebra shows that the v satisfy
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-a 2 6 hap -r6 8 haP Y n
v = p h P5OIf v v + phP 3 nh Bz ~13 Oz

(1.15)

hap p h h hap

p 2 C vr

-n a n 2 a (
v = pp v v P pnhap V V

1 3 ah af
2 p h pah~ aCZn v v

ahp a T

C 'zP

Now introduce zn as the new parameter. The resulting

equations of motion are

dza/dz n a n

a n h ap Y 6 n
(1.16) dv /d z =ph P6 z yt y /vn +

hap3
h ah a
P3r aIz n

- hap (2 vn _ ph h hap ah" vCv /Vn

dvn/dzn = p va - pp hap v /vn

1 2 _h AV
- p h h2 a vp azn

a P n

These equations are nearly regular, the obstructions



being only the vn factors in the denominators and the

third summand in the equation for va. However, from

(1.14) and the proof of (1.9) we have the a priori bound

0 > -c1 ) vn -c2
- 2

where c , c2 are independent of the particular geodesic.

This resolves the former difficulty; as for the other one

write p(z) = a(z')zn + b, b = O((zn ) 2). The coefficient

function a(z') is naturally associated with the metric

g, being simply aplazn 0 . Hence p = O(p 2) precisely

when a(z') is locally constant, and in this case p /p2

is smooth.

Since we already know that solutions of (1.16) exist

down to zn = 0, the standard theory for ordinary differ-

ential equations-in particular, smooth dependence on ini-

tial conditions-implies that the map

(z'(0),v(0)) -- - (z , v )

from the initial values at t = 0 to limiting values as

t - W is a C diffeomorphism from the energy surface

Iv(0)| = 1 to its image. Of course we need to show that

Vw-(0) : v(0) - z
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is a diffeomorphism. It has already been noted that 7

is known to be a homeomorphism, so it suffices to prove

that its differential is nonzero.

To this end a Jacobi field argument is natural. If

w E T M is orthogonal to -r'(0), then essentially by

definition

dir () (w) = lim J (t).
) te w

Here J w(t) is the Jacobi field along -'(t) such that

J,(0) = 0, J'(0) = w. It satisfies the equation

J" + R(J ,), = 0.
w w

By calculations very similar to those in section C, the

components of R and of the corresponding curvature opera-

tor R0  for the metric of constant curvature -a2 both

blow up as p -2. Furthermore, using strongly that p =

O(p 2), it is also the case that

|R-RO| = 0(1).

Hence, by the technique of asymptotic integration we con-

clude that J grows at the same rate as the corresponding

0
constant curvature Jacobi field J . With respect to the

w
1/ - n

basis a/az ,*'8/z ,this latter field



39

tends to a finite nonzero limit as t - O . Thus

does also, and the proof is complete.

E. Laplace's Operator

This chapter concludes with a calculation to express

the action of the Laplacian for the metric g on differ-

ential forms. We use, now and for the rest of this paper,

1 n n
coordinates (z ,.--,Z ) with z vanishing simply at

OM, and a/azn the h-unit normal there.

With the hindsight of experience, the metric on A kM

(1.17) < , >g = p2k< h

is best regarded as a nondegenerate metric on singular

k-forms. Introduce the space of sections

(dzi dn

p p

over T * M. In the next chapter we shall define a new vec-

tor bundle for which these are nonsingular sections. At

any rate, k-fold wedge products of these 1-forms give a

basis for A kM over any point of the interior. Smooth

combinations of these basis forms may be written

~01



where w is a genuinely smooth form on M.

then

~% -k
If T1 = p T,

gW 7 = <W(q>,

Instead of studying the operation w - A W it is
g

more convenient to study the induced operation on w:

A (p k) = p PW,
g

k -k
P = pA p.

g

Much of the 'hard' analysis later will focus on deter-

mining the mapping properties of a simpler operator which

models P.

Now, since there is a factorization

k -k+1 k-1 -k k -k-1 k+1 -k
P = (p dp )( 6g p ) + (p 6 gp )(p dp )

it is easier to first calculate the conjugates of d and

6 First, then,
g

j+1 -j j+1 -j . j-1p pa= p (p dw-jp dpAw)

(1.19)

= pdw - jdp A w.

As for the adjoint, use duality:

(1.18)



<d, >hp j-ndh

<, h j-n W)>hdh

<7, 6 h( j-n W)> p2-2j+ndg

(7, p-j+1 n-j+16hP j-nW]> dg

for any j-form W and j-1-form Ti. In other words

= n-j+16 j-n
= p Sh

Furthermore, for any metric

6(f-a)

Combining

= f~a =

these last two formulae

= pn-j+1 (Pj-n h-(j-n)p j-n-1 Lv

(1.20)

= p6hw + (n-j)uy(.

Here vp is the gradient of p with respect

Finally, (1.19) and (1.20) together, along with a bit of

computation, show that

=f
=f

Pj -1 6 -jp S p

tvf a.

yields

p 1 P

<dTa, p do)> dg =
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Pw = P2Ah& + (2-k)pdp A Shw - kp6h(dpAw)

+ (n-k)pL w - 2pt dw

+ (n-2k)dp A t e - k(n-k-1)yp (dp)o

L = dc + L d is the Lie derivative.
vp vp VP

(1.21)



Chapter 2. The Calculus of V Pseudodifferential Operators0

A. Vo Vector Fields

The only distinguished submanifold of a manifold with

boundary M is its boundary. Related to this is the ob-

servation that the ring of differential operators Diff(M)

has two natural subrings of geometric origin: Diffb(M)

and Diff 0 (M). The former is the space of operators which

are sums of products of vector fields, unrestricted in the

interior but required to lie tangent to the boundary-the

so-called totally characteristic vector fields, the class

of which is denoted V The latter space is defined

analogously using the Vo-vector fields, the ones vanishing

at 8M. Both Vb and V are Lie algebras under the

usual bracket operation for vector fields.

Diffb(M) and *b(M), the related space of totally

characteristic pseudodifferential operators, were intro-

duced and studied by R. Melrose in [22]; Melrose-Mendoza

[23] contains further developments. It is the purpose of

this chapter to define and examine the ring %0 (M) of

pseudodifferential operators generalizing Diff0 (M). Much

of the material here derives from information gleaned dur-

ing conversations with Richard Melrose.

If z = (y,x) E n-1 x [+ are coordinates of the

usual type, with zn = x) vanishing on OM, then V0

is generated as a C (M)-module by
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(2.1) zn a ,---,zn a
zl Bzn

Thus a typical element of Diffm(M) has an expression

(2.2) P = aa(z)(zn aa
|aIsm

The (modified) Laplacian of a conformally compact metric

2
(1.21) lies in Diff0 (M).

Associated to V0  is the group composed of those

diffeomorphisms of M which fix aM pointwise. The expo-

nential of a vector field in V0 belongs to this group.

Any diffeomorphism induces a linear action on the tangent

space of one of its fixed points. In particular, if p E

aM and Mp is the inward pointing half of T pM, a member

of this class induces a linear transformation on T M
p

which preserves M . Such a map is of the form
p

+ n-1
(2.3) (x,y) -- (sx,y+xu) s E R , u C R 8 1M

p

where now (x,y) are linear coordinates on M (with the
p

order reversed from the previous paragraph). Let Gp de-

note this linear group which is the semidirect product of

R+ with Rn-1. Its composition and inverse laws are
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(s,u)-(t,v) = (st, tu+v)

(2.4)

-1 -1 -1
(s,u) = (s ,-s u)

(2.3) should be recognized as the left action of G on
p

itself. In addition, the vector fields in (2.1) are the

infinitesimal generators for this action. For future

reference let us record the right action, along with its

invariant vector fields

(x,y) - (x,y).(s,u)
-1 -1

= (s x,s (y-u))

(2.5)

- x - y ' --- ' n-1J

It is interesting and significant to identify Gp

with the solvable subgroup S = AN in the Iwasawa decompo-

sition G = ANK of the group of hyperbolic isometries:

G = SOO(1,n),
+ n-1A = IR , N = IR ,K = SO(n).

Furthermore, the S invariant metric on G/K ~ Mp is

hyperbolic. Thus, the introduction of the V0 vector

fields leads rather inexorably to constant negative curva-

ture geometry.
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In order to view V0

convenient to define the

bundle, the C sections

vector fields

somewhat more globally it is

V0  tangent bundle 0TM as that

of which are precisely the V0

V0 = r( TM).

This way of constructing a bundle will be used several

times later on, so we pause to elaborate briefly in this

case. The individual fibre 0T M is obtained by an equiv-
p

alence relation on V

V, V' E V 0;0

Vf = V'f V

V V' +=*
p p

f E C (M), p C 6M; d(V-V')f = 0

V f E CM(M), p E aM.

(2.1) exhibits a spanning set of sections with no rela-

tions; these determine a unique C bundle structure on

0 TM. The dual bundle 0T*M is also quite useful. A basis

of sections here, dual to the vector fields of (2.1), is

(2.6)
dz dzn d dx
- -, = -

n n xx
z z



An operator in Diffo(M) has a well defined symbol,

which is a homogeneous polynomial of degree m on the

fibres of 0T*M. If P is written as in (2.2), then

(2.7) 0 am(P)(z,C) = aa(z)(a

|a|=m

i.e. each zn a/az is replaced by C and lower order

terms are discarded. Invariance follows by continuity from

the interior.

The operator P is elliptic in this calculus if

oam(P)(z, C) = 0 4* C = 0.

The Laplacian (1.21) is elliptic in this extended sense.

Our goal in this paper is to prove Fredholm properties for

this particular operator acting on certain weighted L2

spaces. The general theory applies of course to any ellip-

tic V differential operator.

In the study of Diff 0 (M), as in the usual theory of

standard differential operators, it is important to under-

stand simpler models of operators in this class. In the

interior of M these are obtained by freezing the coeffi-

cients so as to obtain constant coefficient operators on

each tangent space, also discarding all but the top order

terms, exactly as usual. This last reduction is justifi-

able since aa is 'stronger' when lal = m than when
z
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|ai < m. At a point p on the boundary, P will be

modelled more effectively by a certain Gp invariant oper-

ator on M p, which we call the normal operator N p(P).

Its definition is suggested by the fact that near zn = 0

1 n 6 [zn 0 zn , and each [zn 6_ a

az zi Bz azi Oz

are all equally strong. However, any (zn)k[_ a with

k > |ai is dominated by one of these operators, hence

weaker.

Motivated by these observations we describe a proce-

dure to define N p(P) when P is differential. (2.43)

further on contains a more general definition for pseudo-

differential operators. We require first the notion of a

normal fibration at p E aM. This is a diffeomorphism from

a neighbourhood T of p to a neighbourhood ' of 0 E

T M such that
p

f(p) = 0, f(T) C M , f(6qI) C am4, f* 0 = Id.

Such a map is readily constructed using for example the

geodesic flow of a metric for which aM is totally

geodesic. Then

** -1 **
(2.8) N (P)u = lim (Rr) f P(f ) (R1/r) u

r-+0



is dilation by the

denote the linear

M, then from (2.8)

factor r. Letting, for the

coordinates on M induced
P

one may easily check

where

moment

by z

(2.9)

(2.10)

These formulae show

Diffo(M) to the G

that Np is a homomorphism from

(left)-invariant operators on M .
p p

B. The Stretched Product Construction

Any attempt to construct a pseudodifferential inverse

for an elliptic P E Diff0 (M) must reconcile itself with

the rather complete degeneracy of P at aM. In partic-

ular, the Schwartz kernel of such an inverse must possess a

singularity somewhat more severe than usual at the submani-

fold where the diagonal of M x M intersects the corner

am x am. In order the more thoroughly to display this

singularity we shall define the appropriate class of

kernels on a slightly larger manifold M x0 M, the V0

stretched product of M with itself. It is their natural

abode; the additional singular behaviour is transferred to

the geometry of M x0 M and these kernels are as smooth as

possible here.

R r

z

on

n 86z- '. - aa
Np(a(z) zn a = a(0) zn _ , p = {z = 0}

N p(P-Q) = N p(P)-N p(Q), P, Q E Diff0 (M)
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We first examine the product M x M more closely. It

has rather more natural structure than M alone. Thus

there are two natural hypersurfaces, the left and right

boundaries

ae(MxM) = aM x M, 8r(MxM) = M x aM.

These are mapped surjectively to M by the right and

left projections irr and ir., respectively, which send

M x M onto the right and left factors. They intersect in

the corner

a,(mxm) n ar(MxM) = am x aM.

Finally, the fixed point set of the involution I which

interchanges the two factors of M is the diagonal AL.

This, in turn, is bounded by the diagonal of the corner

,?At .
&I



As noted earlier, the kernels of VO-pseudodifferen-

tial operators should exhibit a singularity at aAL

greater than their customary conormal one along the whole

diagonal. This new behaviour is best exhibited by passing

to the V stretched product M x 0 M where these kernels

have a certain extension property. This manifold is de-

fined by taking the real blow-up of M x M around BAL,

or to put it more familiarly, by introducing polar coordi-

nates around this submanifold. Abstractly M x0 M is

formed from the disjoint union of (MxM)\OAL and SN++8AL,

the closed inward pointing sector of the spherical normal

bundle to 8At. [25] contains a proof that M x0 M has a

unique C structure such that the blow-down map

(2.11) b : M x0 M - M x M

defined as the identity away from the new face, and as the

bundle projection on SN++BAc, is smooth and of rank n-1

(= dim 8AL) along this new face. We shall content our-

selves by relying on coordinate descriptions.

Using the coordinates (x,y) on the first factor of

M in the product, and an identical pair (xy) on the

second, then

AL = {x = x, y = y}, 8AC = {x = x = 0, y = y}
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Let Y = y - y, and define the singular coordinate system

(R,w,y)

(2.12) R = [x2 + Y2 + x 2] /2

n
R O , E S++

(j = R~ (,Y,X) - ( n)

{W E n+1 =

wo0 Wn > 0}

so that

x = RwO, x = Rw

(2.13)

y = y + Rw'.

This system lifts to be C on M x0 M. The new codimen-

sion one boundary, where R = 0, is called the front face.

The original two codimension one boundaries lift to the top

and bottom faces:



F = {R = 0},

(2.14)

T = {(0

B =

Figur

It is often easier to picture

= 0} = b~ ({x = 0})\F

= 0} = b ({x = 0})\F

e 2

M x M instead as

Figure 3

The front face is the loca

the next chaper takes place. I

one might first suspect. First

quarter-sphere bundle over aAt

tion where the analysis of

t has more structure than

and foremost it is a

with fibre F ~ Sn over
p ++
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(p,p), p E OM. This follows either from (2.12) or its

intrinsic description as SN ++AtL. Each Fp also has a

completely natural origin 0 , which is where F inter-
p p

sects the lifted diagonal

(2.15) At0 ={w = (1/-s2,0,1/%/), R, y arbitrary}.

The bundle of origins 0 = F n At 0 =M 0  is clearly sepa-

rated from 6F. In fact At0 intersects 8(Mx0 M)

transversally, and only at the codimension one boundary.

This remark indicates the fundamental gain incurred by

passing to the stretched product, as we discuss in the next

section.

The fibre Fp admits two separate transitive G

actions in its interior, where Gp is the group of (2.4).

The groups

G = G x Id, Gr =Id x G
p p p p

act on the quarter space M x M C T (MxM), p E aM.
p p (p,p)

Since G fixes OM they also fix T BAt, hence
p p (p,p)

these actions descend first to the normal bundle

N B At = T (MxM) +/T BAL

thence to its projectivization SN++aAt 1 = F . Because of



the natural origin 0 , F may be identified with G
p p p

le r
either by way of the action of Gp or that of Gp

Through this identification these actions on Fp corres-

pond to the left or right action of G on itself, and are

intertwined by the (lift of the) involution I. Specific-

ally, the map on Mp x Mp

( 2 .1 6) - 1 1 y1 2 ](2.16) *((x 1 ,y1 ),(x2'y2 )) = (xyl)*(2'2 2' x12

is invariant both under dilations and translations by ele-

ments of T(BAc). Hence it diffeomorphically identifies

the projectivization of (the interior of) (Mp xM p)/T BAL =

F with G . Then G acts as
p p p

(tv)-((x1 ,y1 ),(x2 ,y2 )) = ((tx 1 'y1 +x 1 d, (x2'y 2 ))

, x y -Y2  1 1 172
Lx2 ' x2 2 2 2

whereas for Gr
p

(t,v)-((x 1 ,yl) (x2 ,y2 )) = ((xly 1 ),(tx 2 'y2 +x 2v))

[1 1 1 lY2 v] 1 1Y~2](tv) -1.- - - -- = -,(tv
t x 2' t x 2 t x 2' x2

proving the claim.
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Next we describe the infinitesimal G action, which
p

leads to an important perspective on the nature of F .
p

a a(2.17) Lemma: The vector fields xg-, xJ on M lift to
ay

the left factor of M x M, thence to M x 0 M. The res-

trictions of these lifts to F lie tangent to each Fp;

there they span the space of C -invariant vector fields.
p

These restricted lifts are in V0 with respect to (i.e.

vanish on) F fl T and in Vb with respect to (i.e. are

tangent to) F fl B. Finally, the quarter-sphere F may
p p

be regarded as a ball Bn blown up around a point on its

boundary, with F fl B as the created face. The full

space of 'mixed V0 - Vb' vector fields, generated by the

G einvariant ones described above, is then the lift of
p

VO(Bn) under this blow-up.

Figure 4

Remark: All assertions concerning tangency properties of

various lifts in this statement are special cases of a



general property of the blow-up construction: if a

manifold is blown-up around a submanifold, and V is a

vector field tangent to this submanifold, then it lifts on

the blow-up to a vector field tangent to the new boundary,

which is the pre-image of the submanifold.

Proof: Use the coordinates (x,y,x,y) on M x M and

(R,w,y), as in (2.12), on M x0 M. Then x8 , xa lift

to M x M to vector fields with the same expression.

Next, if b is the map of (2.11), then a brief computation

shows that

n

bM(W 2 RBR + -0(0 j B }) =xa
0 =O

(2.18)

n

bX(W 0 WiRaR + oO ~ Wi 8j } = x '
j=0

i1 - -

Since b is a diffeomorphism on the interior, and all

these vector fields are smooth, the vector fields in paren-

theses here are the unique smooth lifts of x x. xa .

Their restrictions to F are



X = W0f aw

n

j= ( 0 j .8
.j=0 JO

Y. = w {a
1 0 0.

- 0. 9. =},0

j=0O

i = 1,---,n-1.

These are patently orthogonal to w8() ,

to F. Furthermore, since they contain no

are also tangent to each F P. The factor

their vanishing at Fp n T where w0 = 0.

hand,

X-6 = Y - 1
(0 i (0

hence tangent

6~ terms, they
y

W0 ensures

On the other

= 0

at F fl B, where o = 0 and 8 is the normal, so
p n(0

they are tangent here, as claimed.

It is by no means obvious that X and Y of (2.19)

are G Rinvariant. It is convenient therefore to use the
p

projective coordinates of (2.16)

s = x/x, u=
x

(x,y),(xy) E MP .

These are nonsingular on the interior of F , and even on

neighbourhoods of F fl T bounded away from F fl T n B.
p p

Notice that

(2.19)

(2.20)
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0 's=-, u -
n n

Another short calculation now shows that

(2.21) X = sas' i = S

from which G invariance is obvious.
p

As for the last assertions of (2.17), first observe

that the blow-up of a ball around a point q in its bound-

ary is smoothly equivalent to a quarter-sphere. Denote the

blow-down map by

p:nF n
Fp =S++ B

It carries F \F fl B diffeomorphically to Bn\{q}, and
p p

sends F fl B to q. We need to verify that the lifts of
p

VO(Bn) vector fields vanish at F fl T and lie tangent to

F fl B. The vanishing is obvious from the bijectivity of
p

P near F fl T; the tangency is proved by essentially the
p

same computation as goes into (2.18), which we leave to the

reader to check. This completes the proof.

(2.22) Definition: E is the vector bundle over Fp whose

full space of Cm sections are the vector fields vanishing

at F fl T and tangent to F fl B described above. We
p p
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have shown that

P* (T("T(Bn))) = F(E).

Our description of the basic natural b

by M x 0 M concludes with a discussion of

bundles we shall be using. These are the

bundles and the V k-form bundles.

Let us commence with the density bundl

somewhat simpler to understand. Recall the

density dg of (1.2), which grows as p-n

fine then Fo(M) to be the space of all C

on the interior of M such that pn *v ext

the closure. To(M) is the space of sectio

line bundle over M, and a typical element

in coordinates as

v = h(xy)Ix-ndx dy

This generalizes naturally to

sion one) boundary components

fining functions pl,**-,pN,

(2.23)

aggage carried

certain vector

V0  density

es, as they are

Riemannian

near OM. De-

densities v

ends smoothly ti

ns of a C

may be written

h E CW(M).

a manifold X with (codimen-

X1 ,---X N, which have de-

respectively. Let

F0 (X) = (smooth densities v on X

that p ---pNv extends smoothly

such

to X}.
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The connection between these densities and V0 -geometry is

illustrated by

(2.24) Lemma: Densities in FO(MxM) lift to densities in

TO(Mx0M) under the usual blow-down map. In fact, the line

bundle for which the latter space is the space of sections

is the pullback under b of the line bundle corresponding

to the former space.

Proof: Away from F and OAt there is nothing to prove

since b is a ,diffeomorphism there. At F use the coor-

dinates (R,w,y) of (2.12):

dx dy dx dy _ RndR dw dy I dR d dy

n n ~(RwO) n (Rn n ~ n nn '

The left term spans TO(MxM) since x and x are defin-

ing functions for the left and right boundary components,

whereas the term on the right generates To(Mx0 M) as F,

T, B are defined by R, w0' Wn, respectively. This

proves the lemma.

One may also consider the powers of either of these

density bundles; they too correspond under pullback. The

1/2
half-densities are the ones we use later. Both F (MxM)

and 1/2 (Mx0 M) will commonly be denoted simply F 2

the base space should be clear from the context.
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Let us turn now to the k-form bundles; consider first

the V cotangent bundle 0T*M. By pulling it back to the

left factor of M x M, and then to M x0 M, one obtains a

bundle "A1  over the stretched product. The subscript e

signifies the involvement of the left factor of M x M. By

functoriality the pullback of Ak (oTM) as above coincides

with A oA ). Call this new bundle A . Using the right

factor of the product, oAk is also defined. Their spaces
r

o k o k
of sections are denoted Oe, 0 r'

The blow-down b carries Fp to the single point

(p,p) E aAc. Hence oA , for example, restricts to a

canonically trivial bundle over F . To identify this res-
p

triction with a more familiar object, compute the lifts of

- on M to M x 0 M. Using the coordinate system
x 'x0

(s,u,x,y), with (s,u) as in (2.20), which is nonsingular

away from the bottom face B,

dx ds d~ dy1  dyi u, dx du
x _ s dx0 - 1% s -^.

x s-x x

We define their 'formal pullbacks' to F
p

2dx d dy. du.
(2.25) -

x s x s

(2.26) Lemma: The correspondence (2.25) induces an isomor-

phism
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OA F ~ Ak (E*)

where E is the dual of the bundle E described in

(2.22).

Proof: s ds, s~ du. are dual to sa s, su , which by
1

(2.17) generate the bundle E. In addition, we showed

there that E is a smooth bundle over the closed face F
p

hence E also extends smoothly to the closure. The rest

of the proof is obvious.

Remark: We shall prove a slight extension of this Lemma in

(3.3). Also, the rules (2.25) apply to the V0  density

bundles since densities are simply 'absolute values' of

n-forms. So analogously

To(MxoM)I F FO(F).

C. Vo Kernels

The temperate distributions on a manifold with bound-

ary M are those with specific extension properties across

this boundary. If M is an open region containing M in

its interior, then distributions on M with support in M

constitute the space of distributions dual to C (M). On

the other hand, restrictions of arbitrary distributions on
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M to the interior of M lie in the space dual to

C (M)-functions vanishing to infinite order on 6M. The

resulting spaces on M, of supported and extendible

distributions, respectively, are quite similar but have

slightly different extension properties nonetheless.

On a manifold-with-corner, for example M x M, there

are various other possibilities. For instance, an ordinary

pseudodifferential operator on M has a Schwartz kernel k

on M x M which has a conormal singularity along the diag-

onal and is Co elsewhere. In fact k then extends to be

conormal along the 'longer' diagonal of M x M, and this

in some sense fixes its singularity at 8AL. There are,

however, other quite reasonable extension properties which

k could be required to have. To formulate one of these,

recall that a manifold with boundary can be doubled across

its boundary. In particular, we may form the double

[Mx0M]2 of the stretched product across its front face.

NM . M I

Figure 5
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The lifted diagonal joins with its double, resulting in a

boundary-less submanifold contained in the interior of

[Mx 0 M] 2

1/2

(2.27) Definition: K0 (M;F1/) is the space of distribu-

tional sections of TO12 (Mx0 M) which extend to [Mx 0 M]
2

as distributions conormal of order m (see [19]) along the

extended diagonal (tensored with C sections of a smooth

1/2
extension of TO ) and vanishing to all orders on

8([Mx0 M]2 )
m 1/2
%P(M;T1/), the space of VO pseudodifferential

operators, is the collection of operators with Schwartz

m1/2
kernels on M x M lifting to elements of KO(M;TO

Remark: If A E 0m then we shall say that its kernel
0

K(A) belongs to K m Notice also that the pushforward of

00
IC 1%K is well defined: the blow-down map b is a

diffeomorphism away from F, and the intersection of BAL

with F is transversal so by wave front set considerations

this operation makes sense.

m 1/2
Let us examine how A E % 0 (M;F 0 ) acts. Set

dx dy 1/2

x

(2.28)

1/2
ds du dx dy

s x

dx dy ds duj1 2

s x
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where s and u are defined

(s,ux,y) are regular except

quently be used. Then

in (2.20).

along B,

The full

and shall

x(A) = k(s,u,x,y)-r

where k

decreases

On the hal

is conormal

rapidly as

f density

of order m

s - 0, s

f -p, we have

on (s =

- + ,0

u = 0}, and

|ul - 0.

(Af)(x,y) = k(s,u, ,y )f( ,y- u)! d -
f s s s s5

~0 -1 ~ -1
x = s x, y = y - s xu.

represented by

In particular, the ident-

0 1/2i(Id) = 5(s-1)6(u)- E K0 (M;/O

We record another representation of this

the coordinates (x,y,t,v), t = x/x, v

the half density r equals

action, now using

= (y-y)/x. Here

dx dy dt dv 1/2

ntn

and

(2.29)

system

fre-

(2.30)

since

ity is

(2.31)



(2.32) (Af)(xy) = k'(x,y,t,v)f(xt,y+xv)--dv -ptn }
if K(A) = k'(x,y,t,v) in these coordinates. Although

(2.32) appears both more natural and neater than (2.30),

the first expression is better for our purposes. The

reason is that we are frequently interested in the behav-

iour of Af as x - 0, but (t,v) are singular along

the top face T, hence less convenient.

It is straightforward to extend these definitions to

include operators acting on the k-form bundles of the last

section. Thus

(2.33) A E *m(M;OAk O1/20F

<= x(A) E K0 (M;T 1/2) @ Hom(A , A ).

Unfortunately the class of operators we have defined

is not large enough to contain inverses of elliptic V0

differential operators. For if E is to invert P E

Diff , it must somehow incorporate information about the

asymptotic behaviour of (formal) solutions to Pu = 0 near

the boundary. The kernels we have already introduced

vanish to infinite order at the relevant boundary compo-

nents T and B.



68

We remedy this shortcoming as follows. Let T and B

denote also the extended top and bottom faces in [Mx 0 M]
2

with pT and pB their corresponding defining functions.

Suppose Vb is the space of vector fields on this double

which are tangent to both boundary components; set

a,b

{u E 5'([Mx0M] 2 ) : V 1 ... V u E

V E V b' i = 1,--e,j, for

ab N CO
PTPB(log T log B) L

all j and some N

independent of j}.

This has an invariantly defined subspace of polyhomogeneous

elements

CO
dab _ a,b :u ~

phgi
i=0

N.

a+i
j u=0 P (log

j =0

(2.34)

u ~

i=0

near T,

near B}.

N'Ni

u =0log )
j=0
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Here u and u'. are Co and depend only on the

'tangential' variables at the appropriate boundary.

(2.35) Definition:

i) K' ma~b ah b 0M C (Mx0M;T 1/ 2
0phg mX 0 '0O

i ma,b 1/2 m 1/2 + w,ab 1/2
ii) K' (MFI ) OMI K KMMF

iii) A E m,.a,b 4* i(A) E K ma,b
00

1/2
The kernels in i) are just sections of TO (Mx0 M) which

are C in the interior and up to the front face, and

conormal with classical expansions at T and B.

The extension of these last definitions to operators

acting on differential forms is slightly arcane since we

need to consider forms with tangential and normal compo-

nents vanishing with different rates at the boundary. Some

additional structure is needed so that these components are

well-defined; for the present problem we have the conformal

class of the metric h with which to work. Using this,

the ordinary form bundle splits at aM:

k k kA (M) lM = At n

Similarly, from the formal pullback (2.25) we have
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0kM = oAk ok
| (t n

Next, by virtue of the metric h again, we may actually

assume that such a splitting is defined in a neighbourhood

of the boundary. This is less natural, but the important

point is that in any two such splittings the summands agree

to first order at the boundary. Another way to phrase this

is to say that the conformal class distinguishes the col-

lection of coordinate systems (y,x) for which x = 0 on

the boundary and a/ax is orthogonal to aM. Henceforth

only such coordinates will be used, and we assume that a

splitting of the V form bundle is given.

The real purpose of these machinations is so that we

may attach an invariant sense to the requirement that the

components of w = wt + wn vanish at different rates at

am:

a bS= O(x) Wn = O(x ).

If Wt' on are computed with respect to the coordinates

(y,x) and are seen to vanish at these rates, and then

recomputed with respect to new coordinates (yx), these

rates might be intermingled. If, however, both coordinate

systems are of the special type above, then from the fact

that
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ai Ox
O(X),= 0(x)

ax B9y

it is easy to see that the new components Wt' Wt vanish

at the rates min(a,b+1), min(a+1,b), respectively.

Hence, these rates are well defined provided we assume

b-1 ( a b+1. Similarly, it is likewise invariant to re-

quire that

CL E a b
t pgh' n phg

if la-bi 1. The spaces here are simply those of (2.34)

when only one boundary is present, and of course are

extended to contain vector-valued elements.

Now, using all of these technical hypotheses, we

assume that both oA k and oA split in a neighbourhood10 r

of F in M x0 M into their tangential and normal sub-

bundles. Thus any G E Hom( A ,A r) may be associated to

a matrix

(2.36) G = tt Gnt]

Gtn Gnn

where

G -Ak (o Ak G :(Ak oAk
t t r t e t nt r n (A t



G : (0Ak ) - (A
tn r t e n

Thus, for w = t

G : (oAk oAkn n r n R n

+ W n, G = (GW)t + (GG) where

(Go)t = ttt + G nt n

(Gw) = G t + G n .

The G.., i, j = t, n, are also called the components of

These byzantine preliminaries allow us finally to de-

fine kernels generalizing those of (2.35). The idea is

simply to let each G., when expressed as a matrix, con-

ab
tain entries in A More precisely, suppose a, T are

phg

two by two real matrices

tt ant tt nt
a =T=

.tn a nn, tn Tnn-

(2.37) Definition:

i) K okT(M;'Ak 1/2 =G (G
G K (MT1,20  ) 0 H m

G. EK aiTi(M'r 1 2) @ Hom((
ii 00

ii)

iii)

i, j = t, n,

0A ).,(A )}

Km,a,r = m + K
0 0 0

A E * # (A) E Km '.



As before, these spaces are well defined only when

Imin(att'ant) - min(atn' a nn)

|min(Ttt'nt) -

To conclude this

operators, we discuss

min(Ttn'Inn 1.

treatment of VO pseudodifferential

their composition properties (espe-

with V differenti

hism. The following

for scalar operators

rs on forms, by, for

al operators) and the

results will only be

but obviously still

example, referring t

symbol

stated and

hold for

o a basis.

(2.38) Proposition: *,a,b is a two-sided0 Diff module

Diff0 - m,a,b C m+p,a,b
0 0 0

m,a,b - Dif
0

f c *m+pa,b
0 0

Proof: It

inclusion,

suffices firs

for the other

t of

fol

all

lows

only to prove the first

by taking adjoints (note

that adjoints of elements in %m,ab lie in %m,b,a
0 ~0

Furthermore it also suffices to take p = 1 and then

iterate. Consider then the vector fields xd , xa .
1

cially

isomorp

proved

operato
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17) these lift to M x0 M to vector fields tangent to

boundaries, whence they preserve the conormal spaces

b. Furthermore, using the coordinates (s,u) of (2.20)

showed there that

bM(s s x

Thus if A E m,a,b and

1/2
ds du dx dy

k(s,u,x,y)Insnd
s x

ic(xO -A)

, b(sOu )=x 0

x(A) =

= k-r then

= lk - k-
as 2 J

(2.39)

K (xO -A) = sk - -r.
y iu

m+1,a,b
These new kernels each belong to K

0

done.

, so we are

A symbol map on Diff 0 (M) was introduced in (2.7);

there is a natural generalization of this map to ,0

Recall first that

Im -o,a,b
0 0

-0
0

This implies that if A = A' + A" is a decomposition as in

(2.

all

wa

we



(2.35) ii), then it makes good sense to let am (A) =

0 am(A') and only define the symbol on % . Now, the map

here, apart from simplifications in the density factors, is

just the usual symbol on the space of distributions conor-

mal along At0 :

am : K (M; F 1/2 Sm (N*(AL 0 ); Fo(M) o T(fibre))

The space on the right contains symbolic densities on the

fibres of the conormal bundle of At0; T(fibre) --densi-

ties on the fibres of this bundle-arises through the use

of the invariant Fourier transform. Also ro(M) results

1/2
from the restriction of TO (Mx0 M) to the diagonal, for

the half densities on each factor combine along At0  to

give densities of weight one.

The V symbol map 0am is obtained by first apply-

ing the map a above, and then removing the density fac-

tors. It suffices to construct a natural density on

N*(At0 ) by which to 'divide'. This proceeds in three

steps. First note the isomorphism

TO(M) ® F(fibre) = TO(N (At0

the latter being the space of densities along N*(AL0 )

singular like R-n at F. Next, observe that there is a

natural isomorphism



6 : N*(At0 ) > 'T*M.

This is dual to the isomorphism N(At0 )

the usual natural isomorphism N(AL) - TM

AL0; near this boundary it comes from the

of xO , xa , which span 0 TM near BM,
x y.

lifts sas, sa u, which span N(At 0 ) near
1

Finally, by way of the natural map

0 TM, which is

away from

identification

with their

CAt
0 '

T M -- 0 T M

(which is not an isomorphism at OM) the symplectic

density on T*M corresponds to a density on 0T*M. This

density is singular at cM, yet a nonsingular section of

TO(OT*M). The resulting naturally defined element of

FO(M) @ F(fibre) may thusly be removed so as to obtain the

V0 symbol map

(2.40)
0 a q m 0T*M).

m 0(T)

Here we have also used

N (AC0 ) to OT*M.

6 to transfer the symbols from

Theorem:

For any

90

such

filtered by the symbol

we have a short exact

0
maps am

sequence

(2.41)

m E ER.
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0

0r-i m m m 0 *M)/Sm-1 oT*M 0

and the product formula

0 +m(A A (A)am (A2.am1 +m 2l' 2) =a 1r 2i'm

Proof: The exactness of the sequence is a consequence of

the same property of the symbol map on distributions co-

normal to At o The product formula follows from the usual

one on standard pseudodifferential operators, provided we

ascertain that A -A2 is in fact a VO pseudodifferential

operator. For, both the symbol map and the composition

rule agree with their ordinary analogues away from 8M,

hence the product rule must extend by continuity, provided

the left hand side makes sense.

The first step is to derive an expression for the

kernel of a composition. Use the representation (2.30),

but write the kernels ki, k2 of A , A2 as functions of

x, y, s, u (rather than x, y, s, u). This is legitimate

since we may assume that k and k2 are supported quite

near At0. With

x -V x y-y'
s = ,U = , s2 = , u2 ,

x x x x



and recalling the half densities

A1A f becomes, on the level

of (2.28),

kernels,

the composition

k2 (x,y,s2 ,u2 )f

-NI ds
x _d2

s 'y--s-u2 d22 2 2

kl(x,y,sl,ul)k2 s ,YX Us1 1uAs1 s1 2')

ds 1
f( ,y- (

s1s2 s s2

Now, introduce

x

x
+ u 2 'x

A 1A2 f = f k(x,y,a,v)f(l, y-xv/a)- dv

where, by the substitution s 1= a/s 2' u = (v-u 2 )/s 2

k(x,y,a,v) =

ds 2du2

k l(x, y ,a/s2, (v-u2)/s2)k2(ax/s2, y-x(v-u2)/a, s2, u2I n-1
2

f = f(x',' )-p

ds2 du2

s1s2
- II.

Hence

I- -> f

| 
) f

s 2u 1+u 2)

du "

s 1s 2, = s2 u 1
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The k are conormal along (s i = 1, u = 0}, i = 1,2,

so we must show that k, as given above, is conormal

along, and supported near, {a = 1, v = 0). The support

condition is obvious from the similar assumption on k ,

k2 . As for the conormality, consider first the special

case x = y = 0:

(2.42) Lemma: If k , k2 are distributions on the group

Gp of (2.4) which are conormal at, and supported near, the

identity (1,0). Then

k(a,v) = f k1 ((av)-(su)~ )k2 (su)s-n ds du

enjoys the same properties.

Proof: We reduce this to the corresponding assertion for

the group IRn where this result is well known. The main

point is that the space of distributions conormal to some

submanifold (e.g. (1,0)) is coordinate invariant, and

furthermore that, under a submersion, conormal distribu-

tions pull back to conormal distributions. Thus, since

(a,v,a-s,v-u) - (a/s,(v-u)/s)

a/s = (1 - - v-u _ -u _ a-s -1
a s a a
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is a surjection, there is a distribution k defined by

kl(a/s, (VU) kj(a,v,a-sv-u)

which is conormal at a-s =

where. The pairing

0, v-u = 0, and C0

J kj(a,v,a-sv-u)k2 (s u)s-n ds du

defining k is therefore of the required regularity, which

proves the lemma.

To understand the group convolution when the param-

eters x, y are present, only a slight modification is

necessary. Thus, as before, there is a distribution

kY(x,y,a,v,s 2,u 2 ) = k2 (x(l -a 2 - ay - -(v-u2 ),s2 ,u 2)

also conormal along s2 = 1, u2 = 0

a, V are smooth parameters. As in

k(x,y,av) is conormal along a =

(2.41) is complete.

and for

the lemma

1, u = 0.

which x, y,

the kernel

The proof of

Remarks: Though we did

Diffm, as defined here
0

not verify it, that 0 am(P) P E

agrees with the earlier definition

else-



(2.7) is quite easy to check. In addition, the product

rule

oa (P-A) E Oa (P)oa (A), A E %
m+L m 0

is simpler to prove, since we may operate directly on the

kernel of A with the lifted operators on M x0 M cover-

ing P.

The residual space for this symbol calculus is %~ ;

the kernels of the operators in this space are C on the

stretched product M x 0 M, but not on M x M. Thus, al-

though smoothing in the interior of M, they are not com-

pact on any reasonable space. This is discussed at length

in the next two sections.

D. Indicial and Normal Operators

The first step in constructing a parametrix for P E

Diff0 is to iteratively 'remove' the conormal singulari-

ties of its kernel along At 0. As in the ordinary con-

struction, this is reduced to algebraic manipulation by way

of the symbol calculus. But, as noted at the end of the

last section, the resulting error after this step is not

compact. This necessitates the use of two additional

steps, both iterative in nature, and both employing models

for the various operators involved. These we describe now.



If E0 is the operator obtained in the first step:

PE 0 = I - Q0 QO0 0

then x 0 , the

all boundaries.

at T and B;

trivial (which

second step of

Taylor series.

kernel of QO, is C on M x0 M up to

In fact, x0 vanishes to infinite order

at F, however, its Taylor series is non-

causes QO not to be compact). Thus the

the construction is the removal of this

We seek an E such that

PE 1  - Q 1

and xi, the kernel of Q , vanishes to infinite order

at F. Unfortunately, in order to accomplish this, we must

settle for a correction term E1  lying in 9-o,a,b for
1 I0

some a, b. (We are restricting discussion to scalar oper-

ators for simplicity.) Consequently

Q o *-00 a, b ic -Rw a,b
QE R 09a'b, IC E R KO

where the space of kernels on the right consists of those

elements of KO 'a,b which vanish to infinite order on F.

If a and b are sufficiently large then Q is actually



compact and the construction is complete. Usually, though,

it is necessary to carry through the third step: the re-

moval of the conormal singularity of x 1 along the top

face. Here we seek an E E R q'-w ab such that

2 0

P2 ~ 1 ~2' 42 E 0

The operator Q2  is compact on appropriate weighted L2

spaces and

P-(E 0 +E 1 +E 2 ) = I -2

so that E = E0 + E + E2 is the desired parametrix.

From this somewhat vague discussion it should be clear

that E and E2 may be 'locally' constructed. Specifi-

cally, E1  should only depend on the operator P frozen

at F and the relevant Taylor series of KO, whereas E2

must rely only on the infinitesimal action of P near T

and the conormal expansion of K there.

Consider first the former of these steps. Toward the

stated goal, define the normal operator of A E % 0 a,b

(2.43) Np (A) = x(A) IF

By the remark following (2.26), and recalling that ic(A)

is actually a section of the half density bundle, N p(A)



84

is a section of

T1/2 aF ) . a,b F )0 p phg p

i.e. smooth in the interior, an

normal singularity at T n F
p

this seems to bear no relations]

tion (2.8) for N p(P), P E Dif:

we must interpret N p(A) as an

Fp is naturally identified (in

group G in two ways. Using
p

N p(A) is to be thought of as a

on half densities over F . Thi
p

(s,ux,y) of (2.20), p = (0,0

N p(A) = k(s,u,0,0)-

(2.44)

Np(A)f = k((su)-(s,u)

d with the appropriate co-

and B n F . As it stands,
p

hip to the previous defini-

f 0*To make this comparison

operator. Remember that

its interior) with the

the G identification,
p

left convolution operators

is, in the coordinates

I ~ ~1/2ds du ds du
n'ns s

ds du ds du 1/2
,0,0)f s,u) ~ n ' n

s s

where f = f(s,u) ds du/

Now, if P E Diff0

(2.21) its lift to M x0

s 1/2.

is expressed as in (2.2), then by

M is



a)

|a|(m

-~ 'I aa n
aa(sxy+xu)(sau) (SOS) , a = (a' ,an

Hence, applied to the kernel of the identity (2.31),

aa(sx,y+xu)(sa) a(ssO a nb(s-1)6(u)_-ya(P) =I
|a|(m

so that, according to (2.43)

b) N (P) =

|alsm

a d d d1/2
aa(0,0)(sau) a (sOs n6 (s.-1) 6 (u) ds du ds du

a u s 2 ss

However, according to (2.8)

c) Np(P) =

|a|(m
a(0,0)(s )a (sOS) n

Finally then it is not hard to see that the expression c),

applied to a half density f(s,u)Ids du/snl/ 2, coincides

with the result of setting expression b) into (2.44). We

have shown that (2.43) is a proper generalization of (2.8).

(2.45) Proposition: There is an exact sequence
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N
O-0 > W a, b -00 a,b

0 0

da,b (F) @ T1 /2 (F ) : 0.
phg p 0 p

If P E Diff m, A E 9-I,a,b then0 0

N p(P-A) = N p(P)-N p(A).

k -m a b
Remark: For k = 0,1,2,---, R k0 ' is the space of

operators whose kernels vanish to order k at F.

Proof: The exactness of the sequence is obvious, save per-

haps the surjectivity of N . But that too is easy since
p

one may readily construct in local coordinates a kernel

with fixed restriction to F . As for the product formula,
p

either by applying the operator a) above to K(A) and then

setting x = y = 0, or by applying the operator c) to

1/2
N (A) in (2.44) one arrives at the same section of T '
p

for x and y are merely parameters in a).

k -k k - a~b
The conjugate R N R acts on R k0 % ' , though we

p 0

shall not use this fact. Nonetheless, as k varies in

Z+, the residual space

R %-o,a,b
0
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is the outer limit of the effectiveness of N . Kernels of
p

elements in this space, when pushed down to M x M, lie in

a,b (MxM) 1/2 (Mx1M).

The space da,b consists of those distributions which are0

conormal (with expansions) along the boundary components

aM x M, M x aM of M x M, and which vanish to all orders

at BAt.

The final step utilizes the indicial operator, which

once again models kernels in the last residual space. It

is defined by the exact sequence

(2.46) R a+1,b - o -,a,b I

a,b 1/2 a+1,b 01/2 - 0.
0 0 0 0

Thus, for A E R 0- ,a,b I(A) is simply the top term of

the expansion of the kernel of A on OM x M. It too may

be defined as an operator, but we have no need of this.

On the other hand, P E Diffm(M) also has an indicial

operator, which we do want to regard as an operator. Note

that

A E R* -, a,b * P-A E R0%-w,a,b

0 0



88

I(P) is now defined to be that operator acting

'infinitesimally at OM'. or equivalently on N8M, for

which

(2.47) I(P-A) = I(P)I(A).

Strictly speaking there are many operators satisfying

(2.47). But since

X 4 :a, b
x 0

xva a,b
0

a+l,b
0

a+1 ,b
0

P >

V > 1

there is a natural choice for I(P).

k+ IaIm

k a
aa (x. y)(xa ) (x8 )k~a xy

then set

I(P) = ak,0

kfm

k(o, y) (xa x)

This is well defined, provided only coordinate systems of

the type discussed in section C are used, and obviously

satisfies (2.47). The residual space of the filtration

induced by I is

(2.48)



Rw%-w 
, w, b

the kernels of which are compact on L2 (so long as b

is large enough), as we prove in the next section.

E. Continuity Properties

We now study the continuity properties of VO pseudo-

differential operators. Following the usual scheme of such

proofs, first the L2 boundedness of residual operators is

demonstrated-this is the most arduous part of the proof-

then the symbol calculus immediately implies boundedness

for operators of order zero. Finally a few more refined

statements, including criteria for compactness, are proved.

Other less general results are discussed in the last sec-

tion of the next chapter. As before, we limit all

consideration to scalar operators; the analogues for opera-

tors on the form bundles are either obvious or will be

commented on when required.

(2.49) Proposition: Any A E * 0,a,b induces a bounded

map

A : xrL29-ndx dy) - xr' L2 (X-ndx dy)
c loc
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n-i n-i
provided r' ( r, a - r > 2 , b + r' > -, and

a + b > n-1.

Proof: The slightly bizarre method we employ is to reduce

the statement to the familiar one concerning L2 bounded-

ness of ordinary pseudodifferential operators of order

zero. First note that we may assume that the kernel k

of A is supported in 0 < x, x < 1, lyl, |y| < 1. It is

of course C when lifted to M x0 M, except at T and

B where it is conormal. It also suffices to demonstrate

boundedness of

-r '-(n-)/ 2 Agr+(n-)/ 2  on 2 -dx dy) .
L(x

The kernel of this last operator is

r-r' rx]-r-(n-1)/2 ~r-r' *]r'+(n-l)/2k c= x k = x k.
x

Split kc into a sum of two kernels, one supported in x K

2x and the other in x 2x. As r - r' > 0, let k1 be

the first of these divided by xr-r and k2 the second

divided by x . We need only demonstrate boundedness of

k and k2 since k1 + k2 dominates kc

Write k as a function of x, y, s, u as in (2.30)

and k2  as a function of x, y, t, v as in (2.32). Then

by assumption k1 is supported in 0 x < 1, Iy| 1,



o ( s K 2, and k2 in 0 ( x < 1, |y| ( 1, 0 (

both are supported within the domain of regularity

coordinate systems. Furthermore

(2.50)

a) k1 E Co for s A 0, is conormal

with an expansion of lowest power

and a symbol of order - a-b in

b) k2 E Co for t A 0, is conormal

with an expansion of lowest power

and a symbol of order - a-b in

t < 2;

of their

at s = 0

sa-r-(n-1)/2

u

at t = 0

tb+r'+(n-1)/2

u.

Consider first k alone. By the Plancherel formula

k [x,y, , jf(, )n x dx dy=
x x

x e f(x,ri)x dx d77
x

since

to y

the Fourier transform of k -- ,1
x

is kl(x,y,x/x,-xl)e- x1. Next,

-t

this last

obtain

integral the new variables e

with respect

introduce into

-t
x, e =x to

^ -t - t-t) -t - iy - T^ - t ~ -
f kl(e ,y,e ,e TI)e f(e ,~ td

=
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where the integrand is supported in t > 0, t > 0,

t-t > -1. Notice that by (2.50) a) the first factor in-

creases exponentially unless a-r > (n-l)/2, in which case

it decreases rapidly. Finally set

-~ r -t -a -t -iy-a -iarT
Cj(t,y,T,T) = kl(e ,ye ,e r)e e da

so that the former integral becomes

ei~-)~~-)a Kt,y,T,,q)f(e~ ,y)dt dy dT dT1.

We shall show that K is a symbol in T, In of order 0

(and type (1,0)), except for a mild conormal singularity

at e t Q = 0, and so represents an L2 (dt dy) bounded

operator. Since L2 (dt dy) = L2 (- 1dx dy), this shows

that k has the required boundedness.

To prove the claim we need only examine the effect of

differentiating the integral which defines K 1. First

notice that by (2.50) a), the symbolic properties of

kl(x,y,s,u) in u imply that its Fourier transform is

rapidly decreasing in the dual variable ' and conormal at

0. Since a+b > (n-1), k is bounded there. Hence

Ky also enjoys these properties. In addition, if a-r >

(n-l)/2 as assumed, K 1 is rapidly decreasing in T.

Thus differentiating with respect to either y or T
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preserves this rapid decrease. Differentiating with

respect to t either affects the first slot of k or the

fourth. As x is a smooth parameter, the former preserves

-t
regularity. In the latter case a factor e ri is pro-

duced in front:

t =

is of the same

Finally,

i ( . 1 -

{ (e t k1 + e
x

regularity as

1 C k

-t ^r k~e

S1,

-iy--irT d

in particular bounded.

^ -iy-7-iUTadai+ iny k )e da

is also uniformly bounded. By iteration it is readily seen

that

Bae 1 (t yrtr) C (1 + ITI + I1i)'t1 Y Jean
t

and, as mentioned before

singularity at Ti = 0,

By the standard theory

tion on L2 -1 dx dy).

The proof for k2

requires the hypothesis

proof of (2.49).

, V.1 has a bounded conormal

uniform in all other parameters.

kg 1induces a bounded transforma-

is quite similar, only here one

n-1
b + r' > -. This completes the
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Before proving continuity of operators of order zero,

let us note that %Pm is invariant under the operation of0

taking adjoints, for any m. Thus if A E * then the

kernel of A is

1/2
dx dy dx dy

K *(x,y,x,y) n'n
A x x

- 0 _1/2

dx dy dx dy
A(x3Ytx'YJ n'nx x

which certainly has the same regularity as K A on M x0 M.

In addition, it is easy to see that

o mA ) = ua(A).

(2.51) Theorem: A E 9O,a,b is bounded from0

rL2 1/2 rL 2F1/2
0  0

n-1 n-i
provided a+b > n-1, a-r > -, b + r' > -, r > r'.

2 2'

Proof: Write A = A + A2 E %0 + ,O' 'ab A is bounded1 2 0 0 2

between these spaces by (2.49). As for A use the sym-

bol calculus of (2.41) to find B E % such that for some
0

sufficiently large M E IR
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A A + B*B = M-I + R,1
R E 4 .

Then, for f = f(x,y)|x-n dx dy1/2

| Ajf| 2 + | jBf| 2 = M | If|2 + Rf-f

which implies, using the boundedness of R, that

f 1A f|2  M' |f12

as desired.

The next step is to consider the action on Sobolev-

type spaces. Since the interest here is with parametrices

of differential operators, the full theory shall not be

developed. For m = 0,1,2,--- set

(2.52) Hb(MF ) = (u E L2 r1/2 (xO i(x 8 Y)au E L2

i + lal < m}

(2.53) Corollary: A E %-m,a,b
0 is bounded from

r L2 1/2 xr' Hm 1/2
0 b )

for r, r', a, b as in (2.51).
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Proof: If k is the kernel of

(xa ) (xa )ak C KO,a,b

A, then recalling (2.39)

for i + |al m.

The corollary follows.

The space of conormal half densities

da 1/2 1/2.A(M; FO FO f = f(x~y)Idxndy
x

(xO ) (x ) af(xy) E pa(log pN L

for all i, a, and

in (2.34), the subspace

some fixed N}

of polyhomogeneous elements

dhM 1/2
Aphg (M;FO 0

NiO

{f C da . _

i=0

This is the natural range of V0

tors applied to smooth functions.

special case:

fi f(y)xa+i (log X)}

0

pseudodifferential opera-

Again we only prove a

has, as

(2.54)
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(2.55) Proposition: For any b, m E R, A E m,a,b
p 0

600 a
C ~ ~phg

(where the space on the left denotes

ties vanishing to infinite order on

Proof:

product

the smooth half densi-

aM).

If k E Km"ab is the kernel of A, then the

1/2 ~ ~ 12
dx dy dx dv f (XY) dx dy

k(x,y,x,y) x n n xnx x x

f E C , vanishes

ordinary conormal

integral then is

kernel against f

to infinite order on {x = 0} and has an

singularity along the diagonal. Its

that of an ordinary pseudodifferential

. Furthermore, if

k ~ k , k. E a+i,b
L 1 1 phg

then each

^0 '% 1/2
dx dy dx dy

k (x,y,x,y)f(x,y) 0~.0 n n
x x

C Aa+i

which gives the result.

maps
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Our final result concerns compactness of operators of

negative order with appropriate boundary conditions.

-m,a,b
(2.56) Proposition: A E R'qO is a compact map

between

r L2 1/2 r ' L2 1/2
0  0

n-1 , n-i
for m > 0, a+b > n-1, a-r > -1, b+r > 2 1

Proof: x~FA = B E *-m,a-e,b and if 6 is sufficiently

small, B is bounded between

xr L2 r ' Hm
b

also. The compactness of A = x B is furnished by the

uniform smallness of xFB in a neighbourhood of BM and

the uniform equicontinuity of functions in Hm on
b

{(x,y) :x > 6,I for each 6l > 0, cf. [29].
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Chapter 3 Analysis of the Normal Operator

A. Identification of the Model Operators

The novel step in constructing a parametrix for A ,g

as indicated in section D of the previous chapter, is the

use of simpler models for this operator at the boundary,

where it degenerates. These models, the normal and indi-

cial operators, are employed in iterative schemes analogous

to the initial symbolic step of the construction to obtain

a parametrix for which the remainder is compact. It is

important then to reach a thorough understanding of their

mapping properties; this is the goal of the present chap-

ter. In this section we identify these operators explicit-

ly and analyze the indicial operator. Since it is an

ordinary differential operator of Euler type, this is quite

easy. The normal operator, however, is a partial differen-

tial operator, and the derivation of those of its proper-

ties we need later will require more of an effort.

We have given two different, yet equivalent, defini-

tions of the normal operator of P E Diffo(M). The first

one, (2.8), is an operator on the half tangent space M ,

p E aM, while the second, (2.43), is a convolution kernel

on the fibre F of the front face. This latter
p

interpretation is the one we ultimately use, but the former

is easier to manipulate, hence the one of interest in this

chapter. Recall now that the action of A on Ak (M) is

given by
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k -k
the operator P of (1.21), so that P = p A p . Then

N (A ) is an operator on Mp acting on sections of

A k(M p); the induced operator is N p(P). It turns out

that N p(A ) is actually the Laplacian of a constant curv-

ature metric, whence it has greater invariance properties

than merely the expected G p-invariance.

(3.1) Proposition: N p(A ) is the Laplacian of the con-

-2
stant curvature metric (dp ) h ; here dp is to be

p p p

thought of as a linear function on M . The induced action
p

on Ak (M p) is given by N p(P).

-1 -n-1 -n
Proof: Choose coordinates z = (z ,---,z ,zn) = (y'x)

-1 -n-i
on M near p, such that y = (z ,--,z ) are geodesic

coordinates for h restricted to 8M, centered at p.

and z = x is a defining function for the boundary and

|/BzIn h = 1. Let z = (y,x) be the corresponding linear

coordinates on M . Finally, write
p

p(j,2) = a(y)x + b(yx), b = O(2

Then Idp |2 = a(0)2 . Now, for w E 0 (M)
p
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PW = p2 A h +

(1)

(2-k)p dp A Sh w - kp

(2)

6 h(dpAw)

(3)

+ (n-k)pLpw - 2pt du

(4) (5)

+ (n-2k)dp A c vw - k(n-k-1)t (dp)w

(6) (7)

is the operator of

Suppose ( = W

We shall

(1.21), defined by

, I = (i , --- ik
-Idz

consider each term (1)

Ag (k
p

(PW)
~ k

p

-1

- (7) separately,

always using the product rule

(1) p2Ah has normal operator

I-a(0)2

n

(2) p dp A 5h ' =

-n -n+-n I
(az +b)(adz +z da+db)A(-6.i

2-n d-n=a z d

s I\i
5vWI d

(-1s)

az s
dz s +---

which becomes

ik (

(2.10).

I 2I dx
(3z ) 2
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- 2z Cl-az -

azn

r

2 k+s-1 n __ I
a ) z

s az s

dz'

I\i

if i = n

s . . n.
cz Adz 1±i

(3) pbh(dpAw) = (az +b)6 h( (adz +--)

=(az'+b)
k+1 I n

( k 1 , I\i
S S

(an+b)(-1)k+1,I v n(a1 )dz +-

which reduces to

-I
A w Idz )

-I\i
,n (aw)dz

*S

2 n aw I
azn

dz

s

k+sn s
(-1) az

sA dzn

< n

A dzn

.

if i k

if i k = n
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(4) pL v(* =

S .

- n - I 8p s _11
(az +b)(vp(w1 )dz +w dz

azj

.i i--s-1i s+1

2-n I
-z n dz

2 n
which remains as a z

8(I)

azn
dz for any I

-nb
dw = (az +b) c

1.z a1 i 8

= (azn+b)p i
azi

= a n OW
ai z

recalling = O(p)

(dz Adz )

(dzjAdz)
81/82n

if i < n

yielding

2zn ___

az dz if

de
a2  kzn dz i

ozJ
A dzI\n if k = n

k)

+ 0 

(5) p vp dz
3 A dz]

+ 0 0

i. < n
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(6) dp A tLO = (adz +---) A

2 -n
= a dz A

and all that remains

2a w

i -I
.gdz

I _ f)

dz

O ik < n.

(7) Finally,

leaves

2
dp(vp)o = ao

2 I
a gdz

-I
dz +00

for any

Heuristically, the procedure throughout is to expand the

coefficients of P in a power series, discard any term in

which the power of z exceeds the number of derivatives,

-i
and then replace all coordinates z by their linear ana-

i
logues z .

Collect all terms above with the appropriate coeffi-

cients to obtain

-I
dz

i k = n
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(3.2)

N p(P)(w) =s

a(0)2 - (zn)2

i=1

2

i2+(8z )

nW I I
(n-2)z - - k(n-k-1)w1 dz

azn

+ 2 (- 1 )k

s

n I
z

C -z
(-1)

s-dz sI\iA dzn

if ik < n

a(0)2 1- (zn)2

n

(n-2)zn 
az

+2(-1)k+1

n-1

j= 1

2

2 +
(8z )

I d
- (k-1)(n-k 1(. 1dz

nI

n 1 dzi

(3z
A dzI\n

if ik = n.

Furthermore, the product formula (2.10) shows that

so that

by N (Ap g

N p(A ) = (zn)-k N p(P)(zn )k

][ N (P)W

(A )= i.e. the action induced

9 (z n) k (znyk

) on Ak (M ) is given by N (P), as claimed.
p p
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Finally, to see that N p(A ) is the Laplacian of the

metric (a(0)zn)-2 dz 2, simply observe that this a special

case of all of the calculations above, and preceding

(1.21), with p = a(0)zn, h = dz 2

The corresponding P is already dilation invariant

and so no terms are lost in passing to the limit in (2.8).

The assertion now follows, for (3.2) depends only on the

dimension n, the degree k, and Idp 12n

p n

In the next section we construct an inverse for the

action of N (A ) on Ak(M P), i.e. for N p(P). However,

it is really the normal operator, as defined by (2.43),

o k 1/2w
acting on sections of oAk 1O F that we need to

0 p

invert. It is true, though not immediately obvious, that

this bundle and Ak (M ) ® r1/2 (M) are naturally isomor-
p O p

phic. Thus'it suffices to study the operator over Mp,

then transfer the results back to F . Let us now examine
p

the details of this bundle isomorphism. We prove the

identification only for the k-form bundle; a similar argu-

ment applies equally well to the half-densities. In fact,

the density bundles will be systematically neglected

through most of this chapter. Their later inclusion is

effected by 'conjugating the whole discussion 
by xn/2 ,
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(3.3) Lemma: Both oAk (M ) and OA kF are trivial,

though not naturally so. There is a canonical equivalence

between these two bundles over the interiors of their

bases. Furthermore, each is also naturally equivalent to

0Ak Bn) = A (oT*Bn), again only over the interiors of

their bases.

Proof: Ak (M ) lifts to the left factor of M x M
p p p

thence to M x 0 M ; the resulting bundle we denote
p Op

oAk(M x M It then pulls back to the fibre F over
R p o p 0

(0,0) C OM x OM . Examination of the rules (2.25) for
p p

formal pullback show that this restriction is isomorphic to

oAk(M P). Now, the linear model MP is equivalent to first

order with M at p. This means that the stretched pro-

ducts M x 0 M and M x M are also first order equiva-p Op O0

lent near F0 and F P, respectively. Hence

oAk (M)(MX0M) and OA (Mx0 M) agree to order zero at

these fibres, so their restrictions to F and F coin-

cide in a natural manner. Finally, Lemma (2.19) asserts

the equivalence of any of these bundles with Ak (Bn), at

least over the interiors of the bases. Notice that the

isomorphism 0Ak (M P o Ak (Bn) is not induced by the usual

n n
conformal map ]R+ -- B

As we have indicated earlier, the indicial operator of

P is an ordinary differential operator of Euler type; it
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is actually an uncoupled system

(3.1) with p corresponding to

Using the coordinates of

0, from (3.2) we derive

(3.4) I P(P)(w, dz )I=

a(O)

Reverting now to the notation

a(O)2 -(zn )2 I W
-1('zn'2

k(n-k-l) WIdz

2 - zn)2 WI +

I (azn) 2

(k-1)(n-k)I dz

z = (y,x), the

(n-2)
az n

if ik n

(n-2) I
az n

if ik = n.

solutions of

I P(P)(W) = 0

are of the

IJI = k-i.

cial roots.

si I
form w = x dy , W

The numbers s1 and

A short calculation

= x 2 dyi A dx,

s 2 are called

shows that

III = k,

the indi-

or n-k-1 unless k =

or n-ks2 = k-l
n+1

unless k = -g -

s = k

(3.5)
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The solutions in the exceptional cases k = (n+l)/2

involve additional logarithmic factors, but we are not con-

cerned with these here.

The basic reason the parametrix construction breaks

down in these exceptional cases is that only for these

values of k do the indicial roots not vanish at different

rates at x = 0. For the other values of k, only one of

the solutions corresponding to each pair of indicial roots

lies in the L2 space which is natural for the problem.

Thus:

Both xn-k n-k-i E 2 -n dx)Both x x C Lloc ( x

Both xk k-1 E 2 -n dx)Lloc (X

if f k < n-12

if f k > n+1
2

Slightly

L2 (-n
loc

restated, if w solves I P(P)w = 0

dx), then (with summation intended)

and w E

(3.7)

We shall

PW = 0,

(3.7) is

there.

W= cx n-k-1 dy + c xn-kdyZ A dx if k < n-i
I 1 J

(j = x dy + c x k-dy A dx if k > n+i

I 1 2

prove in the next chapter that if w E L2 (dg),

then it is polyhomogeneous conormal at aM, and

the leading term in its asymptotic expansion

(3.6)
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We should remark, as a general note, that the anaylsis

of this particular V elliptic problem is greatly simpli-

fied by the fact that the indicial roots (3.5) are indepen-

dent of the base point p. In the general problem they may

well vary, and complications arise from repeated roots,

etc.

B. The Inverse of the Hyperbolic Laplacian

Let N denote the operator of (3.2), neglecting the

a(0)2 factor. From Lemma (3.3), N may be interpreted

as the operator induced by the constant curvature Laplacian

either on Ak (IRn) or Ak (B n). It is important that we

have both of these models available. The inverse for N

is constructed using the Fourier transform on the y vari-

ables in the upper half space. This is quite natural, for

these hypersurfaces are horospheres, hence have natural

Euclidean structures. Then, however, the additional rota-

tional symmetry of the ball is useful in understanding the

n
behaviour of this inverse near 00 E R+'

So, N has a partial symbol given by

N (xa ,x y) f e' '(n)dn = eiY -N(xax,ix7)w'(T)d1

where -q = T 1 dy +---+ nn-1dy n- is dual to y, and
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(1) ={ e w(y)dy

the usual Fourier transform on the components of w.

easy to see from (3.2) that

I
Np(x8 ,ixI)COdy =

2^^
2 6mBOw 1

-x 2 + (n-2)xg
3x

+ (x2 2-k(n-k-1))W ]dy

k I
+ 2(-1) L(ixq)w Idy A dx

(3.8)

Np(xa ,ixn)wj dy A dx = [-x2

The r in the first of

2  + (n-2)x 0
C1x 2C

+ (x2 212- k-1)(n-k))wi dy" A dx

k+l J
+ 2(-1) ix A wj dy

these formulae is the h-dual of

y= - +-+ 77 n-1 -l n-1
By By

and is to be contracted with dy

The operator of (3.8), which

only mildly coupled. This allows

A dx.

we also call N ,

all solutions to

is

Nw =0
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to be found, whence the inverse may be constructed and

analyzed. Thus, regarding ri now as a fixed parameter,

the y coordinates may be rotated so that (3.8) assumes a

particularly simple form. In fact, rotate y so that 7 =

1Iril dy .Then

7 A dy

There are

(3.9)

d O 4 j0 >

L(n)dy A dx s 0 t* i

three cases to consider:

I
i) o = o dy > 1.

2^

N = 1-x 2 +

ii) W = W e dy

2^

^2 a WJ
P Nax= - 2'+

nI W
(n-2)xg-- +

A dx, j = 1.

C3
(n-2)x=

+ (x2 2-(k-1)(n-k))oj dy A dx

-4 ^ I ^- J

iii) c = W I dy + O dy A dx,

= (ii,---,i k) = '1 ''' k-1)

1

= 1.

(x ||-k(n-k-1))w I dy
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2^^
^ 2 I aI WIknk1 2 2

No = -x 2 + (n-2)x -- + (x |n| -k(n-k-1))I
dx

+ 2(-1) k+ 1ixl Jdy

+ -x2 2 + (n-2 )x + (x2  2 -(k-1)(n-k))w
dx

+ 2(-1)kIl dyJ A dx.

The first two of these operators are quite easy to invert.

The third one is slightly less so, since not all of its

solutions are known explicitly. Nonetheless, it may be

regarded as a compact perturbation of the diagonal system

formed by i) and ii).

The program now is as follows. Ultimately we seek to

prove that the partial differential operator N of (3.2),

acting on

L2 + n-1 -n dx dy) n L2 + -n dx;L2 n-1,dy))

has a bounded inverse. Yet more refined regularity proper-

ties of this inverse are proved in the next section. Upon

conjugation by the Fourier transform it suffices to show

that the ordinary differential operator N of (3.8),

acting on
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L2 + -n dx;L2 n-1dp))

also has a bounded inverse.

(3.10) Proposition: There exists a unique kernel G(x,x,n)

which is bounded on

L2 R+ -n dx;L2 n-1dl))

and such that

Np(xax,iX71)G(Xx~T1) = X 6(x-x).

(The right side

the identity on

The proof

along the way.

ii). Set

P - -2 d2
dx

2 = -2 d2
dx

of this equation is the Schwartz

the space above.)

is quite long and involves several

Consider first the two operators

dx+ (n-2)x -

d
+ (n-2)x -

kernel of

lemmas

(3.9) i),

(x2 1j 2-k(n-k-1))

(x 1 _ 2 -(k-1)(n-k)).

These are Fuchsian operators

as expected, are k, n-k-1

k < n-1 (the case k > n+1

the indicial roots of which,

and k-1, n-k. In fact, for

is treated similarly, and
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shall be mentioned only rarely) we find, cf. [19],

n-1 n-1
2 ,i~2

P 1 u = 0 * u (x) = C1 X I (XIT) + c2 x K 1(xlIi),
1 1

n-2k-1
V 1 2

(3.11)

n-1 n-1

P22 = 0 * u2(x) = clx Il (xIIq|) + c 2 K V l)2 2

n-2k+1V 2 2 '

The I amd K are Bessel functions-specifically, the
V v

modified Bessel function of the first kind and Macdonald's

function, respectively, of order v > 0. Their asymptotics

are well-known [19]

I -xV/2VT(1+v), K (x) - 2 ~1 T( 1)

x - 0+

(3.12)

I(x) - e /vIr, KV(x) - e~X7r/2x

x - 0o

Thus, near x = 0,

n-1
2 1  (xiii) _ xn-k- liiv

1
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n-k 
-v

x2 K (xlIl) xkhi'
1

n-1
2 1 (XIl) n-k 1 1 "2

2

n-1
2 K(XII) k-n 1 "2

(up to constant factors). Recalling (3.7), u. E

L o (x-n dx) only if c2 = 0, i = 1,2. On the other

hand, these solutions are exponentially increasing at

infinity. The other pair, with c 1= 0, decrease suitably

at infinity, but do not vanish to sufficiently high order

at x = 0. (For the exceptional degrees k = (n+1)/2, the

I and K differ only by a logarithmic factor at x =
V V

0.)

Now we construct kernels inverting P1 and P2.

these two operators are treated so similarly that

the work for P is displayed. With

n-1
u(x) = x Io (xr|),

1

n-1
v(x) = x 2 K

1

we know the kernel is of the form

(3.13)

fact

only
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G1 (x,x,1) = a(x)u(x)H(x-x) + P(x)v(x)H(x-x)

and satisfies

n~
P1 G1 (x,x,n) = x 6(x-x),

which is the kernel of the identity on L (x-n dx). This

form is chosen so that G is a 'free' solution for

x X x, satisfying the boundary conditions (with respect to

x) of sufficiently rapid decay at x = 0, c. A bit of

calculation, with a(x) = Y(x)v(x), P(x) = Y(x)u(x), shows

nd 2-ndP1GS- xn dx-x)[-2 a(x)x u(x)v'(x)-u'(x)v(x)].

Now, as P -xn 2-n d ) + (x2 -k(n-k-1)), the

expression

x 2-n(u(x)v'(x)-u'(x)v(x))

is simply the Sturm-Liouville Wronskian of P1 , hence

independent of x. By examining, for example, its power

series as x > 0, it is also independent of p. Choos-

ing 7(x) to be the appropriate constant
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(3.14) G1 (x,x,7) = Ck,n X

n-i n-1
2 ~ 2 (x 171 I)H(x-x)

1 (xln|)K

+ I (xI1)K V(xl7f|)H(x-x)].

Analogously,

placing

the kernel

with

for P, is obtained by re-

V
2 .

It is convenient

(3.15) W

to introduce

= H ([0,2];x

the space

dx) + xrHp([1,w);dx)

where p E Z+, r E IR, HP is the usual Sobolev space of

order p and

= {f x f L
dxa

so as to formulate the

(3.16) Proposition:

2 -n([O, 2] ;x dx)

For k < n-1
2

p :12(2)
i r

W(0)
r+2

for p > i > j 0}

or k > 2

i = 1,2

is an isomorphism, with inverse represented by the kernel

Gi(x,x,r7).

Proof: Obviously and P2
map W(2) into Xr+2

it suffices to show that

so
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G. :1W(0) W(2) i = 1,2
i r+ 2  r

is bounded. By construction it must then actually invert

P.. Uniqueness is also immediate since P u = 0 has no

solutions in W(2) for any r.
r

The basic tool to prove boundedness of a kernel is

Schur's Test:

The positive kernel G(x,x) induces a bounded

map on L2 (dji) if there exist positive

measurable functions p and q such that

f G(xx)q(x)dl(x) ap(x); J G(x,x)p(x)dp(x) Bq(x)

Now, given the decomposition of W(O) as a sum in (3.14)
r+2

it suffices to prove boundedness on each summand. Thus if

f E W(O) write f = f + f 2 ' 1 E L2 ([O,];x-n dx),
r+2'1 2 1

f2 xr+2 L2 ([1,);dx). Accordingly

%1

lif1|2 _ f 1 (x)2 x-n dx + (x-r-2 f 2 dx.
r,(0) 1 ( )

0 %1

Case I: f E L ([O,1],x-n dx) = x n/2L2 ([0,1],dx).
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It is convenient to include the various weight factors

in the kernel. Thus let

-n/2 ~ ~-n/2
J(x,x) = x G1 (x,x)x .

Then G

bounded i

L2  -n ~ 2 [,, -n: ( [0,1],x-n dx) > H([0,1],x dx) is

f and only if

L 2 (dx) 3 f I--
n/2 f n/2 ~ ~-n ~

x fj-- G1 (x,x)x f(x)x dx

f x-/ G (x,x)x -n2f(x)dx

= J(x,x)f(x)dx C H2([0,1];dx)

is also bounded. Furthermore, it even suffices to prove

boundedness of J on L2 (dx) since xdJ/dx, x2 d 2J/dx2

are similar to J in their asymptotics as x - 0 and

x - 0. (These derivatives contain terms with 6(x-x)

as a factor, but never 6'(x-x), multiplied by a bounded

2
coefficient; these are obviously bounded on L .

Now, since x and x lie in [0,1] we may replace

J by

-n/2 n-k-l1k k'n-k-1 ~-n/2
Ja(x,x) = x [x x H(x-x) + x x H(x-x)]x

-k-lk-n _

2 - 2x H(x-x) + x
k-- -k-12""2

x H(x-x).= x
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For k < -2 apply Schur's test with p = q = 1:

Ja(xx)dx =

a-k
x

(1-k)

k-n -k- 1
x x

0

n

+ -k-1

--k-i~k-a
2 2x xdx

2xk-
x V

(k-n1

k--+ 1
_2

since neither k-2 nor --k-1 equal -1, and

> 0.

Symmetrically

1
0

J(x,x)dx <

(the only excluded

(-log x)/V'X.

1
0

I-1 -log x

~ 1/2
%0

Ja(xx)(-log

1
x

1 e"1/2 ~"
x)/x dx

3/x3/2 d

1

10

=-x

dx

1-k2

k-n1

22(x
a-k- 12

n_-k-1
2

For k case), use p = q

I I) x

/ 1-k)) < C
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-1 "1/2
= x (-2x g ~1/2log x + 4x ) I v- 1/2 ~ -1/2

+ (2x l og x + 4x )I

( C(-log x)/Fx and likewise for

21

Ja (x,x)(-log x)/& dx.

On the other hand, as x C- the only nonvanishing

term in

G1 (x,x)f(x)x dx

is, by (3.14)

v(x)u(x)
f (x)xn dx =

1

v(x)u(x)f
0

-n ~
(x)x dx

since supp f C [0,1]. This decreases exponentially

provided the integral makes sense.

that

Ii
0

But

~n-k-1 ~ ~-n
x f(x)x dx

['Jf2 -n d x 1/2

%O

~n-2k-2
x

n-k-1 I so

dx]
1/2

< C.
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Case II: f E x r+2L 2([1,O);dx).

Again we combine weight factors into the kernel.

we need to prove boundedness of the composition

L 2(1i,o);dx) 3 f x-- xr+2f f-- Gj(x, x)~xr+2-n f x) dx

f -rn~ ~r+2-n ~
k-- j x G(x,x)x f(x)dx

= J(x
where J(xx)

prove that J

handled simil

-r ~~' ~r+2-n= x G (x,x)x

is bounded on L

arly. We require the

2
,x)f(x)dx C H ([1,c],dx)

As before it suffices to

for its derivatives are

(3.17) Lemma: If p E R then as x -- m,

x e dxI x eX

1

x
x eX dxx e -x-e-- 1.

Proof: Apply L'Hopital's rule.

Thus

-.1
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Now by (3.12) we may replace J by

-r-1 r+1
x x

-n
2 x-x[e H (X-X) + e XxH(x-x)].

Apply Schur's test with p = q =

"%A %0 -r-1

Ja(x,x)dx = x

+ x2 ex 2

%x

r+1--x 2 x
e x e

X dx ( C by (3.17).

By symmetry,

1
Ja(x,x)dx

Finally, supp f C [1,), then as x > 0

G(0 - n dxG (x,x)f(x)x ndx =
-nu(x)v(x)f(x)x dx

%x

-n ~^. 2 -n
v(x)f(x)x dx E H ([0,1];x dx)

since the integral exists and is independent of

u(x) lies in this space.

This concludes the proof of Proposition (3.16).

Ja(XX)

f1 dx

< C.

= u(x)

x, and



125

We must now construct an

(3.9) iii). Set

inverse for the operator of

0

-2(-1) kixial

2(-1) k+1j 1 1

0

Then that operator is L 1= L0 + A. More generally,

Lt = L + tA, 0 < t < 1.

By (3.16), for any

L : (2) 1(0)
0 r r+2

is invertible. (Strictly speaking, these spaces are

defined to contain only scalar functions. Here of course

we extend the definition to allow vector functions by

requiring each component to lie in the space.) Clearly

each L maps 1(2) into X(0)
t r r+2'

(3.18) Lemma: A : X(2) *(O) is compact.

r r+2

Proof: Certainly A : xrH2 ([1,o),dx) -> xrH2 ([1, o),dx)

is bounded. The inclusion

r+1 H2 X r+2L 2

02

P 2-

L [ 0 1.
let
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is compact by the L2 version of the Arzela-Ascoli

Theorem. On the other hand, between

^2-n 2 -
H ([0,2],x dx) -> L ([0, 2 ],xn dx)

A is the strong limit of the same multiplication operator

acting between

^2-n 2 -n 2 -n
H ([e,2],x dx) ~ T2 ([6,2],x dx) - L ([e,2],x dx)

which, for each e > 0, is compact as before. Such strong

limits are compact provided a 'uniform smallness' condition

at the boundary holds, cf. [29]. Here this states that if

"" 2 -n
f varies over a bounded set in H ([0,2],x dx), the

functions Af have uniformly small norm in

L 2([0,6],x-n dx). This follows from the factor of x in

A. The proof is complete.

By the Lemma,

L : (2) (0)
t r r+2

is an analytic family of Fredholm operators.

t:

Thus, for any
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index L W(2 ) 4 1(0)
t r r+2

= index L (2) r+2 = 0.0 rr2

To prove that L is an isomorphism we need only show

(3.20) Proposition:

u = 0.

L u = 0, u E 1 2

1 r for some r *

(3.21) Corollary: L '(2) > () is invertible for
ecr r+2

each r.

that from (3.16), a solution to L u = 0

W(2) must actually lie in every *(2),
r r

lying in

-o < r < o.

u E 1(2), (L+A)u = 0 * L u = -Au C X(0) > u C W(2)
r00 r+1 r-1

and the assertion follows inductively.

In essence, (3.20) is nothing but the statement that

IHn has no L2 harmonic forms outside the middle degrees.

However, rather than developing this connection directly,

which requires a fair bit of effort, it seems better to

give a proof more nearly consonant with our overall tech-

niques. There is actually an easy proof that L is

(3.19)

Note

some

For
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strictly positive based on the inequality

-x2 d- + (n-2)x - (n-1)

dx 2d

-- which is equivalent to the well-known fact that the spec-

trum of the hyperbolic Laplacian on functions is bounded

below by (n-1) 2/4. Unfortunately this fails in the two

degrees k = + 1.2 -

The method which covers all cases involves an integra-

tion by parts to replace the second order system N P = 0

by the larger first order system-which may be solved-

NdW = 0, N 6 = 0.

Obviously this is just the normal operator analogue of the

fact that L2 harmonic forms on 11-n are both closed and

coclosed.

Recall first that the conjugated hyperbolic Laplacian

may be factored

N = xxkAH-k

(xk d -k+l k-i H-k + (xk H-k-1i k+l d x-k

n
Here 6H is the coboundary operator on IH. Furthermore,

by the product formula (2.10),
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N = N(xk dx k+1)N(xk-1 H X-k)

+ N(xk 6H x-k-1 )N(xk+1 d x-k

(neglecting basepoints). Now, from (1.19) and (1.20) a

calculation similar to that in Proposition (3.1) shows that

the (conjugate by the Fourier transform of) the normal

operators are

k ai I
Nd ( x kw 1 )dy

(3.22)

N = W (-1)k _. - (n-k)w J

Using again the reduction In

into three cases, just as in

possibilities is of interest

(I T
(1,J): then, for w = oydy

(3.23)

L d

Ldw = (-1

A dx + ixn A (Wsdy +WJ dy Adx)

)dy - ixL(n)(wIdy +W dyAdx).

Idy' = 7, this system splits

(3.9). Only the last of these

here, and arises when I -

+ W dy A dx

d -k - Ik _I - kw,) + ixa 1 l 1 dy A dx

)k - (n-k)j ) ix ~nleI dy ,

and the relationship
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L1 = LdL + L Ld

is still valid. (The degree k in Ld and L has been

suppressed, so in this last equation it is different in the

two Ld's, and also in the two L 's.)

-~ I J+-(3.24) Lemma: Let w = f Idy + g dy A dx and i =

aKdyK + P dyL A dx be k-form and (k-1)-form valued func-

tions, respectively, on IR. Then using the pointwise

Euclidean scalar product on forms we have

^ ^ -n ^^ -n
<Ndjp>x dx= (w,N 6 pAx dx

0 %0

if and only if for each I: {g(x 1f- f~)dx = 0.

Proof: <Ndo>x n dx

0%

F df -n

-J <(-)kx- kf1 )dy A dx + ix A w4p>x dx
%0

df --kk ^ i ^ -n
(-)(x -d kf,)P, + <(J,-ixt(77)p> Ix dx

%0
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(-1)k d 1-ngy)-kb x-n)(-1) I (- 1 dx I 1 ~, 1
x ( 77T) 4>x- n

k d 1-n
(-1) d-(x f iP3)dx

k d 1-nf )
(-1) dx(x f iPI)dx.

Hence N, and NA are adjoints iff this boundary

term vanishes.

Proof of

g dy

Proposition

A dx

(3.20): suppose w = f dy

solves

L 1 = 0

I and J are fixed, I = (1,J)), and w E :(2)
r

for some r. The comments

F 2 -nW EL (x dx)

following (3.21)

and decreases rapidly at

^( ̂ -n
0 = (LW, Wx dx

%0 0

(L dL 6 w +

indicate

inf ini ty.

that

Then

^ ^. -n
LSLdoo)x dx

£0

+

0

10
^ -n<j, N p4>x dx 0*1O

(here
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(IL6w|2 + ILd^I 2 )-n dx
%0

provided

a) d: 1-nx1n (xd& - (n-k)g + (-1)k+1ixinf)g dx = 0
%0

and

b) { [xl-nxif - kf + (-1)kixInig)?Idx = 0.

Now L is a Fuchsian operator, the indicial roots of

which coincide with those of the indicial operator of

From (3.6) and a bit of calculation, if k < n, f

g have convergent expansions

f = c 0 xn-k-1 +---+ log x-(c6xn-k+1

P.

and

+- -- )

(3.25)

g = d0 n-k +---+ log x 0(d xn-k +---).

The logarithmic factors arise

differ by a positive integer.

occur follows from an explicit

terms of the Frobenius series.

since the indicial roots

That these factors actually

computation of the first few

For later reference we
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record that when k >
2

f = c 0 k +.--+ log x-(c6xk +---)

(3.26)

g = d 0 xk-1 +---+ log x-(d6xk+1 + 0..)

To prove that the boundary contributions vanish, use

these expansions near x = 0 and the rapid decrease as

n-i
x - o. Then, for example in a), when k < 2 the

integrand is

d-(a n-2k+1
dx 0

while in b) it is

d-(b n-2k-1
dx 0

By the second fundamental theorem of calculus the boundary

terms vanish as desired; similar reasoning holds when k >

n+1
22

We have so far shown that an L solution of N pW = 0

also satisfies

LdW = 0, L 6 = 0.

In terms of the coordinate components f and g these
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equations are

df - kf + (-1)kixIn7g = 0

x - (n-k)g + (-1) k+1ixI7If = 0.

equations may actually

with a bit of work one

be uncoupled and solved.

sees that

x2 d 2 f + (k(n-k+1)-x 2 1 2)f 0
d2 %dxdx

22

x2 2- nx + ((k+1)(n-k) x 2 Iri2)g = 0.
dx 2 dx

Once again f and g are Bessel functions, [19]:

n+l n+1

f = cx 2I (xln|) + c2x K (xlI|) v2
n-2k+1

2

(3.27)

n+1
2g = d x Io (xlii|) +

1

n+1

dX2d2x Ko (xlii)
1

n-2k-1
1 2 '

In order that f, g lie in L2 (x-n dx) near zero, c2

and d2  must vanish, as in (3.13). But the solutions thus

obtained increase exponentially, which is a contradiction.

This proves Proposition (3.20).

These

Thus,
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Notice that the solutions

d2 = 0 above are the factors

(3.25) and (3.26). Finally we

f and g with

of the logarithmic

may complete the

c 2=

terms in

Proof of (3.10):

kernel G(xx,i)

By virtue of

for which

(3.16) and (3.21) there is a

n
Np(xaxix1)G(x,x,n) = x 6(x-x)

and such that, for each T, the corresponding operator

G : L2 (X-n dx) - L2 (-n dx)

is bounded. As of yet we may not assert this uniformly in

-q, which is what we require. Of course this uniformity is

obvious for the 'uncoupled part' of G (3.14); for the

'coupled part' we know little save that it is an analytic

solution of Ng, of the form (3.25) for x < x and (3.26)

for x > x. For this extra information we use the dilation

invariance of N .

Thus let G(x,x,i) be the solution above when |I| =

1. It is obviously smooth in n. The solution G to

N (xO ,ixlnriQ)G = I x1 6(x-x)

obtained by replacing x, x by xI-fl, x-rjl must be
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(3.28) G(x,x,i) = |,|1-nG(xl |, |,1 /1 |)

where T1 = rI/|77|. The known part of the kernel (3.14) does

indeed satisfy this.

The L2 boundedness of C as in (3.10) is now quite

easy. Define the transformation

1-n
2

D :f(x) -4 f (x) = a f(ax),
+a E .

This correspondence

isometry. Set fa

is readily seen to be an

into the inequality

L2 -n dx)

| ~F " ~'~-n n2 -n(3.29) f I G(x,x,)f(x)x dx x dx C J

where C may be

right hand side,

a. On the other

results in a new

If 2xn dx

PO n-2
assumed independent of ri E Sn. The new

with fa replacing f, is independent of

side, a change of variables x I-- ax

inner integral on the left side

n-1
-n ~2 1~ -n

G(x,x,r)f (x)x dx = a G(x,a xn)f(x)x dx.

Applying the dilation D _ 1 transforms this to

n-1 -1 -1~ ^ ~ ~-n
a G(a x,a x,n)f(x)x dx
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which retains the same L2 (x-n

|9|~ 1, the definition (3.28)

dx) norm.

implies

Thus, with a =

(3.30) f G(x,x,)f(x)x dx x dx < C f(x)| x dx

where C is independent of n E R n-1\{}. If f is now

allowed to depend on p also, then by integrating both

sides of (3.30) with respect to Ti we obtain the required

estimate of (3.10).

The kernel inverting the partial differential operator

is

(3.31)

It is

funct

some

di lat

G(x,y,x,y) = cn e (x,x,n)d .

bounded on L (x-n dx dy), hence is the unique Green

ion for the constant curvature Laplacian. It also has

isometry invariance, namely that of translation and

ion:

G(x,y+v,x,y+v) = G(xy,x,y)

G(az,az) = G(zz), z = (x,y), z = (x,y)

the latter following from a change of variables in (3.31).
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C. Structure of the Kernel

We now discuss the structure of the kernel G of

(3.31), which is of the type discussed in the last chapter.

-2,a T n n 1/2 0 k
(3.32) Theorem: G(z,z)-r E KO0 O + T( 0 If+ 0 @ 1 Ak)

where

n-k-1 n-k+1 t n-1
T = Ln-k n-kJ 2

k k] tn-i
ar = k k, T = a , for k > -, and -r

k-1 k+l 2

is the half-density of (2.28).

As always, the proof is rather involved. First we prove

uniform symbol estimates in the regions x x, x < x.

This implies the requisite regularity in the interior and,

together with properties of the indicial operator, yields

the correct estimates at the boundary.

We commence by examining the 'uncoupled' part of the

kernel:

(3.33) Lemma: The kernels G1 and G2 of (3.14), which

furnish inverses for the operators P and P satisfy

the estimates, for |a7l 1,
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|B B B.a'G.(x, x, 7)| C . . (1+|T?|) 1-|a|+ i+ji e- -x|N|Q
x X 1 - ,1,j a

-1 ~~ -1

uniformly in 6 ( x < x < 6 , 6 ( x < x < 6 for any

6 > 0, i = 1,2. In particular, neglecting the (x,x)

dependence, they are symbols of order -1, uniformly in

these regions of the (xx) plane. Finally, each G. has

a classical expansion as 7 - 0 of lowest homogeneity

|T |0.

Proof: Consider only G1

cases are quite similar.

in the region x x; the other

Then

n-1
G) 2 xG 1 (x,x,ri) = (xx) I V(xI1I)K V(xIr1I)

where v = (n-2k-1)/2 for k < (n-1)/2, which we also

assume. Both I and K have asymptotic expansions for
1v V

large values of their arguments, the first terms of which

are given in (3.12). All derivatives of I , K also have

expansions which must equal the ones obtained by

differentiating those for I , K . All these expansions

are of step size one in descending powers of xIqI| or

xjri|, hence it suffices to argue only for the first terms.

Thus replace G1 by

n-2 ~
~) 2 -(x-x)|n| -1

(xx) e | Tl
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as IH - O , e < x < x. The estimates of the Lemma are

quite easy to verify; the only point to be noted is that

aae-(xx)I1 -

where each

degree 1#|

p
3

-(x-x)I|l

I3lIla|

1(31
(x-x) -{a term homogeneous in n of

}. Since

| || I-|aI(-x) I -(Xx ) I C (1+| |) |a|

this too has the correct growth.

As for the behaviour as 71 - 0, both I

have convergent Frobenius series (the one for K

ing logarithms) so that from (3.13)

and K
V

contain-

n-k-1~k n-kk n-k-1~k+1
GJ(x,x,n) = c 0x x + |n|(cl x x +c ix x ) +---

(with an additional |n

This proves all claims.

| log 171 term when k = 1 - 1).

To extend this to the 'coupled' part of the kernel

G , which inverts L , we must understand its structure
c 1'

better. This necessitates a closer examination of the

solutions to L 1 u = 0. Altogether, this nullspace is four

dimensional and two independent elements are identified in
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(3.27). In one of these, both components are exponentially

increasing-call this solution v ; the other solution u

has both components exponentially decreasing. Let us

record that when |aI = 1

n-k+1 n/2 x

u1 = [bxn-k +,,, u 1 Kxn/2 x X 0
b~x +-- b x e +---

(3.34)

k n/2 -x -
c~x --- c x e +--

1 d0xk+1 +000' "1 dxn/2 e-x+..i 0

Other solutions are not known explicitly, but fortu-

nately their asymptotics may be derived as follows. A

Frobenius series calculation posits two additional solu-

tions of the form (also when |7| = 1)

n-k-1 -

u - - n-k + Au1 log x
(3.35) L k

c 0 x +-

v 2  - k-1 + Bvy1 log x

dO x +-

In (3.34), (3.35) none of the coefficients a0 , a0 , a0 , A,

bO, b, bO, B, c0 , c. c 0 , d O, d6, Eo vanish.
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On the other hand, the singularity of L at x = O

is not regular. One may find formal solutions which are

(possibly divergent) series in descending powers of x

multiplied by an exponential. Thus a straightforward

computation produces series

-1
-_1 a 1x+a + a_ x + ---

2 x
x eI

x 1 x + :0 + ---

n a x + a-2 x +00
2 x

x e x 1+ ---

-1-
-_1 a 1x +--- n-_ a_ 1x +---

x 2 x

# x +---W X x +---.

The a., P. are different of course in each of these solu-
11

tions, and none of the leading coefficients vanish. Once

these formal solutions have been found, the theory

developed in Chapter 5 of [8] (for which the analyticity of

the coefficients of L is essential) implies the exis-

tence of actual solutions obeying each of these asymptotics

as x -p . Indeed both u and v1  of (3.34) fit this

1
pattern-their series being the ones commencing in x

Thus for some choice of a., b, c., d in (3.35)
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ax2 x +---

u 2 1-2

b 6x 2 ex +---

, a6, b6 0

(3.36)

2 -x
c 6x 2e -x+

v 2 n_ 2

.dx2 -x +

The kernel C (x,x,i),

to (3.14):

Gc(x,x, ) = U(x)A(x)H

, c', d6 o 0

|| = 1, has a form similar

(x-x) + V(x)B(x)H(x-x)

where U, V are two by

are linear combinations

and A, B are matrices

two matrices, the columns

of u , u2, respectively

chosen so that

of which

vi, v2'

LOn ~L c = x 6(x-x)-I.

But L is self-adjoint with respect to xn dx (both

formally and by (3.24) as an operator), so that Gc is

too:

G (x,x) = G (x,x)

Hence A(x) = V(x) , B(x) = U(x)* and
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Gc = U(x)V(x) H(x-x) + V(x)U(x)H(x-x).

The only obstruction to completing our task is the explicit

identification of the columns of U, V in terms of

However, the condition that L Gc = n6 entails

U'(x)V(x)

Of necessity

- V'(x)U(x)

then, from (3.34)

1 n-2
- x I.

and (3.36)

(3.38) U(x) = au 2

for some a, b, c, d,

bu] , V(x) = [cv 1 dv 2]

none of which may vanish.

Since

G (x,x, n) = | n nG,(xIn ,xIn|In/|In|)

a verbatim repeat of the proof of (3.33) shows that

(3.39) Lemma:

|8 i8 3BaG (x
x -n c

x

uniformly in

G satisfies the estimates, for nI > 1,

Sei-,j a(l+ l)1-|aI +i+j e-x-x||nl

6 x x 6 , 6 ( x < x < F6 Further-

G_ has a classical expansion

(3.37)

u , v .

that

the

, x. 7)X

(in factmore, each term of
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a convergent series) as - > 0, uniform in x, x < C

and of lowest homogeneity I|0

We now have sufficient information to study the kernel

G(z,z) of (3.31).

(3.40) Lemma: G(z,z) is C when z X z and x, x > 0.

The singularity along the diagonal is classical conormal,

with an expansion involving (quasi-) homogeneous terms of

increasing degree in z - z; the first such term, up to a

~ -n
constant factor, is 1z-z| .

Proof: By virtue of the uniform symbol estimates of the

two previous lemmas, the usual arguments imply that G(z,z)

is CO in the stated region. The singularity along the

diagonal is the normal one for the inverse of an elliptic

differential operator. From our vantage point, though, the

symbolic behaviour of G(x,x,n) away from 77 = 0 shows

that when x = x G(z,z) has an appropriate expansion in

powers of y - y, the most singular of which has degree of

homogeneity -(n-1) - (-1) = 2-n. That the singularity

behaves thusly in all directions along {z = z} follows by

invoking the rotation invariance of G. Alternately one

might consider the Fourier transform of G(x,x+t,ri)p(t)

with respect to t (where p is a cutoff function

identically one near t = 0 and compactly supported in,
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say, (- , )). It is straightforward to show that

is symbolic in (T,77) of degree -2 (r being dual

and polyhomogeneous.

this

to t)

(3.41) Proposition: G(z,z) is conormal on {x = 0,

x > 0}, {x = 0, x > 0} and {x = x = 0, y s y}. Its

components each have expansions on either of these codimen-

sion one faces, with leading terms determined by the two-by-

two matrices a for {x = 0} and r for {x = 0} of

(3.32).

Proof: We prove all assertions only for the inverse

transform of the kernel G of (3.14), and assuming

k < n-. The methods apply equally well to the full

kernel, though the notation becomes more intricate.

Consider first the region near x = 0, x > e. From

(3.33) the integral

(xa) aaap f ei(Yy)-G (xxI) dr
x x Y y

n-1

= e ( -Y . (xax)e jA .,i ) a _ # ) 2 VII | I|)K V(xln|)dn
x

converges absolutely for any e,

1 ~%0 -1 lyl, IyI
a, P, and uniformly in

indeed it decreases
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exponentially there. Furthermore, it obviously has the

same regularity as x > 0 independently of these

various indices. This yields the conormality along

{x = 0, x > 0} since e was arbitrary. Similar arguments

apply to {x = 0, x > 0}.

For the corner, where both x, x - 0, it is

convenient to observe that we may assume |y-y| > e, since

the dilation invariance G(az,az) = G(z,z) allows for all

computations to be performed well away from {x = x =

y - y = 0}. Now, assuming only that x x, we may multi-

ply both sides of the equation above by (y-y) and re-

place ,~ by xO~ to get
x x

e i(Y-Y) ( 18  )

n-1

(x ) ((in)a p 2 1 (x1n|)K (x(|I |) d
x

as the new right hand side. (The integration by parts in

rj is permissible since the whole expression is to be

considered as an oscillatory integral.) Now, by choosing

7 so that -1 + e + j + |a| + 1| - |7| < -n, the

integral over |lii > 1 is convergent, whereas the integral

over I| 1 can only produce a C contribution.

Furthermore, the regularity of this expression is stable as
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x, x - > 0. Since y - y X 0, the conormality along the

corner is now established.

As for the various expansions, notice that when

x > 0, x > 6, the first factor in

n-1

S(x )K(xII)(xx) 2 (y-y)-n d

may be replaced by its Frobenius series

x < 1e, each term of this (convergent)
2'

grand decreases exponentially with 77,

series

. Again, provided

sum in the inte-

hence we have a

0

n-1+j~
x c.(x,y-y)

j =0

furnishing the asymptotic behaviour as x - 0. To

obtain this expansion uniformly down to x = 0, but still

assuming x < x of course, we may instead replace

IV(xJ77|) by the first N terms of its Frobenius series

plus an exponentially increasing remainder. Each term in

the resulting integrand exhibits symbolic behaviour, and

the first N summands still decrease exponentially in TI.

These provide the first N terms of the asymptotic expan-

sion; the remainder term is indeed lower order as may be

seen by multiplying it by (y-y) for |-r sufficiently
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large and integrating by parts so that the resulting

integral converges.

Applying the arguments of the last paragraph to the

full kernel yields the correct expansions in all compo-

nents, for these all are derived from (3.34), (3.35).

n n
Proof of Theorem (3.32): The lift of G(z,z) to IR+ R+

has the correct behaviour along At T, and B, as

demonstrated in (3.40) and (3.41). Indeed the only point

not yet discussed is the behaviour near the front face F.

However this is trivial since the dilation invariance of G

is equivalent to the independence of the lifted kernel on

R. Hence not only is G smooth on F, except at BAt0'

but the expansions at AtO, T, B all continue uniformly

down to F.

Let us now untangle the various definitions and iden-

tify both the operator induced by the Laplacian on 0Ak 0

T1/2 and its inverse. First recall that the operator P,

for which G is an inverse, satisfies

A~-k9_ -kp _k -kA(x- k ) = x_ (PG) <= P = x kAx-

G then is the kernel induced by the standard Green func-

k k k o k
tion G E F Hom(A ,A ). In fact, since A and A are

canonically identified over the interior we may let GA

act on 0Ak:
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(i(x,y_) ~k ~ ~-k ~ ~ ~ n ~
k f GA(x,y,x,y)x W(xy)x dx dy

x

-k ~ ~ -n ~
= x G(x,y,x,y) (x,y)x dx dy

i.e.

-k ~ ~ ~k
GA(xyx.y) = x G(x,y,x,y)x

(3.42)

AGA = xn 6(x-x)6(y-y).I.

To incorporate half-densities, use p and -r of

(2.28) and define P by

-k -k k+n/2 -k-n/2 n/2 -n/2
A(x W - ) = x (PW)- 4 P = x Ax - x Px

It is of course the operator induced by A on o k 1/2
®1T0

The corresponding kernel G E T r Hom(A A k) must satisfy

n/ 2Axn/2 '
A-(G -() = (x2 GA) = x 6(x-x)6(y-y)-I

-which is the kernel of the identity with respect to

1/2F 0 From (3.42) one may check that

n/2 ~-n/2
GA = x GA x

-k+n/2 ~k-n/2=x Gx(3.43)
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The kernel G transfers to Bn and is invariant

under all hyperbolic isometries there. The preceding dis-

cussion may be carried through on the ball, the only

difference being that x must be replaced by 1 - |w1 2  (w

is the Euclidean coordinate on B n). The appropriate

kernel inverting the Laplacian acting on, 0Ak Bn) 

1/2 n is
F0  (B )i

2 n/2 ~ ~ 2 -n/2
(3.44) GA = (1-Iw| ) G,(w,w)(1-Iw )- .

Suppose now that a is any two-by-two matrix-the compo-

nents of which regulate decay rates of the tangential and

normal components of a section of Hom(Ak ,oAk) -and

define the new matrix

a + q = (a. .i+q), i, j = t, n, q E R.
13]

In summary, we have proved

(3.45) Corollary:

-2,a-k+n/2,r+k-n/2 n o k 1/2
GA(ww)*t E KO (B A O

a, r as in (3.32). Furthermore

A(G A-) = (1-|wi 2 )n6(w-w)-r*I.
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D. Refined Mapping Properties

In this section we further refine the mapping proper-

ties of the Laplacian and its inverse. Two results are

proved; the first, a straightforward extension of Proposi-

tion (2.55), is valid more generally, but its statement and

proof are simpler in the present circumstances. Let us

define a form valued version of the space (2.54).

SE Aa (M,oAk),
phg

a = (a ,a )t n

= Wt + E n o k 00 12k near aM

a . k
C A phg~1(M) 1,

i = t, n.

The decomposition oAk _ oAk 0 A near aM is defined
t n

following the discussion in Chapter 2, Section C, and the

spaces above are invariant under coordinate changes only

when |at-anI 1.

(3.47) Proposition: Let f E

(n-k-ln-k) if k < (n-l)/2,

and a + q = (a +q), q E Z+,

a nok
is a unique w E A n )

phg

dg (Bn oAk), where a =

a = (k,k-1) if k > (n+l)/2

in either case. Then there

such that

Ao = f.

(3.46)
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Proof: Let p be a defining function for Bn, p 0,

and e the variable in 3Bn n-1. Now, the tangential

and normal components of f have expansions

i = t, n

j=0

a +q+j

tj 104=0
(log p)

near the boundary. Inasmuch as

A - IA : Aa a+1

for any a,

so that

we proceed by first choosing w. , i = t,n

I U. = f.
A 10 10

a. +q
o. = c: ()p (log p)
10 e 1

e =0

Then, assuming w im

so that

have been chosen, m < j, pick j
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I ). . =f.
A ij ij

N..
a.+q+j

(J) = jc UR(O)p 1 (log p)

e =0

The f:. are quasihomogeneous terms of the correct degree

which depend only on f and (A-IA)Wtm' (A-A)"nm'

m < j. All these equations are solvable by finite series

methods. Note only that uniqueness holds at each step

since each exponent a + q + j is greater than the

largest of the indicial roots of I --the operator in-

o k
duced by I on Ak. For the same reason the highest

power of the logarithm at each stage is never increased.

If co-~-E n o kIf L 0.. then Aw0 - f ~ g EC (B ) @ A .

(2.55) and (3.45) together guarantee the existence of a w

such that

AW1 = g.

Then A(o 0- 1 ) = f, as desired.

The other solvability result is of the same type as

(3.47), but with somewhat more singular right hand sides.

Recall from (2.17) that it is useful to think of the

quarter-sphere Sn as the ball Bn blown up around a

point w0 in its boundary. Analogous to the spaces (3.46)
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are

(3.48) d n OAk a(Bn oAk(348 Aphg (S++ 5AAphg B A

a = (at an)' = P n). An element is a section of OAk

which is conormal, with classical expansion, at the top and

bottom edges of the quarter-sphere. The two-vectors a, 3

determine the most singular terms in these expansions; as

in (3.46) we require |a t an ' IIt PnI = 0 or 1. The

analogous spaces over Bn are those with expansions at

aBn - {w0 } and at {w0 }. In particular, using the defin-

ing function r(w) = |w-w 0 |, the tangential component of

an element has an expansion

SN.

(3.49) ft 0ier t (log r) r 0

i=0 e=0

and similarly for the normal component. The * here are

functions of 8 E Sn-1, the sphere in the half tangent

space to Bn at w0 . We may now state the

a+q,p n o k +
(3.50) Theorem: For any f E dphg (B , A ) q E Z

there is always a solution

w E dajh(Bn oAk
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to Aw = f, so long as the entries of 3 are integers and

a is the 2-vector of (3.47).

The typically arduous proof involves removing the

additional singularity at w0  so as to reduce the problem

to (3.47). This step is essentially local, so we replace

Bn by R n with w0 corresponding to 0. In addition,
+0

replace A by N and regard w and f as sections of

k o k
A rather than Ak. The principle tool is the Mellin

transform, taken in the radial variable r, where z E R+

+ n-1
has polar coordinates r E IR , E S + . This is the

transform

u(r,8) - uM(co) = r C-1 u(r,O) dr

(3.51)

u(r,8) = (27r)-l r uM(C,6) dC.

In general, uM is only defined (and analytic) in a half-

space Re C < a, and so the integral defining the inverse

transform is taken over a line Re C = c, c < a fixed.

(For all facts quoted here regarding the transform, see

[23].) The constant a which limits the domain of uM is

closely related to the decay of u as r > 0. If u =

0 for large values of r and vanishes at a definite rate

at r =0, then uM is rapidly decreasing as

|Im C| - c, Re C fixed.
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The most important property of uM for us is that if

u(r,O) has an expansion as in (3.49), and vanishes for r

large, then uM continues meromorphically to the whole

C-plane, with poles only at C E P + Z7+ (if 0 is the

most singular exponent in the expansion). Furthermore, the

order of the pole at PO + i is N + 1. Conversely, if

v(C,O) is meromorphic in C with real poles and decreases

rapidly on each line Re C = constant, then

u(r,0) = fRe C=c
rcv([,8) dC

has an expansion as in (3.49) with the

term rs (log r) the location of a po

s occur for which Re s > c, and the

= s is one greater than the highest

s
rithm multiplying r .

Define the operator L by

exponent

le of v.

order of

power of

s in each

Only those

the pole at

the loga-

(N u)M = L uM

Clearly

L C = |z~ INgIz| .

Since N is invariant

this conjugate is also.

under the homothety z ) az,

Therefore it is differential only
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in the 8 variable; in C it is purely algebraic.

Furthermore, as an operator on S n-i ='...')

2
|9| = 1, n > O} it is in Diff 0  --with respect to the

boundary 9 = 0 of course. A short calculation shows

that its indicial operator is one we know:

(3.52) I(L ) = IP.

The present goal

equation L M M.

every value of C. I

its poles contribute

C (IR) equal one for

formally, the inverse

is to invert L , so as to solve the

Naturally, L is not invertible for

ts inverse GC is meromorphic, and

to the expansion of wM. Let p(r) E

I l 1/2, and define, at least

for L C

G f = lim M {r G(r p(r)f(@))}
t4O

f E U1 (Sn-1

dilation by t

formula we get

(3.53)

oAk, the inverse of N, and M

Substituting the integral for G in

~% ~% ~ (n-1~
G C f(e) = n H C (9,)f(9)(0)n) l d8

Sn-

where

the

this
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C dr
(3.54) Hf (0,0) = J G( ,To)T ~ .

O TO
n

For any value C at which this last integral con-

verges, G then serves as an actual inverse for L . In

fact, but for an insignificant difference, G is actually

a VO-pseudodifferential operator. Let us now examine the

values of C where (3.54) converges. Fix 8 A 0 and

notice that by the dilation invariance of G, G(8,TG) =

G(r 0,8). The components of G decays at various rates

as 7 - 0 and T - W. However, the extreme case is

G tt all other components exhibit 'more favourable' rates

n-i
of decay. Suppose k < 2 , then

tn-k-1, - 0
Gtt (,O

-G ev -(n-k-1)

Hence (3.54) converges when - (n-k-1) < Re C < n-k-1.

(3.55) Lemma: H extends meromorphically to the whole

+ n-i
C-plane with poles at t E n-k-i + Z if k < n2 1 and

± C E k-i + Z+if k > n. These poles are of at most

order two; the residues at ( = N of H and (C-N)HC

are kernels of finite rank.
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Proof

*3 ( T)

by le

di (T)

discu

: Choose a partition of unity

, where $ 3 (t) = 1 (T- 1 ). '0

/2, and *2 in (1/4,4). Write

tting H be defined by the int

inserted into the integrand.

2
H is entire in ? for 8 X 0,

ss later. By a change of variab

H (0,0) = $*(T)G(8

H (0,0)

1 = 0 1 (T) + 02 (r) +

is supported in

1 2 3
H -H + H + H

egral (3.54) with

which

les

singularity we

C d

n

= J 1(T)G(T9,8)T -0
n

Replace r by r+, A = + , in each of these expres-

sions. The family r+ of homogeneous distributions is

well known to extend meromorphically to C with simple

poles at X E -Z+; the residue at X = -N is

Now, replace G(8,T9) and G(T0,8) by their expan-

sions as T - 0. These expansions involve terms rm Gmo

rm log r Gm1 , where the Gme are kernels in (0,0) which

are polynomial in 8 or 8 for G(r8,O) or G(O,r8),

n-k-i
respectively. The expansions commence with nk, k <

, or T k-, k > n. Inasmuch as T X = r +m for

any X, m, and TX log T = dX(r), the integrals of each

term of the expansions should be thought of as a pairing of
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r+M or T +M log r with (T); the coefficient here is

a kernel of finite rank since it is polynomial in 9 or

0. Finally, since *1 (0) = 0, i > 0, only one or two

terms will actually be singular. Specifically, at C =

-(n-k-l+i), for example, H will have a pole resulting

n-k+i n-k-l+i
only from the two terms rn -ki (0,0), n log T

G (9, ) in the expansion for G(6,TO), and H is

regular. Similarly, the pole at ( = n-k-l+i occurs only

3 1
in H , and not in H . The proof is complete.

n-1
Since L G = ni) 6(0-) in the region where

(3.54) converges, it must continue to hold in the extended

domain, away from the poles, by the uniqueness of analytic

continuation. The kernel H essentially lies in

K-2,09,-1 over S n- X S n-, as we shall now demon-

strate. First of all, H is the pushforward of G (with

a few extra r factors) under the submersion (9,0,) -

(0,0). The restriction of this map to the submanifold {0

= 0} is still a submersion onto its image, and G(6,rO)

is conormal along {9 = 9, r = 1}, so H is conormal

along {0 = 9}. Next, H has the proper singularities

along the top and bottom faces, as may be ascertained by

setting the expansion for G into (3.54). Finally, the

one way in which H differs from the V kernels we have

already studied is that it has a logarithmic singularity at

The easiest way to check this is tothe front face.
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observe that the kernel GA of (3.42) is actually a

function of the hyperbolic distance between z and z.

This simplifies the calculations necessary to display this

singular behaviour, which are then straightforward and much

the same as those in [20], hence will be omitted.

Despite this one difference, H still enjoys all the

continuity properties discussed in Chapter 2. From this,

and using (3.52), the proof of (3.47) may be repeated to

show that

L = f E a+q n-1 ,Ak
( phg +

a n-i k
has a unique solution w E dphg S+ ,A ) depending

meromorphically on C. Its poles are precisely those of

Hr.

a+q,f no0 k
Proof of (3.50): Take f E sdq n (BA ) and transfer it

phg

to the upper half-space, with w0 = 0. Also, multiply it

by xk so as to get an ordinary k-form. Now, express its

components in polar coordinates, and take their Mellin

transform with respect to r. The new form, fM(c,e), is

meromorphic; its poles are at C E min(Pt ,Pn ) + Z+, and it

is still in d in 0. Let wM(c e) = G fM(c,9). It
phgC

too is meromorphic in C, and lies in Aa in 0. Byphg

virtue of the hypothesis that the P3 are integers, W M
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has poles at + ( E n-k-1 + Z+

min(13t'1n) + Z4.

Def ine

(or k-1 + Z+) and

Wi(rO) = (2 r)i f r&)M(,9O) dC

where the integral is over Re C = min(Pt' n) - 1/2. Then

No - f =g

vanishes to infinite order at r = 0, and upon being

transferred back to Bn, lies in A (Bn,Ak). Now apply

(3.47) to find w2 such that

N 1 W= gs

o- 92is the desired solution: Ng(w1 -&2)=f
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Chapter 4: Hodge Cohomology

A. The Parametrix Construction

We now have all the analytic tools at our disposal

necessary to construct a suitable parametrix for the

Laplacian on k-forms for a conformally compact metric

(1.2). As described in section D of Chapter 2, the con-

struction proceeds in three stages. Each of these involve

inverting model operators for A --the symbol, the normal

operator, and the indicial operator at the diagonal, the

front face, and the top face of M x0 M, respectively.

The first step uses the symbol calculus of Theorem

(2.41), but is otherwise identical to the usual microlocal

procedure. Thus we seek an operator

E EP 2 (M;oAk 1/2

the kernel of which is supported quite near AL in

M x 0 M, and of course such that

-00
(4.1) Ag E0  ' Q0  Q 0  0

-2 o o
First choose E,0 E 0 satisfying a2 (Ag) 0- 2 (EO00 )

1, which is possible by the VO ellipticity of A .
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Then

A E -I = -Q E q1.
g 0 ,0  0,1 0

Similarly, by induction, we may find EO'j 0 such

that

A E - Q = -Q E 0

j = 1,2,---. Obviously it may be assumed that the kernel

of each E0 'j, and thus QO,j, is supported near At0'

Now take

E0~ EOj

and the first step is complete.

Next we seek an operator E1  for which

(4.2) A E1 = QO - Q1

where the kernel of Q vanishes to infinite order on the

front face F. Although x(Q 0 ) is supported well away

from all other boundaries, it is not possible to choose E

and Q with this property. In fact, we will find that

(4.3) E E *O 1 E R 00
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where a' = a-k+n/2, T' = T+k-n/2, a and r the matrices

of (3.32). We note that it is precisely at this step where

the proof breaks down in the middle degrees k = n/2,

(n 1)/2.

As in the first step, E is obtained by an iterative

process. The first term E1,0 is chosen to satisfy

N p(A )N p(E1,0) = NP (QO)

for each p E OM. In fact, by (3.47) there is a function

N (E l0) E d T' (F ) @ T1/2
p 10 phg 0

solving this equation, and then, by the exactness of the

sequence in (2.45) there is an E1,0 with this function as

its normal operator. Thus

A E - Q = -Q' E R- 0 ,''T

g 1 , 0 Q 0 Q ,1 0

It is crucial to observe now that Q is actually

slightly better:

Q' E R 0-"a'+1,r'
1,1 0
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*i Qj = xQ' 1 1, Q '', 1 E q1cI 0 ,T

The reason for this gain is that the normal operator of A
g

annihilates the top order term of the asymptotic expansion

for E1,0 at the top face. Indeed, this is so because

Np(E 1 ,0 ) is given by applying the Green function for this

normal operator to Np(QO) (which is supported in the

interior), and now (3.47) implies that E1,0 has the

correct top order term.

To get further terms in the series for El, let us

assume that, instead of a Taylor series in R, we let

so that

g 1 L'- g 1,j*

Define Q = kQ" .; then the inductive step is to solve
1, j x 1, jx

A E - Q =-xQ"
g 1,j 1,j 1,3+1

where

-Q 0  , a'+1, '-j , -0 ', T'-j+
1, j E 0 Q1,j 0
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This has already been accomplished for j = 0. For greater

values of j, we solve this equation by first solving

N (Q a'.+1,T'-j 0 k 1/2
N (A )N ( = N(Q E d-j) C T' (F ; A kTr ).p g' p 1,j p 1,j p 0

By Theorem (3.50) an appropriate solution may indeed be

found; its extension into the interior of M x 0 M then

satisfies

A E . - Q .= -RQ .
g 1,j 1,j ,+

1,j+l 0

However, by reasoning as above-and now the point to note

is that by hypothesis the top order term in the expansion

for Q . is of type a' + 1 and so doesn't interfere
1,j

with the argument-we actually have

A E .- =-xQ
g 1,1, 1,+

l,j+l 0

as desired. Finally, since E E C ,T j

xE .E 9-0,a ,T1,j 0
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and

1 L X'j , 1 j 0 0, ' T

This E solves (4.2).

The final step of this construction is to find E2 E

R - a ,r such that

(4.3) A E 2 ~ 1  2 Q R .

This is quite easy: one merely solves for each term in the

expansion at T using the indicial operator, cf. the proof

of (3.47). This completes the construction.

Set

E = E1 + E2 + E3'

(4.4) Theorem: E E %k0 2',T' (M;oA )1/2 is a parametrix

for A
g

O - 000T' o k 1/2
A E =I -Q, Q ER~ (0M0Ag 00

(4.5) Corollary: Q : L2 ( TAk ) 12 L ( O ) is

compact, and thus
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A L2 ( 0A k1/) >1 L2 ( A k1/2) is Fredholm.
gOO

B. Proof of the Main Theorem

It follows from Corollary (4.5) that the harmonic

space

A k = {w E L 2 k dg) : A o = 0}
g

is finite dimensional. It remains for us to identify it in

terms of the topological cohomology of M. First observe

that the adjoint of the remainder

Q ER' ,o"(M; k 1/2oU (A®0 0 .

To double check the

notice that

order of x(Q ) on the top face,

E A = I -
g

implies

(4.6) W E Ik * Q*(Weii) = W-P.

Thus the order a'

that

is the only one possible which ensures
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I(A ) = 0

modulo terms of one order higher.

Remove the density factor and regard w as a section

of the ordinary form bundle. From (2.55) and (4.6)

2 2 phg ,Ak

(4.7)

(n-2k-l,n-2k) k < n-i

a =

(0-1) k > n+12

These explicit asymptotics of L2 harmonic forms, together

with various consequences of the existence of the param-

etrix, allow us to identify Xk with the deRham cohomology

spaces of M.

Let us first briefly review the deRham theory on a

compact manifold with boundary. There are, of course, two

flavours of cohomology to consider, the relative and the

absolute, and these are dual. Inasmuch as M and its

interior share the same topological cohomology, it is

reasonable to let the absolute cohomology be defined by

Hk (M) = {WE 2k (M) : dw = 0}/{da :r E Mk- )I.
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In this equality we must specify what sort of regularity-

and boundary values-these forms should possess. In fact,

it suffices either to let W and T1 be Co in M or

just distributional (currents), cf. [9], with no boundary

constraints. However, when proving the Hodge theorem for a

nondegenerate metric it is more convenient to use smooth

forms on M which satisfy 'absolute' boundary conditions,

cf. [26], which we shall not define here since we do not

need them. On the other hand, the relative cohomology not

surprisingly always requires constraints at the boundary.

Hence, it is well known that we may compute Hk (M,M)

using the complex of forms satisfying relative boundary

conditions

k {wE C (M) i * = 0, dw = O}
H (M,c3M) = co k-i

{dT : q E C0 (M), i W = O}

Here i :M - M is the inclusion. We could equally

well use forms supported in the interior of M, as shown

by an argument using the chain homotopy operator in the

proof of our next theorem.

We need to define the relative groups using somewhat

less regular forms. There are two spaces of distributions

on M, briefly mentioned already in Chapter 2, but see

[22] for more details. Let C denote the smooth func-

tions vanishing to infinite order at BM and let
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C (M) = (C (M))', C (M) = (C (M))'.

These are the 'extendible' and 'supported' distributions,

respectively. If M is an open extension of M, then the

former space contains the restrictions to A of arbitrary

distributions on M, while elements of the latter are

distributions on M actually supported in M. The

sequence

0 --- + C~w(M,aM) ---- + O~(M) --- + C~M(M) 0

is exact, the initial space being of distributions on M

supported in 8M. One of the few differences between these

spaces arises by comparing how differential operators act

on them. As may be checked from duality, an extendible

distribution is to be differentiated in M, the result

extending to the boundary by continuity; a supported

distribution is differentiated as a distribution on M, so

that boundary layers may well occur.

Having stated these facts, we now come to the point of

the discussion. It is the case (which unfortunately is not

to be found in the literature) that the absolute and rela-

tive cohomologies of M may be computed from the complexes

of forms with values in C and C , respectively. We

mention all this to justify a minor technicality concerning

regularity in the proof of our
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(4.8) Main Theorem: There are natural isomorphisms

Ak 3 -- [w] E H k(M,OM) k <

k k n+1
22

Proof: L2 harmonic forms are closed and coclosed since

n+1 k
the metric g is complete. Hence when k > -, W k

2
n-i

represents an absolute cohomology class. If k (2

then from (4.7) both components of w vanish at 8M. We

. -00

may then consider it as lying in C (M), and it is still

closed in the sense of supported distributions. Thus w

represents a relative class. It will suffice to show that

below the middle degree the map is injective, while above

the middle degree it is surjective.

n-i k
Suppose then that for k < n2 1, o E f , we have

W = d, i * = 0.

Choose finitely many coordinate patches near 8M such that

h = 0, h = 1, and the coordinate zn is defined glob-
an nn

ally near the boundary. Then, since 6 ce = 0, we compute
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IoII 2 = <dn,w> - <I,6 9 w> = d( A * W)
g JMg

= lim

F-+0 {z n=6}

2k-n
h

By assumption on the coordinates, only 1t and wn

(-*h t enter into this last integral. We know that

W = O(pn2k log p)

but it is less clear at what rate Tt vanishes.

We study this issue by using the chain homotopy opera-

tor of [26]. Thus if

w = W dy + W dy A dx E Ok

and w1 (y,O) = 0, then we define Rw = (Rw) dyi by

%1

(Rw) = (-1) k-1 J w (y,tx)x dt.
This is actually coordinate independent, and satisfies

dRw + Rdw = w

so long as i w = 0. Note also that i*Rw = 0.
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If w is closed then w = dRw in the neighbourhood

of the boundary where Rw is defined. If P is a func-

tion supported in this neighbourhood which is identically

one near aM, then

w - d( PRw)

represents the same relative cohomology class and vanishes

near the boundary. We are assuming that this class is

trivial, so there exists a form j3 for which

i * = 0, w - d(NPRw) = dP

which is C up to aM. This shows that we may take

n = P + %pRw

and so

lit = O(p log p).

The limit above must now vanish, hence w = 0 and the map

into relative cohomology is injective.

n+1
On the other hand, when k > -+- take a smooth

representative a for an arbitrary absolute cohomology

class. Obviously a is square-integrable with respect to
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p2k-n since |a 2 is bounded. We know that A has

closed range with a finite dimensional complement, so we

may write

a = A 13P + w

for some # E L 2k and w E * . Obviously 1 is C in

the interior of M, and since da = 0 it follows that

a = d6 1 + o.

Hence [a] = [o] and the theorem is proved.

As the last part of this proof shows, we have actually

proved something about the L2 cohomology spaces discussed

in the introduction.

n-i n+1
(4.9) Proposition: For k < 2 or k > 2+1 we have

2k k
L 2H k

and so, in these degrees, L2Hk is finite dimensional.

Proof: We have established a strong Hodge decomposition

for these values of k:
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L2k (M,dg) a = d6 f3 + 6 df3 + w

k
W E I. a is closed iff the second summand vanishes, and

2 k
so [a] = [w] in L2H

The existence of a parametrix away from the middle

degrees implies that the spectrum of A on L 2k is

bounded below by a positive constant for these values of

k. However, when k = (n+l)/2 -so that the dimension n

is odd-then judging from the special case IH, cf. [11],

the continuous spectrum should in general extend down to

zero, and A would not have closed range. About the

final case, when n is even and k = n/2, we can reach a

definite conclusion.

(4.10) Proposition: n/2 is of infinite dimension, but on

the orthocomplement (n/ 2 ) the spectrum of A has a
g

positive lower bound. Hence the range of the Laplacian on

L2 n/2 is closed, a strong Hodge decomposition holds, and

2 n/2 n/2

Proof: Since L 2n/2 (M,dg) = L2n/2 (M,dh) and 6 = p 2h

on n/2 (the space n/2 depends only on the conformal

class of the metric), it is necessary only to solve the

elliptic boundary problem
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A = 0, io = pi E C 0 n/ 2 (aM), i *6 h = 0

for the nondegenerate metric h; each solution is C

hence in L2 (dg), and an infinite dimensional subspace of

Wn/2 is thereby obtained.

The argument for the next part follows [14] closely.

Choose e > 0 so that [0,e] does not intersect the spec-

n/2+1
trum of A - (the superscript indicating the degree of

g

form on which A is supposed to act). Now suppose

n/2=((A )a # 0.
g

By the assumption on e,

n/2 n/2+1
dw = dK(A )a = ,/(A )da = 0

g g

6 g = 6 x(An/2 )a = x(An/2  )6 a = 0
g g g g g

and so w E i(n/2. This proves that

spec(A n/2) [0,6] = {}
g

as desired.

The last assertions are now immediate, and we are

done.
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It seems quite likely that a fairly complete spectral

picture of the Hodge Laplacian for a conformally compact

metric in any degree could be obtained from refinements of

the analysis in this dissertation. Perhaps this issue will

be addressed later if it seems warranted.
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