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Abstract

A sclf-consistent theory of phase space granulations, called “clumps”, has been derived. These
fluctuations are produced when regions of different phase space density arc mixed by the fluctuating
clectric ficlds. The source and turbulent scattering operator for these fluctuations is obtained through a
renormalization of the onc and two point equations for a Vlasov plasma. We treat throughout the case of
clectrostatic turbulence.

Our cquations are similar to the “clump” model of Dupreel?! and the direct interaction formulation
of Orzag and Kraichnan!'”), and Dubois and Espedall'!lThey differ from Ref. [2] in that self-
consistency is included in the formulation. Many aspects, however, of the underlying “clump” model
remain the same. The equations in Ref. {11] are similar in that they contain many, but not all, of
the terms (nccessary for conservation laws) which are generated through our approach. If we neglect
the “clump” contribution then the cquations reduce to the “coherent approximation™ described by
Krommes and Kleval*3. Our solution method is based on the concept of two disparate time scales which
allow us to treat the cqual time two point cquation as an initial condition for its two time counterpart.
The picture of a “test” clump emerges quite naturally within such a framework. The source term for the
clump correlation function is identified and certain intrinsic properties investigated. The anaylysis of the
cocflicients in the renormalization is examined with reference to conservation laws such as energy and
momentum. The self-sustaining criterion for such fluctuations is addressed in a two specics plasma and a
novel state of turbulence is observed where a non-linear instability is generated before the boundaries of
lincar instability.

Thesis Supervisor: Thomas H. Dupree

Title: Professor of Physics and Nuclear Engincering



Acknowledgements

1 would like to thank Professor Thomas Dupree for his guidance, encouragement and criticism over
the past two and a half years. His ability to focus on physical concepts and bridge the gap between
mathematics and physics has been invaluable in the development of this work. As a result the process of
bringing this thesis to some completion has been an exciting and enjoyable experience.

1 would also like to thank Dr. David Tetreault for number of helpful discussions. In matters
computational, Dr. Robert Berman provided help when help was needed. His FFT code and several
suggestions for numerical schemes were eﬁtrcmcly useful. JGA, NSF, and MLM, as officc mates at
various stages in this venture, have greatly reduced the hardships of graduation!

Susan and Count Yorga do not nced to be told.

This document was typed (by me!) using TiXand the EMACS editor on the ITS system at LCS.



To my Mother and Father



Contents

Acknowledgements . . . . . .. L L L L e e e e 3
TableofContents . . . . . ... .. ... ... ...... e e e e e e e e e e e 5
Listof Figures . . . . . . . . . . . o e e e e 7
Chapter 1 Intreduction . . . . . . . . . . . . . . e 8
Chapter2 OnePointFquation . . . . . ... ... ... ... .. ... ... 17

1. OnePoint Renormalization . . .. . ... .. .. e e e e e e e e 18

2. The Equation for the Average Distribution function . . . . . . . ... ... .. 28

3. Potential Energy Conservation . . . . . . . . . o . o oo e e 29

4. Interpretationofthe Equations . . . . . . .. . .. ... oo 31

Chapter3 Two l’ointvl’quation .............................. 34

1. Phase Space Conservation . . . . . . ... . . vt i i 34

2. The Singular Behaviour: An Alternative Perspective . . . . . . . . .. ... .. 38

3. Two Point Renormalization: TwoTime . . . . . ... .. ... ... ... .. 41

4. Two Point Renormalization: EqualTime . . . . .. ... ... ... ... .. 43



Chapter 4

Sl e

Chapter 5

Eal S

Chapter 6

1.
2.

Chapter 7

Eal SO A o

Appendix A

Appendix B

Appendix C

—6—

Properties of the Two Point Equation . . . . . . .. ... ... ........ 49
Equivalence to the BBGKY Hierarchy . . . . . . ... ... ... .. .... 51
SourceTerm . . . . . . . . . e e 54
Mixing Length Theory . . . . . . . e e 54
General PropertiesofaSource Term . . .. . . .. oo 000000 56
OneSpeciesSource Term . . . . . . . .o o o 59
Two SpeciesSource Term . . . . . . . .. .. o Lo 61
Solutions . . . . . . . e e e e e e e e e e 64
OneTimeEquation . . .. .. ... ... .. ... . ...... e 64
TwoTime Equation . . . . .. ... . . .. e 68
Dubois & Espedal Solution . . . . . . .. ... L oo 70
One PointReview . . . . . . . . . . o i e e e 14
Fluctuation Sclf-lntcractirc'm: o, 77
Stochastic AccelerationProblem . . . . . . . . .. ... . oo 78
Gravitational Instability . . . . . . . . . . . . o e e 79
Role of Clumps in Ion-Acoustic Turbulence . . . . . .. ... ... .. ... . 83
The Basic Equation . . . . .. ... ... .o 84
Method of Solution . . . . .. ... ... e e e e e e e e e e e e 87
Results of Numerical Solution . . . . . . . . . . . .« o v oo 88
Approximate Analytic Solution . . . . . ... ... oo 95
Transforms . . . . . . e e e e e e e e e e e e e e e e e e 100
Perturbation of the Lenard-Balescu Equation . . . . . . ... ... ... ... 104
ProgramlListing . . . . .. .. ......... e 110



References

Fig. 3.1
Fig. 3.2
Fig. 4.1
Fig. 6.1
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7

Time History of (ff) Solution . . . . . ... .. ... ... .. ... . ... 41
Iteration of Two Point Equation . . . . . ... .. ... .. ... ...... 47
Phase Space Conservation . . . . . . . . .. ... oo 55
Distribution Function for Two-Stream Instability . . . . . . . ... . ... .. 80
Critical Drift Velocity vs TemperatureRatio . . . . . . . .. ... .. .. .. 89
Clump Regenerationform;/me =14 . . .. ... ... .. ... .. ..., 90
D_asaFunctionof Z_ . . . o v v e e e 91
Countor Maps of Correlation Functions . . . . . . .. ... ... .. .... 92
Cross-Scction for Electron Distribution . . . . . . ... ... ... ... 93
Cross-Section for Ton Distribution . . . . . . . .. .. ... .00 94
Evolution of Diffusion Coeflicient for UnstableMode . . . . . ... . ... .. 95
Clump Regeneration from AnalyticResults . . . . . .. .. ... .. .. .. 98



Chapter 1

Introduction

It has been theoretically predicted that non wave-like fluctuations, called clumps!! ™), are an in-
tegral element in Vlasov turbulence. These particle-like modes can be viewed as phase space granula-
tions arising from the incompressible nature of the flow, Since the Vlasov equation conserves phase
spacc density along particle orbits, regions of different density cannot interpenetrate. The imperfect
mixing leads to a graininess of the distribution function with a resulting potential spectrum. This
spectrum can in turn rearrange the density gradients and in the process regenerate the turbulence.
Qualitatively one can argue that if the phase space volume of a clump is sufficiently small, then the
particles within the clump will be scattered turbulently as a group. This group will persist for a charac-
teristic time period (the clump lifetimel2!) before the orbits of the individual members diverge. Thus one
can view a clump as a macroparticle whose effective charge decreases with time. If the spectrum is to
be self sustaining then this decay has to be balanced by an energy source. The problem can therefore
be analyzed in two steps: the first seeks the characteristic lifetime of the fluctuations while the second
investigates their source. In a manner analogous to discrete particle calculations, the relevant quantity in

the theory is the sclf correlation function.

In this work we address two distinct but nonctheless closely related problems. The first deals
with the sclf-consistent renormalization of the Vlasov cquation, while the sccond treats the clump
problem within such a framework. In a turbulent plasma a “test” particle immersed in the system
will induce fluctuations not only from the average background, but also form the existing fluctuations.

This process occurs through non linear coupling and proceeds indefinitely as induced fluctuations
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couple back. A number of self-consistent renormalizations have been proposed in which the effect

091 {n particular Orzag and Kraichnan'%,

of clumps has been neglected or not explicitly dealt with
Dubois!'? and Espedall’], and Krommes!"*~14l have applicd various versions of the direct interaction
approximation{s_gl to the Vlasov problem. Similarly Rudakov and Tsytovich!'®l, developing the work
of Kadomstev!!®), have obtained analogous equations. Our approach develops the work of Dupree and
Tetreaultl®! to include self-consistency and a contribution from a “discrete™ quantity such as clumps.
This important contribution leads to a set of cquations!”l whosc physical content and properties are quite
different from the “standard™ weak turbulence renormalizations. If, however, we neglect the clump
contribution the equations can be shown to reduce to thosc in the cited references.

Mathematically we can trace the origin of these fluctuations in the following way. Let us assume

that the fluctuating part of the distribution function obeys an equation of the form

(g ot cu)afu) — — L B(1) - (1) (L1)

Here 8E is the fluctuating electric field, (f) the average distribution and Cy; is a schematic repre-
sentation of a “collision” operator arising:f=:s#collective interactions. This collision integral represents
a sclective summing of a certain subset of non-linear terms and physically accounts for the perturbation .
of 8f away from its ballistic orbit plus other non-lincar cffects. In the absence of such a renormalization
conventional perturbation analysis gives risc to a resonance denominator (w—kv), where w and k
describe a wave exp #(kz—wt) and v is the particle velocity. This resonance, which is fundamental to the
damping and growing of waves also leads to time sccularities in the individual terms of the perturbation
analysis. One of the goals of the renormalization is to climinate these sccularities which are due to the

vanishing of the lowest order operator .

0 d
ot +vlc?_z£ (1.2)

at a wave particle resonance. The carliest treatement!!”) of such an operator (Cy;) resulted in diffusion
of 61 in velocity space. This followed quite naturally from Quasi-Lincar (8] theory where the average
distribution also obeyed a diffusion equation.

While such an approach resolves the singular behaviour of (1.2) other secular contributions arise.
In particular the strong mode coupling and harmonic distortion at a wave particle resonance is not

properly described. If we consider the distribution function as a superposition of velocity. streams then



—10—

each stream will be resonant with a wave going at the same speed. This interaction cannot be described
by a conventional perturbation scheme since the stream quickly develops a number of higher harmonics
with complicated spatial dependance. These then get propagated ballistically at the strcam speed. An
analysis of such a problem could in theory be carried out in a one point frame. The perturbations of
the distribution function, however, are extremely complicated and of a random nature in such an inter-
action. It is thercfore more appropriate to investigate this contribution through a statistical framework
which deals with the correlation of two points at close separation. In other words we need to develop a
theory for the ensemble averaged two point correlation function (6£(1)6(2)).

One can casily obtain an equation (incorrectly as we shall see) for the correlation function
(6f(1)61(2)) by multiplying (1.1) by 8(2) and vice versa for the equation governing §5(2). Ensemble

averaging we get

( +1 +vz -i—Cu—I-sz) 1)6f(2)) =

(1.3)
q 9 iy — 4 9
2 (SE(1)87(2) 5o -{1) — @) ()
The lowest order operator is
= + Vig + vz-—— (1.4)
Time asymptotically and in a spatially homogencous system it reduces to
6 .
(i —w)— (1.5)
(z_ = z1—z2). In this case the divergence occurs because two points coming arbitrarily close to each

other will experience the same forces and follow the same orbit. As such one would expect the renor-
malization to account for the interaction of two points which are very close to each other. If we take
(1.3) as our renormalization we find that the LHS operator states that two points will always move
independantly of cach other whatever their spatial and velocity separation. On physical grounds this
cannot be correct and we would expect some terms which specifically correlate the interaction between

points 1 and 2. Let us call these Cy9 and Cy; so that (1.3) becomes
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a 49 d
(2 + 02+ + Cut O+ Cia-+ o )2 =

T

(1.6)
q e} q 3
—5(51“3(1)51'(2))5&(1‘(1)) — 5(5E(2)5f(1))(§;2‘(f(2)>
We derive an equation of this form in Chapter 3. Let us rewrite (1.6) as
o)
(5 + s Jertes) = s (17)

where S represents the RHS of (1.6) and T represents the renormalization plus the convective terms.
We show that in the relative coordinate system z_, v__ (v = vy 4= vy, T = 71 3= 22), T12 — 0 as
z_,v_ — 0 while S docs not. Conscquently (6/(1)5/(2)) is a very peaked function of {z_, v_}. The
difference between (1.6) and (1.3), which represents the “clump”, occurs in a very locallized region of
velocity space where the C;; terms dominate v_8/8z_. 1t is clear that (1.3), and by default (1.1), does
not contain this information. Thus we must conclude that there exists a set of terms in the one point for-
mulation which are not resummed by conventional renormalizations. Indeed we show in Chapter 3 that
the clump contribution can also be viewed as a secular contribution arising from a set of “incohcrent”
terms which arc nominally of second order in the perturbation analysis. If f* (“coherent”) is the solution
to (1.1), the total solution must contain an added contribution f (“incoherent”) which generates the
cross operators (Cj;).

While different regimes of turbulence have been characterized in the literature!™, we will be
primarily concerned with the so called weak turbulence limit. By which we mean that the spectrum
auto-correlation time (7.) is much less than the trapping time (7;,). 7. and 7, are characterized by
~ (kAup,)~" and =~ (kv,,)~! where v}, = Dr,. v, is the trapping width in velocity space, Avpy, is
the spread in phase velocity of the fluctuations, k is the average wavenumber while D is the diffusion
coefficient of Quasi-Lincar theory. g and m are the particle charge and mass. These two time scales are
closely related to another physical concept: if the “clump” is trcated as a macro-particle of typical width
v, then 7, is the slow or “long” time scale associated with the decay of clump structure. 7, on the
other hand, represents the fast or “short” time scale which is associated with the ballistic‘ motion of the
centre of mass of the clump. These time scales have to be disparate for the concept of a clump as a fest
particle to be meaningful. If the condition 7. < 7, is satisfied then the decay of the clump will occur on

a much slower time scale than the decay of the (two time) autocorerelation function. It is then approriate
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and expedient to handle the problem in a manner similar to the test particle model of Rosenbluth and
. . ~2 . .
Rostoker20]. In Fourier space, if the clump generates a spectrum (@), then the total shiclded potential

is given by

~2
COMES 9 d (1.8)

el
where €, is the non-linear diclectric which we derive in Chapter 2. The symbol (AB), , is a Fourier
transform on the relative coordinate z,—zy and ¢;—t» (where we have assumed temporal and spatial
homogeneity).

We start in Chapter 2 with the derivation of a renormalized, self consistent, one point cquation
for an infinite spatial and temporally homogencous electrostatic plasma. We introduce the incoherent
contribution f as an initial condition. The properties of the resulting equations are analyzed in
the framework of conservation laws such as energy and momentum. In the long wavclength limit
the “collision” operator reduces to a perturbed Fokker-Planck operator which conscrves energy and
momentum. An unperturbed version of this collision operator leads to a Lenard-Balescu like equation

L

for the average distribution!!]

d J g 4
(5 -+ C%F- 51_)D6_v)<f) =0 (1.10)
Here the drag (F) is due to the reaction of the shielding cloud on the “discrete” clump while the
diffusion (D) results from the shiclded clump spectrum. Chapter 3 continues in the same vien with a
derivation of the two point equation. We make use of the two time scaling (7 3> ) to decouple the two
time, and cqual time two point cquations. The result is a Markovian theory in which we use the equal
time equation as an initial value for the two time equation. The analysis is carricd to nominally second
order in the electric field strength. The important property of phase space conservation (T2 — 0 as
z_,v_ — 0) is retained in the final equation: this result is independant of the Markovian assumption.
We can compare, schematically, the equations we derive to previous formulations in the following

way. Duprec’s original theory!"'2! and subsequent papers'?! =231 considered solutions of the basic equa-

tion

(g + T?z)(ﬁféf) =8 -
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The zero superscripts refer to stochastic acceleration variables. For example Tp might include diffusion
in the relative coordinate system while S® would be the (§E§f)8/(f) term evaluated through the ap-
proximation f = f¢ only. The self-consistent approach which treats f on par with f¢ changes (1.11)

to

(% + 70+ Tiz)(r?fﬁf) =505 (1.12)

1, is a contribution to the T(]’2 operator arising from the perturbation of the medium through the
coupling of §f to the back ground fluctuations. A systematic analysis of these contributions is carried out
in the long wavelength limit where numerous cancellations between these terms and the T?Z operator
are demonstrated on the basis of momentum and energy conservation.

The analysis of the source S = S+ S* is investigated in Chapter 4. A useful identification is made
between the source and the relaxaxtion of the average distribution. This allows us to show that for a one
species, one dimensional plasma thé source term (which now resembles a I.enard-Balescu operator) is
approximately zero. This result is directly related to the fact that in a onc dimensional problem clectron-
clectron (or ion-ion) collisions cannot relax the average distribution because of momentum constraints.
Important cases exist where it is ron zero. For example, in a two species plasma or for a spectrum
containing normal modes of the system. The latter ensures that the one dimensional collision operator is
none zero, and in this case the procedure can be viewed as a correction to Quasi-Lincar theory.

To complete the analysis we require an equation for the two time correlation function since spectral
functions such as (#2), , require a knowledge of (#(t;)¢(t2)),. This last quantity appears in the evalua-
tion of the C;; operators. Our basic equation is obtained quite simply by taking (1.1) and multiplying by
81(ty) to obtain

(a% + i a% + G |)<6f(tl)6f(tz)) = —%(6E(t|)6f(t2))5%(f) (1.13)

This equation is valid for £; > ¢, > 0 and is solved with the solution to (1.12) as an initial condition.
(1.13) and (1.12) underline our approach and solution technique. We have neglected the cross operators
in (1.13) but not in (1.12). Physically this approximation is related to the idca that the clumping
phenomena is intrinsically an egial time mechanism. It is only when two particles sce the same electric
field at the same point in space and time that a strong correlation will exist between them. Furthermore

this effect is a secular contribution arising from the steady state (or time asymptotic) solution of (1.12).
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Thus in principle we could solve (1.13) with Lhé cross terms but we would need to look at the solution as
ty,ty = Cwithij—t K w;'. Instead we treat the initial value problem which considers the cqual time
and two time equations as independant entities. In such an approach the equal time equation gencrates
the incoherent response which then gets propagated through what, we will show, is essentially a ballistic
operator to obtain its fast spectral dependance.

In Chapter 5 we consider the formal solutions to the set of equations (1.12) and (1.13). We can
anticipate some of the results in the following intuitive way. The distribution f is conserved along a
particles orbit. Thus the value of f at two neighbouring points may be quite different since these points
might originally have been widcly separated. Let go(v, vy, t) be the Green’s function which solves the

cquation governing the average distribution function

4.0

(O% + %F - %D%)Q"(U’ v, t) = 6(v-w) (1.14)

and consider a small volume of phase space z_, v_ located at z, v. We define 7 as the characteristic e-
folding time of the solution to (1.12) (i.e 7 = Tﬁ'). Physically, if we follow the orbits of two points
located about z, v back in time, all the particles within z_, v_ will move together for a time Ta(z—, v_)
(at which point they will be at coordinate vg). Further back in time the orbits will have diverged and
the particles will move independantly. Thus the density in the volume z_, v_ at time ¢ and position v,
is approximately cqual to the density of the average distribution at an carlicr time t—7 and position
vp. The coordinate v is distributed according to the Green's function gy thus we can write for the

fluctuations at v, ¢

(6ff) = / dvogo(v, v, Tet) fa(v0, t—Tet) — fo(v, 1) (1.15)

If (D74)"/? & Avpp, vy, Where vy, is the “thermal” or characteristic velocity associated with the

average distribution we can expand gy to obtain the operator relation

9p9 a] (1.16)

/d’UOQU(’U, W, Tcl) ~1 + Tcl[é—v—Dé; —_ %F

The clump contribution is obtained by subtracting the solution to (1.3) from (1.15). If the characteristic

e-folding time of (1.3) is 7, then the same arguments lead to
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(Ff) = [ta — m][(%D(% — ;—UF]f?, (1.17)

We can write (1.17) as [7,-7,,][S® + S*] where S° is the diffusive part of the source and S° is the
friction term. We obtain an expression similar to (1.17) in Chapter 5. We must remember that (1.17) is
an cqual time result and to obtain spectral functions we need the two time version of (f7]0). We show
that (f7]t) is obtained by propagating (1.17) through gi(v, vo, t) which is a spatially inhomogeneous
generalization of the gy(v, v, t) operator. In the long wave-length limit g, is a ballistic operator renor-
malized by terms which are cquivalent to a simple iterative solution of a Fokker-Planck equation.

This system of equations is extremely complicated and at all stages we attempt to prescnt models
which explain the underlying physics. To this aim the picture of clumps being generated by the mixing
of the average gradients is extremely useful. While the existence of such a mechanism can easily be
justified on physical grounds some confusion has arisen on the magnitude, hence importance, of such
an cffect. In particular we examine the conclusion reached by Dubois er al."™ who in their treatment
of a version of renormalized equations for the Klimontovich system conjectured that these fluctuations
were down an order of $2 compared to the cohcrent response. The nominal ordering of the expansion is
fully investigated and we show how to recover the correct ordering and source term in the limit of small .
T_,v_.

We focus on some models of the self energy interaction in Chapter 6. In this context sclf energy
is seen as the ability of a clump to act on itself because of its finite size. In other words the electric
fields generated by the structure acts on different points within the structure altering its lifctime. The
discussion is more qualitative than quantitative due to the complexity of the effects taking place.

In Chapter 7 we give these results a more tangible perspective. The analysis of an electron ion
plasma, in which a current exists due to an electron drift, is carried out in a simplified version of the
“test” clump picture. Model equations are used to describe the formation of ion and clectron clumps.
These interact through a two species source term which couples ion and clectron density gradients. We

treat an equation of the form

(g + T?z)(5f6f) =545 (1.18)

The question of regeneration is addressed through a self consistent numerical caiculation. Results of the

simulation in the pre ion-acoustic regime (T/T; = .1, 10) indicate that the clump spectrum regencrates
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at electron drift velocitics which are appreciably below (=~ 509%) those necded for the onset of linear
instability. An approximate analytical result is in agreement with these predictions. |

In conclusion we summarize the salient features in this work. A self-consistent renormalization of
the one point and two point equations in a Vlasov plasma is performed through a procedure analogous
to the direct interaction approximation. The singular clement arising from phase space conservation is
treated within the framework of the renormalization. Our equations are similar to those in Ref. [2]
and [11]. They differ from Ref. [2] in that self-consistency is included in the formulation. Many
aspects, however, of the underlying “clump”™ model remain the same. The cquations in Ref. [11] are
similar in that they contain many, but not all, of the terms (necessary for conservation laws) which are
generated through our approach. If we neglect the “clump” contribution then the equations reduce to
the “coherent approximation” described by Krommes and Kleval'3l. Our solution method is based on
the concept of two disparate time scales which allow us to treat the equal time two point cquation as
an initial condition for its two time counterpart. The picture of a “test” clump emerges quite naturally
within such a framework. The source term for the clump correlation function is identified and certain
intrinsic propertics investigated. We examine and analyze the properties of the cocfficients in the renor-
malization through conservation laws such as energy and momentum. The sclf-sustaining criterion for
such fluctuations is addressed in a two Spccics plasma and a novel state of turbulence is obscrved where

a non-linear instability is generated before the boundarics of linear instability.
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Chapter 2

One Point Equation

The subject of plasma turbulence and the renormalization of the governing equations, has received
a fair amount of attention in recent years. We present a renormalization procedure which takes its
roots in two distinct methodologics. The first generalizes the work of Dupree and Tetrcault’® to take
into account self-consistent contributions to the renormalization. This yiclds the same results as some
of the recent renormalizations!! ™14 based on the direct interaction approximation®~1%1. The methods
arc presumably equivalent, however we believe our approach presents a considerable simplification
and allows a clearer insight into the iterative scheme. The second relies on an a priori realization that
the standard one point (“coherent”) renormalized theories fail to include an “incoherent™ (f) contribu-
tion which we will show is of the same order of magnitude. As a result these renormalizations are
incomplete inspite of the more “cducated” way of computing the iterative process. This effect was first
pointed out by Duprec in his “clump” theory!' ™. Though having been shown to be a simpler, and in
some instances deficient version of the more rigorous renormalizations, the theory nonctheless lays the
groundwork for what follows.

In this chapter we will derive the set of cquations governing the evolution of the one point
cquation, to nominally sccond order in the fluctuation ficld strength. We interpret the various terms, and
show how they are necessary for momentum and energy conservation. To make contact with previous
theories we illustrate their use for a collisional plasma, where the singular behaviour of the fluctuations is

assumed to originate from particle discretness effects only.
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2.1. One point Renormalization

Our starting point is the time honoured Vlasov equation coupled with Poisson’s cquation:

e} J
(5t—+v3-z+

o]

giE(g;, t) = —4ng / dv[f(a:,"v, t) — npb(v)]

1B, t)—q)f(z, v,t) =0

mo 2.1)
f(z, v, t) is the distribution function, g, m, z, and v arc the charge, mass, position, and velocity. ng is the
density of the uniform background of particles with charge q.

If one considers the Vlasov equation as describing a fictious plasma in which the discreteness
parameters (n—!, g, m) approach zero in such a way that mn, gn. and nkT remain constant, then it
is clear that this system cxhibits an infinite number of degrees of frecedom. We therefore seck to deal
with statistical averages of the distribution function, covariance and higher order correlations. We will
use {...) to represent this average, which is interpreted as an ensemble average over a large number of
realizations.

We write the fields as the sum of a mean plus a fluctuation:

f(z,v,t) =(f(z,v,1)) + 6/(z, v, 1)
(2.2)
E(:C, t) =<E($, t)) + 6E(23, t)

where (6f) = (6E) = 0. Furthermore we will assume spatial homogeneity so that the ensemble
average becomes synonymous to a spatial average. In that casc (EY = 0 (duc to charge ncutrality), and
{f(z, v, 1)) = folv, ).

On the basis of the arguments in the previous section we can also write the fluctuating part of

distribution function as

sf=f+F=r+r+r+m

f¢, is the phase coherent response to the applied electric ficld, and f describes incoherent fluctuations
which can be due to a variety of physical processes. In particular f% is the discrete particle noise * ,
7, its Vlasov equivalent which, as will be shown is a dircct consequence of phase space conservation.
*Strictly speaking the inclusion of fd would mean we are dealing with the Klimontovich distribution.

Operationally this makes no difference. We include the term for completness, though through out most of
this work we will assume collisionless turbulence so that f¢ is zero. .
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f™ represents all other effects, which can include mode coupling to modes of different phase than the
applied clectric . '

To simplify the analysis we will consider a one dimensional plasma of length L and proceed to
the infinite case once we obtain the renormalized equations. (The multidimensional case, with weak
inhomogeneities is a straightforward extension.) We expand the fluctuating part of the ficld and distribu-

tion function in a Fourier series

5f(v,z,t) = > fifv, t) exp ika (k= 2%
- 2L
2.3)
SE(z,t) = ZEk(t) expikz
k
Eq. (2.1) becomes
Ifi(t i ‘ fe) J
L ikt + LRI 4+ LS B0k 0 =0
(2.4)

1kE(t) = 4mne / dvfi(v, t)

Ei(t) = —ikei(t)
Conventional perturbation analysis assumes that there exists some ordering parameter A (< 1) which

allows the solution te be written as a power series in A:

Aolt) =M + WD) +- -
(2.5)

Ei(t) =AEQ(t) + NEPE) + -
The coefficients of the series represent succesive improvements to the previous order solution. In such
an approach the non-linear term does not appear in the first order solution being nominally of sccond
order. It is well known that cxpansions in terms of the resulting “free” or ballistic propagator &, + 1kv)
exhibit un-acceptable time sccularities. Onc can anticipate such a behaviour on physical grounds since
the ballistic motion does not take into account energy transfer (a “sccond order” process) in and out
of a given mode. But a turbulent state is most commonly envisioned as one in which a large number
of modes are excited with the interchange of energy between them being integral to the evolution of

the system. The neglect of these contributions is cumulative so that the level of fluctuations can be
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quite weak while still translating into a sizeable secular contribution. The goal of the renormalization
is to extract a “collision” operator out of the non-lincar term and incorporate that in the “linearized”
result as a remedy. Of the infinite set of non-lincar terms we will only retain those which have the same
phasc (“phase coherent™) as the driven mode fi.. Let us call the coherent portion of the non-lincar term,
[ dt'Ci(t—t)fi(t"), where Cj; contains the amplitude of the fluctuations but no phase information. We

rewrite the Vlasov cquation as

é‘f:c( )

T ikof(t) + LBOT + / Ot V(E) =

— )\(% (—% ;Ek’(t)fkﬁk’(t) - /0 dtlc’ﬂ(t—t,)ﬁ"(tl))

where the difference between the non-linear term and Cj. is assumed to be an order smaller than the

(2.6)

rest of the equation. We now reinstate the perturbation expansion and associate N with the electric field
amplitude.

Equating order by order we get

affc

t
+ ikvf{(t) Ek‘%t)‘é—{j’ + /0 dUC(t-t)AO(t) = 0 (2.7)

(9f(2_)_ At . g ' / ’ 4
katk'—( ) ikoft) + %E@b(t)gjg + /0 dtCe_p(t-t)P(E) =

— g2 rn - LEpoa i @8

and

| |
38
[ e npow = (L2 SERR+EDA + )+ 1))
k-l

Phase Coherent
(2.9)

where we have included terms up to second order. It is important to note that the terms in the first set
of brackets will give the correct phase dependance for Cy. The other term, however, cannot contribute
phase cohcrently since the fluctuation ffc'_) ,» cannot be decomposed into ones driven by k and K. This is
illustrated by the RHS of (2.8) where, of the infinite set of non-linear terms, we have only retained the

subsct which when itcrated in (2.9) will give terms proportional to fi(t) or Ex(t).
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We anticipate this last observation by writing

t t ‘ q t 9
/0 dt'Ci{t-tf(t) = /0 dt'Ct-t) ) + - /0 dt'E‘k(t’)gi;C,f(t_t’) (2.10)

Eq. (2.7) is solved by defininig the “coherent” (f;) and “incoherent™ (fk) responses through the follow-

ing partition
c(])
af ()+ ikv fc(l _+_/ dt'Cft t/)fc(l)(t/)
(2.11)
4 gy / EO() = CHt-t
~EU( S — - | dER C(t t)
and A1)
0f ()+ ik f(l) +/ dtlcf t/)f(l)() (2.12)

with initial conditions £5)(£=0) = £5(1(0) and 7 (¢=0) = J\(0). Note that (2.11) and (2.12) add
up to the original equation (2.7). This division tracks lincar response theory. f¢ is associated with the
induced fields which shield perturbations m the plasma. In this casé, however, the ballistic operator
is renormalized through what we will show is a Fokker-Planck operator and the average distribution |
through C%. We can ncglect the initial condition f(0) by sctting the lower limit of the dt' integral in
(2.11) to —oo. This presumes that the coherent initial condition decays very quickly O(w;’). We will
show, however, that the ballistic contribution arising from the popagation of the initial condition ]‘k(O)
decays on avmuch longer time scale so that such a stratagem is not particulary useful. Instead we define
a backward equation for fi(—t) where we use Cy(t-t') = Ci(|t—t'|)sgn(t—t’). 7.(0) cannot be obtained
in an iterative way. In fact the exact structure of f,(0) is far too.complicated and in practice we will only
need the correlation function (f(0)7(0)},. This quantity, which is extremely localized in velocity, can be
obtained from a solution of the equal time two point equation for small scparation.

If we define the Green's function gi(t) through

591c(t)

+ tkvgi(t) + / dt'Cl(tt)g(t) =0 t>0

gi(t=0") =1 (2.13)

'gk(t)=0 t<o0
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and the relevant transforms as

oo
Gew / digi(t) exp iwt
0
(2.14)
== 2 frowexp iwt
we can synthesise the one point results in the following form
1 . 1 IF ke )
A =10+ 10 =70+ Lowiks) 2 (2.153)
where
—i(w—kv+iCL ) =1,  Cl,= / dtC(t) exp iwt (2.15b)
0
and
=h+Ch, Ch= / dtCP(t) exp iwt (2.15¢)
0

are respectively, the renormalized Green function and “cquivalent ™

[20]. If we usc Poisson’s cquation we get

¢(,)_41r_ng/d f(

e
~(1) 4mne (1)
kw =—'; dv kw
k|
which yields
~(1)
¢kw
¢§cl) _
v €kw

€k 1S the non-linear diclectric given by

w? / 8
—_1 P il A
€kw = 1 ? |k|2 dvgkwkakaw

background distribution function

(2.15d)

(2.15¢)

(2.15)

(2.16)

Given the set (2.15) the next step in the calculation is to obtain explicit exprcssions for the

cocflicients in the collision operators C{_w and C¢,. This requires the quantitics f(

t) and E2), (1),
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which are functions of ¢§C’,) and fib. Because of the phase coherent approximation the modes at &/
will only appear as products of the form 3, (6" (#/)741(¢)) and Y-, (61" (¢)¢(1(¢)). Assuming time

stationarity we can write, for example,
(1) (1) ‘”“'
DAY = D 0010, exp —i/(t-t) ¢f o eXp W/ (t—t)  (2.17)
K/ k!
where

—~+oo o0
Woo=] _atf ar gtk ) 28)

We can use the st (2.15) to obtain

Z ¢k1w/ﬁcw == Z ¢"Iw/¢klw Zg klc—?—pkw 2 (¢k’w’fku) Exter

Py mim e’ e lewl”

)lc’ . / 0 — <¢f>k’w’ )
i gkrrk’ —Frr + €kl
/ ( lerl” O leur]”

where we have expressed all quantitics in terms of velocity moments of the incoherent correlation

(2.19)

function {ff),,_. This quantity can be obtained quitc simply by noting that

WS = [ [ g uwieon,+gorewn) )

k!

where

() =/ dtf(t) exp +iw't (2.21)
0
Using Eq. (2.12) we immediately get
~ ~ dk' [ du' . s
5 et )kt2) = [ [ % k1) + st 1G 00D, (222)

Note that if the turbulence is weak this reduces to the familiar result of ballistic propagation. If the

fluctuations are localized in velocity such that {ff) v 6(v; — wv2), (2.22) reduces to 2Re grwff)p-
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(2.19) and (2.22) arc obtained in a slightly different way in Chapter 5. There, in a two point

formulation, we treat the initial condition from both £(0) and f(0) to obtain the same expressions.

Proceeding with this scheme we partition the expression for fgc o nto f;%( ) and f(z) wlt)

through

t
£ = [ atgte-t)

Vyar oDy
X%((— 1206+ ey — 2oy 417 ”¢<‘>(t'))
(2.23)

and

() .,
e O g (224

t
#2) _ ' (it - q
IC-—-k’(t) - [) dt gk_k (t-—t )l mk

we have assumed that the only initial condmon is ,c (0) Note that f,C w is a purely perturbative
. , .ooH(1)
quantity. It represents the modification, on the ballistic time scale, of the non perturbative quantity ffc,)

through the action of the clectric field ¢{").
Using (2.15),(2.18) and (2.19) coupled with Poisson’s equation in (2.9) we get, after transforming,

the following set of coefficients:

.0
Crufiow = Chufiw — ~Lik 2 CP bra (2.25)

where C{_fi., is defined through:

a g ¢} J -
Ol =~ (Dny — Yo — (@7 + 155 — (8 +9Y)7 (2.26)

The various symbols in equation (2.26) are given by



N o PR 8
P |k
(1) ~(2)
¢ ¢k k' w—w’
9 #2) (l)
Fw = k’ Y / k - R AP
k k’Zw, k—k Jw—w +( ) lcw k__.k"w_wl‘j]'cw
(2)
¢k/w/ Pk o
d‘af 3 2 ik'k — S
o' fk/wl €k w—w'
6F k—k! w—w’ C9F k’w’
X (T— (43 —k! w—w' + gk’w')

¢
In the above equations ffc_)k,’w

—w'
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d JJS_) K o ATC defined through

l)*

“€) q 7o
k—k!,w—u' =_g’” k' W-W’zkd)kw“‘ 3’0
~(2) 47ne «{2)

ék—-k’,w—w’ = dv k—k w—uw'

lk — k/|?

The remaining terms satisfy

ff °f ‘12
v m2
@+ —— 1

k= kwm4/M%WWd@m

”y / lk K leval” I Skt
OF bk o OF py
X (_‘a';u Jre—k' jw—w! + k’w

(BT w) /’

3w
|k — k| Chrth—k oo

The C¢,, operator is defined by:

where

Ciw(ﬁkw = (ﬁkw + Yew + 6kw)¢kw

aAv' gt w—w Ew

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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2

//|¢k:'u)’ g * _(?_—"'
At -

iy ; / gk~k’ w—uw!

; — 05
= o © e’ '“wc K2 " ek OV g

6Fk_k, w—w’ OF k!
ey ke e 35
X (g e+ ) (2.35)
k - k (‘i);’w’}k’w’) a a
k/ d ! w—w . ., )
Z 2 6’6:/ rfk——k’ w—w’ U Ok—k a lgk wav/ka (2 36)

KW

In appendix A we illustrate through a specific example the method by which these results are obtained.
It is also helpful to use the first two columns of Fig. (3.2) which indicate diagramatically the steps in the
iterative process. Time stationarity and an implicit assumption of steady state are used throughout the
formulation.

The operator Ciw has been written in the suggestive form of (2.26) to cmphasize the physical
origins of the individual terms. We start with an analysis of that operator. One must add, however, that
the interpretations that follow are approximate. The cquations as they stand are extremely complicated
integro-differential cquations and only under certain restrictive conditions (§2.4), can they be unfolded
into the more familiar Fokker-Planck coefficients.

Not withstanding these difficulties we can interpret Dy, as a generalized non-Markovian diffusion
coefficient. In the long wave-length limit (K — 0) and near a wave-particle resonance when gu.r acts
as a function rather than an operartor, the term describes the diffusion of the particles away from their
ballistic orbits. This cffect has often been interpreted as a broadening!!”! of the resonance function
which causes a non-linear damping of the fluctuations on the trapping time scale. (This is the time for
the position of the particles to become randomized with respect to the phase of the fluctuations:ry, =~
(k2D/3)="/3). In the same limit F can be interpreted as the drag or friction cocfficient, which is the
reaction of the plasma shielding cloud on the test fluctuation. With the polarization drag due to the
velocity dependance of D (D /8w) it introduces a frequency shift in the resonance function. This effect
has also been used to model the resistivity of a collisionless plasma”].

The remaining terms arise from the self-consistent nature of the calculation. Loosely they can also
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be interpreted as drag and diffusion coefficients. The essential difference is that instead of being driven

by the average distribution and acting on the fluctuations, for example

s} a,8 a. .0 a Jd

(%kaw = 6—v(a—l;<f))ﬁcw, and %Da-vfkw = %((f))é;ﬁcw;
they are driven by the fluctuations and act back on the average distribution *. This cffect could be
anticipated from a perturbation scheme. Consider8/8t f = Cf; C is a generalized “collision™ operator.

If we ensemble average this expression, and expand according to (2.3) we would get
¢]
50/ — (€81 = 6C(f)

The right hand side is representative of the terms in question. Of more importance these terms are
essential for energy and momentum conservation. Of course we can only talk of these conservation
propertics in the k& = 0 limit since they arc pertinent to the system as whole. For finite k, cnergy and
momentum can “leak” out of any phase space clement into neighbouring ones. However this still allows
us to retain the picture of, say, fluctuations heteg diffused (D) and to conserve momentum these same
fluctuations act back on whatever is diffusing them (through ¥). The difference between the “t” and “f”
superscripts is discussed in §2.4 where the k£ = 0 case is treated. The Dy, and d/ terms have appeared
in several theories!!'=13] and are the “diffusion” and “polarization” terms of Krommes and Kleval'3l,
The C’fw operator unfortunatcly cludes such a straighforward interpretation. Varicus terms within
that operator have appeared in previous theories. For example the beta term is the velocity equivalent
of the drift wave “8” term which appears in [4]. There it was identified as a mode coupling contribution
necessary for energy conservation. Krommes and Kleval'® have obtained the Gy, and ., terms in what
they refer to as a “cohcrent” approximation of the D. I. A. . They interpret these as a ponderomotive
renormalizations of the background distribution, while Dubois!!2! refers to the same elements as sources
of “quasi-particles”. We have not been able to find a simple physical interpretation of these terms. The
8., contribution arises from the inclusion of the incoherent fluctuation ]’kw. This term is included in the
C? , operator rather than the CI , one, because in one dimension and in the long wavelength limit it
cancels against the Gy, and 7k, terms. This cancellation is shown to be a consequence of energy and

momentum conservation. We claborate on this point in §2.4.

* The analogy used is strictly valid only for discrete particle where }(¢)2 =~ (f), but it allows one to
describe the essential features of the physics in familiar terms. .
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The set of cquations is closed with a knowledge of the incoherent self correlation function
(F(0)£(0))x. But even given this quantity the equations are rather complex and further apprdximations

are necessary to make them tractable.

2.2. The Equation for the Average Distribution Function
We can make contact with the previous discussion by deriving the collision operator for {f) = f.
In the notation of §2.1 this could be written as (C)(f). From the equation for the average distribution

a g 1k
o= —%('9; DIRL AT ) (2.37)

K w

% 2w
where
. dk' [ do' KK 1 ~~ IF
I () =w’2’§i o ﬁlz,l_zl 2 / dv' ({7 (v)) wrrRel g (') az,w]
eklwl

(2.38)

— B wsPelaedr) 2R)

It is fairly casy to sec that if we used the discrete particle spectrum, (F(1)f(2)),, = n="6(vi — va){f),
(2.38) would reduce to the Lenard-Balescu collisien intergral. In this case, however, the source is the
“discrete” clump. The first term is the dynamical friction due to the shiclding cloud acting on the
discrete fluctuation. The second is the diffusion of Quasi-Lincar theory. We note that one of the effects
of the renormalization is to introduce additional friction and diffusion cocfficients in the equation for the
the average distribution function. For example the friction term instead of being driven by the gradient
of f only, contains contributions from the gradient of C,fw. By the same token, the diffusive process
rearranges 'y, rather than f.

If we define

NEn/dv, M'—:—nm/d%, E":"—é—nm/‘dv'v2
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as respectively the number, momentum and energy operators it is straightforward to show that

a ¢ 4

The first two properties are sclf cvident from the structure of equation (2.38).
Let us prove the third by operating E on the RHS of (2.38). After an integration by parts and

adding and subtracting w’, we are left with

x (ZRegw(vx&f ltelgel) ) — Dege () BT(v )me[gw(v)@g’g‘f-’l)

From the equation of continuity [ dv(w’ — k'v)Regi{ff),, = 0. We arc thus left with the w’ factor
out of the expression (w' — k’v + w’). The remaining terms cancel since the v and o integrals can be

performed to yield (with opposite sign) the expression

/dkl/ AW 4w , 2 Imep
k’w’ lek’w’l

2.3. Potential Energy Conservation

In the previous scctions we implicitly assumed that the plasma responded adiabatically to the per-
turbation. By this we mean that the characteristic relaxation time of fo, 7 = Ningp/Vth, Was much
longer than the correlation time of the plasma excitation, 7.. As a result we were able to neglect the
time dependance of fy(v, t) when solving for fi,. This assumption is violated for large wave-length, and
Quasi-Lincar theory attempts a correction by taking 'r,—' as the Landau damping rate and incorporating
it through a WKB ansatz into the Kinetic equation. The neglect of the temporal variation of fp does
not allow for changes in the potential energy of the fluctuations: the kinetic cnergy can change since we
arc shuffling particles bvcr phase space through the velocity operator. To have a theory which conserves
total energy we need to include the time dependance of the average distribution when computing the
plasma responsc/2’-28]. This task can be facilitated by assuming that this time dependance is weak
compared to the real frequency response of the plasma. We will interpret these discrepant time scales as

the ballistic motion of the “centre of mass” of the fluctuations and the slow decay of their structure.
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We can incorporate these ideas by defining a two time Laplace transform24 such that

% tOlt .y 3
/0 dte™! '(gs ) ~ —1 —iwg, (t) + ggfcw(t) (2.39)

the explicit “t” dependance is now understood to operate on slowly varying quantities only.

The one point Green function now satisfies

(2 - sto—korich))de = 1 (2.40)

We can expand g}, in a Taylor series about gk, gk. satisfies (2.15b). Keeping only the first order

correction the fluctuations are determined from

~ q. 9,8 =
Jew =fku + ‘";zgkwk(l - gkwa)%‘ka(ﬁkw
(2.41)

5 OerOr, ., Perw
ekw¢kw —¢kw 3 Sw Ot 1Pkw Swot

In the weak turbulence limit of Quasi-Linear theory we would get the wave Kinetic equation as

%I%P = 2Re(ex, — i%ekw)(i%)“’lmf (2.42)
with damping cocfficient given by o~ —ef /(0/Ow ef,).
When we have a source, charge continuity demands that
WO

. OB
J+5 =0 = (2.43)

J is the source current, p the source charge, and 9 the electric displacement vector. Fourier transforming

this expression on the same lines as above we get an expression for the current

OE, 8
5 a—u—)(wekw) (2.44)

Now if we use (2.41) in (2.33) rather than (2.15) we obtain a Kinetic equation which explicitly

Jkw = twepuFp, —

retains the variation of the clectric field. With the help of (2.44) we can then show that for an arbitrary
source term (which obeys the equation of continuity)

e , |¢ w’l2 ‘
5Eh= — Y ke (2.45)

o 8n
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2.4. Interpretation of the Equations
One can gain considerable insight by looking at the long wavelength limit of the above set of
equations. For simplicity, and to make contact with previous theoriesrf25, we will consider the discrete

particle case where the self corrclation is given by

FOT = 2 (g0ull) + 01, 2D801 -0 (2.46)

We will assume F,, =~ fy and take g, =~ 1/(w — kv + i¢€). These assumptions do not make any of the
underlying physics less ge.ieral.

If we take the k = 0 limit with lim ¢, 0 frw = f(‘), and

FOF o+ T = 2l 1) + G2 (2.47)

(relation (2.47) is demonstrated in Appendix B) equation (2.26) for C{w reduces to

a

9,90, 06,9 Bty O gt o anl
@Vﬂ% 5 e yo (an+q)+&ﬁ—Hﬂ%)ﬁ (2.48)

The expression for & (cquation (2.32) has been expanded into two terms by noting that

Re(i ka )_ I'mxg, [ka + Xk:w Imekw (249)
€l ekl ko G el

x is defined by (2.52).
We can reproduce this equation from a simple lincarization of the L.enard-Balescu cquation. Let us

write the average distribution function as a scries expansion

=R+ (2.50)

fg represents the background distribution, while f‘l) represents the 0°th fourier component of the
fluctuations. Typically, f(') could be a disturbance due to a very long wave-length fluctuation (such as an
eigen-mode of the dispersion relation). The presence of this small amplitude disturbance implics that the

diclectric e will have a perturbative component duc to f(',. That is we can write

6kw=52w+X}¢w+-~-=1+X2Q+Xllw+--- (2‘5]‘)
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where x is the standard suceptibility, defined by

1
= 2.52
Xkw |k|2 ( )

The fluctuating fields can be expanded in a similar fashion. In this case the “1” superscript might

2
wy / dv Iga/a”lf(l)-
w—kv -+ 16

represent the result of ballistic motion,while the “2” superscript the distortion to thesc orbits due to
the presence of f3. We note that in the spirit of a test particle picture we would expect second order
perturbed quantitics to be made up of two distinct physical processes: the first would affect the “test”
particle while the second would affect the “field” particle. Schematically if ¢ =~ @teste "/ then the
perturbation will affect both ¢'“** and the coherent (shiclding) response.

If we linearize
of o) J._98

5% = 5.7+ 5057 (2.53a)
~ 2
Ffe 13y D=L a5l — ko)l 2.53b
f= Z (‘f’uwff k) 2 76 (w' — k'v) 3 (2.53b)
m K w! !ek'w" K, o Ck-lwll

according to the above prescription we will immediately recover (2.48) with the same coefficients as
obtained through the renormalization. The details of the calculation are presented in Appendix B.

The physical interpretation of the terms is now simple: D and F* are the standard diffusion and fric-
tion cocfficients in the absence of the perturbation. d is the modification to the diffusion coefficient due
to the perturbation. As previously indicated it consists of two terms, one decribing the rearrangement of
the test particles (perturbation of the orbits:d?), the other describing the distortion of the shiclding cloud
(d7). F is the modification to the drag cocifficient, and likewisc has two components.

This distinction is important in terms of encrgy and momentun conservation. It is straight forward
to show by taking the v2, and v integral of equation (2.48) that the conservation properties are achieved

through the following cancellation of individual terms:

(NME( Ff0 f")_o
(NME(a 9 J.rt/g):o (2.54)
(N;M;E( c.rff(’—.—f f") =0

Field and test perturbations balance independantly.
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In one dimension, when we treat the resonance functions as approximately (w — Iw)“, the colli-
sion operator exhibits one further property; namely

k,w—0

lim Ckwfkw — 0 (2.55)

The various terms in the C’iw operator cancel in the same pairs as in Eq. (2.54), while the S, Yk, and
6., in the Cﬁw operator can also be shown to pair. and cancel. This cancellation is easily reconcilled on
physical grounds. Collision like processes cannot change the average distribution in one dimension since
momentum constraints insure that an encounter between two particles moving at v and o will result in
the same velocity partitioning after the collision. In higher dimensions or for different mass cncounters
this is not the case. Equally, keeping the broadened resonance functions etc. leads to a non-zero operator
since this is equivalent to taking three body encounters into account. Finally we point out that a plasma
has the added capability, in the presence of a wave, of transmitting momentum through non-resonant
interactions. This would also invalidate the previous considerations; the effect, however, is not included
in our collision operator since we do not consider the zeroes of the dielectric.

We are left with a clear physical picture of the operator C’éw: it describes the divergence of “test”
particles away from their ballistic orbit duc to their interaction with the clectric fields of “field” particles.
However because it is a self-consistent calculation these same particles, to conserve momentum and
encrgy, act back on the plasma. Clearly when k 5 0 there are more complicated effects taking place.
In particular the probing nature of the k wave vector through the k — &’ convolution is not self evident.
However we still believe these interpretations arc helpful in understanding the fundamental actions of

the operator.
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Chapter 3

Two Point Equation

In this Chapter we derive cquations for the equal time and two time two point cquations. The
validity of the expansion parameter (N) used in the one point equation is examined. We show that on
the short time scale (¢/7. =~ 1) this expansion is meaningfull while on the long one (¢ /Tir =~ 1) some
of the terms left out in Chapter 2 become of the same order as the “collision™ integral Cy.. These terms
were cxcluded because they could not be expressed as a phaseless factor operating on f;, or E;. The
main feature of the two point renormalization is to capture any contribution from these elements. We
g0 to a two point formulation because it is only by squaring such terms that their phases can be made to
cancel. The intrinsic difference between the equal fime and two time two point equation emerges quite
simply from the analysis. In particular the singular behaviour of the equal time equation is shown to be
a direct consequence of phase space conservation. The relationship of the iterative scheme to the more

conventional expansions, such as the BBGKY hierarchy, is demonstrated.

3.1. Phase Space Conservation

Let us start by considering the exact two point equation (with spatial homogeneity)

Gi+ v'c% + vza% Jer(mos2) = ‘%(6E(1)6f(2))a%( )

_ 99
maov)

(3.1)
(BE(1)6f(2)6/(1)) + (1 & 2)

A standard weak turbulence expansion would assume that |¢5E'|2 & mwv?, and usc 6E as an expansion

parameter. The linearized solution, which neglects the “third” order terms has a non-integrable sin-
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gularity as v, approaches vo. (For a stationary étate the left hand side goes to zero while the right hand
side does not.) A renormalization takes this into account and incorporates some of the “third” order
term into the left hand operator so that its inversion will not be singular. We contend that this process is
still inadequate.

Suppose that through some ciever scheme we manage to incorporate the exact third order result
and proceed to solve the cquation. Since the singular behaviour arises for small separation we can

change to “+, —" coordinates, and neglect the “+” contribution. Let

Ty =111+ T
v =Y j: (%)) (32)
| ty =ttt
*Equation (3.1) can now be written as
a 3 qg 8 q O _
(- toho g LB ) — £ 2B )ofof 2t =5 69
with
5 = — 3 BE(S2) (1) — GE@AL) (1) (3.4)
m 5111 5”2 '

But when v_, z_ — 0 we are once again left with the singular behaviour since the non-linear terms
exactly cancel, while the right hand side which is independant of the relative coordinate does not. (In
Chapter 4 we identify the latter as a source term, S, for the fluctuations.)

It is not hard to trace the origin of this behaviour. The Vlasov cquation preserves phase space
density along particle orbits and the singular behaviour is just an alternative way of formulating that

same statement. Consider the exact distribution f(z, v, t); the conservation property can be stated as

d
aﬂaqqqﬂ:o (3.5)

where the differential is now taken along the particles orbit. Multiplying the above equation by f,

ensemble averaging and integrating over the velocity coordinate we get

[asem+ Sum=o (39
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Using

a
2y =—22msp (.7

and integrating the second terim by parts we get

/ ( (8) + 2L (SESf) o f>)——0 (38)

This is equation (3.3) in the limit of v_,z_ — 0. The integral over velocity averages the “+” co-
ordinate, which was previously neglected. The important point to note is that no perturbative scheme to
any order will get rid of the singular effect. It is entrenched as a basic property of the cquation. We can
even go further and state that any approximate set of cquations which docs not conserve this property is
incapable of describing small scale fluctuations in a plasma.

We will show that the two point renormalization preserves the singular nature of the original equa-
tion (3.3). On the other hand the two point equation which defines the “coherent™ response does not,
and is therefore inadequate for the description of small scale fluctuations. Schematically, the difference

appears in the following way. Eq. (3.3) can be written as

Cr TN =5 Tu—0 z,v -0 (39)

The precise details of the I.HS operator are not important at this point. The fundamental property we
wish to focus on is the vanishing of Ty, for small separation. In the simplest case Ty might represent the
two point turbulent diffusion operator of Ref. [4]:

6] aJ 3d a

v. ——+ Dy — + 125@4'5)2'

a 1e] a
— —_ — — 3.10
v 50, 1 50 21 5o + ame . (3.10)

In the relative coordinate system the diffusion coefficients cancel as z_ and v_ approach zero.

(6176 f°) satisfics a similar cquation

(g F T+ T)6f6f)=8 Ti+Th5#0 z_,u_—0 (3.11)

where at the level of simplification of (3.10), Ty + T2 would be the Ty operator without the bivariate
diffusion clements Dy and D;,. Equation (3.11) predicts no singular behaviour since the LHS does not

dissapear for small scparation. As will become apparent (3.11) is correct in the long wave-length limit
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where it describes the collective behaviour of the plasma. (By which we mean the eigenmodes of the
dispersion relation.) |

Notice that we have partitioned the two point equation into two distinct clements, Egs. (3.3) and
(3.4). We sce from (3.6) and (3.8) that the first preserves the square of the fluctuating part of the
distribution while the sccond is related to the conservationof ( f)2. Physically this is a natural division
and allows us to identify S, as defined through (3.4), as the source of fluctuations. The LHS of (3.3)
is some none-linear operator which acts on the fluctuations through the sclf consistent interactions of
the turbulent electric ficlds set up by the fluctuations. This operator might destroy ( through turbulent
diffusion, ballistic motion, ctc.) the spectrum or enhance it through some kind of non-linear instability.
The RHS of (3.3), on the other hand, does not act on the fluctuations directly, but through the indirect
mechanism of changing the average distribution. When the gradients of the average distribution are
modified a mixing process occurs as elements of phase space rearrange to generate the new average
distribution. The rearrangement creates new fluctuations and a steady state can be envisioned as a result
of the competition between creation (RHS) and destruction (LLHS) of the fluctuations.

At this point we bricfly look at the question of “ordering”. Let us take as our ordering parameter
§E. Furthermore let us assume that (§f6f) is =~ (6°6f€). That is the singular behaviour is negligible,
and to “lowest” order the plasma can be described by (6/6f°). The governing equation is (3.6). S is
second order while for z_, v_ large, T} and T, are nominally of first order (proportional to kv_). Thus
(8£61) is second order. However as v_ and z_ tend to zero the dominant contribution to the T' operators
comes from the difiusion and drag cocfficients (the C{_w operator). We can get a rough estimate of its
dependance on the expansion parameter by setting C/ =~ 1/7,, = (Dk?)'/% ~ §E'/2, from which
(6f6f) is proportional to § E%/2.

Clearly we are witnessing the breakdown of the expansion parameter. We started an expansion in
integer powers of §E and end up with a result which could not under any circumstances be obtained
from such an expasion. Thus through a process of contradiction we arc once again forced to conclude
that in this regime (6 f°65°) is incapable of describing the total plasma response. In fact we can cstimate

the ratio of the two terms as

(B161)/(67°61) = Tio/(Ti + To) = (Avn/vi)? > 1

(v, is a correlation length in v_, which is interpreted as a trapping length in velocity space, and is



— 38—

typically much less than the thermal spread.) We return to these ideas in Chapter 4 where the formal

solution of the two point cquation is addressed.

3.2. The Singular Behaviour: An Alternative Perspective

We have already scen that the singular behaviour in Eq. (3.1) ariscs because the lowest order
operartor vanishes as v_ — 0. Our arguments focused primarily on the structure of the cquation in
velocity space. We now propose to make similar arguments but in the #ime domain. We postulate the
existence of two disparate time scales. These have been identified in Chapter 2 as the period associated
with the ballistic motion of the centre of mass of the clump ((lq)v_,_)"' ~ \g/Avpy) and the characteris-
tic decay of such structures ((Is:ov_)_l ~ Ng/vir). Here ko is the average wavenumber of the spectrum
which is sct approximately equal to the inverse of the debye length (N7 1. Notice that this time scaling is.
dircetly related to the two velocity scales and that the spatial scale does not influence the temporal ones.
At first glance one might expect a disparity in the spatial scale also. Further analysis will show, however,
that this is not the case. The spatial scalc in the problem is determined by the RHS of (3.3) only: the
correlation length of the two point function which characteristically is the debye length.

We now consider Eq.(2.6) and Eq.(2.12). Suppose A is set equal to 1 in Eq.(2.6). The equation for

}'k(t) can then be written as

«1) t
a1, (¢ . N
L0 ol + [ avofeni’e) =10
— 99 N gy A0 3.12
) = = gy 2RO (3.12)

with solution

740) = 0 07,0)+ [ atal-eym) (3.1

where g(t) is the Green's function which satisfics (2.13). $(t) was treated as a second order term
in Chapter 1 (being proportional to Egc’,)f}cl‘) - To obtain the corrclation function we can square this

expression and ensemble average to get
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(L, t)FH(2, 1)) ~=ai(1, 8)gi(2, L)(Ti(1, 072, 0))
t s . (3.14)
i [ a0t 0) [ dueito, it 1012, i)
We have assumed a priori that cross terms are not important in the formulation. The rationalle for such a
step will become clear as we proceed.

For stationary turbulence we can write
(ffk(l, tl — 5)3’,:(2, t2 —_ u)} E(ffk(l)ff;m)|t1—t2—(8—-u)>
(Fold, 6742, ) =(T(DF(2)t1t2) (3.15)

(7i(L, 0)4(2, 0)) =(F(1)T (2 t1=t2)
The first of these expressions is peaked about ¢j—t;—(s—u) = 0 with width proportional to koAvph_l.
This is a statement that the characteristic time scale associated with the pair correlation function is ap-
proximately the inverse plasma frequency wj!. We will show in (§4.3) and (§3.3) that ($(1)$7(2)) can

be expressed as two terms:

($(1I4(2)) = FuDT2) + Fu()T;(2))

(3u(1)F5(2)) and (F(1)¥F,(2)) are defined through (5.33). 1t turns out that when {z;, v} approach
{z,, vy} the action of the (¥ «(1)¥1(2)) contribution is to cancel the renormalization in the g, operators.
This result is proved in §5.3. At this stage we only remark that this is nothing but the cancellation of the

non-lincar terms referred to in §3.1.
Thus, for small separations, we take gi(1,t) = exp ikve and use 7 = (t;—ty—(s—-u)) to recast

(3.14) into

FuD)Fe(2)lti—ta) =2 exp ik{(vi—va)ti+valti—ta) HTR(D)T1(2)lti=t2)

" m o (3.16)
—{—/(; dsexp ik(vlnvg)s/T d1exp tkvp{(t1—to)—7H{Fi(1)F,(2)|7)

where Ty = {tl—tQ—S} and Ty = {t]—tg——(s-—tg)}.
We will discuss the properties of (3.16) in terms of ¢, (t; +t2) and ¢_ (¢;-t2) coordinates. Several

points emerge quite simply from this expression.
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(i)Ift_ >~ 0and t; > w,' we canset 7y = —oo and 73 = oo since ($(1)$(2)|7) is peaked about
7 ~ 0 with width O(w;‘). Under these conditions the integral over ds becomes indepcndémt of the

integral over d and for v_ ~ 0 the ds integration is proportional to ¢,

(i) For t, < 7, the ballistic contribution dominates in (3.16). The second term is small (being
proportionalto t,.), since the sccular contribution has not had time to grow. Note that the ballistic
contribution is sharply peaked about t_ because of the exp tkv,t_ term. This is straightforward to
see if, for the purposes of this discussion, we assume that the distribution for both velocity scales
is Gaussian (with width vy, and v;,). When integrating over the v, scale (to obtain the potential

spectrum) the result will decay as =~ exp —(kvnt_)? =~ exp —(wpt_)%

Thus relevant quantities
such as the spectrum decay in a couple of plasma times in the {_ coordinate. In the ¢, coordinate,
however, the spectrtum decays on the trapping scale since the integral over v_ is proportional to =~
exp —(kv_t,)? =~ exp —(t, /m,)*.

(iii) For t, =~ ¢, the ballistic 'portion will have decayed. The second term will likewise be small
unlesst_ ~ 0 and v_ =~ 0. Ift; and ¢, are large (> 7,) but {1-ty =~ w; ! the second term develops
a secular contribution which as ¢, tends to infinity generates a term =~ §(v_). This result is not a failure
of the renormalization but a direct consequence of phase space conservation. In the £_ coordinate the

arguments used in (i) can be applied to the exp ikvyt_ factor to show that the secular contribution is

peaked in ¢_ with width w7,

(iv) It becomes <lear that the cross terms which were dropped in (3.14) contribute in the nebulous
regime of w;‘] & t. & 7y Butsince we will only be using equations which require information from

the two outer limits of the incquality we can neglect these terms.

We can now analyze the ordering parameter A. For t,w, ~ 1, N < 1 since the contribution from
(9(1)%(2)) has not had time to grow, being proportional to ¢, . For t, /7, = 1 and periods greater than
7. N =~ 1. By that stage the initial condition has decayed and the solution is described through the
(F7) term. In a steady state one can envision the solution to (77) through Figs. (3.1). The secular and
ballistic contribution always add up to the same fotal solution. This mcans that on the w; I time scale
we can use the ballistic representation of the solution while for much longer periods we have to revert to
the formulation which contains the sccular result. This is in fact the procedure we adopt. It is important
to realize that when calculating the cocfficients in the renormalization it is perfectly legitimate to use

the ballistic representation since the cocfficients depend on factors proportional to (f(t:)f(t2)) (and its
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Total Solution

Ballistic Solution
Secular Solution

Fig. 3.1 Time History of {7(¢,)f(t2)) Solution

various velocity moments): these do not require a knowledge of the correlation function for periods
larger than a couple of plasma frequencies.

We conclude by adding that the ordering associated with the (¥(1)¥(2)) term is cven more subtle
than indicate'd.by the previous discussion. We will show (Chapier 5) that this term, which was nominally
of “fourth-order” on the ballistic time scale, actually becomes “second-order” on the equal or clump

time scale. This cffect coupled with the secular contribution generates the “clump” spectrum.

3.3. Two Point Renormalization: Two Time

The two point renormalization is performed by taking the onc point equation of Chapter 2 for
fi(t)), multiplying by f/%(¢2) and cnsemble averaging the result. In this case we will retain the non-lincar
terms proportional to A in (2.6) as our ultimate goal is to obtain an equal time equation for (fi(1)/(2)).
We know from the discussion in the previous section that in this regime these terms are part of the

mechanism which gencrates the clump spectrum.
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We write the cquation for (fi(t1)fx(t2)) as:

TR +ikndAie) + LEOREIE =

! A (3.17)
_/; dt'Cui(k, ti-t )AL k(E)) — /0 dt'Ca(k, ti-t', ' —t2)(A(t)f3(t2))
where
to
1y * 9 *
A dt 012(19 t] t t tz f(l jﬂ) (5%_8_1;;<E$)(t])f§c{)—kl(t]) k2) (t2)>)PhaseCoherent
(3.18)

Let us note, en passant, the following points: (1) Cyy(k, t—t') is the C, operator of Chapter 2. (2)
By assuming that the collision integrals can be expressed as the difference of time coordinates we have
already made a statement of time sationarity. In general Cu(t_t’ ) would be expressed as C(t, t'). (3)
In (3.18) the first term which will contribute to the b(') AL N k, product is f(kQ)*. Here there is an implicit
assumption that the phases of the terms with * (1) superscripts are randomly distributed so that the
(EW#D 1Y term does not contribute.

We select, as before, only those terms out of ﬂz)* (t2) whose phases will cancel the phases of E(l)

and f{1 . Thatis f2)*(t,) is given by:

153

) == | dtedt-t)

. 6 / *(/ a c{ 4 ) * l / a * (1f *
x%(ka—v(ﬁwrc,f(t DA () + (oK) 50 <‘>( VR + K5 - A8 ))
(3.19)

and

t
2% = — [ atats- 0 L) 2T OO (3.20)

(3.19) and (3.20) arc just the onc point results of Chapter 2 for the mode k (Egs. (2.18) and (2.19)).
When this result is substituted in (3.18) coupled with Poisson’s equation we obtain the two time, two

point, equation. The domain of validity of the equationis ¢ > ta > 0.



— 43—

Unless t; = ty the Cy9 operator does not contribute o the equation (A < 1). In the Markovian
limit one can show that the cross operators are a function of exp tk(z_—v,.t_). For large t_ (t;wp >1)
these terms can be neglected. This is just a statement that the action of the ficlds at point 2 and time ¢;
will not appreciably influence the motion of point 1 at time ¢, since these points will be separated by a
large distance v (ti—t,). Thus for the analysis of localized fluctuations we will drop the cross terms from
the two time formulation.The two time equation therfore reduces to a product of one point equations.

This has to be solved with initial condition {(f(¢)f(t2)|ti=t2).

3.4. Two Point Renormalization: Equal Time
To obtain the equal time equation we take the one point equation for f(t), perform the same
excercise as in §3.3, and add the result to (3.17). We use

(0L, 072, 0) = UL 072,00 + (2, D5 0, 8)

16)
ot
to express the two time derivatives as a single operator. The next step is to take the limit ¢;, t2 — oo for
the arguments in the time integrals of the collision operators. This is consistent with our two time scaling
procedure in which we assume that 8/9t, < 8/t__. It is also motivated by the discussion in 83.2 were
we saw that we had to approach the asymptotic limit in ¢, to obtain the sccular contribution. We will

assumne that the resulting cquations are still valid for weak departures from steady state and stationarity.

We expand field and distribution function in a Fourier scrics such that

5f(z,t) = kau, exp i(kz — wt)
kw
(3.21)

SE(z,t) = EE’C“’ exp i(kz — wt)
kw :

Using (3.17) and taking the limit t; = ¢, = °° we get the following equal time cquation:

(2 + ik AN + 3(Ch + CHEID + (1 - 2) =5

., 0 . . . J .
Fimiby DO — itk =K, BB+ (1

(3.22)



— 44—

Here C), is the Cj,, operator of Chapter 2, ahd S, is the Fourier version of (3.4). The intrinsic non-
Markovian nature of the equation is apparent in (3.22): we have not, as yet, managed to decouple the
slow and fast time scales. At the end of this section we present an approximation which allows such a
simplification.

Eq. (3.17) is very similar to the product of two one point equations except for the bivariate

operators which originate from the iteration of the incoherent terms. These are defined by

( 9 Dya 9 —;*Fn*)(ﬁc ko Dkt cot?

Clalfea ) 22)) o,

(3.23)
of

+ B,

e (CRE V()

The “+” represents a convolution of the {k’,w’} sum with the correlation function at {k—-k’, w—w'}.

That is

2
Dirs Ui s =— o DBl o, ) @29

KW' Iék’w"

(2)*
'w’ 2
F]? ¥ (ﬁc—k’,w-—wl(l)f]:_k/,w_w q 2 ( ) (fk—-k’,w—w’(l)f]:ﬁk',w_w'&)) (3‘25)

k’ / ek/“” k—k’ u)-—w’(z)
P ¢("’)* aF“
(dly* fir w_,}/u» ik - et Tl D (3.26)
€t
~§2* (2) " (2) arc given by
1)*
7 = — gt )ik — KW g i
m kw k—k w—w 61)2
(3.27)

2 4dmne «(2)%
= [awi )

Similarly d, * satisfies



(d{z * fk-k’,w—w’(l))&g zmwp ik'— B) ()

v el lewe] Fvy |
(3.28)
9.3, 8
/d’l)3 k* —ka—‘(fk‘—k’ w—w’( )fk, k’w—u.)'(B))
kw U3
The C¢$, operator is defined through
Cy(8h Jew(1)) = (Brz * +m2%) e o 1)OF _pt o) (3.29)
where
| ,| 6
ﬁl?* = / o ——g' (2) w (330)
m? Z oo
—_— 1% ii¢k’w’ 2_7:_ i—* / gkw(g) 6]
ik = 2}; o PRI 9r.(2) asz,w dva——-ekw 3,7 ,m,(3) —F,, (331)

A this stage one can query a seeming asymmetry in the renormalized eqaution. Why do certain terms
which appear in the Cj; have their counterpart in the Cj, operator while others do not 7 For example
Dy has its cquivalent in Dy, while ¥y does not. It is difficult to give a rigorous explanation to this ob-
servation from the final renormalized result. On the other hand if we go back to the original expansion it

is fairly casy to sec how this comes about.

Consider the limit {k — 0} of the Fourier version of (3.1), S disappears since there are no average

ficlds and we get.

R DU
im - 2o =
(3.32)

mdv =

where we have kept the same non-lincar terms which we used to evaluate the collision operators (see

(2.9) and (3.18)). We identify
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‘9f(1)(1) A £2)° (1 2)x A1 '
= "mde ;(Ek/’f( (1) 4+ ES* A1) (3.33)
and
af3(1) g9 .
— 99 N Ay
5 e I}%L,d £2) (3.34)

'Thus the exact equation in the limit of small k becomes

o S U7 = fé(l)afai ) 42 O(I)fo(2) + /3(1) ’0 ‘”8

fo(2) (3.35)

The first two terms are nothing but the limit of the CJ, and C4, operators as {k — 0}. They are, as
we have seen, the perturbed 1.enard-Balescu operators. The third and fourth term are the elements which
for finite k yield the cross operators since they are associated with f(z) But we sce that their limit is the
unperturbed collision operator. Thus we would expect those terms to reduce to a Fokker-Planck drag and
diffusion. This result does not follow directly from our equations because we have approximated ff) by
the subset of terms (3.19) and (3.20). 'On the other hand it explains qualitatively why the C)2 operator
does not contain all the “companion” elements of the C operator.

On a more quantitative basis it is helpful to see the origin of the various terms in the iterative
process as they relate to Egs. (2.9) and (3.18). We will usc the following notation to differentiate terms
which have two components. For example the terms in Egs. (2.14), (2.15), (2.17), and (2.21) all consist
of two parts. These will be written Fy;(1) + Fi1(2), di;(1) 4 df,(2), etc., where “(1)” refers to the first
term in the parentheses and *“(2)” to the second.

Then the iteration of f§6_k, and ¢(2) w in the first term of (2. 9) yiclds

Dy, By, Fuu(1), diy(1), df,(1), and yi,(1)

The iteration of ¢k K w .» in the second term of (2.9) yields

F, 61y, F11(2), d,(2), and 711(2)

Finally
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Dyy, Fia, diy, dfy, 112, and Br2

come from the iteration of fﬁj and ¢k“2 in (3.18). The steps of the iteration are illustrated diagramati-

cally in Fig. 3.2.

8 Py fes 810y

AVVANVAN
F@e }-(2) 55(2) / (2)c }-(2) F2e

Du  Bu Fuy(1) Fi1(2) 12 ( 12 Dr2
$2e @ AD e e ]'('l) o \(2)c

(1) a{,(1) dl(l) dh(2) ¢ wm@d{(2) n di dfy M2

Fig. 3.2 Iteration of Two Point Equation

We must remember that the Fourier series are defined over a finite interval of time T and length
L. Thus cquation (3.17) is only defined over that domain. We now wish to consider an infinite system
and pass to the Fourier integral limit. For the k transform this can be easily accomplished by multiplying
(3.17) by the length L of the system and taking the limit L — oo. Ina spatially homogencous sytem we

have (A.7)

m LU — () (3.36)

L—oo



— 48—

Note that terms which have a convolution between the {k’} sum and the correlation function at {k —k'}

are transformed through

Lll_'ncl’o LZW}./ (fo—irfior— “’/ <¢2 k' ff k—k' (3.37)

The T limit is slightly more tricky. As a first approximation we assume that the turbulence is stationary.
(i.e.8/8t = 0 in (3.17).) In general this is not the case since we are going to allow the system to evolve
on the “slow” relaxation time scale. However we can write the temporal solution as a superposition of
a stationary state and a weak directional (function of t) state. This is tantamount to using the multiple
time scaling of §2.3, and allows us to pass to infinite 7' by using (3.30) and (3.31) with k, k', and L
replaced by w, o/, and T.

To decouple the equal time and two time equations we will make a Markovian approximnation.
This is of course consistent with our assumption 7, < 7. We thus assume that for small scparations
(F(1)f(2)),, and (f(1)f(2))_p .. are strongly peaked about (w—kv, ) and (w—w'—(k—k)v, ) respec-

tively. Cocfficients in the renormalization are transformed through the following cxample

J
3?)_1 /derz * étg(f(l)f@))k—k',w_wl —

¢ d ob (2K @)y O
ey / / / Ifk'cji A A2k o — (3.38)
~2
q2 5 dkl k,u,(2) (¢ >k/‘f)’ 6

i - e o (D

Notice that in the last expression g} _(2) — gb,{2) and that [ dw(f(1)f(2))x_p o—o — (F)A2D k-

Transformations of the type described by (3.38) allow us to recast the equal time cquation into

(& ikl + e+ - 2 )02 =
(3.39)

+ L 2ot e, — Lilk— )5 CHIWA+ (1 - D

We have explicitly indicated that the C operators are a function of k only.
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3.5. Properties of the Two Point Equation
The first property we would like to investigate is that of phase space conservation. If we sum
cquation (3.22) over k and take the v; — vy limit (neglecting “+ " dependances) one can trivially show

that

YD1+ Dia+ Dy 4D} =0, 3 [Fi(l) +Fia 4 Foy + Fa(1)] = 0
kw kw

DB FBra B+ L] =0, Y [d(1) 4 dly+ db, + dhy(1)] =0
kw

kw

Z[d{l(l) +df, +df, + déz(l)} =0, Z (1 (1) + 2 + %1 + ()] =0
kw

kw
(3.40)
DIFN@) + (2] =0, D [Fu+ Fa] =0

kw kw

S0ty + dp@) =0, L[ef + ] <o

kw kw

2o +8al =0, D (2 + wa(2)]
kw kw

Note that the summation over {k, w} is equivalent to taking the limit z_, t_ — 0. In affecting
the cancellations of (3.40) the following trends appear. If a term contains two velocity derivatives in
the minus coordinate the “11” term will cancel with its “21” counterpart and vice versa. If the term
contains only one v_ derivative, “11” will cancel with “22™ and “21” (if any) will cancel with “12”,
Referring to Fig. (3.2), we note that the renormalization originates from three groups. The second group
(which comes from allowing the perturbed electric field, ¢2, to aci back on the fluctuations) produces the
elements which do not have a bivariate counterpart. These, as we see in (3.40), cancel *“11” with “22”.

We give an cxample to illustrate (3.40). Consider the df-j terms. If we take the equation for
d, (which is identical to Eq. (3.26) with (1 «~ 2)*) and sum it over {k, w} we can change {k',w'}
to {—k, —w'}. At the same time we sct {k + &', w 4 '} cqual to {k, w} by changing the order of
summation. The resulting expression is identical to the onc for d ‘u(l). Going to the relative coordinate

system in velocity we use

*remember that (1 «+ 2) implies {kw — —k, —w}, and {k'w’ — —k’, —w'} in addition to {vy +* v2}.
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d g 1G]
—_— —_—
vy Gvy  Ou_
(3.41)
g J 6]

5’!72 (91)+ . Sv_
At this stage it is important to realize that Fi_g o, consists of a part which has no v— dependance

({f)) and the C¢ o , operator which exhibits, indirectly a v_ dependance. If we take C,":_,c,’m_w,(l)

K jw—w
we know that this contains expressions of the form (w — w’ — (k — k)v;). For small scparation w =
kvy and we immediately sce the appearance of the v_ dependance. Using (3.36), and neglecting the
gradients on v, changes the sign of one of the expressions so that they cancel. The other terms follow
suit in much the same fashion.

The second property we which to examine is the behaviour of the bivariate terms for large separa?

tion in phase space. We use the the Markovian approximation. Consider, for example, the diffusion

coefficients D;;. If v_ =~ 0 we can inverse Fouricr transform these terms to get

5%_D—(x_)6% (6f6flz_,v_,t);  D_(z_) = Di1 + Doz — Dia(2_) — Dyi(=-) (3.42)
where for example
KK(B)2, ‘
Dule- / / 27 (W - K ¢>i“’ch) exp (1k'z_) (3.43)

D_is a diffusion coefficient in the relative coordinate. From (3.38) the properties of D_ become

D_—0, z_ — 0
(3.44)

D_ — 2Dy;, T_ — 00

One can understand (3.44) on the following physical grounds. Two particles which are close together in
phase-space experience roughly the same forces and therfore move together cven though their average
coordinates z and vy may change significantly. On the other hand if |kgz_| > 1 (where ko is a
measure of the spectrum width), then Dyy and Dy are small and the particles diffuse independantly. In
general one expects all the bivariate operators to exhibit a strong dependance on z_ and possibly v_.
The latter appears as a Doppler shift in the Green function. The z_ dependance appears through the
convolution of the {k} sum with the correlation function at {k—k'} since cocfficients which have an z_

dependance will transform through
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[ o Aa ootz = X AT (3.45

kW'

The cross operators describe the correlated motion between points 1 and 2. This may take the form
of a drag, diffusion or other non-linear process. On the other hand it is physically clear that this corre-
lated motion will dissapear for sufficiently large spatial distances (the “sufficiently” is determined by the

spectrum width).

3.6. Equivalence to the BBGKY Hierarchy

An exact omparison with the BBGKY hicrarchy is not possible since our procedure renormalizes
the propagators and distribution function. However if we neglect thesc renormalization effects and
consider the iterative process only, it is fairly easy to see that the “phase-coherent” approximation which
leads to (3.39) is similar to a truncation of the Mayer cluster expansion at the four point irreducible

function. That is G4(1, 2, 3, 4) in

(£(1)6£(2)51(3)8£(4)) = Ga(1, 2)Ga(3, 4) + Ga(1, 3)Ga(2, 4) + Go(L, 4)Ga(2, 3)
+GA1,2,3,4); (3.46)

Gy(1,2) =(8/(1)8(2))

is set equal to zero.

We define the propagator of the linearized Vlasov equation through!!®!

) e - w8 /
(&——i—L(l,k))P(l,k,t)—-O, L(1, k) = kv, zwk(ﬂfo dv,.  (3.47)

together with the initial condition

P(Lk,t =0)=1

The application of P(t) to an arbitrary time independant function g(0) produces a time dependant
function g{t) whose elements satisfy the lincarized Viasov-Poisson equations and whosc initial condition

is g(0).
We can write the second equation of the hierarchy[%} (with discretness parameter set to zero) as



—592—

(59_ LR+ 102, Uk =

/
/dT/d’U3 dkPlkk‘T)P(? —k, 7)P(3,K, )
mvl

(3.48)

Xz,;,;ld( 3)EK) —<f( J/2)lk) +<Ef2)lk) SV

+(12)

The P operators propagate points {1, 2, 3} (from ¢t — 7 to t) through the clectric ficld structure of the
plasma. We will simplify the analysis by assuming homogencity in velocity space so that they become

ballistic operators. Concentrating on the temporal propagation we get for the first term

[ arp kK, @R 0, (3.49)

P(2) and P(3) have inserted a (fast) 7 dependance into (§f8f) (making them two time corrclation
functions). We have assumed that the one time correlation functions are slowly varying functions of ¢

compared to the P operators, and have taken the time asymptotic solution.

Using
((R)EIK , 7) E(f Q)EIK, e’ (3.50)
and
@)k, —1) = (F(1)F(2)|k)e v (3.51)
(3.45) becomes -
5[ arett bRk (3.52

Evaluating the 7 integral we get the un-renormalized green function, and the first term in (3.48) be-
comes the Dy, diffusion cocfficient. A similar calculation for all the other terms in (3.48) would yicld the

D;;, Bij, ¥, etc. terms. Note that we would have to use Eqg. (2.15a) to recover terms which come from
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the incoherent spectrum. For example the second term in (3.48) gives By and Fii(1) when one uses
Jow = Fiy + ]’k,w,. The d;; terms, however, would not appear. This is just a result of using the ballistic
approximation for P. In this context we can therefore interpret the d;; coefficients as terms accounting
for the shielding effects in the P propagator.

We thus see that an un-renormalized version of our procedure is akin to a solution of a BBGKY/-
Vlasov cumulant hicrarchy, which includes all terms up to the irreducible four point correlation
function. The renormalization resummes “higher” order terms which maké (3.39) a much more robust
equation than its counterpart (3.48). The inclusion of the (Vlasov) incoherent fluctuation in the iterative

process takes into account physics which is outside the scope of any of these expansions.
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Chapter 4

Source Term

This chapter is concerned with the source of small scale fluctuations in a Vlasov plasma. In Chapter
2 we derived a two point equation and labelled certain clements as source terms. The rationalle for such
a nomenclature is justified and the required propeities of such a term arc discussed. [n particular the
importance of momentum and encrgy conservation is shown, and the implications of these constraints to

a one and two species source term are analyzed.

4.1. Mixing Length Theory

The mixing length theories of fluid turbulence, originally formulated by Prandtl, postulate a
mechanism for turbulence based on the movement of small discrete clumps or particles of fluid.

We imagine the fluid to be made of a large number of these elements cach carrying a transferable
property such as mass, momentum, and encrgy. It is further assumed that these particles of fluid are dis-
placed some distance “I” before any of the transferable properties arc changed by the new cnvironment.
In other words within this mixing length “{” the particles of fluid retain their own identity and properties
until they suddenly mix with the new surroundings at £ = zy + [ (x is the starting point at which the
fluid clement was identified). Thus for a period 7 = I/v. (vy is the velocity of the centre of mass)
the fluid particle may change its structure subject to the strict conditions of conserving momentum,
energy and mass locally. Obviously it would be more plausible to supposc that the mixing procceds by
continuous movement of the fluid. On the other hand this mechanism is amenable to a simple treatment
and, in the case of fluid turbulence, is ultimately justified in that it leads to results which are compatible

with experimental observation.
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On the basis of the these arguments the ﬁuétuation in the velocity (6v), and the correlation function

({6v6v)) can be expressed in terms of the average gradients and a mixing length by

] 9 2 .
RS lé——z(v); (6vév) ~ (12)(6—2:(0 ) (4.1)

This means that the fluctuations in velocity depend upon the changes in the mean velocity at two points
a distance ! apart. While the analogy is not necessarily exact we can énalyzc the singular behaviour of the
Vlasov equation in the light of such a model.

The Vlasov distribution f(z, v, t) describes the density of an incompressible self interacting fluid
which flows in z, v phasc space. The incompressible nature of the flow implies that two neighbouring
points in phase space can have quite different densities since they may have come from points, which
at an earlier time, were widely scparated (Figure 4.1). To obtain an expression for the magnitude of
these fluctuations onc requires a solution of (3.39). However, we can obtain a qualitative solution in the

following way. We recall equation (3.9)

(0 +Tdft =S Tu—0 2,00

The operator T2 is a function of v_, while the source is a function of v only. We have thus scparated

the average properties from the fluctuating ones, since S describes the changes on the thermal scale

Fig. 4.1 Phase Space Conservation,
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while T, describes those on a trapping scale. The solution of this equation can be written as

/ dre~T2"S(vy , t — 7) = Tz, v_)S (4.2)

Previous approximationsi*™ used

S(e-) = (Duae-) + Din(a-)) g NI (13)

This can be obtained by substituting f = f€ only, in the Fourier version of (3.4). The steps leading to

(4.2) are discussed in (§4.2).

FEquation (4.2) becomes

() = Tl 2 )iz + D)o GO (44

We can understand (4.4) in the following way. (D12 + Day) is a “mixing-length™ in velocity space,
and contains all the fine grain information. This consists of a “clumping” time (7.;) which represents the
time for which a fluid particle retains its identity. Clearly this is strongly dependant on the separation of
the points in phase space. When 1 approaches 2, Ty — 0 so that 7; becomes infinite. This is consistent
with the notion of phase space conscrvation since the fluid particle becomes a point which conserves f
along its orbit indefinitely. The diffusion cocfficients contain the spectrum of the ficlds which determine
the rate at which the mixing occurs, and the level of turbulence.

We can thus vicw the incoherent fluctuations of Chapters 1 and 2 in the framework of a mixing
length theory where the mixing occurs in velocity space off the average velocity gradients, and the

“length” originates in the incompressible nature of the flow.

4.2. General Properties of a Source Term
We wish to analyze some generic properties of the source as defined in the previous section.

Equation (2.4) which is rewritten below

i

/ dv((%(éf2>+ §<f>2) / dv(§<6f2>+2§n<6E6f>6‘9—v<f>) - (49)

immediately shows that the source term

5= LESA) + LB 50 (46)
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in the limit of small separation, is related to the rate of change of the average distribution function.The
underlying mechanism is one of an increase in the level of fluctuations at the cxpensc of the average
distribution (and vice versa). For example if the average distribution is unstable it can relax by changing
its shape to a more stable configuration. This new configuration is produced through a mixing of fluids
of different density. In the process granulations are generated since these different densitics cannot
interpenetrate. ‘

We reiterate that the source term is treated as an independant entity because it does not act on
the fluctuations directly, but through the indirect mechanism of changing the average distribution. For
example we can casily envision a region of phase space where the average distribution is flat (say at the

top of the Maxwellian). Given a set of fluctuations at that point, their evolution would be governed by

(5 + Tiaos0r) =0

Ty would be identified as the reciprocal of the c-folding time of the fluctuations. An alternative way
of looking at the problem is to realize that the source term is also the mechanism by which the plasma
shiclds fluctuations. When (f ) is flat the debye length becomes infinite and no shiclding occurs. This is
equivalent to saying that the plasma does not redistribute itself (and by default the average distribution)
to minimize the charge modulations caused by the fluctuations.

We can examine, more closely, the partitioning implicd by (4.5) in the case of a one dimensional
plasma where normal mode interactions are neglected. The latter is an important restriction because it

leads to

(%(61')2 ~ 0 (47)

(The “___ ” represents the average over velocity space.) This comes about since an unrenormalized
collision operator of the lcnard-Balescu type goes to zero in onc dimension, so that (4.5) reduces to
(4.7). We already identified this property in Chapter 2 as the result of momentum constraints. However
we can make an even stronger statement than (4.7).

Let(f) = (f(v,0)) 4+ A{f(v, t)). (f(v, 0)) is the initial value of the average distribution function while
A{f(v, t)) is the change in (f ). Equation (4.5) can be rewritten as

[ asCers + aum+ vt ngau) =o (18
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Since the fluid particles can only transfer momentum locally we can approximate the initial distribution

by a Taylor scries centered about some average coordinate

f(v,0) ~a-+bv (4.9)
and cquation (4.8) becomes |
[ e +auy=o (1.10)
We have used
ORT =0, b2eATI =0 (4.11)
ag =0; o ” = .

which fepresent number and momentum conservation, to obtain (4.10).

If we integrate (4.10) over time, we get

672 = 620) — AT (4.12)

6£(0) represents the initial level of fluctuations. This last cquation shows that not only does the level
of fluctuations stay constant (4.7), but in one dimension it will decrcase since the last term is positive
definite.

The same arguments can be used to show that if there is an cnergy source the fluctuations can
increase. Consider for example a two species problem in an ion-acoustic regime. The energy source is
the drifting electron maxwellian. In that case

g —

/a TALF. N\
bavA(fwn) = —Y athUe:ec)

since momentum can now be exchanged between the clectrons and ions. This implies that

@750 = EFn0) + 0Aacd) — Afim) (4.13)

If ¥ is positive the gradicnts can be used to gencrate a turbulent state where the fluid particles are the
dominant contribution. Of course this state may also contain cigenmodes of the plasma and one has yet
to demonstrate that these arc any less efficient transport agents.

It is worthwhile emphasizing that our discussions rely on two important assumptions. The firstis

the “localness” of the interaction. The second is the conservation properties of the source term. The
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former need not be true if the turbulent spectrum contains waves, since these can transport momentum
through non-resonant interactions and cxpansion (4.9) would not be valid. The latter are investigated in

detail in the next section.

4.3. One Species Source Term
We can obtain an expression for the source term by using (2.19) in the Fourier version of (4.6).

The result is

2
Sk’u)’ — (#k’l\/«bkl /¢k:/w> d ka _I_Zk/@M@_ k/w)

w2 KO0, lewl? (4.14)
+ (1 2)
we pass to the Fourier integral limit and write
dk, ! ! / !
Sk, w) (w — w)b(k — K)S(K, w') (4.15)

where S(K/, ') is identical to (4.14) except that the spectrums are expressed in terms of the integral

transforms, i.e. (fowfirw) = () -

If we take Fsy = (f), we can write (4.15) in the more symmetric form of

52

(D )+ D ))6‘01(902

IOWIE) — (F) o + PB4 V@) (416)

The zero superscripts mean that the terms are the Markovian version of the cross operators. For example

D5 can, in that limit, bc written as (2.38)

dk’ k’lc’ [ . / dk’ f du’ e
D”(x / / — IC’ — ch Hklw,e

The Fourier transform of this expression is given by
dk' [ du’
°k=/——/—6k—k’H,« © (417
)= | 5 | Sdlk— K)Hew (417)

Similarly the Markovian limit of the cross drag terms can be defined through

/ / ,(¢f D f(l;w’ gk / / Ao b o=

lered
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so that
dk' | dw'

Using (4.17) and (4.18) in (4.14) we obtain (4.16).

Note that we have integrated all expressions over w to reduce the results to their one time version.
If we had kept the two time dependance this would have appeared as an addition “twt_" to the
factor exp(tkz_). This reflects the idea that the clumping mechanism is intrinsically an equal time
phenomenan of the two point equation. For |¢_w,| > 1 the cross operators become small and the whole
mechanism for phase space granulation disintegrates.

We see that the single time version of the source term S contains additional terms (in comparison
to (4.3)) which originate from the inclusion of the incoherent fluctuation. These terms are important,
since in onc dimension and in the limit of weak turbulence (so that Re gy, — §{w — kv)) they cancel
the source as defined through {4.3). This canccllation occurs for small separation (we need Fy» and
Dyo — Fyy and Dyy) and is directly related to the cancellation of these same terms in a Lenard-Balescu
collision integral. This is striaght-forward to scc by considering the expression for the current driving
the average distribution, Eq (2.38). Our source, in the limit of small separation, is this same expression
without the integral over dk’ and multiplied by 8/8v(f). If we take F =~ (f) and Re gk, =~ 6(w — kv)
then (2.38) is identically zero for every mode k' (i.c. we do not need to sum over all modes) and the
source likewise dissapears. We have already discussed the momentum considerations which lezid to such
a result. Moreover this is in agreement with (4.7), where the exact equations predicted that such a term
should dissapear, since there is no relaxation of the background distribution. We must emphasize the
underlying assumption of stationarity and the neglect of any unstable wave-like modes since these can
Icad to a non-zero relaxation of {f ) even in one dimension.

It is interesting to view the inclusion of these self consistent contributions (F2) from another view-
point. The inclusion of f© and f in the equation for the average distribution insures that momentum and
energy are conscrved. If we iterated f = f¢ only these propertise could not be proved*. With this in

mind, let us examine once again (4.5). The right hand side can be written as

[ av(—2L @Esy 1) + 2 L oE5 Y 1) (4.19)

*Unless we treated the case of Quasi-Lincar theory which relies on a further property, namely €xw == 0,
to prove the conservation laws. Thus the above slatement should be interpreted as “... given that we do
not use €xp = 0 then ... etc”
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Here the “ indicates that the term comes from whatever approximation we use to evaluate S, while
“ indicates the same but arising from whatever approximation we use to evaluate the relaxation of
(f). Obviously in the cxact equations these arc identical. However if we iterate f = f€ in the first and
f = f°+ J in the sccond then this inconsistency translates into a violation of phase space conservation.
We can extend this argument to infer energy and momemtum conservation in the source term. This

concept is more a mathematical statement that in the exact equations the following relations hold

16]
L, =mno; / dv, / dvz(”—‘J-zr—@S(k) = mny / du.v,-g:l (4.20)
3
L:%mm;/dm/dv\g vmS(k) = %mng/dvlv%———(a? (4.21)

In essence these are nothing but self consistency conditions dressed in the guise of conservation laws.
Clearly they are not satisfied unless we iterate f = f© - £ in both the expression for S and 3/8L(f ). It
is only in that sense that we talk of “conservation” properties of the source term. On the other hand on
a more intuitive planc these results are fsirly=plausible. Suppose the source term is scen as a mechanism
by which these “chunks” of plasma are moved through phasc space. The equation of continuity, for
example, would demand that for any chunk moved from z; to zy, a similar one should move from
5 to z;. Furthermore this process can only occur if the total energy and momentum transported are
conserved. In the casc of the purely diffusive source one can see that this is not the case. So long as
there exist some average gradients, this term will shuffle them around to produce fluctuations. Nowhere
is there evidence of the reaction of the plasma to this rearrangement. The F;; terms in the source provide
this response. .
An added refinement can be obtained if instead of (2.19) we use equations (2.41) in (4.6) (that
is take into account the two-time scaling procedure of §2.3). The source term becomes slightly more
complicated since it explicitly contains terms describing the slowly varying potentials. This implics that

even without a renormalization the source will be non-zero in one dimension, being proportional to the

rate of change of the potential energy.

4.4. Two Species Source Term
We consider a two component plasma made of clectrons and ions. The ions are no longer

stationary, and participate in the mixing process. We want to obtain an expression for the source
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term in the equation for the “i’th ™ species. We will use these cxpressions in Chapter 7 when we
consider the problem of ion acoustic turbulence. At this stage, however, they are intcrcsting because
they demonstrate how the two species term remains finite. Once again one will clearly see the influence
of momentum constraints on the problem.

Let ¢¢ and @' be the clectron and ion potentials. The total, self consistent, plasma potential is ¢
(== ¢° + ¢'). Through a simple cxtension of the procedure in Chapter 2 the ficlds of the dressed ions
and clectrons can be calculated as

¢Zw za)Zw - ¢kaiw
(4.22)

, ~1 .
¢;cm =¢kw - ¢ka;éw
¢};.w and ¢ are the incoherent ion and electron fluctuations, while x is the standard susceptability
defined through 2.52.

We redefine a dielectric

w = 1 + Xliw + X?cw (423)

through which we can solve (4.22) to obtain

akw ~ ~ ~e
Ok = ‘é'k— ) P = ¢kw + ¢kw (4-24)
and .
-(1 - _)¢kw Icw
ol (4.25)
ka ka

¢kw —(l - _——) kw — —__—¢kw

If we neglect any correlations between incoherent fluctuations of different species, and follow the

procedure of §4.3, we get for the ion source term

2 .. .. . .
k) = 3 (DiK) + DM 5o NN — (PR 3+ PR )T (0N

(4.26)
Four new terms appear which consist of diffusion and drag on the ion distribution driven by the

gradients of the clectron distribution. For example
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I o L R ST

2'” <6k’w’
represents the generation of fluctuations from the mixing of the gradients of the ion distribution, the

mixing process being generated by the turbulent spectrum of clectron fluctuations. Similarly

8 # s aw 0,
ri e [ 5 [ GrwE R de D) (428)

describes the mixing of the ion distribution through the dynamical drag driven by the gradicnts of the
average clectron distribution.
For the one dimensional problem, we note that D' and F* approximately cancel so that the ion

source reduces to

1 ie ie 62 1 'i ie 3 )
101 = DI+ D0 g SO — [Pigs 4 Fig (@) (029

This is an important result since for low frequency turbulence the two terms can reinforce rather than
subtract. For example if the average electron distribution has a bulk drift there will be regions where
the gradient of the ion distribution has opposite sign to that of the clectron. Thus the two terms in
(4.29) will add since F‘é is proportional to 8/8(f¢). This is in contrast to the one specics casc where
the terms in the source canclled for small separation. Once again we can reconcile this behaviour in
terms of momentum conservation arguments. For the two species problem the ion distribution can relax
independantly of ion-ion “collisions” (in fact these terms, F;; and D;;. cancel) since it can redistribute its
average density in velocity space by exchanging momentum with the eiectron distribution.

In conclusion we must add that this general procedure is only justified when we are analyzing the
two point cquation for small scales. It is in that regime that we can make a precise distinction between
the left and right hand side of (3.3) and (3.4). One represents the relaxation on local trapping scales
while the other those on thermal scales. For large velocity separations the T’y operator (which reduces
to Ty + T») describes phenomena which occur on the same scale as S. In that regime it becomes
more expedient to treat S ~ (6ES f) as part of a homogencous integro-differcntial equation rather than
treating it as a given quantity which drives the fluctuations. This point is treated more fully in the next

chapter.
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Chapter §

Solutions

We have emphasized in the past Chapters the problems of disparate scales in an iterative solution
of the Vlasov equation. The regimes of small (=~ v;,) and large velocity (=~ wy,) scparation were
identified as the two fundamental scales. Closely related to these characteristic velocities are the two
time scales associated with the equal time equation (=~ 7,) and the two time equation (=~ W, 1), These
cquations are mathematically and physically quite different. One is a boundary value problem while the
other is an initial value problem. In fact we will use the solution of the one time equation as an initial
value for the two time cquation. ‘

In this Chapter we outline the steps which connect these solutions, and obtain formal expressions
for the correlation functions in the two regimes. We investigac the breakdown of the cxpansion
parameter and relate the results to the discussion in (§2.2). Our approach is compared to that of Dubois
and Espedall'!l, who explicitly obtain an equation governing the incohcrent fluctuations. On the basis
of the latter they conclude that the these fluctuations are down by an order of |¢2| compared to the
coherent (or wave) response. We believe that for small separation their conclusion is incorrect, and we

indicate how to retrieve the singular behaviour within their framework.

5.1. One Time Equation

Of the number of equations we have developed, the one time (or cqual time) two point equation
describes the more involved interactions in a plasma. It is only for ¢, = t; that the cross operators
become important in the evolution of two neighbouring points. The enhancement of the correlation

between such points is in part due to these terms, and allows the existence of a “clumping” mechansim.
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The one time equation dwells on the creation and destruction of these “fluid™ elements. For example if
the phase space volume of such clements is sufficiently small then all the particles within that fluctuation
will move together since they feel approximately the same forces. The period for which the fluctuations
exist, as independant discrete elements, is determined through the “time constant” (T 1‘2’) of the govern-
ing equation. The source term regenerates the fluctuations through the mixing of fluids of diffcrent
density. This picturc and the action of the T2 operator is complicated by the fact that the fluctuations
do not originate from point (delta function) structures. In classical mechanics discrete particles cannot
act on themselves. In this case, however, since the clements have a finite physical extent self interactions
can occur which may enhance the lifetime of the structures. This section analyzes a method by which
one can “solve” for the singular portion (G) of the correlation function. Such a quantity describes the
structure (in an ensemble averaged sense) of these fluid elements or “macro particles”. Our governing
equation is Eq. (3.39).

We define (symbolically) the following operators

Ey = E\(k) + C{(k) (5.1)

E, is a renormalized Coulomb operator. That is E9Gy = (SE6£(2)),0/0vi{f(1)) and C{Gy, =
(8ES§£(2)),8/00,C%,(K): note that [EY + E9|Gy, = S;. We also write

T, =ikv, + C{,(k)
(5.2)
ATygx =CJy(k) + +CPy(k) *
(The “+” is a reminder that the “12” terms are in fact convolutions of a k" sum with functions at k-K.)

Eq. (3.39) can be written in terms of these operators as

(gi + Ty + To)G(1,2, 1) = —A[Tiz * +To*|Gi(1, 2,t) + [E1 + E2]G(1, 2,¢) (5.3)

In a manner analogous to the test particle picture we will assume that Gi(1, 2, t) consists of two

parts

Gk(l’ 2) - Ek(li 2) + G’k(l: 2) (54)



G(l, 2) represents that part of the correlation function which describes the singular behaviour for small
scparation (in the case of discrete particles this would be the self corrclation (1.35), where the delta func-
tions describe the point structure of the particle) while Gi(1, 2,1) will be associated with the shiclding
properties of the plasma.

We define the equation for G through

(gt_ F T A T)CHL 2, 8) = (B 4 E[CHL 2, 8) + Tu(L, 2, 8)] (5.5)

This immediately defines Gi(1, 2) since Gi(1,2) = Gi(1, 2) — Gi(1,2). We recognize that (Ey 4
E»)Gi(1, 2) acts as a source in that equation. This format is very reminiscent of the sccond equation in
the BBGKY hierarchy with discretness cffects included. In fact in the absence of any renormalization
we would identify (E) 4- E,)Gx(1, 2) as the exact discrete particle source. This is straightforward to see
if we use Gi(1,2) = n'6(v; — v,){f(1)). In that case we also know that Gi(1, 2) will describe the
shiclding of the discrete particles by the collective intcractions of the plasma. Indeed, it is this analogy
which motivated this particular choice in the first place. Time asymptotically, onc can solve (5.3) and
(5.5) to get
Ti\+ Ty

Glc(lf 2) = T + Ty — E _Ezék(lr 2) (56)

The next step is to obtain the solution for small velocity separation (v_v;' < 1). Gy, is defined as

the difference between the exact solution Gy, and Gi(1, 2). From (5.3) we have

(§t— + Tialk)#)Gi(1, 2) = S (5.7)

In this formulation Ty9 (= T\ + T2 + A(T\2 * +T3, %)) contains all the v_ dependance while Sy, is
assumed given and the solution (4.19) is used to explicitly cvaluate that term (Chapter 4). This is in con-
trast to the way we treated that term when evaluating G (1, 2). There we took S, (= (E§+E2)Gi(1, 2))

to be part of a homogencous equation for G (1, 2). Gi(1, 2, t) is then obtained from

Gk(l; 2; t) = /dt,gl2(k: t’ t/)Sk(t/) - _ék(lr 27 t) (58)

where gja(k, t,t') is the Greens function which solves (5.7), with the RHS set equal to §(t). The

incoherent self correlation can be expressed in terms of the T and E' operators as
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( = — E‘_j;Eé / /
Gk(l, 2, t) == (1 T1 + T2) dt guSk (59)

For small separation, cquation (5.9) can be written in the physically appealing form

G’k(l, 2, t) = ((%[) -— Ttr)Sk (510)

(5.10) derives from noting that as z_, v — 0, Ey + Ey — E9 + E and (Ty + To)~' = 7,. Thus
the clump portion of the correlation function is the difference between the total solution ((1)S) and
the shiclding solution (7;,S). (1) is some c-folding time characteristic of the solution®! to (5.7). For

example in the case where (in real space) we approximate T2 by

Tiao(z_,v ) ~v_— — —D_— (5.11)
with

D_ =Dy + Dyy — Dy3 — Dy

2 { 5.12)
STy g _ (
= [ 3 [0, anegfo, )1 — coske.) |
one can obtain the expression
(ta(z_,v_)) =mIn 3 argln > 1
llZ V) =0 e r v e 20R ]
=0  otherwise (5.13)

10 =(4k2D)~ % = (12) " 4m, .
by calculating the length of time during which particles that are initially separated by z_, v_, will move

together before they separate by kg ! This can be achieved by computing the moments

(g (t)™(t)) = / dz_ / dv_z"v™"g19 (5.14)

setting k3(z2 (1.1)) = 1, and solving the resulting equation.
In general the following observations can be made from the simple form (5.10). Firstas z_, v..
approach zero 7o 3> 7y, since the first is singular while the second is not. Thus G}, approaches (Te)Sk

which is equal to the total response Gi. Second for large separation 7. = 74, so that G, — 0.
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There are several points in this procedure which deserve some comment. Equation (5.9) is an
integral equation and as such is not really a solution. On the other hand it has the distinct advéntage of
putting the v_ dependance of G into the T, operator. In that sense it is a step forward since one can
analvze the Ty, operator independantly of the v_ dependance of S (which has had the v_ dependance
integrated out). The second point reiterates the previous discussion on the treatment of the “RHS” of
the equation in the two regimes. For large velocity separation we solved G with S as an unknown. For
small separation we treated that term as given. This procedure reflects the notion of disparate velocity
scales. In the first case the T' operator has an tkv_ dependance which for v_ large is of the same order
asd(f ) /Bv. Thus E| cannot be treated independantly of the 7" operator. When v_ is small, however, we
can separate these quantitics and look upon S as a distinct and independant quantity in the two point

cquation.

5.2. Two Time Equation

We now wish to show that this particular choice of G and G leads to the shiclded test particle
picture where G obeys a ballistic cquation of motion (with Fokker-Planck renormalization). The as-
sumption of time stationarity allows us to take Eg. (3.17) of Chapter 3 and sct {; = 0. Neglecting the

cross terms we have

2 oD+ ko + [ O — WD, =
(5.15)

t
_% /0 dt’(E'(t’)f(O))ka——iIFk(tl —t)

The term containig &/v{f) has been included with C§ to produce Fi. (sce (2.15¢)). This gquation has
to be solved with {(f(t;)f(0)), = (/(0)f(0)), = Gi(1, 2,t) as an initial condition. (5.10) propagates
point 1 keeping point 2 fixed and is therfore valid for t) > t; = 0. For ity > t; = 0 the operator is
changed form coordinate 1 to 2.

The solution to (5.10) is given by

(A2, = (P, k,w) + P'(2,k,w)HA1)F2)t = ta), (5.16)

where the P propagator is identical to P in (3.47) except for the inclusion of the rcnormalization from

the collision operator C. That is P(1, k, w) is the solution to
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__i(w — kv, + iC{ (k) — kaF k dvl)ﬁ(l, kyw) =1

and can be written as

To obtain (5.11) we have used

(F(Mf2) = . dz_ /_oo dt_e™ T e "!=(f(vy, 71, 1)) f(v2, 22, t2))

=/0 dt_e="™=P(1, k. t; - £,){f(1)f(2)|ts = b2} >t
0
+/ dt_e '=P(2, k, ta-t,)(F(1)f(2)|t1 = t2),, th >t

From Eg. (2.12) we know that on the fast time scale (f(1, £;)f(2, 0)) satisfies

¢
1

with solution
JOF2 e, = GrulL, 2) = [grull) + gk (D]GK(L, 2)
Applying the P propagators we find that, given (5.20), Gy.(1, 2) satisfies

Gro(1,2) (gkw(l){ k — dvlgm(l)} + (1 e 2))Gk(l,2)

s

- [glcw(l) + gzw(2)]ak(1) 2)
We substitute the expression for Gi(1, 2) in (5.21) to get

— ?

Gro =

((w—l—iTl—-iEl) (w—zT2+zE2 )T1+ E,—E

t
2501, )72, 0 + ik (L, 072,00 + | a6t 5-)T(1, (2,00 = 0

“*” G, 2) — Grul1,2)

(5.17a)

(5.17b)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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we have expressed the P operators as 1 /(w + ¢[T — E]). To be consistent with our earlier assumptions
on the nature of the time integral in the collision operator we have to set Dy, ctc. equal to D(k) in the P

operators. (5.22) can then be simplified to

T+ Ty
[w+ 1Ty — iE))[w — 1T + iE3)
w2

N k OF
=_ka(l; 2)+(1+7‘l |29kw( )6 wav: /d l)

w? k OF, / ilw— iTy] — ijw +iT)] »
X (1 |k|zgl,w(2)gi;£ dvz) o iTiw — iT5) Gi(1,2)
(5.23)

which is identical to (£°(1)f*(2))s., + (I (2)k, + (F(1)1*(2))- This is of course the result we

set out to prove. As previously advertised, we can also identify Gr.(1, 2) as the shiclding response to the

ka(l 2) thl) 2) - ka(li 2)

incoherent spectrum f dv f dvyGiro(1, 2), since (5.23) can be integrated over v; and v, to yield

("0 = T3 (5.24)

If we neglect the incoherent fluctuation then the solution becomes (f°f¢). The equations revert
to the more common weak turbulence expansions (including renormalizations). These solutions are
ultimately concerned with wave, and mode coupling type of interactions, since the driving mechanism is

the zeroes of the dielectric function.

5.3. Dubois and Espedal Solution
In their paper on the D. 1. A. as applied to plasma turbulence , Dubois and Espedall!!] derived a
set of renormalized two point equations. Onc of their conclusions was that to nominally second order in

3

the clectric ficld strength no . . .additional noisc terms arisc which can be interpreted as duc to phase
space clumps.” This statement is given more physical substance by pointing out that the D. 1. A. cannot
account for correlated objects such as clumps since it is known to be an exact solution to the random
coupling model of Kraichnan!®?. In such a model localized effects would tend to be smoothed over and
lost.

On a more mathematical basis Dubois and Espedal base their conclusion on the structure of the

equation for the unscreened correlation function. This equation is one of the novel aspects of their
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work and allows a direct calculation of the self correlation function (f f). The authors estimate this
component of the fluctuations and propose that it is down by a factor of |¢>|2 compared to (fbfc). The
result is arrived at by observing that no source term of the form described in Chapter 4 appears in their
cquation. In fact the only “source™ term is proportional to |¢|4.

While the technique used to obtain their two point cquation is certainly elegant and rigorous, we
believe that it tends to obscure some of the underlying physics. In this section we follow the derivation
and show how the singular behaviour is contained in the equation for G(1,2) in a somewhat convoluted
fashion.

The following method (or a close variant) is adopted by the authors. They definc a slightly different
G and G which we will denote by primes so that G = G =+ &. The cquations satisficd by these

quantities are

4 ‘ .
(— + T+ TZ)E’,C(I, 2,t) =[E, + E) [ka(l, 2,t)+ G’k(l, 2,t)] — [Ri2 * +R21#)G,  (5.26a)
at
3 5 — o
(G+Ti+ TG (1,2, 1) = — A[Tio + +Tos][Gy(1, 2, 1) + Gi(1, 2, ¢]
+ [R]Q * +R21*]Gk (5.26b)
Rigx =diy % +d{y+ +ma2+ (5.26c)
We can use (5.26a) in (5.26b) to obtain the equation for el

(5 + T+ ATig s —Rupx (1 o )81, 2,1) =

E] —Rm *+(1 H 2)
Ti—E + Ry % +(= 2

(5.27)

—-[AT12 * ——R|2 * +(1 — 2)]( ))Gk(l, 2, t)

Equation (5.27) can after some algebra be reduced to the format (Appendix C) in Ref[11]. It is worth
mentioning that in Ref. [11} the one point equation is obtained by iterating f = f¢ rather than f =
f¢ -+ f. In other words the renormalized collision operators do not contain terms such as F', ¥ etc.. We
do not claborate on this discrepancy at this point since it does not affect our fundamental concern: the
existence of a G driven by the source described in Chapter 4. It is fairly simple to show that the singular

behaviour will occur whether you iterate f = f¢ -+ f or just f = f©.
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We want to investigate this equation in the limit of small separation. Going to “~"" coordinates and

taking the limit z_, v_ — 0 (the former is achicved by integrating over k) we have

/ dk(Ty + Ty + A[Tia * +Tai%]) — / dk|E; + Ey — EY — E9)
/dkA[T,2 * Ty #] — /dlc[—T1 —Ty+E + E—EY—EY (5.28)
/dk[Rlz * -|—R2]*] i——) /dk —_ [Rl +R2]

R, and Ry are the onc point versions of (5.26¢). Eq. (5.28) follows quite simply from the properties of
(3.40). We use this result in (5.27) and get

(g + /dk[El —ES4R + (1~ 2)])@';c = /dk[T1 —E+Ej—R + (1 G, (5.29)

but from the definition of 5;

[ k=B 4B R (1 2T, = [ a0 o 206+ [ dERHEYEL 630

so that for small separation cqaution (5.27) reduces to (remember that f dkG, = G(z_ = 0))

i 28,0y = B+ B e ) B B e ) = S(av) (53D

The ordering of the source term is back to |¢|2. It is interesting to see how this ordering changes
(and becomes meaningless) for different velocity scale lengths. Consider the operator on the RHS of

(5.27). For large v_, ikv_. dominates the terms in the denominator, and V@, where V is given by

V=[E —Rp*++(1e2)/[Ti—E +Rp++(1« 2)]

is of order ]¢>|2. A[T)9 4+ Ry is also of order |<;S|2 so that for large scparation the term become a
“source” of O(l¢|fl). For small separation, however, V becomes of O(1)(=~ (E; 4 R1)/(Ey + R;)) and

one recovers the correct source term.
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With reference to the discussion in §2.2,F and ¥ arc given by

153
lim :?(t]) /(; dt'gk(fz—t’)if( [ATIQ - Ru]Gk(l 2)

ty,lp—oc

. (5.33)
lim ?(tl)/o dt'gk(tg—-t’)?f(t') = - [AT12 — Rlz]a-k(l, 2)

ty,ta—o0

We can see from (5.28) that part of the action of the 3 contribution is to cancel the T} and T renor-
malization. At the same time the ¥ part is seen, from (5.28) and (5.30), to change its ordering from |<}5|4
wl|gl".

This change in the ordering is rather difficult to sce when the equation is written out explicitly. An
cxample might serve to clarify the point. We simplify the analysis by assuming that the only terms which
contribute to the renormalization arc the Markovian diffusion cocfficients. The equation for the total

correlation function Gi(1, 2) is

ad I 9
—Djj— —— Gi(l, 2,t) =
vy “(91)1 Jvny DP ) HL,2,0) =

(% + tkv_ —
6] o) g 1¢]
(671D'2 * oo + a—v—ZD‘zl * E)Gk(l’ 2,t)

2 2
+(ika%<f)f%/dul—ik 0 i )w /dvg)le 2,t)

|kl Jkf?
(5.32)
Using (5.26) the equations for G and G are
a é] 3 \—
=~ Fthv_ — —Dy— — ho—)G(1, 2,t) =
(at-l-tk 30 D”c?v 3 Dzzaw) W(1,2,1)
(5.34a)
9 ,, w
(th5- <f>|k| dvy + (1 e 2)Ci(1,2,) + Til1,2, 8)]

and
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(% + dkv_ + aiD 9 )Gk(l 2,t) =
3 ] ik w2
_(%_lDlz 61)2 + Doy -———)\/d (———— gku, lkl /dv1 + l - 2 )ka(l 2, t)
8 3 &
(D gt gD ) [ o BT oy

(5.34b)
A cursory examination of equations (5.34a) and (5.34b) leads to an intriguing conclusion: the informa-
tion on the singular behaviour seems to have been lost. There is no doubt that equation (5.33) is singular
for small separation since the diffusion coefficients cancel while the Coulomb operator docs not. The
equation for G does not contain that information since the operator on the I.HS remains finite for small
separations. The cquation for G does not scem to contain that information cither; D_ goes to zcero but
we are still left with the operator on the second line which is finite as z_, v_. — 0. Furthermore even
if that operator dissapcared the “source” term (presumably the third line in (5.34b) since it looks like a
mixing of the average gradients by the turbulent clectric ficlds) is now down by an order of #? (since Dy
is proportional to ¢).

This seeming discrepancy or loss of information can easily be reconciled. If we consider “~
coordinates only, and take the limit 1 — 2 then
e} 4 g 6] ad g ¢} 49

%Dma—v;-F%; 2151]—1 50250 " Dz26v2

Moreover equation (5.33) (ford/0t = 0) gives
8 & 2
((%IDHE): + -D22 )Gk(l 2) = [Ey + EjlGi(1, 2)

Thus (as 1 — 2) lines 2 and 3 of (5.34b) approach, in a somewhat convoluted manner, the source term

of Chapter 3.

5.4. One Point Review

We have presented an approximate technique for solving the two time and equal time two point
equatons. This approach has relied on the presence of two time scales which allow us to decouple these
cquations and treat them independantly. Starting from the two point cquation for Gy, the partition of Gy,

defined through (5.5), into Gy, and G,; has led quite naturally to a “test-clump” picture. It is interesting
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to sce how this partition is related to the one point equations. Contrary to one’s first inclination, our G

and G are not consistent with

(g + Tl)fo —EJOF (5.352)
) -
but rather with
J ~ w0 =
(& Tl)fo —Ej o F — 4 (5.362)
(B+r)r=s+sr (5.360)

On the fast or ballistic time scale both these set of equations reduce to (2.11) and (2.12) namely

a J =

a o
(§ + T,)f ~0 (5.37b)

From which we recover the one point shielding results of Chapter 2.

We have shown that the set (5.36) will yicld the shiclded clump picture when the “slow” (equal
time) version (5.36) is used as an initial condition for the “fast” (two time) version (5.37). The following
question arises: what is the effect of using the same procedure with, instead of (5.36), the set (5.35).
In fact one might worry that an inconsistency is generated since we will be propagating a different
incoherent response & ) through (5.37b). This paradox is casily resolved by noting that the initial
condition “G” will also be different (5). In fact it is simple to show that this different initial condition
produces the missing part (as it clearly should) of the incoherent response. In other words the total

potential will be given by

~12
<¢2)ku — <¢ )kw

|6kw|2
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Ry, is the remainder generated by the different G condition and q~5' is the potential generated by the f
defined through (5.35b).This can also be written as
~2
(@ )k

(o = % (5.39)
lexel

where now ¢ is the potential generated by the f defined through (5.36b). Thus both partitions yield the
same fofal potential on the other hand (5.36) is emminently more useful since it leads to the concept of a
shielded “macro-particle” which can be treated in much the same way as a shiclded “test-particle”.

In conclusion we add that if by the D. 1. A. we understand a scheme which iterates the coherent
responsc only then this procedure will break down. For small separation the incoherent response is
certainly of the same “order”, if not larger than f¢. This is in agreement with the physical models behind
the coherent and incoherent response. The former represents a weak coupling, sufficient to describe
shiclding and other non local phenomena. The latter is concerned with the much more violent interac-
tions at wave particle resonances: there results a strong distortion and modulation of resonant velocity
streams of the distribution function. This is a strong coupling problem where the stream develops a com-

plicated or “incoherent” phase dependance due to the highly non-linear interaction at the resonance.
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Chapter 6

Fluctuation Self-Interaction

We have established in the past Chapters the existence of non wave-like fluctuations which we
believe are integral to the relaxation processes in a collisionless plasma. These appear as complicated
spatial granulations of the phase space density f(z, v, t), and are a result of the imcompressible nature
of the Vlasov equation. In this context f(z, v, t) can be thought of as the density of an incompressible,
slf interacting, fluid which flows in the two dimensional phase space {z,v}. (As opposcd to the
hydrodynamic density p(z, t) which describes a fluid in the three dimensional space {x}.) A turbulent
state will mix (rearrange) the particle distribution and produce fluctuations in f about its average value
(). The resulting phase space distribution will have local excesses § £ of chargel?), and local depletions
01 (“holes™). This distinction is important since the physical behaviour of these entitics is somewhat
different. &£, being an aglomeration of like charges is self repulsive. Holes can be viewed as gravita-

tional bodies!2%! which are self binding.

This Chapter investigates, qualitatively, the self interaction of such fluctuations. Our discussion
will treat the case ¢, > 0, for which the velocity of the fluctuations is less than the thermal velocity
The self encrgy of clumps was considered negligible in Ref[2]. Later work!3%), recognizing that any
mixing process would also generate bound states such as holes??) came to an opposite conclusion.
Thermodynamically®®'!, holes can play an important role in a turbulent situation because they represent
the most probable state for local cquilibrial!™. The most persuasive arguments for the existence of such
entitics comes from computer simulations. Berk er all*¥] have studicd the interaction of these modes

and seen the persistence of such structures in the cvolution of a two-stream instability. More recently(32]
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numerical simulations treating strongly turbulent states have identified holes as a major component in
the relaxation process. ‘

From simple energy considerations it is possible to sec that a hole is self binding. Consider a hole
with a certain spatial and velocity extent: ballistic strcaming will quickly cause the structure to shear
apart. In the process the potential energy of the hole will decrease. To conserve cnergy the hole must
increase its kinctic energy. The only way this can be done is by pushing particles out in velocity which in
turn contracts the hole. These arguments gain a different perspective when one considers the hole as the
dual of a gravitational massi33]. The picture becomes reminiscent of a cluster of gravitating bodies. Thin
streams of more cnergetic fluid are ejected from the main body and rotate clockwise about its centre.
This rotation occurs because of the gravitational attraction between the main body and the spiralling
arms. The clements travelling with a positive velocity on the right hand side of the phase plane are
attracted to those on the left. This reduces their velocity and they start moving downwards. If the orbits
arc “trapped”, they will actually reverse their direction of motion and end up moving to the left. The
same set of events causes elements on the left to move upward and to the right. The precise details of the
motion depend on the initial energy and equilibrium states of such structures.

It is important to realize that these interactions are “sclf-energy” oncs in the truest sense of the
expression. The structures have a certain velocity and spatial extent. This allows the fluctuations to
act on themselves and co-ordinate the energy and momentum exchange within the structure. It is this
feature which is the essential element in the “self-energy” relaxation. Furthermore, in the case of a hole,
this mechanism enhunces the lifctime of the structure.

We wish to investigate in what way it might be possible to incorporate such effects within a Kinetic
Theory. It is important, however, to realize that the covariance (6 f(1)6/(2)) cannot distinguish between
6f, and §1_. For small separation it becomes a variance (self correlation) which is indifferent to the sign

of 6.

6.1. Stochastic Acceleration Problem
We want to consider the action of the operator
4

o + oD o

v

(6.1)

in the context of the previous discussion. This operator is the basis of the clump lifetime calculation in

Ref[2]. 1t can be obtained as a reduced version of the Ty, operator in the following way: (i) ncglect
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all contributions from the iteration of ¢2. (ii)v In the resulting equation neglect G_ and consider the
Markovian limit.

The first assumption derives from treating the problem as a stochastic acceleration. In other words
the ficlds are prescribed externally and f is not related to ¢ through Poisson’s equation. This mecans that
the problem is not self consistent and the medium cannot act back on itsclf through the intermediary
of the electric ficlds. These ficlds, however, can randomly diffuse the “test” particles off their ballistic
orbits.

The stochastic acceleration approach is clearly a somewhat reduced and incomplete description
of the problem. Furthermore from Chapter 4 we know that it gencrates the incorrect source term.
For the purposes of this discussion, however, we will neglect the source term and consider the action
of this operator on a set of initial fluctuations comprised of holes and and positive fluctuations. The |
important point is that (6.1) retains onc of the csgcntiai features of the exact equations; the Ty operator
dissapears for small separation. This leads to an enhanced correlation between two points and produces
the logarithmic clump lifctime of Chapter 5.

It is interesting to see what is the effect of this operator on a localized structure such as a hole. The
ballistic operator will shear the structure apart in real space while the diffusion will tear it in velocity.
Two neighbouring points will “co-exist” for a time 74 before they eventually diverge. The theme is
one of indiscriminate destruction. That it can not reproduce qualitative results such as those previously
described is not surprising since we have thrown out any possibility of such an interaction by specifying
a lack of correlation between ficld and fluctuation. More important, however, is the consideration that
if holes arc the major protagonists in the turbulent spectrum then such an approximation will seriously

under estimate the lifctime of these structures.

6.2. Gravitational Instability

We have scen that the stochastic acceleration operator does not have any means of preventing
decay; in fact it accelerates it. The question therefore arises as to what kind of cftfect one should look
for which might slow down this decay. To allow us to develop some qualitative ideas on the subject we
begin by treating the dual of the hole: the gravitating mass.

A first step in the formation of gravitating bodies, such as stars, is the attraction of a large mass of
gas to form a single condensate that is gravitationally bound. An idcalized model which provides insight

into this mechanism is the Jeans gravitational instability. In its simplest form a medium in equilibrium
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is subjected to a small perturbation. Under certain conditions. the gravitational forces will cause an
exponential growth of this perturbation. The resulting regions of increasing density represent the initial
formation of the body.

We assume a planc wave solution of the form

~

p=acdsten (6.2)

p is the perturbative picce of the density. On lincarizing the fluid momentum equation, coupled with

~ Poisson’s cquation/?”! one obtains the dispersion relation

w? = k%’ — 472Gy (6.3)

¥ is the mean spread in velocity of the body. G is the gravitational constant and py is the unperturbed
density. Equation (6.3) predicts that for wavelengths greater than \; = (73%/G py)'/? the system will
be gravitationally unstable. The disturbance will grow eprncmially causing a condensation of matter.
This critical length is known as the “Jeans length” »nd signals the onset of the gravitational collapse.

It is fairly casy to show that this instability fs thc dual of the more familiar two stream instability!®3!. -

Consider the step distribution of Figure 6.1 (a). For velocitics greater than |Av]| the distribution is

o &

(@ : (b)

- Fig. 6.1 Distribution Function for Two Stream Instability



flat and has value 1. For |u| < |Av| the distribution has value zero. The dynamics of the instability
are primarily determined by the boundary at the step. They are relatively insensitive to the tails of the
distribution which participate in a shiclding role. Morcover, since &(f)/dv is zero in that region, the
only phenomena which survives is undamped oscillations or an instability. As far as the instability is
concerned, the distributions in figures 6.1 (a) and 6.1 (b) arc identical. The sccond, is the one more
commonly associated with the two stream instability.

To obtain the dispersion relation we use

e 1

5o ) = 5[0 — Av) — 5o+ Av) (6.4
in

2 .
w ika(f)/d0

€k -+ lk|2 dv(w B (6.5)

The eigenvalue equation becomes
w? = k2Av? — w,zJ (6.6)

In this casc the Jeans length is given by N; = (wmAv?/ne?)!/2, This is identical to \; if we identify
Gm? as the equivalent “gravitational charge”.

The distribution used in (6.5) is a spatially averaged function. We can extend thesc arguments to
an (f) = f. so long as thw wavelength of the instability is less than £~!. In that case the dielectric does
not distinguish between a small {k} fluctuation and the average distribution. One might try to construct
an analytic theory in which an equivalent, local f, plays the role of {f) as the source of a trapping
mechanism. For example ballistic motion causes holes to elongate in real space. The longer they become
the more prone they are to gravitational collapse. This is clcar from (6.6) which shows that they are
susceptible to long wavelength perturbations. These perturbations generate an instability which tends to
hold the structures together.

This simple model is open to criticism, and the more pertinent question are: 1s this information on
the behaviour of single clements transferable to a Kinetic Theory which involves (68 f) only? And if so,
how can we use this type of model to describe a statistical ensemble of such structures?

The most striking objection to such a theory is the undue emphasis it places on the negative ele-

ment of the fluctuations. Charge conscrvation demands that for every hole there be an cquivalent charge
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excess. It is not clear @ priori why a statistical quantity such as the variance should single out holes.

A model, which is consistent with numerical simulations®?, sces the emphasis on holes displayed
in the following way. Regions of positive §f could blow themselves apart onto large surface areas of
phase space. Holes would be dispersed within this sea. To conserve charge density the “depth” of the
holes would be much greater than the “height” of the charge excess. This would mean that the dynamics
of the system would be entirely dominated by hole-hole interactions and the correlation function would
be primarily meausuring hole material.

We have conducted some preliminary work along such lines. Some of the terms proportional
to {@f), in the two point cquation can be expressed as an cquivalent background distribution which
looks like a negatively pcaked “(f)". This could generate an instability in the relative coordinate system
{z_,v_}. Whether this instability specifically enhances the lifetime of individual fluctuations or just
generates new ones is lost in the ensemble averaging process. The result appears as a longer “clumping”
time. We have not carried detailed calculations due to the complexity of the terms present. The

interpretation of part of the C*? terms through this or a similar model remains an intriguing possibility.
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Chapter 7

Role of Clumps in lon-Acoustic Turbulence

Most models of ion-acoustic turbulence rely on the interaction of ion-sound waves with each other,
and particles in the average distribution. The dissipative cffects due to the presence of turbulence are
often characterized by an instability induced through particle streaming. The simplest case of such an
instability, in the absence of magnetic fields, is the ion-acoustic or two stream instability. This has been
investigated at some length¥ within the framework of weak turbulence theory. In particular non-lincar
effects such as resonance broadening have been invoked as additional ingredients in the dissipation and
stabilization of the growing modest®3730l. In this Chapter we consider a simplified version of our set
of equations for a two specics plasma. The role of clectron and ion clumps is investigated as a possible

constituent in the dynamic processes.

As demonstrated in Chapter 4, the source term for thc correlation function is finite for a two species
plasma. This is a rcsult of the added degree of freedom duc to the presence of the second species.
Encrgy and momentum conservation do not impose the strict cqnstraints present in the one dimensional,
one species problem. If there exits an external source, such as a current within the plasma, fluctuations
arc generated which relax the average distribution. In the process the mixing off the gradients of (f)
regencrate the fluctuations. A sclf sustaining state cxists when the decay of these fluctuations due to the
turbulent ficlds is balanced by the creation of new ones, Only when this condition is met can the effect of
clumps be considered an important element in the description of turbulence. We thus which to address

the intrinsic question of “regencration” within an a priori self consistent formulation.

We proceed by solving numerically a set of idealized equations for ion and clectron clumps. The
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background distributions arc assumed to be Mach!lians; the ions being stationary and the electrons
drifting with a velocity vy. At cach time step the source and diffusion cocfficients are calculated self
consistently from the solution. A wide range of parameter space ( T/ T;, the clectron to ion temperature
ratio, and vy the electron drift velocity) is investigated. We find that the fluctuations regenerate at drift

velocitics which are appreciably below the lincar instability level.

7.1. The Basic Equation

The solution of the exact equations for a two species plasma presents a somewhat formidable task
even for numerical analysis. Our aim is less ambitious in that we will deal with what we believe is the
minimum amount of information necessary for a relevant description of the problem. The two species
cquations are easily derived using the method of §4.4 coupled with the renormalization technique of
Chapters 2 and 3.

We assume that ions and electrons obey the following model equation (a, refers to the species).

a a a g £Q
(5 +v‘6 63:2 Z 3“1%5 )W 5f°) = 8¢ (7.1)

This model equation is a considcrably reduced version of the formulation in Chapter 3 and it is worth
pausing to analyze the terms which have been discarded.

We start with the perturbed Fokker Planck operator C/. This consists, in addition to the diffusion
D, of a drag F, an< perturbed diffusion and friction coefficients d/ + dt and ¥/ 4 ¥*. The first point
to note is that df + d* and ¥/ 4 ! conserve (in the long wavelength limit) momentum and energy
against F' and D. d and ¥ are back reactions of the plasma to the disturbance caused by D and F'. It is
thercfore plausible to assume that they would reduce the effect of the test particle quantities (D and F),
rather than enhance them. Clearly the interaction is quite complicated for finite &k, and mode coupling
between different wavelength might result in a different picture. While more investigation is required
to determine the exact magnitude of these terms, we believe that the the exclusion of the perturbed
quantitics represents a Jower limit on the clump lifetime.

On a more concrete level, we notice that in the relative coordinate, v_, the F' and d/ 4 d! terms
contain a single velocity derivative compared to the diffusion operator (D). For small v_ we conclude
that the latter destroys far more cffectively (by a factor of v,/v;,) the correlabtion function.

The second class of terms belong to the C® operator. We have attempted in Chapter 6 to give
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a qualitative feel for the possible effects of subh terms. While some of them can cnhance the clump
lifetime, it is not clear what the net effect of these terms is. In the interest of simplicity we neglect them
in this model.

The final modification concerns the source term. It is helpful to visualize the sclf consistent aspect
of the calculation in two distinct steps. The first adds the F8/8,(f) term to the source. This as pre-
viously mentioned, reflects dircctly the notion of momentum and encrgy conservation for the average
distribution function. The second appears in the renormalization of the green functions etc., within
these expressions. We neglect the latter contributions. Physically and mathematically, it is clear that the
presence of FO/3,(f ) is the most important difference to the source, compared to previous calculations.

Bearing these limitations in mind we can, accordind to Chapter 5, write (676 f*) = G as the sum

of two parts G + G. In the relative coordinate system G satisfies

) 9 9 .00 Vs ca
(a“-axj‘a—v_‘l)f’—az)ﬁ’ =5 (7.2)

where the source term is defined through

a
5% = —2(ga/malESS) 5 () (13)
Ut
and the diffusion cocfficient through
a 2 2 12 2
D® = (q;/m2) Ek |brer| “2ReGr(v4-)(1 — coskz_) (7.3)
K w!

G satisfies a similar equation with D_ replaced by D1,

E 8 8 ,, 0 \ne .
o _ % pe 9 V=g 74
(at G T o e )G d (7.4)

1 is the spatially homogeneous diffusion coefficient given by

D% = (qa/m3) Zkl2|¢k’w'|22Regk’w’(v—|—) (7.5)

kW'
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The incoherent spectrum is related to the total potential through

g
Ip” = = +|j klw/l (7.6)

|€rr]

We simiplify matters by taking e, to be the lowest order, unrenormalized dielectric,

. 1 Wty Te,,, W
e = 1 vy [Z( Py ) T A (k'v,) (7.7

In the above cxpressions g, is the debye length for the “a” species. T, Ti, ve, v;, arc respectively

clectron and ion temperature and thermal velocities. Z’ is the derivative of the plasma dispersion

function

Z(z) = infezp(—22)(1 — Erf(—iz)) (1.12)

where E7(2) is the crror function.

From the these expressions it is clear that to obtain the diffusion coefficients we require the in-
coherent or “clump” contribution. This can casily be obtained from the solution of (7.2), and (7.4) since
according to (5.10) (68 ) is the difference between these expressions.

We arc now in a position to reduce the source and diffusion coefficients to the following form:

AL+ A} ,
4 =2mwi N oty =E L S 27rwga>\;}av:rl[dg+d5]
v RN e |

_ (7.13)
dg — K +
; |kk‘ia|3 ‘Ck’,k’v_,_l‘z
and
D =2mwi N v Y (AL + &%) _ vt 5(1— coskz_) = 2mw;, N} v"‘[de +di—dS —di
i 2 S PV
= Z 5 cosk'z_
|k}\d| |6k/ lc'v+|

(7.14) |
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d® is a dimensionless quantity, while Ay is the fourier transform of the clump charge density in the

v coordinate. That is .

Ay = dxei“*/dv_(éfaé}'aw_, T_) (7.15)

The source terms from chapter 4 can be simplified to

5¢ = — SoImZ'((vy — va)/ve)/ 7N},

(7.16)
St =Sy Im Z'(vy[vi)/ 7N},
where
N, T, _ ;
So = [—;m Z'(vy-fvi)ds — ImZ'((v4 — va)/v)d; (7.17)
U+ Tz‘
We have used
o
Im 2wy ) = 7, ¥, S0 (7.18)

Pa daav+

and taken Rege., =~ 76(w — kv) to reformulate some of the expressions.

7.3. Method of Solution

The method of solution is quite straightforward. We integrate numerically four partial differential
equations (two for each species), to obtain the total G, and G response. (Remember that G represents
three terms, ff -+ ff¢ -+ £f€). The difference between these solutions represents G. The result is
integrated over v_ t obtain the charge density which is fourier transformed through a highly optimized
FFT algorithm. The resulting quantity is used to evaluate the diffusion coefficients and the source term
from cquations (7.13) through (7.18). (Note that the integrations involved are nothing but inverse
fourier transforms.) These new coefficients are used to advance the equations in the next time step.
Several schemes were investigated for the finite difference equations. These arc outlined in Appendix C.

Some further restrictions are imposed in that we neglect the time variation of the average dis-
tributio in the source term. This means that we do not allow the average distribution to relax during our
simulation. A more complete description would take this into account. However since we are primarily
interested in the onset of instability (surplus regeneration) rather than the saturation mechanism per se,
this assumption is unimportant for the purposes of this model. Within this framework v becomes a
constant which is treated on par with the temperature and drift velocity as an external parameter for

each run.



Computational difficulties arise when one. trics to integrate two interclated equations whose func-
tions evolve on cxtremely disparate time scales such as electron and ion plasma frequencies. For the
purposes of this calculation we have restricted ourselves 10 mass ratios of the order of m;/m, ~ 4 —
40, the computational costs involved for larger mass ratios being prohibitive.

For the two stream or ion acoustic instability one can generate a linear instability boundary in the
drfit velocity and temperature ratio domain®"l. By this we mean that for a given temperature ratio there
exists a threshold drift velocity beyond which an cigenmode of the plasma diclectric will go lincarly
unstable. The most familiar case is probably in the T./T; > 1 regime where the ion landau damping
becomes small enough to allow unstable waves to be gencrated off the positive gradients of the electron
distribution. The data available in the literature deals with rcal mass ratios. Thus for purposes of
comparison we generate the same stability boundary for the artificial mass ratios. The method used is the '

standard technique of solving the simultancous sct of equations consisting of the functions

Hi(o) = 50— () + (me/ma) (7)) = 0 %Hl(m >0 (7.19)

coupled with

Hy(vy) = Re((T./T)Z'(v/vi) + Z'((v — va)/ve)) = 0 (7.20)

The last equation assumes that the & = 0 mode is the first to go unstable. In the temperaturc regimes
which we investigate (Te/T; ~ .1 — 10.) this is the case.

As a practical point we use the diffusion coefficient as the yardstick for the measurement of decay
or growth. If that quantity remains constant or increases we consider the state to be self sustaining or

unstable.

7.4. Results of Numerical Simulations

Fig. (7.1) plots the critical drift velocity as a function of T/T; for the onset of clectrostatic in-
stability in an clectron ion plasma. The curves are for three mass ratios, m;/m, = 1840, 160 and 4.
Fig. (7.2) shows an amplificd version of the case m;/m, = 4. On the same figure the region for clump
regeneration is plotted. The shaded area indicates the region of non linear instability gencrated by the
numerical solution of the differential equations. For T./T; = 1 we sce that v,y ~ .55y (v is the

critical drift for non-linear instability while vy is the analogous quantity for the linear case.)
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Fig. (7.'3) illustrates the z__ dependance of the diffusion coefficient D_ for two diffrent cases. In

the first the incoherent fluctuations are decaying while in the sccond they are growing. To facilitate the
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Fig. 7.1 Plot of Critical Drift Velocity vs. Temperature Ratio

for Onset of Flectrostatic Instability
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discussion let us assume the following gencric form for these curves

D_ ~ Dyl — ¢ kolz—1)

We have paramaterized D_ through its size Dy and a characteristic width ka‘. The most striking feature

which differentiates the curves is their “kg”. For the case of decay this is roughly a debye length while in

the unstable regime this is closer to 3 or 4 debye lengths. At the same time the magnitude of Dy in the

unstable case is approximately ten times that in the decaying regime.

With this informatior, the mechanism for the instability can be characterized in the following way.

As the parameter set v, vg and Te/ T; approach valucs such that ¢ becomes small the widthof D_inz

space increases. Mathematically this is fairly easy to see since e — 0 makes D(k) peaked about k = 0.

On transforming back to z space this produces a broader function. In other words the typical clump size

increases. Furthermore G decreases since Dy (which is equivalent to D) increascs. The same holds for

the source term which becomes larger and broader in phase space. The net result is an increase in the

clump charge density with an equivalent increase in the magnitude of the potential spectrum.
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Fig. 7.2 Clump Regencration Regime for m;/m, = 4
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Thus when one passcs a threshold value, determined by the proximity of the parameter space to
an undamped eigenvaluc of the diclectric, the system will always regenerate provided that S remains
positive finite. In previous one dimensional calculations one of the problems encountered was the dis-

sapcarance of S as ¢ — 0. For a onc species problem an undamped mode has Ree &~ Ime =~ 0 and S

)\ J 2 g 4

/D_

Stable

(arbitrary units)

Unstable

Fig. 7.3 D_ as a Function of z_ for Unstable and Stable Regimes
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being proportional to Im e becomes small in that same limit. For the two species formulation this is not
the case since € — 0 can be satisfied for Im x¢ 4 I'm x* = 0 rather than requiring the individual terms
to dissapear. These arguments are made more quantitative in §7.5 where we derive an approximate

analytic solution which illustrates the trends we have described.

Fig: 7.3 Contour Maps of the Flectron and lon Correlation Functions
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Figure 7.3 illustrates the contour lines for the ion and electron correlation functions. Figures 7.4
and 7.5 show cross sections in z and v of these functions. The different tilt of the contour lines (between

the electron and ion picture) arises because D¢ 3> D,
.

- Two further aspects of the simulation are of interest. The first is the characteristic growth rate of the

VA

Fig. 7.4 Cross Scction for Electron Distribution .
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instability and the second is the linewidth of thé fluctuations.

To answer the sccond question, investigations of the solution well inside the regeneration regime
indicate that the phasg velocity width Avy, = (W/k)iaz — (wW/K)min is much larger than the linear

instability result. For example, fluctuations whose growth rate is maximized for phase velocities around
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Fig 7.5 Cross Scction for Ton Distribution
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v; will extend in velocity up to 435% of that value. That is the spectrum will include phase velocities
from .65v; to 1.35v,. This is an interesting result when coupled with a growth rate which is of an

exponential nature. A typical curve demonstrating the growth of the diffusion cocfficient is shown in Fig.

7.6.

7.5. Approximate Analytic Solution
One can obtain an approximate self consistency condition in the following way. According to (5.10)

we can write the solution to the differential equations as (a is once again a spccics superscript)

FFY = (19 — 12)5° | @2y

The clump lifetime can be approximated by (5.13),

<

Talk, v_) =~ 6(v_) / Tk, v_) = 6(v_ ) (1 — Ju(s‘/?k/zq,)) = §(v_)A(k) (7.22)

|kl*



while the trapping time, as a function of ¥ and v__, can be modelled by

.
4 F (kv_m)?’

We have approximated the resonance broadening by a constant factor 7. kg is an average wave number

7, = (k2D/3)'/3 (7.23)

Tir =

characterizing the spectrum which we define through

ay-1| 89D
kg2 = (D) [d—v gt L_O (7.24)
The source term is given by
A0 ] 8
S* ~2D [52;(](’)} — 2F [( ) (f )}
(7.25)

zw"“[gwr—(mﬁ/ma)w@“[ ST

We have used in (7.25)

2 ) = (a2 S 2 9]
This last equality is motivated by encrgy and momentum considerations since theses terms are identi-
cally equal when one takes their v and v? moments. Physically this is just a statemnent that if, say,
clectrons are diffused by ion fluctuations then the displaced electrons, to conserve momentum, will act
back through a balancing dynamical drag. .

The potential fluctuations are related to the correlation function

i = (1) [ o [ avasto — ez (129

If we substitute Eq. (7.21) through (7.23) and (7.25) in (7.26), using

27y T

/dv_m ] (7.27)

we get after some algebra
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g = 28 L

T epu)® — 2Im xg Im x2,

a a a ~a 2 .
<[Bram g — g dmod] [ v el

where
aron _ Iapu)
B%(u) = 1+ Lus(w)
with
Alk) (Im x2,)*

oot = [ dkie

w2 lekui2 —2Im xg JImx2,

Alk)  Imx} Imxg,

T = [ el

? |6ku‘2 —2Im Xgulm qu
The solution to Eq. (7.28) is

~a 2 92

| = lexul N(u)R(k, u)

where

A (Bo(Imxg, )2 — Fmxg mxd,)

Rk, u) =
(k) 2 lexul? — 2Im xg Im X2,

N(u) is arbitrary if

/ dk|k)R%(k, u) = 1

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

and N(u) = 0 otherwise. Equation (7.29) is the first cquation which must be satisfied for a steady, self-

sustaining, state to exit. The second condition, which determincs ko, is given by (7.24). If we use (7.31)

this can be recast as

/ dk1k|k2[R€(k, u) + R'(k, u)] = 2k?

(7.34)
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The simultancous solution of Equations (7.29) and (7.30) determine the parameter range for which a
self consistent stcady state can exist.
"The above equations were solved numerically for the real mass ratio, and for mass ratios in the

range of the computer simulation. The results are shown in Fig. (7.7). Given the approximate nature
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Fig. 7.7 Clump Regeneration from Analytic Results
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of the analytic expressions for 7. and 74, the results are surprisingly close. The computer experiment
predicts a reduction df approximately 50% in the drift velocity required for instability,‘whi]e the
analytic result predicts a more modest 25%. This discrepancy is casily attributed to the logarithmic
expression for the clump lifetime which is a serious approximation to the exact result for z_ => ko—‘ and
v_ >> . Since a major contribution to the clump charge density comes from its finite extent in phase
space the regeneration condition is quite sensitive to the approximation in (7.22).

Nonetheless this approximate result illustrates effectively the essential aspects of the calculation.
The first shows how the approach to an eigenvaluc of the diclectric will always insure regeneration since
the numerator in (7.32) will be small and will allow (7.33) to be satisfied. (The integral, far away from
a solution of €x,, = 0 is less than 1.) The sccond element is the reduction of this cffect duc to the

subtraction of G. If onc did not subtract that contribution then the equations would only differ in that

3

) would reduce to lekul™

denominators with the cxpression (|.s;w|2 —2Imxg Imx
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Appendix A

Transforms

A.1 Fourier Transforms

The finite transform and its inverse are defined, over a spatial length 2L or temporal length 27,

through

f(z,t) = kaw exp i(kz—wt) k= — =
kw

(A1)
Tt [*dz
fkw - »/—T Q‘T‘ /—L 2—Lf(xr t) exp “i(kz—'wt)
The integral transforms are the limit of (A.1) as L and T become infinite. For example the spatial

transform is given by

=] %1tk explike)

—oC
(A.2)
e o]
1(k) = / dzf(z) exp(—ikz)
—o0
A.2 Laplace Transforms
Laplace and inverse Laplace transforms are defined by
o0
Fiw) = | dest)exp(GFit
0
(A.2)

co-t+1io
f=[" " durte(Fn

—00
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A.3 Averages
In the two point formulation one often deals with products of 6. For a spatially and temporally

homogencous system it follows that

(f(k, (K, ) = 2m)X[f ), 8(k + K)o (w + w’) (A.4)

where

~o0 ~+o0 .
= / dt/ dze R (f(v), x4 ot 4 ) (v, 7, 1)) (A.5)

One can go from the discrete limit of the transform to the continuous limit through the following

transformation
Jim L{/2)) = S0/ 2) (A.6)

(A.6) can be demonstrated in the following way. From (A.4) we have

(ffh=lim / dze— ke / 22 Jorfoet®" " e (#+2) (A.T)

kl kll
where we have interpreted the ensemble average as a spatial average. Using
lim / dz’ ek +KEN — B o (A.S)
L—oo L 2L ’

where 8, , is the Kroenecker delta function we get

=Y fehobi bk — k) (A.9)

k/ kll
But §(k — k") = lim [, oo L&k from which (A.6) immediately follows. Similarly, using (A.1) and

(A.2), onc can show that

St = [ 2 [ 25w, (10

kW
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A4 Renormalization of One Point Equation

From Chapter 1 the collision operator is defined through

/0 A Cht—t)fi(t')

Hl

(,‘f, (;9 E K gD (1) + ik — K)o ()7t )

Phase Coherent

(A.11)
We recall the greens function g(t) through
9 t
(5 + 1kv)gi(t) + /0 dt'CL{(t-t)gu(t) =0 t>0
alt = 0%) =1 (A12)
gk(t) = 0 t < 0
Using (A.12) the iteration for f{2), (t) is given by
t
A = / dt'ge_i(t—t")
0
o) o)
q k * k!
xz;((k—k’) (o + CE_ENlt) — Ko 0" (¢) + k()
(A.13)

Consider, for cxampie, the diffusion term Dy,,. This is obtained by iterating the second term of (A.13)

into the first term of (A.11). Performing the substitution we obtain:

m25vz / dt'ge_(t-t) it )¢u(t)) ﬁc(t’) (A.14)

We assume stationary turbulence so that (¢(¢)¢(t)) — (|¢w|?|t—t"). Fourier transforming (A.14) and

interchanging the order of integration we get:

m2(9v/ / / dt ] dte™! g _p(t-4) (¢ e ”)af(t’) (A.15)

We have made use of (A.5) to express (|¢k/|2|t_t’) in its Fourier representation and used (A.10) to go to

the integral limit of the &’ sum. Defining
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Do = /0 dige(t) exp(iwt) (A.16)

(A.15) immediately reduces to

dk’'
mzav f o Ik w—w Ao )"’“’6 Jew (A.17)

The next step is to express (¢?),,, as the shiclded spectrum (&2) ! lek/u,/|2. This can casily be deduced
form the Fourier transform of equations (1.15). The same technique can be applicd to the remaining
terms in the iteration. It is important to stress that the format of results depends on the assumption
of time sationarity. For a non-stationary system the cocfficients would have to be left in the format of

(A.14).
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Appendix B

Perturbation of the Lenard-BaleSCu Equation

In §1.4 we interpreted some of the terms in the collision operator ¢/ by considering an expansion

of the discrete particle I.enard-Balescu collision integral

] __9 99
ot LB— ava+éch?vf

F and D are the drag and diffusion coefficients given by

Ff =15 R G FedD) -z & it

m kW' Iek’w’l

The spectrum of fluctuations is given by

27

FOT @ = 80 — Ko)s(or — wa)(f)

]C"U) I¢k’w’| (B2)
6Ic’m’l

(B.3)

where n is the average density of particles. Using (B.3) and (B.2) in (B.1) we can write the collision

intcgral as

o] KK 9 / dmcﬁ(k’v.—k’vg)[

ot |kll4avl |6kl’klvll

oy

}f( @) (B4
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We consider the response to a wave, of a plasma described by the equation

9 8 q.0\, _of
(& +om+mEn) =&,

(B.5)

We will treat the Fokker-Planck coefficients as a perturbation acting on the correlated motion described

by the Vlasov operator. Thus the wave ficld is present both as the smooth macroficld E' in the Vlasov

operator and in its effects on the drift and diffusion cocfficients. Following the procedure in §2.4 we

linearize f and €x according to (2.50) and (2.51). This yiclds

. Ifo Ofw
—ifw — kv) o — ——k—— == Tk
i(w v) fi ) Py = |,

If we write the perturbed collision operator as —C f,, we have

’ 3
fo=— Lk £¢kw(w — kv +iC)™!

and

1 = lim )
fO k,w--0 ﬁc“

The perturbed collision operator becomes

at Ik/l 1(9’01

LB lek’,k’vl

w" 1 I*
k’k’ (9 6 kl —_— kI’Uj ! ! 6
—r— 3 /dw ( : ’)[Xk + X ][

0 ()
k' lk’|4avl |6k’ vy €l Eloret 61)1

which can be rewritten as

0  0pn 9,0 \a_(_9 na 9 no.
(8 +2r-2p2 Y= (-5 + 0+ st +ang )

v

(B.6)

(B.7)

(B.8)

o) :Ww_“zkfk/ 5 dma_(g@n_:%y_e){_,__a_][ LL733) + A0 fo(3]

]fﬁ(l)f

(B.9)

(B.10)
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where

w / / Ny —

p=r Y% / a0, SED =K o

k! Ikll le(lg’,k'vll
(B.11)

W KK §(K'v; — k'v) I

Fe=rr2, 4 /d”3—’—2—3—f3(3)

ko |k |6k’k:’ U3
arc the diffusion and drag cocfficients in the absence of the wave field Ej,,
Wy K'k' §(k'vy — k'v3)
ot —q /d’l}d——l————i f()( )
" W € oo &
(B.12)
4
w 1.0 oy — k'v 1
R DI L ’2"‘”["&&' Xs;“"} A0)
ki Ik,|4 |6k' k:’vll Cleteot €hw av3
and
W Kk (k'vy — K'vy) 4
dt =T /d’UJ____l..___.lfo( )
7k |€1c',k/01|
(B.13)

4
W ,
p k/ / 6‘ kl __kl ., bR
df=—7('—— E i/dm ( ‘UJ 2’03)|:X(§,w Xk'w]f()(:;)
n T k! le) o l” LR R
are the modifications to the Fokker-Planck coefficients due to the wave induced distortion of the dis-

tribution function.

We wish to compare the above to the k,w — 0 limit of the C’iw operator

16] g ad —=
—éiwfkw = g_v(Dkwa)‘ - ka)fkw + 5'_v((df + dt)g; - (gt + gf))f (B14)
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For the spectrum given by (B.3) it is clear that setting {k, w — 0} in (2.27) will reduce the diffuion
D, to the “zero” order Lenard-Balescu cocfficient. Furthermore in the long wavelength limit, and time

asymptotically we have

~ % ~
KK (B 1)) i
lim (F A4, = —T2 § EE TRy 2
k,w—0 &+ F)he mwpl;w, |k’|2 kb Y e — k'vy — 16 8v3f°( )
(B.15)
~ ; Xl’:" /
2 kl<¢k’w fk’w’ 6 L:)
k" W' k’w’ék’w'
If we use equation (2.49)
- Xk _ Imxg Xkw' Xivwr | T MeEkr!
Re | = > ot > (B.16)
k€l Iék"w" Kw k'w! |€klw'|

in (B.15) and perform the ' integral we recover the coefficients obtained from the lincarization (B.12).

At the end of this appendix we show that

(@7 )+ 08| =T ot — i

|k
(B.17)
<(1)~(2) ~(1)~(2 4mne)? 2T
[<¢‘ 8w+ 38 )>W] =(—|75,l4—) [ 4ot — ks
where the expressions in (B.17) are the limit k,w — 0, of
(2) (1) (l)*
k—k',w—w'T K'w + ¢k+k’,w+w’
when one uses (A.5) to go from the discrete to the continuous limit of the Fourier transform.
We also have
(2)* (1)x~(2
. [qﬁk,w,q&k,w, + ¢k,w,¢§c,j,,} 5
i t = KK —fo(l
k,l:ﬂo <50 Ay m2 Z — k'vy — 16] 0 26v1f8( )
Ko €]
(B.18)

. f_ — ,|¢klwl ——l Xk’w’ X]:lwl g_ l
k}j,‘ﬂo d Ay m22 €0, | | lw — k’vl——ié][ek,w, 3 avlfg()

K w Eprt
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and

. 2)x~(1 Dx~(2) | €
lim Fkufkw klz [ S./i,/@s( ) +f( )/ gc'o)u’ kwi? (Blg)

ko ot et

Using (B.17) in (B.18) and (B.19), and retaining the real part of these terms it is casy to scc that they
- reduce to their counterparts (B.11) and (B.13).
To show (B.17) we take (2.30) multiply respective terms by ¢r and f},,, to get

+2) HDx ¢ q ~(1)
Ji k’w—w’¢k’w + k’w’¢k Fk w4 —gk k! w~w/( )1k¢k~u (f W( ) Idw')
5 (B.20)
i / 03000 r(3) - T (7 (3)k)
|’C+k’|2 - W (9’03 k'w M

Since these expression are going to be summed over &’ and w’ we can set (f,:,w,fk,w,) cqual to (ff). by

changing the summation to an integration. Using (B.3) we get for the right hand side of (B.20)

A J
(TZ/T;) 2—:5(w' — k') gk w—ur Zk¢kw f0
(B.21)
n (47rne) 2r q ke (k + KN6(w' — k'v) . 8/vb(w' — k'v)
W nmo “[ T —(k+kpwFib?  |w—w —(k— K)o+ i8]

The term on the first line is the desired answer since we can use (B.7) and (B.8) to reduce it to (B.17).

We thus want to show that the remaining terms are zero in the limit of &, w — 0. Using

5
8(z) = })anﬂ (=24 6?) (B.22)
the term in square brackets can be written as
! 2A'A — A — 16
lim K (& + & —id) AlA — A — i (B.23)

abo C(ATF 6| [(A F AP F 6T (a2 4 6Y[(A — A)2 467

where A = w — kv and A’ = ' — K'v. As A approaches zero the imaginary parts exactly cancel

and we are left with an expression that is entirely real. Furthermore since any K dependance in A’ will
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get eliminated by the w’ inetgral the only &/ elémcnt to survive is the one outside the square brackets in
(B.23). For F and d', the final result has to be real. Since |ewwr|” is an even function of &’ we are left with
k' integrals which integrate odd functions. In the case of Fy,, this is ~~ f dk'k”Im € 4, while for the
diffusion, d', it is =~ f dk'k’>. Both integrals arc identically equal to zero. Thus the only term to survive

in the long wavelength limit is the first one in equation (B.20).
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Appendix C

Program Listing

This appendix contains the listing of the program which solves the ion and clectron clump equa-
tions. The version in this program uses a Levellier weighting method for the hyperbolic equation and an
explicit method for the parabolic equation. Other version were tested which used an implicit method for
the parabolic equations. The results were essentially the same, but the amount of memory neccesary for
the second technigue made the explicit method with a small time step more advantageous. If we denote

the dependant variable as wl, , the finite difference scheme becomest3® %)

uiﬁ;lﬂ =(1— 2";)“2; + Ti(ui—{—l,x + ui}——l,x) + 'StzAt/2
(C.1)
ubf! =ubhl2 — abH (w12 — W) 4 oLF A2

where

rl =AtD(z, t)/((Av)?2)
(C.2)
alt1/? =y(At/2A1)

The von Neumann stability condition requires that a!, <C 1 for the hyperbolic equation. The parabolic
cquation requires vt <C .5 for stability. To insurc that the stability conditions are not violated the
program continually reviscs the time step At/2 so that r and a arc bounded in the region specified by
equation (D.2). In practice we used a smaller region al, < .2 and r}, < .125. To check the results we
used different time splitting in (I2.1): for example t + 1/3, ¢ 4 1/4 ctc.. We also investigated a Crank-

Nicholson scheme coupled with a Levellier method. The results were similar to within ~ 2%.
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The program which implements these equations with the equations for the source and diffusion

follows:

*select box=mi16,account=430mas
*file name=pdiff

3PP
c
c
c program name: PDIFF IE 9/7/80 T.B-G
c
c VERSION: 5 UPDATE: 25/7/80 (..vectorized.)
c VERSION: 4 UPDATE: 24/7/80 ..no vertical trans.)
c VERSION: 3 UPDATE: 12/7/80 ..with vertical trans.)
c
c This program solves the CLUMP equation for Electrons
[+ and Ionms.
c
c SYMBOLS used:
c
P
integer tim,ee
dimension uec1(101,101),uec2(101,101),uet1(101,101),uet2(101,101
dimension uic1(101,101),uic2(101,101),uit1(101,101),uit2(101,101
dimension dstar(101),dstar0(101)
dimension sex(101),six(101),hv(101)
dimension xx(101),yy(101)
o
common/b/nvm1,nvc,nvm51,nvm31,nvm15,v0
common/c/mxml,mxm2 ,mxc ,mxcpl,mxcml, x0
common/e/mxcp14,mxcm25 ,mxcp25,mxcmb0
common/eps/num,ntime,dcx,aa,bb,drift,r1,ri3,rm,rt,vs0,beta
c
namelist/out/namout
c
data namout/'xout'/
data nv/101/,mx/101/
c
call link('unité=tty//")
write(6,1)
1 format(2x,'input: name of output file.',/)
read(6,out)
call create(20,namout,1,-1)
c
ti=second(zz)
call timedece(tim,dat,mach)
c
c Initialize Graphics
c
call keepsogl.s)
cail fr80id(tim,1,1)
call plts
call dders(-1)
c
c Initialize Data
c
call number{nv,mx)
call init(uett,uecl,uitl,uicl,
1 dstar,dstar0,
2 sex,six,hv,
3 diffe,diffi,adv,nv,mx)
call scale(xx,yy,nv,mx})
call graph(uecl,uetl,uicl,uitl,
1 dstar,dstar0,sex,six,
XX,Yyy,nv,mx)
write(ZO,ﬁ?rm,rt,drift
5 format(3x,'evolution of diffusion coefficient for',//,
1 3x,' rm=',f5.2,' rt=',f5.2,"' drift="',f5.2,//)
c
c Solve
c

do 10 it=1,ntime
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call solver{EE,uecl,uec2,dstar0,sex, hv,diffe,adv,nv,mx)
call solver(EE,uetl,uet2,dstar,sex, hv,diffe,adv,nv,mx)

call solver{II,uicl,uic2,dstar0,six,hv,diffi, adv,nv,mx)
call solver{Il,uitl,uit2,dstar,six, hv,diffi, adv,nv, mx)

call diff(uet2,uec2,uit2,uic2,

1 dstar,dstar0,
2 sex,six,
3 diffe,diffi,adv,nv,mx)
if(mod(it,num).eq.0)call graph(uec2,uet2,uic2,uit2,
1 dstar,dstar0,sex,six,
2 XX,yy,nv,mx)
10 continue
c
c all done
c
call frame

t1l=second(zz)-t1
write (6,40)t1
40 format(16H whew!! all done, f10.4)
call plote
call donepl
call exit
end

[ Xe]

subroutine solver(AA,ul,u2,d,s,h,r,a,nv,mx)

gg]ves parabolic and hyperbolic equation for species

(e NeNalel

dimension ul{nv,mx),u2(nv,mx)
dimension d(mx),s(mx),h(nv)

call solvep(ul,u2,d,s,h,r, nv,mx)
call solveh(ul,u2,s,h,a,nv,mx)
call reset(ul,u2,nv,mx)

return
end

oo0o0

subroutine solvep(ul,u2,d,s,h,r,nv,mx)

This subroutine solves the parabolic
part of the differential equation.

aoo0o0n

dimension ul(nv,mx),u2(nv,mx)
dimension d(mx),s(mx),h(nv)

These vectors were added for vectorization
and are not integral to the calculation

dimension r0(101),r1(101),r2(101)

o000

o

common/b/nvml,nve,nvm51,nvm31, nvmi5,v0
common/c/mxml,mxm2,mxc,mxcpl,mxcmt, x0

vectorize

o0on

do 5 ix=1,mx
r0(1x§=r*d(ix)

r1(ix)=2.*r0(1x
=1.-ri(ix

r2(ix
Boundaries

oonoo

do 20 ix=1,mx
u2(1,ix)=r2(ix)*ul(1,ix)+r1(ix)*ul(2,ix)
u2(nv,ix)=u2(nv-2,mx-ix+1)

Main

oao

do 10 1v=2,nvm1
10 u2(iv,ix)=ul(iv,ix)*r2(ix)+(ul(iv-1,ix)
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1 +ul(iv+l,ix))*rO(ix)+s(ix)*h(iv)
20 continue
c
return
end
3PN
c
subroutine solveh(ul,u2,s,h,a,nv,mx)
c
c This subroutine solves the hyperbolic
c part of the equation
c
dimension ul(nv,mx),u2(nv,mx),s(mx),h(nv)
c
dimension v1(101)
c
common/b/nvml,nvc,nvm51,nvm31, nvmi5,v0
common/c/mxm1,mxm2,mxc,mxcpl,mxcml, x0
c
call reset(ul,u2,nv,mx)
c
c Positive Velocity
c
do 5 iv=1,nvml
v=v0-iv
5 vi(iv)=a*v
c

do 20 iv=1,nvml

do 10 ix=2,mx
10 u2(iv, ix)=ul(dv, ix)-vi(iv)*(ul(iv,ix)-ul(iv,ix-1))+s(ix)*h(iv)
20 continue

Negative Velocity

c
c
c
do 30 ix=1,mxml
30 u2(nv,ix)=u2(nv-2,mx-ix+1)
c
c
c
c

sets boundary conditions a&zch%h§§Vproblem
by linear fit :

do 40 iv=1,nvml
40 u2(iv,1)=2.*u2$iv,2)-u2(iv,3)
do 50 iv=1,nvm
50 u2(iv,1)=cvmgp(u2(iv,1),0.,u2(iv,1))

c

u2(nv,mx)=u2(nv,1)
c

return

end
c
oS T
c

subroutine reset(ul,u2,nv,mx)
c
c set old to new .
c .

dimension ul(nv,mx),u2(nv,mx)
c

do 10 iv=1,nv
do 10 ix=1,mx
10 ul(iv,ix)=u2(iv,ix)

return
end

subroutine diff(uet2,uec2,uit2,uic2,
dstar,dstar0,
sex,six,
diffe,diffi,adv,nv,mx)

W N -

This Subroutine Finds the INCOHERENT fluctuations by
subtracting coherent form total ff. The charge ditribution

is computed in the vector Z(IOZB% which is fourier transformed.
diffusion coefficients are claculated for all spatial positions
through another Fourier transform.

o000 o000
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dimension uet2(nv,mx),uec2{nv,mx),uit2(
dimension dex(101),dex0(101),dix(101),dix0(101)
dimension sex(mx),six{(mx)

dimension dstar{mx ,dstarogmx)
dimension chrex(30),chrix(30)
common //z(1025),y(1025)

common/b/nvml, nvc,nvm51, nvm31,nvmi5, v0
common/c/mxml,mxm2 ,mxc,mxcpl,mxcml, x0

common/eps/num,ntime,dcx,aa,bb,drift,rl,r13,rm,rt,vs0,beta

common/scle/xtime,nk,n2n,xnt,nxi,nvi
common/source/scxe,scxi,sccl,scc2

data seight/2.82843/,stwo/1.414214/ ,ntime/0/
calculate ion & electron charge density

do 5 ix=1,30
chrex ix;=0.
chrix(ix)=0.
continue

do 10 ix=1,30
do 10 iv=nvm31,nvml
chrex(ix)=uet2{iv,mxc-ix+1)-uecz(iv,mxc-ix+1)+

1 chrex(ix)+uet2(iv-l,mxc+1x—l)-uec2(iv—1,mxc+ix-1)

chrix(ix)zuit2(iv,mxc-ix+1)-uic2(iv,mxc-ix+1)+

1 chrix(ix)+uit2(iv-1,mxc+ix-1)-uic2(iv-1,mxc+ix-1)

continue
fourier transforms
electrons

call fft(chrex)

do 20 ix=1,mxc
dexO(mxc-ix+1)=y§1)
dex(mxc-ix+1)=y(1)-y(ix)
do 30 ix=mxc,mx
dex0(ix)=y(1)
dex(1x)=dex(mx-ix+1)

ions

call fft(chrix)

do 40 ix=1,rxc
dixO(mxc-ix+1)=y§1)
dix(mxc-ix+1)=y(1)-y(ix)
do 50 ix=mxc,mx

. ) =v(1
gg:?ﬁi;2d¥£(%x-ix+l)

time: find if parameters of equation are

’ stable, and set xnt equal to greatest
fraction of time step. i.e. smallest
time step.

dmax=0.

do 55 ix=1,mx
dstar0(ix)=dex0(ix)+dix0(ix)
dstar(ix)=dex(ix)+dix(ix

do 656 ix=1,mxc
dmax=amax1{dmax,dstar(ix))

xntd=r13*rm*rm*nvi*nvi*nvi*dmax
xnta=stwo*nvmli*nxi/(.9%nvi*rl)

xnt=xntd

adv=stwo*nxi/(xnt*nvi*rl)
diffi=r13*nvi*nvi*nvi/(xnt*seight)
diffe=rm*rm*diffi

if(xnta.1t.xntd)goto 60

2(nv,mx),uic2(nv,mx)
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xnt=xnta

adv=stwo*nxi/{xnt*nvi*rl)
diffi=ri3*nvi*nvi*nvi/(xnt*seight)
diffe=rm*rm*diffi

60 continue
xtime=xtime+l./xnt
ntime=ntime+1

if(mod(ntime,100).eq.0)write(20,100)xtime,dmax
100 format(3x,f8.5,3x,f6.3

source terms

do 70 ix=1,mx
comm=sccl*(dex0(ix)-dex(ix))+scc2*(dix0(ix)-dix(ix))
s00=comm/xnt

six(ix)=scxi*s00

70 sex(ix)=scxe*s00

return
end

subroutine fft(ch)

Transforms potential Spectrum and calculates
diffusion coefficient using predetermined
expression for dielectric function.

dimension ch(30)
common //z(1025),y(1025)

common/eps/naum,ntime,dcx,aa,bb,drift,r1,r13,rm,rt,vs0,beta
common/scle/xtime,nk,n2n,xat,nxi,nvi

do 10 i=1,1025
10 z(i)=0.

do 20 i=1,30
20 z(i)=ch(i)

call setf79(2,n2n
call four79(2,n2n

do 30 ik=1,nk

xk=ik-1.

xk2=xk*xk

30 z(ik)=(dcx*xk*y(ik))/(xk2*xk2+aa*xk2+bb)
call four79(2,n2n)

return
end

subroutine number(nv,mx) -
works out all the constants in the program

common/b/nvm1,nvc,nvmb1l, nvn31,nvmi5,v0
common/c/mxml,mxm2 ,mxc ,mxcpl,mxcml,x0
common/e/mxcpl4,mxcm25,mxcp25,mxcmb0

nvml=nv-1
nvm15=nv-15
nvm31=nv-31
nvmb1=nv-51
v0=float(nvml)

mxml=mx-1
mxm2=mx-2
mxc=mx/2+1
mxcpl=mxc+1
mxcml=mxc-1
x0=float(mx+1)/2.
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mxcpl4=mxc+14
mxcm25=mxc-25
mxcp25=mxc+25
mxcm50=mxc-50

return
end

subroutine init(uetl,uecl,uitl,uicl,
dstar,dstar0,
2 sex,six,hv,
3 diffe,diffi,adv,nv,mx)

Sets the initial level of fluctuations and works out
certain parameters for the run.

compiex ze,zi,zre,zri,dzre,dzri

dimension uecl(nv,mx),uetl(nv,mx),uict(nv,mx),uitl(nv,mx)
dimension dstar(mx),dstar0(mx)

dimension sex(mx),six(mx),hv{nv)

dimension n2(9)

common/b/nvml,nvc,nvm51,nvm31,nvmi5,v0

comnon/c/mxml,mxm2 ,mxc,mxcpl,mxcml, x0
common/eps/num,ntime,dcx,aa,bb,drift,r1,r13,rm,rt,vs0,beta
common/scle/xtime,nk,n2n,xnt,nxi,nvi
common/source/scxe,scxi,sccl,scc2

namelist/int/num,ntime,n2n,nxi,nvi,rm,rt,drift

data n2/3,5,9,17,33.65,129,2567,513/
data turb/.01/

basic constants

write(6,1)
format(2x, 'input: num,ntime,’',/,
! n2n,nxi,nvi,',/,
! rm,rt,drift',/)
read(6,int)

N s

xtime=0.

rv=sqrt(rm*rt)
ri=sqrt(rt)

r13=r1**3

rv2mi=rv*rv-1.
if{vs0.eq.0)vsO=rv*sqrt(drift*drift+rv2mi*alog(rv))/rvaml-
1 drift/rv2ml

vs02=vs0*vs0

beta=(drift/vs0-1.) i
xe=(vs0-drift)/rv

xi=vs0

ze=cmplx(xe,0.

zi=cmplx(xi,O0.

dielectric from z function

call zeta(ze,zre,dzre,ddzre,dddzre
call zeta(zi,zri,dzri,ddzri,dddzri

rze=real(dzre)
aze=aimag(dzre)
rzi=real(dzri)
azi=aimag(dzri)

a0=—2.*§rze+rt‘rzi)
b0=(a0/2.)**2+(aze+rt*azi)**2

pi=3.1415927
sq2=sqrt(2.)
nk=n2(n2n)



o000

100
200

oo

300
c

400

o000

00 D OO DO NI

1=nk-1
const=float(1)
const2=const*c
aa=al*const2
bb=b0*const2*c
cx=2.%sq2*1*1/

scxe=-sq2¥aze/
scxi=sq2*azi*r
sccl=rt*azi
scc2=-aze

write paramete

call frame
call setchSB.,
write(100,100)
format(10x,"'
write(100,200)
format(bx, ' 'par

5x,"'ion
5x,'ele
5x,'vs

5x,'ele
5x,' (u

5x, 'bet
5x,'pow
5x,'x a
bx,'v a

draw maxwellia

call frame
call setch(5.,
write(100, 00%
format(10x,’

do 400 iv=1,31
v=float(iv-16.
vi=v/4,
vi2=vi*vi
ve=(v-4. *drift
ve2=ve¥*ve
dstar0(iv)=vi
sex(iv)=exp(-v
six(iv)=exp(-v

call maps(dstar0(

call trace(dst
call trace(dst

set ff

do 10 iv=1,nv
do 10 ix=1,m
uecl(iv,ix)=0.
wicl(iv,ix)=0.
uet1(iv,ix)=0.
uit1(iv,ix)=0.
continue

do 20 iv=1,nv
do 20 ix=1,mx
X= ix—mxc{/Z.
v=(iv-nvml)/2.
X2=x%x

v2=v*v

if(v2.9t.25.)v
if(x2.gt.25.)x

uetl(iv,ix)=ue
uit1(iv,ix)=ue

continue
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/(pi*nxi)
onst

onst2
(pi*pi*nxi**3)

(nvi*ri*pi*pi)
1/(nvi*pi*pi)

rs for this run

40.,1,0,2,0)

Two species Electron/Ion Clump Problem ',///)
rm,.t,vs0,drift,beta,n2n,nxi,nvi
ameters for this run',///,

to electron mass ratio = ',f6.3,//,

ctron to ion temp. ratio= ',f6.3,//,
(v+ coordinate) = ',16.3,//,
ctron drift velocity = ',6.3,//,
nits of ion thermal vel.) ',///,
a (magnification factor)= ',f6.3,//,
er of f.f.t. = ',i4,//,
xis (n debye lenghts) = ',i4,//,
= ',i4)

xis (n ion thermal v.)

ns

40.,1,0,2,0)

onfiguration of Average Distributions',//)

)
Y/ (4.%rv)

e2)/rv
i2

,dstar0$31),0.,1.2..2,.9..2..75)

1)
ar0(1),six,3
ar0(1),sex,31

2=25.
2=25.

t1(iv,ix)+turb*exp(-(x2+v2))
t1(iv,ix
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vc=float(nv/2.)

do 30 iv=1,nv

vp=iv-vce
hv(iv)=cvmgp(1.,0.,vp)

call diff(uetl,uecl,uitl,uict,
1 dstar dstarO
2 sex,six,
3 diffe,diffi,adv,nv,mx)

return
end

subroutine scale{xx,yy,nv,mx)

dimension xx(mx), yy(nv%
common/scle/xtime,nk,n2n,xnt,nxi,nvi

do 10 ix=1,mx
xx(ix)=float(ix-1)/nxi

do 20 iv=1,nv
yy(iv)=float(iv-1)/nvi

return
end

subroutine graph(uec,uet,uic,uit,
dex,dix,sex,six,
XX,yy,nv,mx)

N -

does all the plotting routines

dimension uec nv.mx;.uet nv,mx
dimension uic(nv,mx),uit{nv,mx
dimension dex§mx;,dix mx
dimension sex six(mx

dimension cs(2),xx(mx),yy(av)
dimension screxc(15,15),scrixc(156,15
dimension scrext 15‘15 ,scrixt(15,15
dimension xmi(4),xma(4 ,ymi(4),yma(4
dimension x1( ,y1(51

common/b/nvmi,nvc,nvmb1,nvm31, nvml5,v0
common/c/mxml,mxm2,mxc,mxcpl,mxcmi, x0
common/e/mxcp14 mxcm25 mxcp25 mxcm50
common/scle/xtime,nk, n2n,xnt,nxi,nvi

data xmi/.11328, 61328 .11328,.61328/
data xma/.5,1. 5

data ymi/. 61328 61328 .11328,.11328/
data yma/1.,1. .5,.5/

find minimum and maximum values

call minmax(uec,rmaxec,rminec,nv,mx
call minmax(uet,rmaxet,rminet,nv,mx
call minmax(uic,rmaxic,rminic,nv,mx
call minmax uit,rmaxit,rminit,nv.mx

do 20 iv=nvml5,nvml
do 20 ix=mxc, mxcp14

screxc(ix- mxc+H1, iv- nvm15+1)=uec(nvmib+nvmi-iv,ix

scrext(ix-mxc+1,iv-nvm1b+1)=uet(nvml5+nvml-iv, ix

scrixc{ix-mxc+1,iv-npvmib+1)=uic(nvmlb+nvml-iv,ix

scrixt(ix-mxc+1,iv-nvml5+1)=uit(nvmls+nvml-iv, ix
write data

call frame

call setch§5 ,40.,1,0,2,0)
write(100,

00)xt1me rmaxet rmaxec,rmaxit,rmaxic,
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dex(1),sex{(mxc),six{mxc)

format(10x, 'value of diffusion and source at t=',f8.4,///,
5x,'elec. max (total) =! 0.6,//,
5x,'elec. max (coherent) =',f10.6,//,
5x,'ion max (total) =',f10.6,//,
5x,'ion max (coherent) =',f10.6,///,
5x,'diffusion (sum) =',f10.6,//,
5x,'elec. source =',f10.6,//,
5x,'ion  source =',f10.6,//)

call frame

call dders(-1)

ncont=12

cs(1)=0.

df=(rmaxec-rminec)/ncont

cs(2)=df

call maps(xx(1),xx(15),yy(1),yy(15),xmi(1),xma(1),y

call rcontr(kl,cs,k2,screxc,15,xx,1,15,1,yy,1,15,1)

df=(rmaxet-rminet)/ncont
cs(2)=df

call maps(xx(1),xx(15),yy(1),yy(15),xmi(2),xma({2),ymi(2),yma(2))

call rcontr(kl,cs,k2,scrext,1b,xx,1,15,1,yy,1,15,1
df=§rmaxic-rminic)/ncont
cs(2)=df

call maps(xx(l),xx(lS),yy(l),yy(15),xmi(3),xma(3)i¥mi(3),yma(3))

call rcontr(kl,cs,k2,scrixc,15,xx,1,15,1,yy,1,15
df=(rmaxit-rminit)/ncont
cs(2)=df

call maps(xx(l),xx(15),y¥(1),yy(15),xmig4),xma(4)i mi(4),yma(4))

call rcontr(kl,cs,k2,scrixt,15,xx,1,16,1,yy,1,15,
write(6,990)
format('contour all done')

cross section for large regiom
call frame

do 40 iv=pvm51,nvml
y1(iv-nvm51+1)=uet(nvmbl+nvml-iv,mxc)

call maps(yy(l),yy$61%,0.,.15,.2,.9,ymi(1),yma(1))
call trace(yygl),y ,

do 45 jv=nvmbl,nvml
yl(iv-nvm51+1)=uec£nvm51+nvm1—iv,mxc)

call trace(yy(1),y1,61)

do 50 ix=mxcmb50,mxc
yl(ix-mxcm50+lg=uet(nvm1,mxcm50+mxc-ix)

call maps(xx(1 .xx(512,0.,.15.‘2,.9,ym1(3),yma(3))
call trace(xx(1),y1,51)

do 55 ix=mxcmb0,mxc
y1(ix-mxcmb50+1)=uec(nvml , mxcm50+mxc-ix)
call trace(xx(1),y1,561)

I3

call frame

do 60 iv=nvmb51,nvml
yi(iv-nvm51+1)=uit{nvmbl+nvml-iv, mxc)

call maps(yy(]),yy$51),0.,.15..2,.9,ymi(1),yma(1))
call trace(yy(l),y1,51)

do 65 iv=nvm51,nvml
yl%1v—nvm51+1)=uic$nvm51+nvml-iv,mxc)

call trace(yy(1),yl,51)

do 70 ix=mxcmb0,mxc

y1{ix-mxcm50+1)=uit(nvml, mxcm50+mxc-1ix)

call maps{xx(1 ,xx$51{,0.,.15..2,.9.ymi(3),yma(3))
call trace(xx(1l),yl1,51)

do 75 ix=mxcmb0,mxc

y1(ix-mxcm50+1)=uic{nvml, mxcm50+mxc-ix)

call trace(xx(1),y1,51)

diffusion and source

mi(1),yma(1))
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call frame

ymax=1.5‘dex(1&

d? 80 ix=mxcmb ,gxc
yi{ix-mxcmb0+1)= exgix)

call maps(xx(1),xx(51),0.,ymax,.2,.9,ymi(1),yma(1

call trace(xx(l),ys,51) y ) (1
ymin=-.5*sex(mxc)

do(90 ix=mggm50,mxc

y1(ix-mxcm50+1)=sex(ix)

call maps(xx(lg,xx 1),ymin,sex(mxc),.2,.9,ymi(3),yma(3)
call trace(xx(l),yg,51) ¢ (3))

return
end

subroutine minmax(u,rmax,rmin,nv,mx)
Find maximum and minum values of ff
dimension u(nv,mx)

common/b/nvml,nvc,nvm51,nvm31,nvmi5,v0
common/c/mxml,mxm2 ,mxc,mxcpi,mxcml, x0
common/e/mxcpld,mxcm25,mxcp25,mxemb0

rmin=10.
rmax=0.

do 10 iv=nvml5,nv

do 10 ix=mxcm25,mxcp2b
rmin=amini(rmin,u(iv, ix
rmax=amax1(rmax,u(iv,ix

return
end

subroutine zeta(z,zetaoz,dzetaz,ddzeta,dddzet)

purpose
to compute the plasma dispersion function and its first
three derivatives for a complex argument z.

usage
call zeta(z,zetaoz,dzetaz,ddzeta,dddzet)

description of parameters
z = given argument (complex)
zetaoz = plasma dispersion function Scomp]ex)
dzetaz = first derivative of plasma dispersion function

(complex)
ddzeta = second derivative of plasma dispersion function
(complex)
dddzet = third derivative of plasma dispersion function
(complex)

description of program
when abs(z) .gt. 4, the plasma dispersion function and
its derivatives are evaluated by computing the third
derivative from its asymptotic expansion. then the
function and its first 2 derivatives are computed using
relations derived from the differential equation.
when abs(z) .le. 4 and abs{imag{(z)) .gt. 1, the function
is evaluated using the continued fraction method.
when abs(z) .le. 4 and abs(imag(z)) .le. 1, the function
is computed in double-preciaion using its power series
expansion. 1in the continued fraction and power series
methods the derivatives are computed using the
differential equation and formulas derived from it.
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function," academic press, 1961.

c references

c zeta was written by prof. james d. callen for his ph.d.
c thesis, "absolute and convective microinstabilities of a
c magnetized plasma,” department of nuclear engineering,

c m.i.t., 1968.

c fried, b.d. and conte, samuel d., "the plasma dispersion
c

c

complex z,zetaoz,dzetaz,term,fmult,terme,anl,bnl,zsquar,hold,
1templ, tempz ddzeta,dddzet, cmplx cexp,conjg
double precision realmu, imagmu,reaisu, imagsu,realte,imagte,realse,
limagse
data expmax/174./
¢ expmax = the maximum no. to which e may be raised on the machine.
data error/1.e-06/
zsquar=z*z
x=real(z)
y=aimag(z)
fn= rea](zsquar)
if(y .gt. 0.) go to 99
if(abs(fn). lt expmax.and.abs(aimag(zsquar)).1t.5.e+04)go to 98
if(fn.gt.0.)go to 97
1 format(76h argument z of subroutine zeta has too large a negative
limaginary part, z= ,1pel4.7,3h + ,1peld.7,2h i)
write§6,13 z
)

97 hold=(0.,
go to 99
98 hold=(0.,1. 772454;*cexp( zsquar)
99 if(x*x+y*y.gt.16.)go to 200
if(abs(y).ge.1.)go to 300
c
¢ power series method - double precision
c

realte=-2.*%x
imagte=-2.%y
realmu=.5%(imagte*imagte-realte*realte)
imagmu=-imagte*realte
realsu=realte
imagsu=imagte
if(x.eq.0..and.y.eq.0.)go to 103
fn=3.
100 realse=realte

imagse=1imagte
realte=(realse*realmu-imagse*imagmu)/fn
imagte=(realse*imagmu+imagse*realmu)/fn
realse=realsu

imagse=imagsu

realsu=realsu+realte

imagsu=imagsu+imagte

fn=fn+2.
if(sngl1(realse)-sngl(realsu).ne.0..or.sngl(imagse)-sngl(imagsu).ne
1.0.)go to 100

103 x=realsu

fn=1imagsu
if(y.gt.0.)hold=(0.,1.772454)*cexp(-zsquar)
zetaoz=cmplx(x,fn)+hold

go to 401
c .
¢ asymptotic series method - compute third derivative
200 fn=5.
dddzet=6.

term=dddzet
fmult=.5/zsquar
201 terme=term
term=term*fmult*fn*(fn-1.)/(fn-3.)
zetaoz=term/terme
1f(abs(rea](zetaoz))+abs(a1mag(zetaoz)) gt.1.)go to 250
zetaoz=dddzet
dddzet=dddzet+term
fn=fn+2. .
if(real(zetaoz).ne.real(dddzet).or.aimag(zetaoz).ne.a1mag(dddzet))
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1go to 201

250 dddzet=dddzet/(zsquar*zsquar)
if(y.gt.0.)go to 260
fn=1.
if(y.1t.0.)fn=2.
dddzet=dddzet-4.*fn*hold*z*(2.*zsquar-3.)

260 ddzeta=-(4.+(zsquar-.5%*dddzet)/(z*(2.*zsquar-3.))
dzetaz=(2.-z*ddzeta)/(2.*zsquar-1.)
zetaoz=-(1.+.5*%dzetaz)/z
return

continued fraction method

o000

terme=a(n-1), term=a(n), dzetaz=b(n-1), fmult=b(n

306 if(y.]t.O.;z=conjg(z)) ( ) (o))
terme=81..0.)
term=(0.,0.)
dzetaz=term
fmult=terme
n=0
anl=z
bni=-z*z+0.5

301 templ=bnl*term+ani*terme
temp2=bnl*fmult+ani*dzetaz

zetaoz=templ/temp2
dzetaz=(zetaoz-term/fmult)/zetaoz
if(abs(real(dzetaz)).1t.error.and.abs(aimag(dzetaz)).1t.error) go
1to 302

bni=bni+2.

n=n+1

anl=-_5*float(n*(2*n-1))
terme=term

dzetaz=fmult

term=templ

fmult=temp2

if(n.1t.30)go to 301

302 if(y.ge.0.) go to 401
zetaoz=conjg(zetaoz)+2.*hold
z=conjg(z)

401 dzetaz=-2.*(1.+z%*zetaoz)
ddzeta=-2.*(zetaoz+z*dzetaz)
dddzet=-2.*(2.*dzetaz+z*ddzeta)
return
end

C ettt e e e e e e
*cft i=pdiff,b=bdif,61=1dif
*1dr i=bdif,lib=(ft1ib,disspla,tv801ib,fort1ib),x=xdif
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The following program is used to solve for the analytic regeneration condition of §6.5.

*select box=m16,account=430mas
*file name=st

OO0 000000000 0000000

program name: st f10 1/8/80 t.b-g

solves for . )
analytical regeneration conditions, equations

(7.33) and (7.34).
SYMBOLS USED:

rt= temperature ratio (Te/Ti)

rm= mass ratio (Mi/Me)

drift= electron drift velocity

vs0= v(+) roordinate

xk0= average w~avenumber of fluctuations

xj0= 0 order Bessel function
zre= derivative of z function (electrons)
zri= derivative of z function (ions)

external f

dimension x(2),w(8),par(4)

data eps/.C001/,nsig/5/,itmax/1000/
data x/1.,1./,w/8%0./

namelist/temp/rt,rm,drift
namelist/guess/x

call dropfile("+xst")
call link("unit6=tty,unit20=(xout,hc,create)//")

write(6,1)

format(3x,"input: rt,rm,drift",/)

read(6,tamp)

write(6,2)

format(3x,"input: initial guess, x(1),x(2)",/)
read(6,guess)

par(1l)=rt
par(2)=rm
par(3)=drift
par(4)=sqrt, rm*rt)

call zsystm(f,eps,nsig,2,x, itmax,w,par,ier)

write(6,10) x§i),i=1,2).itmax
format(3x,2(f8.5,2x),"number of iterations:",i6)

ALL DONE

call timeused(icpu,io,isys)
write (6,40)1cpu
format(16H whew.. all done,i8)
call exit

function f(x,k,par)

complex ze,zi,zre,zri,dzre,dzri
dimension x(2),par(4)
data pi2/8.825/

external func, funck

rt=par(1
rm=par(?2
drift=par(3)
rv=par$4)
vs0=x(1)
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xk0=x(2)

xe=(vs0-drift)/rv
xi=vs0
ze=cmplx(xe,0.
zi=emplx(xi,0.

dielectric from z function

call zeta(ze,zre,dzre,ddzre,dddzre
call zeta(zi,zri,dzri,ddzri,dddzri

rze=real(dzre)
aze=aimag(dzre)
rzi=real(dzri)
azi=aimag(dzri)

a0=-2‘*§rze+rt*rzi)
b0=(a0/2.)**2+(aze+rt*azi)**2

do integrals

al=rt*rt*azi*azi

a2=rt*azi*aze

b0=b0-2.%*a2

call gauss{0.,7.,xil1,func,a0,b0,al,xk0)
call gauss(0..7.,xi2,func,a0,b0,a2,xk0)
alpha=xil/(pi2+xi2)
al3=aze*(alpha*aze-rt*azi)/pi2

call gauss(0.,7.,xi3,func,a0,b0,a3,xk0)

f=xi3-1.
if(k.eq.1)return

al=aze*aze

call gauss(0.,7.,xi1,func,a0,b0,al,xk0)
beta=xil/(pi2+xi2)

al3e=al

a31=rt*azi*8rt*beta*azi-aze /pi2

call gauss(0.,10.,xke3,funck,a0,b0,a3e,xk0)
call gauss(0.,10.,xki3,funck,a0,b0,a3i,xk0)

f=(xke3+xki3)/2.-xk0*xk0
return

function func(x,a0,b0,x2,xk0)
data pi/3.1415927/

xp=2.45*x/xk0
func=4.*pi*x2*(1.-xjO(xp))/((x**4+a0*x**2+b0)*x)
re§urn

en

function funck(x,a0,b0,x2,xk0)

data pi/3.1415927/

xp=2.45%x/xk0
funck=4.*pi*x2*x*(1.-xj0(xp))/(x**4+a0*x**2+b0)

return
end

function xjO(x)

Calculates JO(x) (the zero order BESSEL
function)

if(x.gt,s.)goto 10
x=x/3.
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X2=X*x
xj0=1.+x2*(-2.2499+x2*(1.26562+x2*(-.316386+x2*(.04444+x2*
1 (-.00394+x2*%.00021)))))
return
c
10 xold=x
x=3./x
f0=.797885+x*(-.00000077+x*(-.005562+x*(-.00009512+x*(.001372+x*
1 -.00072805+x*.00014476&8 82
theta0=xo01d-.78539+x* -.041664+x*%-. 3954+x*(.0026257+x*
1 -.000541+x*(-.000293+x%.000135568)))))
xjO=f0*cos(thetal)/sqrt(xold)
return
c
end
c
B et ettt e e e e e e e e e
c
¢ Program Name:gauss 8/7/80 T.Boutros-Ghali
c
c 16 POINT GAUSS QUADRATURE.
c
subroutine gauss(xlo,xhi,xint,func,a0,b0,x2,xk0)
c
c xint = value of integral
c x10 = lower limit of integration
c xhi = upper limit
c func = function to be integrated
c a0,bo0,
[ x2,xk0 = parameters for func
c
dimension x0(16),w0(16)
c
data x0/-.9894009349,~.9445750230,-.8656312023,~-.7554044083,
1 -.6178762444,-.4580167776,-.2816035507,-.09560125098,
1 0.6178762444,0.4580167776.0.2816035507,0.0950125098,
1 0.9894009349,0.9445750230,0.8656312023,0.7554044083/
c
data w0/0.0271524594,0.0622535239,0.0951585116,0.1246289712,
1 0.1495959888,0.1691565193,0.1826034150,0.1894506104,
1 0.1495959888,0.1691565193,0.1826034150,0.1894506104,
1 0.0271524594,0.0622535239,0.0951585116,0.1246289712/
c
a=(xhi-xlo)/2.
b=éxhi+x1o /2.
c
xint=0.
do 10 i=1,16
xx=a*x0(i)+b
10 xint=xint+a*w0(i)*func(xx,a0,b0,x2,xk0)
c
return
end

o I I I I
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