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ABSTRACT

Both a naive logistic model and a sophisticated age class model
are used to investigate competitive equilibria for a renewable natural re-
source, A rational expectations model is presented and tested for Douglas
Fir stumpage supply. Forest Service policy is discussed" It is concluded
that explicit valuation of standing timber stock.for other than lumber pur-
poses leads to a coherent forest policy consistent with the Multiple-Use
Sustained Yield Act of 1960.

Public ownership and government regulation are prevalent in
the renewable natural resource field, Fish, lobsters and other valuable
marine life are protected by a maze of catch limitations. Public owner-
ship of timber lands is not uncommon in many countries. In the U.S. about
one-third of all timber land is publicly owned, Government ownership and
regulation makes the government responsible for deciding how much of these
resources are used in the present and how much will be available in the
future. Resources have two sources of value: the end products they pro-
duce are consumer (fish cakes, wood frame houses, lobster dinners) and the
stock of the resource provides externalities by its very existence (forests
provide recreation, fish provide food for other fish, etc.). The price
consumers are willing to pay for a resource is an adequate measure of the
resource's private value. The public value is admittedly much harder to
measure. (What would the last Dodo bird or carrier pigeon have been worth?)

The United States Forest Service appears to make its harvest de-
cisions without placing any weight on prices. Below it is shown that a
policy very like the one the Forest Service actually follows can be arrived
at by maximizing the present discounted value of the timber stock for pub-
lic (recreation of wildlife) purposes. Further, the analysis of present
discounted value gives a proper criterion for judging forest improvement
projects while the present analytical framework (Maximum Sustainable Yield)
does not. The difficulty with present discounted value is that the future
prices are unknown. Much of this thesis is devoted to building a rational
expectations model to predict future prices. An outline of the sections of
this paper follow.

Section 1: Discusses the difference in growth functions between
fish and trees. Develops the formula for an optimal policy for a present dis-
counted value maximizing producer facing constant prices.

Section 2: Uses a simple logistic model to discuss a renewable
resource in a simple competitive world. The inclusion of a demand curve in
the model causes there to be a smooth flow of the resource. If the initial
stock of the resource is large compared to the eventual steady state stock,
then the stock is slowly reduced to the steady state stock and, at the same
time, prices are rising. The model is extended to include a nonrenewable re-
source; it is seen that the inclusion of the nonrenewable resource, in the
case cited, can cause the extinction of the renewable one.
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Section 3: Develops a rational expectations model for trees, It
is seen that finding the expected equilibrium is equivalent to maximizing a
consumer surplus expression.

Section 4: The model of section three is estimated.

Section 5: Forest Service policy is discussed in light of the
model above, It is found that a small value to standing stock will justify
the difference between competitive action and current government policy.
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Section 1

The Effect of Growth Specification on Optimal Policy with Constant Price

Natural resources are usually partitioned by their ability to

reproduce. Those resources that have no sex life are called non-renewable,

while those that reproduce themselves (or are somehow regenerated) are

called renewable. The economic analysis of non-renewable resources is

particularly simple. Under simple assumptions about extraction cost,

a necessary condition for the resource to be made available in every time

period is that MR - MC increases at the producer's rate of time dis-

count. Given that prices must rise exponentially, demand equations, and

the amount of the resource involved, it is not difficult to find the quan-

tity sold in every period.

The foremost example of a renewable resource is fish. Here a

growth law is postulated (x = f(x) -c) where x is the stock of fish and

c is the catch. (Noitce that a non-renewable resource is just one for

which f(x) = 0.) The simplest case is where x is one-dimensional and f is

concave. It is easy to show that faced with an exponentially growing price,

a present value maximizing fishery owner will adopt a bang-bang control --

he will reduce (increase) his stock to some optimal level and maintain it

there. It is an implication of a logistic type growth law that only part

of a homogenous population will be harvested.
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Section 1.1

Age Class:

A simple model of a natural resource, x = f(x) - c, says that

growth is a function of the biomass (or possibly number of individuals)

of the population. This model will best describe populations where the

age distributions of the individuals is irrelevant for population growth.

Bacteria, locusts or short-lived fish are examples of populations well-

described by a simple biomass equation. Additionally, any population har-

vested in such a way as to keep the age distribution constant will be

well described by a simple biomass equation. Since trees, and for that

matter long-lived fish, grow at different rates at different ages, it is

2necessary to keep track of each age class. Colin Clark works out the

optimal harvest policy for fish and finds the present discountdd value

maximizing policy is likely to involve the use of a fishing net with a

mesh that catches large fish but not small fish. When there are high fixed

costs to fishery, Clark finds the optimal policy is to catch "all" the fish

in one year and not return until the fishery has rebuilt its stock. It

would seem that Clark's age class model could be carried over to trees.

This is not so.

The crucial difference between fish and trees (besides flavor)

is their sex lives, a stylized version of which follows. Fish are recruited

(which means survive until some critical age) in constant numbers per year

regardless of conditions. Mortality and slowed growth of individuals

account for the familiar logistic shape of the function "f" in the biomass

equation x = f(x) - c.
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That is, more fish mean less food (or oxygen or hiding places)

per capita. In turn, less food means less growth. The primary restraint

on growth is the crowding effect.

Trees have a different history: new trees sprout when old ones

are removed. When Douglas firs are young, they are packed tightly together.

As they age, the hardier and faster growing trees shade out the less hardy

trees. This is the same crowding effect fish exhibit. The difference be-

tween fish and trees is that the harvest of fish alleviates the crowding

while the harvest of trees may or may not alleviate their crowding., Trees

are subject to two kinds of harvest: thinning and cutting. Thinning --

and other methods of timber stand improvement -- is the removal of only

some of the trees on a given plot. The object of thinning is to give

the remaining trees more light and hasten their growth. Sometimes the re-

moved timber is commercially valuable and sometimes it is not. Cutting

a stand of trees does nothing for the remaining trees because there are

no remaining trees. Cutting a stand replaces old growth with seedlings.

Thus cutting and thinning have different effects. Thinning is akin to the

harvest of fish while we take cutting as our model of the harvest of trees.

Thinning is to be considered as a suboptimization problem that has already

been carried out and is embodied in the relevant growth functions. This

assumption makes attention to age class in trees of paramount importance.

Since trees of different age classes grow at different rates, a simple

biomass equation will not be able to distinguish between a young and old

stand of equal volume. Another unpleasant effect of the biomass formula-

tion is that it leads to a policy of cutting only some trees of an even-

aged stand on the false assumption the rest will grow faster. In short,
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one must consider the age class problem for trees.

While it is an externality that complicates the optimal policy

of a fishery, it is the simple economic concept of rent that makes it diffi-

cult to find the optimal policy for forest management. The proceeds of

the sale of a natural resource are attributable as a rent to the ownership

of the land or sea that supports the resource. Since no one owns the sea,

fishermen do not worry about the "rent" a fish should be paying. This is

why fish are called a common property resource.

Much is said about the common property nature of fish. Spence's

study of blue whales, Reddy's model of lobsters,

and Vernon Smith's4 theoretical article are all recent examples of work

that shows lack of private ownership makes fishing inefficient.

Although the rent to growing trees is appropriated by the owners

of the land, rent is still an important consideration in the growing of

trees. Old trees occupy space that would otherwise be devoted to young

trees (or ranch houses, shopping centers, etc.). The best alternative use

of a land parcel determines the rent of the parcel. Should an old tree no

longer be able to pay the competitive rent for the land on which it stands,

then a profit maximizing business would cut the tree down. Rent is one of

the determinants of optimal rotation age. The effects of rent are most

clearly seen in the sections on forestry in a constant price world, and

in the linear forest model.
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Footnotes

1 Colin Clark, "Mathematical Problems in Biological Conservation,"
American Math. Monthly (forthcoming). Clark's article
contains an extensive bibliography.

2 Colin Clark, Gordon Edwards, and Michael Friedlaender, "Beverton-
Holt Model of a Commercial Fishery: Optimal Dynamics,"
Journal Fisheries Research Board of Canada 30, No. 11
1973.

3 Bernard J. Reddy, "The New England Lobster Pot Fishery: An Em-
pirical Study," Massachusetts Institute of Technology,
1975 (unpublished).

4 Vernon Smith, "General Equilibrum with a Replenishable Natural
Resource," Review of Economic Studies, 1974 Symposium,
p. 105.
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Section 1.2

Forestry In A World With Constant Price

Although the profit maximizing policy for managing a forest in

a regime of constant price expectations has been known since 1849 and is

a straightforward exercise in dynamic programming, many famous economists

have published incorrect solutions. The source of many of their errors

is the concept of ground rent. The model that follows shows the role of

ground rent in determining when to cut trees. The model also presents

the technology of a forest economy in its simplest form. Later we join

this technology with a market mechanism.

Before continuing any further it is necessary to explain the

problem and the conventions used (assumptions made). By a forest I mean

a plot of ground that will support the growth of trees, and any trees on

that ground. When trees are cut from this forest they become immediately

and costlessly available to consumers. All the costs of maintaining this

forest are assumed to come at cutting time. In reality this is not so --

taxes, thinning expenditures, fire protection, nursing young trees

are all significant expenses occurring throughout the forest's life.

The assumption is made purely for simplicity and is not defensible in

any other way.2 When a price is quoted it means price net of cutting and

reforesting costs. These costs are assumed constant per unit output.

Replanting is assumed to happen immediately on cutting. The act of cutting

a tree is also the act of planting a tree. The forester is assumed to

maximize present discounted value with rate of interest r. Under these

conditions we show that there is an optimal rotation for trees -- an age
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younger than which trees are allowed to grow and older than which they

are cut. Let X(a) be the stock of trees of an even age class stand.

"la" is the age of these trees a = T - T where the T's are the n h
n+1 n

and n+lst time the forest is cut. Let V(Tn n-Tn-1 )) be the value of

the timber at time T n. The present value (PV) of the stand is thus

-rT -rT 2  -rT 2

PV(O) =e _ V(T,X(T 1 - 0))+ e 2V(T 2 X(T 2 - T1 ))+ PV(T2 )e 2

The forester's problem is to choose a set (T1 ,... ,Tn) of times to cut the

forest. The first order conditions for a maximum are 3(PV)/@Ti = 0. Thus:

3V 3V dX -r(T 2 -T 1 ) DV dX
[- + - - e T = rV(T 1 )

at 3x dt 1 Dx dt 2

Value is equal to price times quantity: V = q'X . (A more general formu-

lation of value would include a cost function: V = q.X - C(X), where C(X)

is the cost of removal and replanting. If C(X) is proportional to X then

the simple formulation gives the right answer.)

Making the substitution:

[P(T 1)X(T) + P(T1 ()] - [e 2 P(T 2 )X(T 2 -T 1 )]

= rP(T 1)X(T1)

The above expression explains the experiment of lengthening the first period

a little while shortening the second period the same amount. The first term

is the gain from holding the stock a little longer. There are two parts

to the gain. First the price changes. Second the quantity changes. The
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second term is the discounted value of the timber that is lost from the

second period harvest. Thus the lefthand side is the change in timber

value from altering the plan. The righthand side is the loss attributa-

ble to the discount rate from postponing the cut. Their equality is

obvious. Before finding the optimal policy for the case of constant or

exponentially changing price, one more variational experiment should be

undertaken.

3PV(O)/aT2 =0 => [P(T 2 )X(T2 ) + P(T 2 )X(T2 )]exp(-rT2 ) +

3PV/DtIT2 exp(-rT2) r[P(T 2)X(T2) + PV(2)]exp(-rT2)

Comparing this formulation to the one previous, one sees that the loss from

lengthening a period by epsilon is the same as the loss from putting off

the entire plan by epsilon. Perhaps this makes the importance of ground

rent (which is the present value) a little clearer. When deciding when

to cut a forest one must remember that only on cutting is the land freed

for another rotation. This matter is neglected in many forestry and

economics texts.

Now we are ready to use the first formula to derive the optimal

rotation age in the event that p = bP (b constant). Since the problem

facing the forester is the same (up to a multiplication constant) at the

beginning of period n+l as it was at the beginning of period n, his action

must be the same. This implies a uniform tree life of L. That is

Tn - Tn- = L, all n. Using p = bp and dividing the first form of

the variational equation by p:
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bX(L) + X(L) -e-i(L)

or

X (L)

X(L)

(r - b)

S-e

= rX(L)

(r - b)e rb)L

~ (b-r)L
(e -1

It is

tiply again by p

PX
--x =

easier to interpret the above equation for L if we mul-

and use a familiar series expansion

r - b 00 (b-r)Li

(b-r)L = (r - b) Z e
1 - e 1=0

We have proved Theorem 1.1:

Theorem 1.1

If the assumptions of this section hold and price is

increasing at the exponential rate b and the interest

rate is r, then the present value maximizing rotation

age for trees is implicitly defined by:

X(L)
= (r - b)/(l - exp(b - r)L))

X(L)
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This says that the percentage change in value from holding a

stock a little longer equals the interest rate times a correction factor

that accounts not only for putting off the plan a little this cut

-rL-0 -rL-
(e = 1) but also every future period i, (e 1). Clearly, large r

and L make the correction factor irrelevant. (For Douglas fir L 90,

r z 10%, 1 - e~9 can be taken to equal 1 for our purposes. For southern

pines L is approximately 18 and the issue has some relevance.) Samuelson fn

discusses the relation between L and the rotation ages proposed by other

authors. One of these ages, M, the maximum sustainable yield, is what

the U. S. Forest Service appears to have as its goal and, perhaps, policy.

M corresponds to an interest rate of zero and constant price (or a constant

present value price -- b = r). M is the rotation length that maximizes

the volume of timber removed and M > L. A later part of this paper will

be directed to Forest Service policy.
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Footnotes

1 Paul A. Samuelson, "Forestry in an Evolving Society," Economic
Inquiry (forthcoming).

2 Mason Gaffney, "Taxes on Yield," British Columbia Institute for
Economic Policy Analysis, 1975 (unpublished).

3 Samuelson, op cit.
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Section 2

The Effect on Optimal Policy of a Market Mechanism in a World

with Simply Specified Growth

The market mechanism makes it undesirable to cut large sections

of a forest or harvest a large percentage of all fish in any given time

period. This section explicates the relation between harvest, stock,

price and the rate of price increase. Crudely, it is seen that a large

initial stock calls forth a policy of gradual reduction in population and

increase in price.

Section 2.1

A Simple Renewable Resource with a Market Partial Equilibrium

It is unfortunate that the detail of the technology of growing

trees obscures the price dynamics of a simple equilibrium model. To obtain

the clearest picture of the price mechanism over time, I adopt a simple

technology! x = f(x) - c, and a simple description of the rest of the

world.

The world has one producer who is a price taker. (One could

have many identical producers -- but it only adds constants to the cal-

culations.) At every instant in time he faces a (twice continuously differ-

entiable) downward sloping demand for his product. He knows this demand

and uses it to predict correctly the future path of prices. That is to

say, he has rational expectations and those expectations are fulfilled.
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As before, the producer is assumed to maximize the present discounted

value of resource landings with discount rate r. The resource pool,

of which he is the sole owner, has a reproduction law of the form

x = f(x) - c, where x is the stock and c is the harvest at time t,

the time subscript being suppressed. "f" is twice continuously differ-

entiable and is assumed to have the usual shape:

f(O) = 0 f" < 0 f(k) = 0 f(x) > 0 xE[0,k]

An example of such a function is the logistic, xg(l - x/k). For a further

explanation, see Colin Clark's American Math. Monthly article.

The producer's problem is:

max f0 e q c dt

s.t. x = f(x) - c

x > 0 ce[0,0]

where q(t) is the expected price at time t. Consumers are represented

by a downward sloping demand curve D(q) which is continuously differen-

tiable and for convenience, is assumed to be the same in every period.

If we had information on the relative prices of the resource and other goods

in the future,we would include it in the demand curve.

The market clearing equation states D = c or catch equals

demand at every instant.
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The first step in solving this problem is to apply the maximum principle

of Pontragin et al. to the producer's problem. Let

-rt
H = e q . c + X(f(x) - c)

be the Hamiltonian. Necessary conditions for an optimum are;

x 3H/X = f(x) - c

A = -3H/x ff'(x)A

transversality condition lim Xx 0

and the maximum principle; choose c to max H at every time t. A quick

examination of H shows that either c is one of zero and infinity or

A = e -rtq We now impose an additional restriction on the 'demand curve,

Zero is demanded only at infinite price and an infinite amount is demanded

at zero price. This is sufficient to rule out any possibility that

0 e-rt q. In the more usual constant price case the information that c

takes an interior value is manipulated to find the steady state solution,

We use this information to reduce our system to two equations. Substitute

qe-rt = A into A = f'A to get q = (r - f')q.
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Substitute c = D(q) to get

x = f(x) - D(q)

So far it has been shown that the first order conditions for

a maximum are

q = (r - f')q

x = f - D(q)

x0 = x(O)

lim q exp(-rt) x = 0

(A remark: Another way to formulate the expected equilibrium problem is

the following Hamiltonian:

H = exp(-rt) (q c + /r D(z)dz) + X(f(x) - c)
q

The q and the c are regarded as state variables: the first order condi-

tions will be as above. The equation has the interpretation as minimizing

on q the sum of producer and consumer surplus -- with consumer surplus

defined from Marshallian demand curves -- while maximizing surplus on c.

This is a two-point boundary value problem. It is complicated by the

nature of the end time or transversality condition. The way to find the

nature of the solution is by way of a phase diagram. Consider the vector

field V(q,x) = (q,x). First we show that V is singular at only one point
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* *
which we call a steady state and denote (x , c ). Then we show that only

solutions that converge to the steady state meet the transversality con-

dition.

The system has an obvious steady state x*, c* defined by

f'(x*) = r and f(x*) = c*. The steady state is unique. The solution

to f' = r is unique under the assumption that f" < 0. Could there be

another steady state? Let xs be such a quantity, r - f' 0 0 by asser-

tion. Moreover, f' is constant. Thus q = a exp((r - f')t). The single

valued property of downward sloping demand finishes off the possibility

that xs is a steady state.

The table below shows the direction of a solution passing

through an arbitrary point of each of the quadrants in (x,q) space.

Quadrant (x,q) or V

IV
II(+-

III(-)

IV(-+

Suppose that (x,q)0 is in quadrant I. Then both x and q increase without

bound. The assumption that there is a maximum size to the population

assures that f' is zero for large enough x. Thus q increases at the

rate of interest in the long run and q exp(-rt)x increases without bound.

This is a violation of the transversality condition. Similarly an initial

point in quadrant three can be viewed as violating the transversality con-

dition by going to negative infinity. If one insists on the variables
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Phase Diagram in x,c Space
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being positive, then it is ruled out by the assumption of infinite demand

at zero price and zero demand at infinite price. Either way one views

it, initial values of q that place (x,q)0 in quadrant III are impossible.

Before proceeding to even-numbered quadrants, we need to examine

the boundaries of the quadrants: that is the x = 0 and q = 0 curves.

Except for the singular point at (x*,q*), any solution that begins on one

of these curves will immediately cross into quadrants I or III and thus be

inadmissable.

In quadrants II and IV, x is either steadily decreasing or

steadily increasing. Therefore, any characterisitc passing through these

quadrants must intersect their boundaries and pass into quadrants I or

III, or the characteristic must terminate at (x*,q*).

Because we have made strong regularity assumptions on f and D,

there exists exactly one characteristic that passes through the point
2

(x*,c*).

We have shown that only paths that end at the steady state

meet the transversality condition. This allows us to identify one

characteristic along which all solutions must lie and thus relate the

starting (or any other time) price to the initial quantity.

We have demonstrated the following two theorems:

Theorem 2.1

The partial equilibrium model with autonomous demand has

a unique steady state and converges to the steady state from

any initial allocation. The steady state values are implicit-

ly defined by f'(x*) = r and f(x*) = c* and D(q*) = c*.
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Footnotes

1 Colin Clark, American Math. Monthly, op cit.

2 Witold Hurewicz, Lectures on Ordinary Differential Equations. Cambridge:
MIT Press, 1958.
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Theorem 2.2

If xO is greater than x*, then q0 is less than q* and

q increases monotonically at the rate r - f'(x) while

x falls monotonically. In particular, q/q is greater

than r when x exceeds x is equal to r when x equals

x and is positive but less than r when x is greater

than x* but less than x.

Section 2.2

Linearization of the Simple Model

What is left to figure out is the initial price, q0 . To this

end we know the "end time" price q*: D(q*) = f(x*) = c*. But

90 = q*/(exp f r - f'(x(t))dt) and depends on the time path of x(t).

One can approximate q0 by linearizing the differential equations that

make up this system. Let Aq and Ax be the state variables expressed

as a deviation from the steady state values. That is Aq = q - q* and

Ax = x - x*. To a first order approximation the problem of a renewable

resource is:

Aq 0 -f"(x*)q* Aq

Ax -D'(q*) f'(x*) Ax

The characteristic polynomial is b2 - bf' - D'f"q* and the characteristic

roots are
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b = (f' + /"f' + 4D'f"q*)/2

b =2 (, - /,f2 + 4D'f"q*)/2

which are real and of opposite sign, b2 being negative. The eigenvectors

are:

b. = i = 1,2

-b /flq* /

Thus solutions following the laws of motion of this system -- intertemporal

myopic efficiency -- are of the form

z(t) = a1h1 exp (b 1 t) + a2h2 exp (b 2 t)

But the transformed end time conditions are that lim z = 0. This implies
t->o

a1 = 0. Thus the initial price q0 can be found from the following:

2Ax(-f"q*)

Aq =

f' - /f' 2 + 4D'f"q*

If Ax(0) is the initial stock, then Aq(0) is found from the above and

q(0) = Aq(O) + q*.

The above formula shows that Aq has the opposite sign of Ax

Thus if the stock is greater than the steady state stock, price will start

below the equilibrium price and rise to it. One can draw a phase diagram

of this system:
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Any path that does not start on b2 will end on b1 and call for

infinite quantity and price. One can separate the economic problem into

two parts: intertemporal myopic efficiency -- being on some trajectory

defined by the model -- and end time conditions -- ending at a steady

state rather than an infeasible solution.

If anything is surprising in this model it should be the state-

ments on price. Why should the price rise along an optimal path when

x > x*? If price didn't go up the producer would dump all his surplus

resource on the market now. The price system must create a capital gain

for the producer to induce him to hold his resource. This is particularly

important in the case of trees. There we will find price must rise on

virgin timber fast enough to offset both the interest rate and the oppor-

tunities for new growth.
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Section 2.3

Changes in Demand

One can inquire how shifts in demand change the allocation of

a nonrenewable resource over time. The untranslated phase space provides

the easiest exposition of the basic result on shifts in demand. If D(q)

is a demand curve then D(q) = D(q + a) is an inward shift of the demand

curve D. Let all the variables of the shifted system be represented

with overbars.

We have:

Theorem 2.3

If "a" is a positive number, the shifted system will

converge to a steady state (x*,q*) and x* = x* while q* = q* - a.

Moreover, if z(t) = (x(t),q(t)) is the optimal path of the

initial system and z(t) = (x(t)(t)t))is the- optimal path of

the transformed system, then the trace of z will lie below the

trace of z, assuming that x0 is greater than zero.

The first part of the theorem is a consequence of Theorem 2.1

and elementary algebra. For the second part, consider the phase space

(x,q).
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The x = 0 locus is described by the equation x = f(x) - D(q).

Thus, changing D to D increases the RHS of the x equation by decreasing

demand. This requires an adjustment of x, a decrease if x is less than

x max and an increase otherwise. The result, as can be seen on the diagram,

is a lowering of the x = 0 curve. What remains to be shown is that z and

z don't corss. Suppose z and z did cross at the point (q,x). q = q since

the price equation is the same for both. x is greater than x, from the

equation for x. Thus the bar system will move above the original system

and can never be below it. But the bar system has its equilibrium below

the original system. This is a contradiction and the theorem stands.

The above theorem shows that for autonomous demand, a shift

in the demand curve does not change the longrun stock or flow of the

resource; the shift merely changes price.

Actually, a demand shift may have further effect, it may change

the slope of the converging arm z(t), and the speed at which the system

moves up the arm. The slope of the arm describes how much prices and

(through autonomous demand) how much consumption changes over time. Thus

a system with a flat arm describes a system with equality across time

(generations) while one with a highly sloped arm has a great difference

in the resource flows across generations.

The experiment I have in mind is a differential shift in the

demand curve. D = D(q + a) and vary "a" a small amount, w. We know that

dq*/dw = -1 and can find
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Theorem 2.4

db2 /dw = f"(D' + Dwlq*)/r2 + 4D'f"q*

The sign of db2/dw = -sgn(D' + D"q*)

or

db2 /dw > 0 if |D'j > D"q* or 1+ D"q*/D' > 0

< 0 if ID'| < D"q( or 1 + D"q*/D' < 0

where D"q*/D' is the elasticity of the first derivative

of demand with respect to price.

In the case that db2/dw is greater than zero, the overbar

system will converge more slowly to equilibrium since b2 will be less

negative than b2 and z = a2h2 exp (b2t). Moreover, h2 will be less steeply

sloped than h2 since

= (-b2/f"q*) and 1|21 < lb21

and f" is less than zero.

Thus the effects of slope and speed work together. Greater

slope and higher convergence speed go together (at least locally), and

provide for faster changes in quantity consumed over a given time interval.
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Section 2.4

Simple General Equilibrium Models

A genral equilibrium setting is more satisfactory than a partial

equilibrium one since the general equilibrium setting seems less artificial,

accounts for income effects, and permits rigorous welfare statements. It

is less satisfactory for estimation purposes, especially if the income

effects are small. The simplest of the general equilibrium models is the

one in which there is only the renewable resource. It turns out to be

identical to the partial equilibrium model. (The simple general equilibrium

model is just a Ramsey type problem and its solution is well known. The

special characteristics of a renewable resource -- a limit to the popula-

tion size -- never become important. Another case we consider, and this

case also amounts to a Ramsey type model, is the case of a renewable re-

source and a perishable resource. In both cases the important feature is

the autonomy of the derived demand function. The following general equi-

librium model is mostly useful for its extension to the case where the

resource provides an externality and for the comparison to the nonautonomous

case.

A Perishable Resource

Let m be labor or some other resource that cannot be stored from

period to period and is provided at a constant rate. If there is one con-

sumer with utility function U(c,m) exp (-rt) where c, as usual, is the

harvest of a renewable resource, and x = f(x) - c, then the consumer's
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problem of maximizing his happiness subject to the constraints of the

population he preys on results in the Hamiltonian:

H = exp(-rt) U(c,m) + X(f(x) - c)

and first order conditions,

MUc = exp(rt)X

A = -fA

Making the usual substitution of q = exp(rt)

utility condition we get

and inverting the marginal

q = (r - f')q

c = MUc 1(q)

This is exactly the system described in the previous section (if MU has the

reasonable property of being everywhere positive). For comparison with

a succeeding section we solve this for the case U = c m and a + Scl.

Clearly, N/l-a

1/1-a q

is the demand curve and f'(x*) = r, f(x*) = c* define the steady state stock

and quantity. Inverting the demand curve gives the steady state price, q*.
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The model has further meaning if one assumes that labor and

the resource are used to produce one good while leisure constitutes

another good. Suppose U(c,m) is of the form U(w,L) where w is a produced

good w = w(h,c), w neoclassical, and L + h = m where L is leisure

and h is hours worked. Will the man work more or less as time progresses?

If X0 is greater than x* we know that q rises and x and c fall

along an optimal path. For any given time we know the consumer solves

max U(w(h,c),m - h) by setting its derivative equal to zero:
h

U iw -U 2  0 0

Since we know c decreases over time, we totally differentiate the first

order conditions to find dh/dc, multiply it by a negative number (the

change in c) and find whether or not the man works more.

First translate the F.0.C. to their equivalent form

NPL - MRS = 0 , where MPL is the marginal product of labor and MRS

is the marginal rate of substitution or MU h/MUc* We get the compara-

tive statics result:

dh* - (MP - MRS)
Dc L

dc* a
(MP - MRS)

Although the derivative of the marginal product of labor can

be signed by regularity conditions on the production function, the deriva-

tives of the MRS can take either sign and depend, ultimately, on the mag-

nitude and sign of the income effect. Moreover, even knowing the sign of the
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change in the MRS does not tell what its magnitude is. For instance,

take the case where both functions are Cobb-Douglas. The MRS = bc/h

b dependent on which Cobb-Douglas utility function is chosen (where b

is a constant). Let w = cah a+6<l.

w bc
F.O.C. MPL - MRS = -- -

H H

aF.O.C. 1 6aw
=- (- - b)

ac H c

DF.O.C. c 6(6 - 1)w
= - -( + b)

@H H2 c

Thus 3F.O.C. w
> 0 iff - > b/a6

ac c

3F.O.C. w
_F..C < 0 iff - > b/(l-6)

DH c

Assume that labor's share is greater than the resource share, a > 6

Thus, 6(1 - 6) > a6 and we distinguish three cases:

dH/dc > 0 when w/c > b/6(l - 6) > b/a6

dH/dc < 0 when b/(l - 6) > w/c > b/a0

dH/dc > 0 when b/(1 - 6) > b/a > w/c
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In the normal first and third cases more work is done and less leisure

spent as the resource flow diminishes. Notice that only with less than

constant returns to scale can the amount of leisure spent go up as the re-

source flow is diminished.
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Section 2.5

General Equilibrium with the Stock Valued

The introductory chapter suggested one might value the stock

of a natural resource for its positive externalities. Forests have the

public good attribute of recreation. (The model that follows applies

equally well to management in a regime of taxes or the management of a

pest population. Simply make the externality negative.)

Again assume one consumer; this time let his utility function

be U(c,x) exp (-rt); as usual the natural resource is modelled

x = f(x) - c. Now the Hamiltonian is

H = U(c,x) exp (-rt) + X(f(x) - c)

and first order conditions after the usual transformation

A = exp (-rt) q

are

MUc = q or c = MUc 1 (q,x) where MU < 0 and MU > 0
c 2

q = (r - f')q- MUx

x = f(x) - MUc (q,x)

and lim Ax = 0
t-*O
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Note that the demand equation is still autonomous. x and q are related

by the transversality condition. Thus the results of the section on

autonomous demand curves hold here too. The q = 0 locus is found by

solving ( r - f')q - MUx(f(x),x) = 0. We assume the last term decreases

in x over the relevant range. Thus q = 0 lies to the right of the line

f'(x) = r. x = 0 = f(x) - MUc (q,x) is raised by the inclusion of x

in the demand so the phase diagram is:

and xs, the new steady state, is higher than the old steady state and may

even exceed x max. The steady state resource flow in f(x ) and may have

any relation to f(x*) the old steady state resource flow. The steady state

price, qs, will be higher if xs is greater than xmax , otherwise it is in-

determinate. We have shown

Theorem 2.5

Valuing the stock of a resource will cause the steady state

stock to be higher than it would otherwise have been. The

stock increase may raise or lower the steady state resource flow.
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Consider the example of Cobb-Douglas utility and f (x) = xy' for

a growth function, 1 > y > 0. f behaves badly -- it has no maximum --

but the analysis is easy.

a
u = c x

MU = a-l =q Nila f 6-1
MUc x Sc x

q = (r -yx )q - x+ya-1

* 1-. l/a
x = x - (qx /S)

ya+ -l
x = 0 implies q = x

q - 0 implies q = xya+-l/(r - Yx )

It is immediate that x* is infinite and q* is zero. The phase diagram is:

I \ Ik

(ItUr
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and the result is that conservation dictates an ever-increasing resource

stock.

This sort of example can be used to impute a value of stock to

an organization observed to be following a plan that does not lead to an

expected market equilibrium.

For example, consider the United States Forest Service. The

Multiple-Use Sustained Yield Act of 1960 instructs the Forest Service to

manage the nation's forests for lumber, recreation, and wildlife. The

forest service achieves these goals through a system of regulation that

provides for equal timber harvests in every year and timber harvests at

less than the rate one would expect from a competitive firm in early years.

The long run stock is x , and the resource harvest is f(x x). f(x ) is
max ma max

greater than f(x) for any other x. The preceeding description of the

Forest Service's policy is a little crude; a more complete discussion

of this matter will be found in the next chapter. For the purpose of

what follows it is sufficient to say that the Forest Service has ill-defined

goals that include using forest land for timber production and for other

uses. Although the Forest Service does not reduce its valuation of

standing timber to a single number, an economist trying to understand

what the Forest Service does could treat the Forest Service as if it were

trying to maximize an instantaneous utility function of the following

variety:

U(c,x) = q c + kx.

Below the possibility that the Forest Service takes maximim yield as its

goals is also discussed.
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Let consumers be represented by U(c) exp (-rt) while the resource holder

(the Forest Service) decides to attach a value, k = k0 exp (-rt) to

standing resource. Thus the demand equation is c = MUc~ (q), but the

producer has elected to maximize f/ exp (-rt)(q(t) c + kx)dt s.t.

x = f(x) - c. The Hamiltonian and F.O.C. for this problem are:

H = exp (-rt)(q c + kx) + X(f(x) - c)

exp (-rt) q => if c # 0

q = (r - f')q- k

x = f(x) - MUc~ (q)

Letting the population grow to xmax (f'(x = 0) is often called maximum

sustained yield. It is of particular interest that maximum sustained yield

implies a steady state with f'(x ) = 0 or x = xmax so that

k = rq = rMUc (f(x )).max

Although the concept of maximum sustainable yield (MSY) implies a steady

state valuation of the resource stock, it is without implication for the

dynamics. Does the conservation agency use the discounted steady state

price k0 exp (-rt) to make its intertemporal decisions? Do they have a

utility function that settles down to MUx(f(x),x) = k0 at the maximum

yield point? Neither question is amenable to theoretical solution.
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We summarize this discussion on MSY in

Theorem 2.6

Maximum sustainable yield implies the marginal utility

of holding the resource at the maximum yield point is

-l
a constant k equal to rq or MUc (f(x )). MSY has

max

no implication for the time path to reach the point xmax'

Section 2.6

A Renewable Resource in a General Equilibrium Setting with a

Nonrenewable Resource.

In this model there is both a renewable and a nonrenewable

resource. The stock of the nonrenewable resource is y(t) and its rate

of extraction is g. This leads to the following planner's problem, the

answer to which is also the perfect foresight competitive equilibrium

for a one-consumer (or Hicksian in the sense of Arrow and Hahn) world.

-rt
max f 0 U(c,g)e dt

s.t. y = -g

x = f(x) - c

x(O) = x0 and y(O) =Y

x,y,c,g > 0
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This is similar to Dasgupta and Heal.1 They have "capital"

instead of a renewable resource; they require the nonrenewable resource to

reproduce capital; and they have only one consumption good, c. Their

model is:

- -rt

max 0 U(c)e dt

s.t. x = h(x,g) - c

y = -g

x(O) = x0 and y(O) =y

x,y,c, g > 0

How the economy fares in the long run is shown to be a function

of the elasticity of substitution in the function h. Dasgupta and Heal's

model differs from mine in two major ways: 1. In my model there is a

limit to how much of the renewable resource (or capital good) may be stored.

2. In my model the nonrenewable resource cannot be converted into another

capital good for storage and later use. These differences assure, in the

long run of my model, that the flow of goods will be diminished. It is

the utility function that determines how much lesser amounts of the non-

renewable resource will hurt. (The utility function could be regarded as

being of a single argument, z, U(z) and z being a production function of

c and g, the resources: z = z(c,g) and z not storable. Perhaps this

makes the relation to Dasgupta and Heal clearer.)
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My model is solved by forming the Hamiltonian and finding the

first order conditions.

H = e-rtU(c,g) + (f(x) - c) + y(-g)

Conditions are placed on U to assure that g and c do not vanish. (Marginal

Utility (MU) at zero is unbounded.) The first order conditions are:

e-rtM c =

e-rtmug =

I = -f'

-y = 0

Introduce the current price variables s and v and get:

MUc = v = Xert

MUg = s = yert

Plainly s = s0 exp (rt) (since g is greater than zero everywhere). The

two conditions involving marginal utility can be solved for one resource

as a function of the other and own price.

c = MUc1 (v,g) where MUc~ < 0

g = Mug~ (s,c) MUg~ < 0

MUc- > 0

Mug~ > 0
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Solving the above one gets

c = MUc~1 (vMIU g(s 0 'ert ,c))

as the nonautonomous implicit derived demand for c as a function of own

price, v, and s0 the price of the nonrenewable resource. The rest of

the system is

v = (r - f')v

x = f(x) - c

Unlike the previous systems, the steady state is no longer clear. In

the event the MU increases at an exponential rate it may be possible
g

to find a "steady state" in which v decreases exponentially. For example,

if the utility function is Cobb-Douglas then a "steady state" can be

found in which g goes to zero but c and x are constant.

u = ca and a + < 1

g = MUg (s,c) = (s0e /c a)

C = MUc~ (v,c) = (v/goa)l/a - 1

which can be solved for c to reveal that

v = v0e(/ - 1)rt
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is consistent with an unchanging value of c , call it c'.

c = (v0 /a (s 0

c' is also determined from the equations x = f(x) - c' = 0 and

v = ( r - f'(x))v. Since r - f' = (/S -1)r, fixes x' and thus c' and

the product s0v0. But s0 is chosen so that MUg 1(s0 exp (rt),c')dt = y0.

This equation provides a solution for the steady state. (It is easy to

show that the system always converges to the unique steady state.)

Because f" is less than zero, the steady state with a non-

renewable resource as well as a renewable one has a higher renewable

resource rate of interest and a lower steady state stock than a similar

economy with just a renewable resource. For instance, consider the economy

with a constant flow of some resource M -- say labor -- and the usual

renewable resource. Such an economy will generate the usual steady state

(f'(x) = r)). The economy with the exhaustible resource will (if it has

a steady state) generate a steady state with a lower renewable resource

stock and a smaller flow of renewable resource. This occurs because the

(second) cross partials of the utility function are positive. That is,

higher consumption generates higher marginal utility.

All of these models have the possibility of exhaustion and

extinction. For instance, suppose

or f'(x) = r(1/l - )f'(x = r
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has no solution. Then it would appear that the corner solution x = 0

is the long run equilibrium. Thus if is large (the nonrenewable re-

source is much more important than the renewable one), it will be right

to drive the renewable resource to extinction. Because the marginal

utility of zero is unbounded, extinction will only happen asymptotically.

This discussion leads to

Theorem 2.7

In the context of the model of this section, if U1 2

is positive, then a steady state, if one exists, will

involve a resource stock lower than that implicitly

defined by f'(x) = r.

Theorem 2.8

If the utility indicator is Cobb-Douglas, then the

steady state with a nonrenewable resource will be

defined by f'(x) = 1/(1 - )r; price of the renewable

resource, v, will be decreasing exponentially at the

rate r - f'(x ); and the stock of the nonrenewable

resource will be run to zero. By comparison, if

the second resource were perishable instead of non-

renewable, then the steady state would be defined by

f"(x) = r, price constant.
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This completes our discussion of the two- perculiarities our

model is designed to wed: demand equations for a renewable resource and

the reproductive manners of trees. In the next section we present our

full supply model.
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Footnotes

1 P. Dasgupta and G. M. Heal, "The Optimal Depletion of Exhaustible
Resources," Review of Economic Studies, Symposium 1975,

p. 3.
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Section 3 A Model for Estimation

Section 3.1

Continuous Time

What would an equilibrium model look like in continuous time?

Let X(t,a) be the number of acres of timber at time t of age a. This is

just like our optimal rotation age model except we now allow there to be

forests of different ages at the same time. We insist that at any two

times the amount of land in the forest is the same. If A is the set of pos-

sible ages, z(Wt,z)dz = a constant for all t. The growth equation for

this system is just an aging equation. Define C(t,a) as the removal from

class a in year t.

z

X(t,a) = X(t-z,a-z) - f C(t-g,a-g)dg

0

for any z > 0. This equation says that what there is today is what there

was last week or year less what was cut in the interim. The t-z,a-z occurs

because z days ago the current class a was z days younger. What remains

to be accounted for is what is cut.

X(t,0) = f C(ta)da
acA

To define the objective function we need to know one more thing: how much

wood (or value) is there to an acre of age class a? The function M(a)

answers that question. It is the growth function. The producers' prob-

lem is to max PV subject to the above equations.
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-r tPV = f Qe [ f C(t, )M(a)da]dt
0 aeA

Additionally, we require for each t that Q and (the term above in brackers)

supply be compatible with some demand equation. It is no wonder that the

mind boggles at solving this.

Before continuing to the discrete time model -- on which there is

some information -- it is time to justify the use of a finite time horizon

to approximate the infinite horizon. For any bounded set of prices, P

and positive discount rate, r, and number E > 0 there is a time T so far

away that the loss from neglecting times greater than T is less than E.

Since there is a limited amount of land and prices are bounded, only a

limited amount of value can be lost in any time period. Call that amount V.
00

Clearly E e-rt V can be made as small as desired by appropriate choice of T.
t=T
The simplest model of a forest economy is one with perfectly anti-

cipated prices, a linear technology, and a linear objective function.

The most common objective function for a resource holder is

present discounted value. Given prices, present value is linear in quan-

tity harvested. Although this linearity is a great computational advan-

tage, it has some unpleasant implications for the evaluation of risk.

Agents with linear objective functions are not risk averse. (They are

risk neutral.) In a world of perfectly anticipated prices (no risk) this

is not a serious drawback. The second problem with present value is that

an agent using the present value criterion feels no need to spread his

income over time. He may well execute a plan calling for no income for

the plan's first one hundred years. The assumption of ability to borrow or
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lend at a fixed rate of interest makes consumption plans other than 100

years of starvation feasible. Present value is not an ideal objective

function, but computational ease justifies its use.
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Section 3.2

Linear Forest Model

The technology for a forest is easily described. Land with trees

gets one year older every year until it reaches maturity and then it stays

the same age. (A better description of the technology would include mor-

tality. Some fraction of land bearing mature trees is returned to the

zero age class because of the death of the trees.) To each age there cor-

responds a volume of marketable product: timber. (This formulation is

close to that of Jungenfelt.) Trees of zero age are bare land with tree

seeds already planted. Harvesting is the act of converting old land (with

old trees) to young land (with tree seeds). The land's age at harvest

determines the volume of timber. Harvest can be thought of as producing

a joint product: timber and seeded land. (There is forestry literature

on the optimal amount of effort to replant and nurse trees but it always

assumes constant prices.) Formally, let X ti be the quantity of land at

time t occupied by trees of age i. In the absence of cutting,

(0 < i < n)X t+1 .+ = X (Unless i = n -- where n is the hypothesized

maximum age for trees -- in which case X t+,n Xt,n-1 + X tn.) Let Ctqi

be the quantity of land in age class i cut in year t. Then

X .+1~ + C .= X . if 0 < i < n. The interpretation is X and C are an

instantaneous division of land into two classes, one to cut and one to

mature further. This allocation is made at the beginning of each time

period. The recursion equation for X (bare land at time t) depends on the

cut in all age classes. All of the above can be put into matrix notation:
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Let

A = 0 ........ 0

.I

0 ........ 0

B = 0,1, 1... 0

. -I

0..........

then X - BC = AX )t t t-l

Xt = Xt,0 , Xt,n-1

C = (Ct,,'''''t n-1)

The minus sign before B is because of the definition of B. Its diagonal

elements are non-positive.

The above formulation completely describes the dynamics of this

model. It remains to describe the objective function. At the beginning

of any period t, (Ct,,...,'Ct,n) acres of land (bearing timber) are har-

vested. Assume M. units (board feet) of timber are on each unit (acre)
1

of land in age class i. Thus C .M. board feet of timber are removed
t,1 1i n

from land of class i in age t. Total removals are Z C .M. or <C ,M>.
i0 tl I t

(inner product) at time t. If the prices to the resource holder net

of cutting and planting costs are Q(t) the objective function is

T
-rt

PV = E e Q(t)<Ct,M>
t=l t
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set P(t) = e-rt Q(t)

The problem facing a resource holder is to maximize present value subject

to initial conditions and a dynamic constraint. Thus

T
max Z P(t) <C ,M>

t=l

S. t. I0O

-A I

0 -A

0 0

0 . . . 0 1

0 . . . 0 i

I...o 1

. 1

0 ...- A 1

0

0

.-B

0

0

-0

0

This is a linear programming problem. Notice that the boundary conditions

X(0) = X0 are incorporated in the first line of the matrix. There are

only T time periods. No choices are made in period zero. Period zero

just determines the stock available for division in period one. If the

above matrix is abbreviated (A/B), the dual problem can be written

min <(0),X(0)>

s.t. X(A/B) > (0,...,0,M P(1),.. .,M P(T))

This instructs one to find the minimum value for land with trees in period
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or

E(PT (t) + M(i )P') PM( )

or rearranging and taking lim E + 0

P M'(i ) + M(i ) + P ' < P M'(0)T T - T

which is easy to interpret. The terms on the left are the change in

the value of the standing timber. The right hand term is the value of

the lost new growth. In a two-period model, with the periods very

close together, it is both necessary and sufficient for cutting. Now

* *

one can inquire about i's other than i , say i + z. A necessary con-

dition is:

PT M" + M'P' 0

or

M" P'
- + - < 0 V i > i*

M' P

Notice that M" < 0, M' > 0, p < 0 and p' > 0. Thus perversity de-

pends on the curvature of the growth function compared to the percen-

tage growth in price. When price doesn't rise there is no perversity.

The cut-no-cut sequence just requires a reversal of all the inequality

signs.
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zero subject to the constraint that the minimum value be greater than or equal

to the value of the anticipated harvests from time zero to time T. The value

of land with trees (or without) in period zero is nothing other than the com-

petitive selling price of the land. The dual problem is to find this compe-

titive price of land: it is instructive to expand the dual constraint:

X I -XA A > 0
t t+1 --

- B > P M
t - t

or A . > Pt M + XtO

t,j t+l,min(j+l,n) -

The equations say the shadow price of land in period t may not be less than

either the value of the timber plus the shadow price of bare land or the

shadow price of land of one year older age class in the next periid. To put

this another way, in each period the entrepreneur chooses either to cut or

to save trees of given age class. He chooses the option that maximizes his

profits. This recursive formulation makes it very easy to solve the dual

problem.

Remember that we are searching for a min of <X0 X 0 > where X > 0. In the

terminal period T, Atj > TM;+T, andT,0 = 0 (M= 0 -- seeded land at the

end of time is worthless). Why shouldn't A1dTj exceed PTM j? Because AT-l,j-1

> AT . and one is trying to minimize A . To find AT-l j one first needs to

find XT-10' X T-1,0 - XTl. We conclude AT-1,0 = ATi = PTM . Now we can

see that

A > P M+ A = P M.+PM
T-1,k - -T-1 j T-1,0 T-1 j T 1

T-lj > T,j+l
= TMj+1 T-1 TMAX <PM ;PM. + PTM >T-+l T-1j T 1
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Obviously this can be solved for any finite number of periods. For instance,

one might find

= +P M.
T-1,O T-1, j-1

= P M + P M
t-1lj-1 Tl1

In general A5. will be the sum of a sequence of P M.'s determined by

the rule

M = ax <X P M. + X
t-lj t,j+l t-l j t-1,0

Whenever

t-1, j
= P M.+ X

t-l j , t-1, 0

we shall say

*
jEJ (t) = <jA . = P M. + X >

t j t,O

*

It will not be hard to show that Ctj 0 iff jEJ (t), that timber is

cut iff the shadow price of timber is the market value of the timber plus

the shadow price of bare land.

Another way to state this problem is to find a saddle point of

L(X,CA) = <C ,M >P(t) - (t - BCt - AX

t=l t=1

T-3, j-3 T-2,j-2
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The F. 0. C.are:

1. DL/3/2 = m P(t) + X B < 0
t t -

2. D3L/Xt = t t+1 A < 0

3. L/t t - B Ct - A X t-l 0

The Kuhn-Tucker theorem further asserts that Ctj L =0 so
t,J

M.(P(t) + (O. B). < 0 means C . = 0. Similarly
J t J t,J

RL/3.Xt .= 0
t ,J

so - + (X A). < 0 implies X . = 0 since X - BC must equal
t,J t+l J tJ t

a constant. Setting equation 1 equal to zero implies the other should be

set equal to the appropriate component of AXt-l. (It may happen that both

DL/kCt and 3L/3Xt = 0 -- this is an "edge" equilibrium -- any feasible

mixture of Ct and Xt produces the same value of the objective function.)

Thus we see that (for the case of present value) the dual problem can be

solved recursively with great ease. The solution to the primal then fol-

lows from the complementary slackness conditions. The value of the solution

to the dual problem is <X(0),X 0> where XOj is the value of bare land.

Here "value" means present discounted value and it is also the price of

land.

In short:

Theorem 3.1

Timber of class i is cut at time t if Xt,0 + PtM > Xt+1,i+1'

Timber may be cut or saved if X t, + P tM = Xt+1,i+. Otherwise

timber is saved.
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Footnote

1 Carl Jungenfelt, personal discussion based on a study of his
on Swedish forests. See: Mil och medel i skogspolitiken
(Ends and Means in Forestry Policy), Sweden, 1973.
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Section 3.3

The Linear Forest: Perversity

The usual description of forestry includes the policy "cut the

oldest trees first." It is easy to show that this is not always an

optimal policy. For example, consider a two-period forest with

prices PT-1 = 1 and PT = 2 and a growth function described by

M = (0, 8, 13, 14, 14.6, 15.19, 15.67). Note that Mi+ - M.

decreases with i and M i+/Ni decreases uniformly towards one. These

regularity conditions assure the growth function is concave. Now

t PT j and t Max{X +P T1 + P = Max{ PTNj+1'
q T" t-l,j Tjj+l' T-1 j __ TTj+I

PM ;+PTMY}

For our example:

j Tj+l PTlM.+PT M delta T-1,j

0 16 16+0 = 16 0 16

1 26 16+8 = 24 2 26

2 28 16+13 = 29 -1 29

3 29.2 16+14 = 30 - .8 30

4 30.38 16+14.6 = 30.6 - .22 30.6

5 31.34 16+15.19 = 31.19 + .15 31.34

In period T-1, age classes 2, 3 and 4 should be cut while classes 1

*
and 5 should be allowed to grow. Thus the set J (t) introduced earlier

is not connected. It is not enough to specify a division point in the

age distribution of the forest; all of the calculations must be done.
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By our example we have proved

Theorem 3.2

In an optimal policy, old timber may be cut after

younger timber.

The result cited above -- cut younger trees first --

flies in the face of intuition. Were there no rent, the condition

for indifference between cutting and not would be the percent change

in present value of growing stock equals the rate of interest.

PV X P
- = - + - = r

PV X P

In this sort of world faster growing things always stand longer than

slower growing ones. But in the world described in the preceeding

models does have rent. Present value (of growing stock) is price

times quantity plus the land value.

PV = P * M + rent

PV = M + PL

PV P M

PV P + rent/M M + rent/P
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where, as usual, M is the growth function and P is price. The second

term of the RHS behaves properly, it decreases in the age of trees (M),

but the first term of the RHS behaves paradoxically: It increases in

age. Why does the capital gain term from holding growing stock in-

crease with age (or volume)? It is because it is a percent change in

value which the timber but not the rent undergoes and rent is a

larger proportion of the value of young stands than it is of old age

stands. Since the price of bare land is constant while the timber

volume may be great or small, the percent of the present value made

up by the timber volume varies as the timber volume. The owner of the

plot of land owns both the land and the timber. While the timber grows

the land does not. But to keep from switching to the best alternative

use, the owner needs the return on his whole investment to rise at

the rate of interest. Should timber be only a small fraction of

the value of his investment, then the gain (in percentage terms)

from a price increase will be less than the gain would be if timber

were a large fraction of the investment, because only timber and not

land are subject to the increase.

Let us further explore the phenomenon of cutting younger

trees first. Let c be the length of the time periods. There is some

i at which one is indifferent between cutting and not.

* *
PM o M(i + PTa4() i PTM(i + e)

Moreover, assume for small z, i + z age trees are worth cutting.
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* *
PT-M( ) > PTI'(i + E)

One would like to know if a no-cut regime will occur for any age older

*
than i. That is, does

* *
PTM(i + s) + PTM(E) < PTM(i + 6 + s)

This depends on
S S

P f0 M'(i + z)dz < PT f0 M'(i + c + z)dz

for some s. Since M is concave (d2Md I 2 <0) one knows that the inte-

gral on the right is smaller than the one on the left for any value

of s. But this is not enough to rule out perversity. One does not

know how much larger the left hand integral is; the difference in

P and P could outweigh the good effects of the concavity.
T- _ T

However, this does clarify one case: if PT - > PT and a no-cut-cut

transfer occurs, no-cut will not recur.

This can also be stated for small -- in differential form.

*
Again PTM(i + c) < PTM(e) + PT - eM(i ) which is the condition for

*
cutting at i. Equivalently:

PM(i )+ P EM' (i) < PTM() + M(i )P E - M(i
+" T £T± T dT
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So far, the discussion has been couched only in terms of

a two-period model. In a multiperiod model, the failure of price

to rise is again sufficient to assure no perversity. Suppose class i

is to be cut at time t in an optimal program.

PM(i) + X >
T t,O - t+1,i+l

and

= Max{P M(i + n)+A Inez, t+n < T, n > 0}
t+1,i+1 t+n t+n,0

Thus we have T-t inequalities of the form

PTM(i) + xt,0 t+nM i + n) + Xt+n,O

and the same analysis we used above guarantees us that all ages older

than i will be cut.

Theorem 3.3

Older timber will not be cut after younger timber if

M"/M' + P'/P < 0

and this implies that P/P negative is sufficient to

rule out the perversity.
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Section 3.4

Partial Equilibrium and the Linear Forest

A partial equilibrium world is interesting because it corresponds

to an approximation of a rational expectations world. Solving for the

partial equilibrium gives a set of prices and actions that are mutually

compatible. That is,if the producers believed the prices from the partial

equilibrium model and acted as if these prices would obtain in the future,

then the producers would take actions that would make those prices come

true. The partial equilbrium is an approximation because it ignores income

effects. No account is taken of the money producers get from selling lumber.

In particular, it is assumed that an addition to stumpage prices which

changes the income of firms and therefore of consumers, does not change

the consumer's demand for stumpage. Two justifications are offered.

First, the numerical size of the income effect is so small it can be

ignored. Second, a change in instantaneous price does not effect permanent

income and thus does not cause an income effect. 2

Consider a partial equilbrium world where the linear model defines

the supply set and correspondence for lumber and a set of functions,

Dt (P t), t = 1,...,T, defines demand. The model becomes producer:

T
max E I

t=l t

s.t. X3 -BC3 =AX2

X 2 - BC 2 =AX1

X1 - BC1 = AX0 , etc.
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I = P <M,C>
t t

Consumer: D (P )
t t

where demand is a function of own period price only

Prices: P = (P1,...,PT

Balance: Dt (P t) =<M,C>

To make the competitive assumption more plausible, one could imagine n

identical producers and j identical consumers and divide all quantities

by j or n. Of course, this wouldn't change anything.

We prove:

Theorem 3.4

There is a unique multimarket partial equilibrium.

The existence of a partial equilibrum is easy to demonstrate.

T T
Let S(P,.. . ,P) be the supply correspondence from R to R

Because the technology is neoclassical (closed, convex, contains 0, no

*

free producetion), S is upper semi-continuous. Let p be the inverse of

* *
the demand function. If p is continuous, then Sxp is upper-semi-continuous

from the space of prices crossed with the space of quantities to itself

(RT x R T). If one could find a (nonempty) compact, convex restriction

of RT x R T, call it A, with the property that S x p (A) A one could

apply the Kakutani fixed point theorem. Since we take the quantity of
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land is fixed, the set of possible productions, R, is easily seen to be

*
compact and convex. If p is continuous, then the set of possible prices

p (R) is also compact and its closed convex hull p (R) has all the desired

properties. Thus A = R v p (R) is the sought after restriction and there

is a fixed point in A. The fixed point is the multi-market partial equi-

librium.
* *

Does this provide a unique solution? Suppose p , c is a partial

*

equilibrium. Could p', c' be another partial equilibrium? Let p = p - p

and c = c - c'. ApAc > 0 because the technology is neoclassical. But

the assumption that demand curves slope down means ApAc < 0. Obviously,

the two condiitons cannot both be met. There can be only one partial

equilibrium.3

We now know there is a unique multimarket partial equilibrium.

Unfortunately that does not tell us how to find it. In theory, Scarf's

algorithm will find any fixed point. A more practical method takes advan-

tage of the problem's structure. It is possible to break the problem down

into a sequence of subproblems, one for each period. The assumptions on

demand (negative -quasi -semi -definite jacobian) make it possible to

view the problem as one of maximizing a concave function. There are well-

known algorithms whose convergence are guaranteed, that will do this. But

first we turn to Scarf's algorithm.

In theory, one could use Scarf's algorithm. In practice there

are a few drawbacks. Scarf suggests it is computationally unfeasible for

a model with many markets. Here the contemplated dimension is many

hundred years -- thus many hundred markets. The second objection to Scarf's

algorithm is that it provides only a good approximation to the true location
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of the equilibrium price-quantity. That is, it guarantees to terminate

with quantities so chosen to that supply-demand is small, but not neces-

sarily quantities near (in the Euclidean metric sense) the true equilibrium.

To break the problem down to a period by period problem, first look at the

producer's first order conditions for the last period:

PTM+ X TB < 0

-x < 0

small as possible

P = P(<C ,M >)T t

X - BC = AX

imply A is a function of AXT-1

and < implies CT ,J = 0

PT-1 + T-1 ,B) < 0

T < A
T - T-1

XTl - BCt 1 = AXT-2

PT-1 = P(<Ct,M>)

T-1j + (TA)j < 0 implies XTdj

yields AT(AXT- 2

but AT as

and

=0
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The implication here is that T-1 (AXTZ) can be found by refer-

ence toX T(AX T-1) and reference to the appropriate functions in period T-1.

Moreover, the solution must exist and it is unique. Thus, the partial

equilibrium solution for every period, as a function of its endowment,

can be found by reference to the next period's shadow prices and the

own period production and demand functions. This would be a very nice

property if there was any hope of an analytic solution for the shadow prices.

Even though an analytic solution is beyond reach, the recursive nature of

the model allows the easy use of numerical methods. XT (AXT-1) can be tabu-

lated for a couple of hundred values and extrapolated for all values

inbetween. At each step in the procedure, only the approximations used

in the previous step need be kept, if all that is wanted is the initial

shadow values and plan. This greatly reduces storage requirements.

This leaves us to solve the repeated problem: given AXTl,

X (AXT), PT = P( CT,M ), find CT

s.t. PT = P(<CT,M>) -- supply equals demand

XT + BCT = AXT-1 - production function

A = max<PTM + A (AX T);X T i+(AX T)A>

M.P + (X B). < 0 => (C .= 0
i T T i T,i

-T .i (AT A). < 0 => X . = 0
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Suppose we were to choose a trial solution C'. By the first three condi-

tions above we would have A, X', and P'. On examination of conditionsT' T' T

four and five, we would likely find there is an i for which MiPT +

(X B). < 0 and C ; # 0 and some for which -X . + (A A). < 0
T ' T,i T,j T+1 j

and X .' 0. Consider what happens if in the latter case C . is increased
T,j T,j

some. One gets a new P lower than P T' XT > X TO', X Tj < X Tj

Since there is less timber in period T+l, V XT+1,i XT+1,, what happens

to X T Well P TM does fall, but AT,0 rises. Thus, we would not appear

to know what happens to PTM + XT0, though we would expect it to decrease.

In short, although we don't know for sure, we expect the shadow prices

for good j to move in the right direction to redress -X . + (X A). < 0.
T,j T+1 j

Unfortunately, the shadow prices for all the other age classes behave this

way, and many of those classes already satisfied the complementary slackness

conditions. Thus, a naive movement in what appears to be the right direction

might do much more harm than good.

The way to find the equilibrium is

Theorem 3.5

A plan that minimizes the sum of consumer surplus (with

Marshallian not Hicksian demands) and producer surplus is

also the market equilibrium.
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Footnotes

1 John F. Muth, "Rational Expectations and the Theory of Price
Movements," Econometrica 29, No. 3, July 1961.

2 Truman Bewley and Hal Varian, Consumer Surplus and the Permanent
Income Hypothesis, Harvard and M.I.T., 1975 (unpublished);
and Robert D. Willig, "Consumer Surplus Without Apology,"
AER (forthcoming).

3 Gerard Debreu, The Theory of Value. New York: Wiley, 1959.

4 Herbert Scarf with collaboration of Terje Hansen, The Computa-
tation of Economic Equilibrium. New Haven: Yale
University Press, 1973.
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Section 3.5

Consumer Surplus -- A Solution

This section exhibits a constructive algorithm to find the

multi-market partial equilibrium. Let ff(p) be the restricted profit

function at prices p and land allotment X0 ' or(p) = X t Pt where
t

Yt =Ct,M} and is the amount of timber cut in period t. {Y(p)} is the

supply correspondence Y(p)c{Y(O)} is some point in the supply correspondence

7T(p) = p.Y(p).

Theorem 3.6

N
With these preliminaries, define V(p) = Z (f D t(z)dz) + F,(p)

t=l Pt
V will be shown to have a unique minimum

and at that minimum D(p) - {Y(p)} = 0. Minimizing V(p)

is equivalent to finding the equilibrium.

Claim: If D(p) + {Y(p)} 0, then there is a direction of

decrease for V at p.

*
Let Y (p)c{Y(p)} minimize the euclidean distance between D(p)

and the set {Y(p)}. The direction of decrease will be

*
-D(p) + Y (p)

I ID(P)- Y (p)

First it must be shown that {Y (p)}{Y(P+t)l|t = Y2 ' 1,1/8, etc.}

*
where the denotes closure. Y must be a limit point because, if not,

*
setting £ = excess supply at point Y would produce a new supply point that
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*
could be anywhere in the supply set. The assertion on Y is true because

*
of the law of supply: ApAY > 0. Let Ap = t2 and choose Y as the starting

*
point. Y = Y - Y . The definition of C assures us that 6 is orthogonal

new.
*

to a supporting hyperplane for the supply set at Y . All candidates for

Y must either be on that hyperplane or not in the supply set. Thus
new
*

Y is certainly a member of <lim y(p +ts)> . Now we are ready to examine

V. D V = D E/D(z) + lim.
t+0

Tr(p + 6t) - l(p)

t

and is the directional derivative. D t/D(z) =<e*D(p)>.

7r(p + et) - 11(p) p{y(p + te)}- p'{y(p)}
lim = lim
t+0-+ t t+0-+ t

+ lim E-y(p + tE)
t+0+

*
The first term vanishes. The second term + E y because of the lemma above.

*
Thus D V = e.(-D(p) + Y (p)) < 0 and p not an equilibrium prices implies

there is a direction of decrease for V.

Since one can choose prices so high that all goods are in excess

supply and so low that all goods are in excess demand, one can limit p to

a compact subspace, and assure that V does not take its maximum value on

the boundary of that subspace. This assures that V has a finite max

(because it is continuous). The sequence of V's created by always moving

in the direction e is both monotonically decreasing and bounded. It con-

verges to the max of V and the equilibrium of the multi-market system.
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Remark: At the bottom of this exposition is the negative quasi-definiteness

of the demand function's jacobian and the Poincar -Hopf lemma.

Although it is now possible to find the equilibrium, it is only

possible to tell a little about it. If one starts with a virgin forest,

discounted producer price P must rise fast enough to induce the resource

holders not to cut. After inventories have been liquidated, price goes

into a'limit cycle" (because it is bounded). One would like to know more

about the long run behavior, but all that can be said is that the limit

cycles are gentle. Choose At 2 , then A max(P+ 1M + 2

let class i be some class cut in t + 1

A = P M+ A
t+1,i Pt+1 Mi +t+1 1

Let j be cut in t. What would happen if we let it grow?

= PM. + > P M. +A
t + t+ll t+l j+1 t+2,1

NowA and > P M +A . Thus
t+1,1 - t+2,2 - t+l 1 t+2,1

PtM + P t+l Mj+l t+1,l t+2,1

since A can only underestimate the truth:t+293

A - A >p P - PM.
t+2,2 t+1,1 - t+l j+1 t j

and by use of the lemma on the following page

m(1)
A (1 - ) > P M - P M.
t+2,2 m(2) t+1 j+1 t 3

which limits the change in prices.
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Imagine the managers of land of class j follow the policy for

land of class i instead of following the policy optimal for land of class j.

Call the rent XW. The first time the land is cut, the manager earns

M(i+z)
P M(i+z) while the managers of class j land earn P M(j+z) or M*(+z)
t+z t+z Mjz

as much as the j managers. Since uniform

M(i+s)
lim +1
s->co M(j+s)

M.
we know that X > XWt -i

Thus

M.

t,i ,j tj M.

The above discussion shows that:

Theorem 3.7

In the long run p is restricted to a closed interval

and its rate of change is bounded.

This theorem refers to a model in which the time horizon is

infinite. It is true because prices are bounded and it is a very weak

statement. The theorem one would like to prove is that the price path

would converge to some exponential path in the long run. With periods

separated by finite time intervals long run exponential prices won't

necessarily happen. (I have created cyclic examples for the infinite
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time case.) I conjecture that the multimarket equilibrium model will

settle to a stable equilibrium with even age distribution if it is

specified in continuous time.

A model of interest to the forestry profession is that of a

forest with an initial condition of equal amounts of land at all ages

less than a certain rotation age and no land bearing trees older than

the rotation age. This is a perfectly regulated forest. If there is

the same demand curve every period, and the rotation age is determined

from the Faustmann formula of Chapter One, X(L)/X(L) = r/(l - exp(-rL)),

then it is obvious that the policy of cutting all trees at the rotation

age and having the price be the price that clears the market will be a

steady state and a partial equilibrium. This is Theorem 3,8.

Theorem 3.8.

If 1. Demand is constant over time.

2. The rotation age L is defined by the Faustmann

formula.

3. Land is divided evenly among all classes of

age less than L.

Then, a policy of cutting trees when they reach age L

will result in a constant price for stumpage and

constant supply of stumpage. The state of the

economy is a multi-market partial equilibrium.

It is also a steady state.
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There is an easy extension of this model to a world with uncer-

tain demand. Say P = P (<M,C>)-E where E is a random variable of known

distribution F(E), the 8 's are i.i.d. For the sake of comparibility,

choose C so that e = 1; Et revealed in its own period and E> 0. Now our

problem is:

producer: max ZE(Pt (<C tM>))

s.t. X3 - BC3 = AX2

X 2 - BC 2 = AX1

XI - BC, = AX 0 , etc.

consumer Pt P(D )tmx
t t

balance Dt = <CtM>

I t =DIt Dt

"E" denotes the expected value.

Look at the last period first. Given X2 we could find (if we were lucky)

E(It ) t (s)dF = P(<Ct,M>)fEdF = P(<Ct,M>)E and e = 1. Thus, X3 (AX2 )

can be found just as before. Now consider period 2. The choice the pro-

ducer makes in period 2 is dependent on the realization of 6 in period 2.

For instance, if it is zero, the optimal policy is to cut nothing at all.

For any given E one easily finds the correct solution for all the variables
3

and finds A2(AX1 ) le Duality assures us that A2(AX 1 )/e2 AX = max E E(It)
2 t=2

subject to the constraints and given e2. We take the expected value of both
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sides of this equation to get A2 (AX2). One proceeds to solve this in the

same way for each earlier period.

One remark on comparing this to the certainty model: Imagine

that an entrepreneur made plans for the certainty case and executed them

in the uncertain demand world just described. The expected value of his

plan in the uncertain world would be equal to the value of his plan in the

world with certainty. Therefore, an optimal plan in the uncertain world

has a greater expected value than the certain plan does. The following

(by now familiar) rule should make this clear:

Xti I t mx i +t+1, t+1,i+i >

Thus X ti is bounded from below by A t+1,i+1 So EX .t exceeds both

P teM + At+1 and A t+1,i+ because P teM + At+1,0 is chosen when e is

large, and At+1 i+l is chosen when e is small.

One should notice that the introduction of c poses only a small

additional computation burden, that of solving each period's problem enough

times to estimate EXt (AXt-1
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Footnote

1 This section benefitted greatly from a discussion with Hal Varian.
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Section 4

Section 4.1

Brief Description of Model:

There are two types of agents, consumers and producers. Consumers

are represented by their demand curves. Their demand in each period is

taken to be the translog factor share approximation discussed in the

succeeding section with the constraint that the log own price term be

zero. (That the long run elasticity of demand is one.) For periods

in the sample time (1950 to 1972) the demand equation is the translog

estimate with the actual values of the independent variables. For the

periods after the sample time, the independent variables are estimated

by ordinary least squares regression on a constant and the log of a

trend term. These ordinary least squares estimates are then projected

into the future. See Table 4.3. The major problems with this procedure

are two-fold. The estimate of the demand curve has a good deal more price

elasticity than seems warranted from the data, even in the long run.

This problem will be discussed again later. The demand cures are supposed

to represent the producer's (rational) expectations of demand. Can the

producers perceive shifts in the value of construction fast enough to

be able to smooth the year to year price differences? Although by using

the actual value of construction for the years of the sample period it

is assumed the producers are able to perceive the year to year changes in

demand, it is not clear that this is so. Using the trended value of

output even for the sample period would correspond to the assumption

that producers can not respond in time to smooth year to year fluctuations.

In retrospect this seems like the better assumption.
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Producers are assumed to maximize the present value of their profits

from the sale of timber, subject to biological constraints on the growing

of timber and their expectations of price. Producers expect prices to

be such that supply and demand are equated at every time t. This is

rational expectations. The most severe problem here is that there are

at least two important classes of producers -- private and public. Although

the profit maximizing assumption makes sense for the private producers, it

is not clear that it makes sinse for the Forest Service. The Forest

Service loudly announces that it makes its decisions based on noneconomic

criteria. The position taken here is that although the Forest Service

cuts less than the competitive producers in the early part of the period,

they are subject to heavy industry pressure and the effect of that

pressure has been to assure management practices (although not rhetoric)

very close to that of the prive producers in the late part of the period.

(If, indeed, the Forest Service cuts less than a competitive firm would

there are at least three justifications: 1. the Forest Service is charged

with providing recreation and range from the lands it administers, private

industry is not. 2. The Forest Service tends to own land of lower

productive capacity than the private sector. There is less incentive to cut

such land for its future growth. 3. If it is right for the private

sector to hold even one of a given age class, then, because of constant

returns to scale, it is right for the Forest Service to hold any amount

of trees in that age class.)

Producers view the world as having seven periods and the technology

for tree growing described in the sections called Linear Supply Model

(Section 3) and Supply Considerations (Section 4.3). Briefly, the supply

model says that, unless land with trees is cut, it gets one year older
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every year. Land with older trees has more lumber than land with younger

trees. Land that is cut becomes land of zero age. Given the

technology described by the linear supply model and the functional values

chosen in the section called Supply Considerations, the producers are

viewed as profit maximizing competitors. For any set of prices p and

behavioral parameter, r, each producer chooses an action (harvest) c

to maximize

7 =t1 < C(t), M > e-rt p(t) s, t. Biological Constraints

where M is a vector of the lumber contents of one acre of forest at

various ages. The interest rate parameter is the producers' rate of

nominal time discount. It includes a constant expected rate of inflation.

(Because all the pieces of the model are linear homogenous of degree zero

in prices and income, a changed unexpected rate of inflation will not

affect the policy decisions of the producers.)

It may be that many policies, C, will maximize profits for given p.

For the purpose of the next few paragraphs, assume that C is unique. The

producers' profit maximization problem is sold for C(p), the supply

function, and f(p) = <p, < C(p), M >> the profit function.

The question of what prices to use remains. Rational expectations are

posited. That is, < C(p), M > = D(p) is to be Isold for price. In fact,

this is done by the computer by maximizing t=i,7 b D iD(p ) - (p), where

b is any small number. The first order conditions for a max are

Dt < C(p), M >t, which are nothing more than the conditions for an

expected equilibrium. (The second order conditions are obviously
2

satisfied because 2 is negative definite.)
9p2
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Footnotes

1 Ernst R. Berndt and David Wood, "Technology, Prices, and the
Derived Demand for Energy," Review of Economics and
Statistics LVII, No. 3 (August 1975), p. 259.
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Section 4.2

Supply Model Details

The description above is too heuristic for those who might wish to

reproduce the results below. Following the notation of Section 3.1, define A,

B,and E as in Table 4.2.1 and Bioconstraints as in Table 4.2.2.

The producers' problem, given prices, is to choose C(t), t = 1,7 to

maximize

7r(p) = t=f,2 < C(t), M > P(t) + t= ,7 e-30rt < C(t), M > P(t)

subject to the bioconstraints.

Notice that the bioconstraints and the profit function both imply

that land gets no older between periods one and two. This is because

periods one and two are one year apart while the other periods are thirty

years apart. The reasons for this are described below.

The computer maximizes V i=f,7 b D(p) dp - 'r(p) on "p"

by the following gradient algorithm.

7
1. Choose P 6 R , set n = 0.

2. Find D(Pn), C at P -- call it Cn and V(Pn).

3. If C has many values, i.e., if ff takes its maximum
value on a set (Cn}, choose C E {C } to minimize
HJD(P n) - C ,MI. n n

4. Gn = D(P ) - <C , M5.

5. Find a step size, E, small enough so V(P + EG) >
V(P ) + G - Section 3 shows that this cRn be done.

6. Pn+1 Pn + EG, n = n + 1, go to 2.

The algorithm will converge to p the expected prices and C the anticipated

actions. As described below, <C, M> is the estimate of supply, given the

producers' rate of discount, r. The discount rate, r, is then chosen to



-88-

make the harvest predicted by the model and the actual harvest as close

as possible.
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Table 4.2.1

A 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

B 0 1 1 1 1 1 1 1

0 -1 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

E0 1 1 1 1 1 1 1

o 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 00 0 0 0 0
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Table 4.2.2

Bioconstraints

X(0) = 0

X(l) = X0 + B C(l) - E C(l)

X(2) = X(l) + B C(2) + E C(l)

X(3) = X(2) + B C(3)

X(n) = X(n-1) + B C(n) n = 4,7.
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Section 4.3

Supply Considerations: Data and Growth

The data to build a supply model come from two souces. The Forest

surveys of 1970 and 1963 (called Outlook and Timber Trends, respectively) 2

provide observation of the forest inventory and removals in those years.

The Department of the Census, Current Industrial Reports series, provides

2
data on lumber and plywood production on a yearly basis. If the 1970 and

1963 data were comparable, one could construct a growth function from

this information. In fact, they are noncomparable. What I have done is use

a normal yield table for the shape of the growth function and the data in

the Forest Surveys for the scale of the function. Using the forest service

estimates of growth (5206M bd. ft. in 1970, 4582M bd. ft. in 1963) and the

census removals estimate, there is a huge discrepancy. The 1970 survey

"discovered" 17,OOOM bd. ft.

In 1930 Richard McArdle, then a Forest Service Silviculturist,

summarized forest measurements in a series of normal yield tables for

second growth Douglas Fir.3 Their tables were updated and revised by

Walter Meyer and later Donald Bruce (1949) and were revised again in 1961.

The yield tables list the following data: Average dbh, normal number of

trees per acre, volume per tree, and diameter growth by stand age and

initial diameter. "Dbh" is an abbreviation for "diameter at breast height."

Normal number of trees per acre is the number of trees per acre if there were

no natural catastrophes and if the acre were completely reseeded to begin

with. Normality is the ratio of actual trees per acre to the normal number.

In practice these conditions are rarely met.
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These tables were meant to be used to predict the growth or yield

of a homogeneous stand of trees. A forester could count the trees per

acre to estimate normality and core the trees to estimate age. Age is

important because trees grow much faster under good conditions than bad

conditions. For a given diameter at breast height, a younger tree is expected

to increase diameter faster than an older tree. The younger tree is said

to grow on higher site class land. To use the normal yield tables for an

aggregative growth function (a purpose they were not intended for), one

must know the diameter-age relationship (how good a site is) and normality.

The survey data in Outlook gives the distribution of growing stock by

diameter classes, acres occupied, and annual growth. Choice of a site

class (or age-diameter relationship) implies a yield table. Applying the

yield table and an estimate of normality to the survey data implies acreage

and growth. Thus, one can choose the site class index that most closely

matches the reported growth and acreage. After playing with many different

site class normality assumptions, I chose to assume the growth function

shown on table 4.3.1.

Using index 140 overpredicts growth, but gives a reasonable estimate

for normality. Using a higher site index would predict even more growth and

would lose normality. A lower index would raise normality (which wouldn't

be at all belieavable) but would bring growth more in line. The table

above is clearly a compromise. It is hoped that it is a reasonable

approximation for an aggregative growth function.
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Table 4.3.1

M bd. ft.
Volume

0

0

35,500

49,059

35,584

51,675

284,477

Acreage
(millions)

1.71

3.6

3.91

2.37

1.28

1.59

4.40

1 "
Bd. ft./acre int.

0

0

9,100

20,700

27,800

42,500

64,653

Site Index 2 140 Normality = .8

Age

0

30

60

90

120

150

180
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Footnotes

1 U.S. Department of Agriculture,Forest Service, Forest Resource Report 18,
Timber Trends in the U.S.; Forest Resource Report 20,
Outlook for Timber in the U.S.

2 U.S. Government, Department of the Census, Current Industrial Reports.

3 Richard McArdle, Walter Meyer and Donald Bruce, U.S. Department of
Agriculture, Technical Bulletin 201, 1949.
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Section 4.4

Demand Model:

There is considerable difficulty in estimating the demand function

for Douglas Fir stumpage. Conceptually stumpage demand is derived from

the demand for lumber and plywood, and, ultimately, the demand for construc-

tion. Seventy-two percent of all lumber and fifty percent of plywood is used

in construction.3 Douglas Fir is more likely to be used for construction

than most types of wood. The other major end use of Douglas Fir is furni-

ture, or home furnishings. My intentions were to break output down to

residential and nonresidential construction as well as furnishings and

specify stumpage demand to be the sum of the relevant Diewert factor

demands. This fails. I aggregated the value of output data of furnishings

and consumption by the share of all materials in each sector (.645 for

construction and .570 for furnishings). I denote this new number as value

and use it as my income variable. I estimated the demand equation in many

different forms; the best fit, in terms of asymptotic t statistics,

believability of estimated elasticity of demand with respect to own price,

and classification of other goods into complements and substitutes, was

a simple log linear form with the income elasticity of demand set equal to

one. This assumption corresponds to a conditional factor demand derived

from a constant returns to scale technology. (This assumption was tested:

A 99% confidence interval on the value coefficient includes 1.0). The

equation was specified with a moving average of prices other than own price,

own price, and a moving average of past own prices. Own price and the

price of other lumber were considered to be jointly determined. All other
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prices were exogenous. Two stage least squares was used throughout. The

equation was Equation 4.4.1.
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Table 4.4.1

List of Variables and Their Classifications:

PDFL en price of Douglas Fir lumber in dollars/
thousand bd. ft., mill tally

LPROD en production of Douglas Fir lumber, million
bd. ft., mill tally

VCON p value of construction put in place

MWAG p mill wages

PDFS en price of Douglas Fir stumpage, dollars/
thousand bd. ft., international 1/4" log
rule

PS p moving average of PDFS for three years,
lagged once

PDFP en price of plywood: WPI

REMO en removals of Douglas Fir in million bd. ft.,
international 1/4" log rule

QDFSP en plywood requirements of Douglas Fir, million
bd. ft., international 1/4" log rule

VFURN p value of furnishings, millions of dollars:
national product accounts

PEXA p price of autos WPI

PEXB p WPI iron and steel

PEXC p WPI nonferrous metals

PEXD p WPI nonmetalic structural minerals

PEXE p WPI rubber and plastic products

PEXF en WPI all lumber

PEXG p wages in construction
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STOCK p gross estimate of the stock of Douglas
Fir, million bd. ft., international 1/4"
log rule

PEXH p WPI board

TREN p natural log of a linear trend --
1972 = 40, 1949 = 15

p = predetermined en = endogenous
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Equation 4.4.1

REMO - VALUE = - .83

( .234)
(3.5 )

3.79 PEXB
(2.47)
(1.54)

- . 101PEXG

(1.606)
( .0627)

- .283 PDFS

( .129)
(2.203)

1.18 PEXC
(.844)
(1.395)

- .935 PS

( .395)
(2.366)

.365 MWAG
(1.934)
( .189)

-11.11 PEXD
(6.20)
(1.80)

1.32 PEXF
(1.10)
(1.2 )

3.37 PEXA
(2.43)
(1.39)

.608 PEXE
( .930)
( .654)

R-squared = .9932

Durbin-Watson Statistic = 2.3488

Standard Error of the Regression = .448961 E-01

Number of Observations = 26

NOTE: MWAG, PEXA, ... PEXG are logs of three years moving averages.
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The implied own price elasticity of demand, in the long run, (that is,

through both the current price and moving average terms) is -1.2. As

expected, increases in the price of most other inputs increases the demand

for lumber. There is no good explanation for structural minerals (PEXD)

being a compliment. In regressions done by William McKillop construction

board (PEXH) shows up as a complement. Slight changes in the specification

will change those results dramatically. None of the t statistics on the

other materials reject the hypothesis that the coefficient really has the

opposite sign from what was reported. Besides materials, labor is also

used as a construction or milling input. Mill wages (MWAG) enters with

the wrong sign but it is insignificant. Construction wages (PEXG) enters

with the right sign, but it too is insignificant. McKillop thinks wage:

increases in construction should decrease lumber demand because lumber and

plywood are relatively labor intensive materials to use. Though

individually the other materials have no statistical significance, an

asymtotic F test rejects the hypothesis that they are all zero at once.
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Equations two and three are similar to equation one. Construc-

tion wages (PEXG) again show-with a negative sign, mill wages (MWAG) shows

with the proper sign and significant in equation three and wrong sign and

insignificant in equation two. The sign of the autos (PEXA) coefficient

can be ignored in both regressions because the asymptotic t value is so

small. Board (PEXH), which is included in equation two and not in equation

thre also has a small asymptotic t value. Rubber and plastic (PEXE) show

as complements to Douglas Fir in both regressions and minerals (PEXD) goes

from a substitute and significant to a complement and significant. Iron

and Steel (PEXB), nonferrous metals (PEXC), and other lumber (PEXF) are

all substitutes as expected.

I have also estimated the demand in factor share form using

the translog specification. In this specification the use of moving

averages was of no help. The equation is shown as Equation 4.4.2. The

major problem with this equation is that the estimated elasticity of

demand is near zero. The elasticity of demand for a translog form is

e = (-share + share * share + c)/share

where share is the estimated factor share and c is the coefficient
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associated with the own price term. For the translog function reported

above the elasticity is negative at two thirds of the points and positive

at one third of the points. This is not acceptable. Even though the

appropriate t statistic is seven, I have restricted the demand curve to

slope down by restricting the coefficient on own price to be zero. This

gives Equation 4.4.3.

The elasticity of demand in Equation 4.4.3 is (as in Cobb-Douglas)

-1+share, which is very close to one. This equation was used instead of

the log linear equation because it does not depend on lagged prices.

Lagged prices would complicate the rational expectations model that

follows. I regret the decision.

Equation 4.4.2

SHRS = .201E-1 + .302E-2 * PDRS - .953-3 * PEXA

( .114E-1) ( .403E-3) ( .290E-2)
(1.7 ) (7.4 ) ( .32 )

+ .265E-02 * PEXB + .907E-3 * PEXC - .120E-3 * PEXD

( .181) ( .100E-2) ( .450E-2)
(1.4 ) ( .9 ) (2.7 )

- .42E-2 * PEXE + .160E-2 * PEXF - .622E-2 * PEXG
( .124E-2) ( .116E-2) ( .228E-2)
(3/4 ) (1.4 ) (2.7 )

+ .816E-3 * PEXH - .316E-2 * MWAG
( .125E-2) ( .120E-2)
(.64 ) (2.6 )

N = 25

R-squared = .9681

Durbin-Watson statistic = 2.04
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Equation 4. 4. 3

SHRS = .288E-1 + 0 * PDFS + .576E-2 * PEXA
( .385E-1) ( .75E-2)
( .7 ) ( .76 )

+ .78E-1 * PEXG + .500E-2 * PEXC - .346E-1 * PEXD

( .714E-2) ( .214E-2) ( .103E-1)
(2.5 ) (2.33 ) (3.33 )

- .541E-2 * PEXE + .868E-2 * PEXF - .649E-2 PEXG
( .280E-2) ( .211E-2) ( .653E-2)
(1.9 ) (4.10 ) (.99 )

+ .519E-2 * MWAG
( .918E-2)
(.565 )

N = 25

R-squared = .776

Durbin-Watson statistic = 1.99

Data:

Prices of other goods are the wholesale price index reported by

the Bureau of Labor Statistics. Gordon, in his thesis, points out that

these prices are not particularly good, but no better ones exist. Note:

At least part of the problem with modelling demand is the quality of the

price series for other structural products. Stumpage price is from Outlook.

Removals are calculated from data in Current Industrial Reports. Lumber

production is known in every year, as is plywood production of both
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hard and softwood plywood. Current Industrial Reports also gives the

stumpage requirements of plywood (hardwood plywood uses softwood for its

core). I have pieced this data together with an estimate of wasteage (12%)

to produce a removals series. For the years reported in Trends and Outlook,

the numbers are in agreement.

The reported stumpage prices are from sales on national forest

land. In the Douglas fir region these sales are held by open bidding.

4
Walter Mead argues that only a few bidders attend each sale and they

agree beforehand how to split the sale. His evidence is personal obser-

5
vation. This view is not generally accepted by the forest community.

I choose to believe that the sales are competitive and the prices that

result are average stumpage prices.

Average needs to be explained. The terms of each sale are

different in quantity sold, location, and species mix. Location deter-

mines logging costs and transport costs to the mill. These costs are

mainly labor and are a large portion of processing costs: processing

costs are a large portion of final price. See equation 4.4.4. Thus changes

in site location or terrain will change the bid price.

Another problem with the published stumpage price is that

the vast majority of stumpage never gets sold on the market. Internal

transfers account for much of removals and private deals on which there

6
is no data account for another section. Darius Adams chooses not to con-

sider the stumpage market for this reason. Presumably the large firms

are able to bid for Forest Service timber, so public timber can have a

price no lower than the internal transfer price of stumpage. Similarly,
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the firms can sell their stumpage to other mills, so the external price

can be no higher than the shadow price. In short, that a major amount

of the commodity is not traded is no bar to using the competitively de-

termined price.

Equation 4.4.4

PDFL = 271.4 +
(55.7)
( 4.9)

48.1 MWAG + .842 PDFS
(9.00) ( .143)
(5.3 ) (5.9 )

- 92.6 TREN
(21.9 )
( 4.24)

p = .563
( .165)
(3.4 )

R2 = .9406 N = 24 d.w. = 1.8

Cochrane Orcutt Interative Technique Using Instrumental Variables
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Footnotes

1 Stanford Research Institute, America's Demand for Wood: A Report
to the Weyerhaueser Timber Company, Stanford Research
Institute, 1954.

2 William McKillop, "Supply and Demand for Forest Products,"
Hilgardia 38, No. 1, March 1967.

3 Robert J. Gordon, Problems of Measurement of Real Investment in
the U.S. Private Economy, Ph.D. Thesis, M.I.T., 1967.

4 Walter Mead, Competition and Oligopsony in the Douglas Fir Lumber
Industry, Berkeley, University of California Press, 1966.

5 Personal discussion with Henry Vaux and Dennis Teeguarden.

6 Darius M. Adams, The Impact of Changes in Federal Timber Sales
Policies on the Douglas Fir Region Forest Economy:
An Econometric Simulation, Ph.D. Thesis. Wildlife
Resource Science, University of California, Berkeley,
1972.
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Section 4.5

Empirical Results:

The multimarket equilibrium model was estimated for six years

and two interest rates. The period structure of the model is as follows:

period one is own year, period two is own year plus one, period three is

year 30 and periods four, five, six and seven are years 60, 90, 120, and

150 respectively. The point of using both the present and one year into

the future was to try to capture the producers' response to the fickle

nature of demand. As can be seen from the table below, the predicted

first period outputs and second period outputs fluctuate far more than

the actual series. This happens because the timber producers are not

able to guess demand in time to adjust to it and because the model is

numerically unstable in its first and second periods: one thirtieth the

demand of other periods is felt in these periods -- thus the gradient

associated with a mistake in these periods is small, compared to other

periods. There are at least four estimates of the first period output:

the amount demanded or the amount supplied; first period estimates or one

thirtieth third period estimates. Because of the numerical stability prob-

lem discussed above, the third period estimates divided by thirty or the

first period demand estimates would seem to be the estimates of choice.

The salient features of these estimates are that they predict

less well than the mean and that they predict large cuts at the beginning

of the sample period and smaller cuts toward the end while the actual

cutting was pretty much even over the whole period.



Actual price in dollars
per thousand bd. ft.

Calculated removals in
billion bd. ft.

PREDICTIONS WITH INTEREST RATE OF

1st period price

3rd period price, discounted

1st period supply to yr. 1

1/30 of 3rd period supply

1st period demand

1/30 of 3rd period demand

PREDICTIONS WITH INTEREST RATE OF

1st period price

3rd period price, discounted
to yr. 1.

1st period supply

1/30 of 3rd period supply

1st period demand

1/30 of 3rd period demand

1948

14.5

10.28

1.05

5.78

6.42

21.8

23.4

13.0

1.02

10.6

15.4

21.0

12.7

13.0

1956 1960

27.6 23.4

1964

27.8

11.69 11.17 12.17

5.96

6.15

5.09

15.3

54.0

15.3

13.8

18.5

12.1

18.0

22.4

12.0

7.37

7.83

7.55

14.0

32.6

11.0

14.3

19.9

15.5

16.0

16.8

12.0

8.54

9.10

7.42

13.0

34.4

14.8

21.4

18.2

11.0

19.9

12.0

1968

44.7

1972

52.4

11.94 11.81

8.27

8.73

6.50

12.0

59.7

12.0

17.2

21.6

21.7

11.0

28.7

12.0

10.1

10.6

8.76

11.0

61.3

11.0

16.5

23.5

24.4

11.0

37.4

11.0
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This model aims at predicting the cut from behavioral consi-

derations. The mean specifies only that people did whatever they did.

Since the series has no long run trend, the model can be viewed as an

attempt to predict the mean. In this sense it is successful. From purely

behavioral considerations it was possible to predict that 11 billion board

feet of lumber would be harvested.

The problem of the time trend of the cuts is probably inherent

in the demand equation. If a near-zero demand elasticity were used, then

the predicted cuts would have no time trend. Perhaps the estimate of

demand using a moving average would give better results. It was too

expensive to find out.

The table shows, as expected, that the lower the interest rate,

the smaller the cut in the first period. Prices increase faster than the

rate of interest until the old growth is gone and then increase at a

slower rate (sometimes decreasing slightly) and tending towards a zero

rate of change by the seventh period. The rotation age in the long run

appears to be on the order of 90 years and the competitive market will

reach that point after 30 to 60 years. Below is the output for the 5 per-

cent interest rate, starting from year 1972 equilibrium.

VNEW and VOLD are the values of the objective function before

and after the current iteration. The objective function is the difference

between the integral of the demand curve and profits. In this iteration

the objective function has changed by about 7 E-9, which is a very small

number indeed. 125 iterations earlier, the objective function was changing

by about .01 each iteration. Periods one and two refer to 1972 and 1973
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respectively. Periods three through seven are 2002, 2032, 2062, 2092, and

2122. PSUPPLY is the expected price in dollars per board foot. XSUP and

XDEM are the expected quantities demanded and supplied. They must be

multiplied by ten to the twelvth (E12) to be read in board feet. X, C, LAM

are the stock and cut, each measured in acres, and the shadow price, mea-

sured in dollars per acre (multiplying by ten to the third gives the

proper scale -- E3). ALF is one half unless the age class in question

is a tie -- that is, it can either be cut or saved with no change in the

level of profits. Then ALF is adjusted to minimize the gradient squared,

or what is the same, the distance between the demand and supply points.

The seven numbers give the values for the seven age classes. Each age

class is separated from its neighbor by thirty years. Consider age class

one in period one. There are 1.53 million acres in this age class. From

the growth function displayed earlier in this section we know that there

is no timber on this land. In fact, it is bare land with tree seeds.

None of this land is cut in period one. In period two this land is still

in age class one because only one year has passed. In period three, this

land is promoted to age class two. In period four it is in age class three

and in period five it is in age class four and it is cut, along with age

class three. They reappear together as age class one land in the next

period and so on. Until the land was cut, the shadow price (LAM) column

contained the same number .875E-4. This is because the present value sha-

dow price of class two land in period three is the same as that of class

one land in period one. Class one land in period land is allowed to mature

to be class two in period three. All reported prices are discounted at the

rate of interest shown (5%).
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Section 5

Section 5.1

Forest Service Policy:

Although the U. S. Forest Service controls 38 percent of the

land in the Douglas Fir region and 44 percent of the land bearing saw-

timber, it is not at all clear what their policy is. The intended policy

of the Forest Service is expressed in both the Multiple Use Sustained

Yield Act of 1960 and the writings of Forest Service Officials. Forest

Service policy is revealed in the cut and inventory statistics.

The best place to start is the Multiple Use Sustained Yield

Act . "National forests ... shall be administered for outdoor recreation,

range, timber watershed, and wildlife and fish purposes." Moreover this

shall be done with regard to "multiple uses" which means "the management

of the resources ... in the combination that will best meet the needs of

the American poeple" and not necessarily maximize dollar of physical

output. "Sustained yield means the achievement and maintenance in per-

petuity of a high-level annual or regular periodic output without impair-

ment of the productivity of the land." 1

Thus multiple use directs the Secretary of Agriculture to do

what he thinks best while sustained yield cautions him to produce a lot

of whatever is produced without "impairing the productivity of the land."

The act allows the National Forests to be used mostly as playgrounds or

mostly for timber production (and hopes the uses will be simultaneous and

compatible). Since the Sustained Yield Act gives so little guidance, one

must look at the statements of Forest Service policy.
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Current Forest Service policy depends upon allowable cut. Crudely,

allowable cut is determined by choosing a rotation age (90 to 120 years)

and an adjustment period (on the order of 40 years) and then finding a

policy that will produce an even aged forest (in which trees are cut at

the rotation age) at the end of the adjustment period. That is, the

Forest Service ideal is a forest containing equal numbers of acres of

every age class. Trees are cut at the rotation age. In the long run, a

constant supply of lumber results. The adjustment period is the length

of time it takes to remove the old growth and set up the even aged forest.

During the adjustment period there may be much larger harvests than will

obtain during the even rotation regime.2 The justification for all the

even flow or sustained yield statements, at the Forest Service level,

seems to be short term economic stability. 3

Two recent Forest Service studies deserve attention in this

respect. The Douglas Fir Supply Study of 1969 calculates increment to

present discounted value of a number of management alternatives. The

basic finding is tat using a 5% rate of discount anything that hurries up

the cut will increase net worth. The management alternatives considered

in that report are not even flow alternatives. That is, the increase in

output cannot be sustained, it is a once and for all increase. A prelimi-

nary draft of the Forest Regulation Study done in 1973, but not officially re-

leased, is critical of the Douglas Fir Supply Study. The regulation

study points to the Multiple Use Sustained Yield Act and says that the

management alternatives in the Supply Study do not meet the sustained yield

requirements of the act. The point is that maximization of present net
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worth is not consistent with an even flow constraint; this inconsistency

is recognized within the Forest Service and the desirability of the

various aims is debated.

(The Douglas Fir Supply Study proceeds on the assumption that

the price of stumpage (properly defined) will be at 140% of the 1970 level

thirty years hence. Calculations are made in real terms with an interest

rate of 5 percent. My prediction uses a 5 percent nominal interest rate

and yields a 400% increase in price over the same time interval. Taking

account of the difference between nominal and real prices, my estimate

and the study's estimate are grossly compatible. The study recommends

more intensive management to produce more lumber sooner and increase

present value.)

Finally the writings of the Chief Foresters McCardle (1956)

Cliff (1968), and McGuire (1974) point to the Forest Service walking a

political tightrope between the conservationists and industrial forces.

McGuire seems particularly concerned with the conflict between the re-

creation and timber industry groups: He claims to chart a course

"somewhere in between".

A cynical (and essentially correct) summary of the preceeding

discussion is: The Forest Service sets its harvest policy according to

political pressure and its own sense of what is good for America. The

decision gives weight to quantity stabilization, recreational needs, and

forestry industry needs.

Objective functions for forest management differ in their use

of interest rate, value to standing stock for noncommercial use, even flow

considerations, and expected prices. The hard line Sustained Yield School
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can be characterized as maximizing physical output (price expected constant,

zero interest rate, even flow constraint, no explicit stock value) with the

constraint that the flow of timber be the same in every period. A soft

line Sustained Yield School forester would lessen the even flow constraint.

(Perhaps, like Carl Jugenfeld he would attach a penalty for rapid changes

in the rate of harvest.)4 My proposal is to use a positive (in fact, market)

discount rate and value the standing stock explicitly. Moreover I would

use expected prices and place no inherent even flow constraints on the

model. Something approaching the Soft Line Sustained Yield School notion

of even flow will result. The demand curves working through expected prices

will assure that the period to period change in stumpage sales is not very

great. The net result of changing from the amorphous arithmetic of sus-

tained yield to the calculus of present value maximization with rational

expectations may well be just a little more than a change in rationaliza-

tion.

The next section will contend that a moderate valuation of the

stock of timber for noncommercial uses is sufficient to produce a policy

very much like the Forest Service's current policy. It remains to enumer-

ate the fine details that will differ. The present value model allows

correct assessment of management practices. Proposals (of which there are

many) for intensified management should be accepted if they increase the

present value of the forest with stock valued. Thus this model will dif-

fer from sustained yield in which projects it accepts. Sustained yield

may require the benefits of a project to be spread over many years, or,

in what's called the allowable cut effect, sustained yield may make it

possible to harvest more timber in the very first year and that may domi-
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nate the objective function.5 The allowable cut effect needs some explana-

tion. Because of even flow constraints too little timber is cut at the

beginning of the planning period. With even moderate interest rates (5%

real) what happens in thirty years matters only one quarter as much as what

happens today. But if even flow constraints are in effect, then an invest-

ment today that will result in say 30,000 extra board feet in thirty

years will resutl in an extra cut today of 1,000 board feet. Because of

the even flow constraint, management practices that would not be profitable

for a profit maximizing firm appear desirable to a maximum sustained

yielder.

Another major difference between sustained yield and profit

maximization with stock valued is that the sustained yield school does

not try to adjust its sales to current market conditions. The Forest Ser-

vice should calculate its reservation price for timber sales based on

what it thinks it can get for the timber in a year with large construction

demand, not on some notion of "fair profit" for the mills. If selling

no timber when there is no demand is too unpalatable, the Forest Service

could at least extend the period a logger has in which to cut contracted

timber and let the logger reap the speculative profits. (Since loggers

bid against each other, the expected value of these profits is the logger's

payment for accepting the risk involved.)

The last advantage to the profit-maximizing stock valued approach

is clarity of thought. The Multiple Use Sustained Yield Act directs the

Secretary of Agriculture to manage the forests for both commercial and

noncommercial purposes. Choosing a stock value (one would hope by careful



-118-

research on what people would pay for recreation, and what the nation as

a whole should pay for wildlife) and choosing timber value as the dis-

counted market price makes it very clear what products are produced by

our forests and how much our public servants value these products. If

the logging industry or the conservationists don't like the decision,

let them go to Congress; there the discussion can be dominated properly:

in the public's money.

Section 5.2

Imputed Value:

Although the writings of the Forest Service shed very little

light on the actual tradeoffs the Service makes between recreational and

commercial use of the forests, actual Forest Service decisions can be used

to impute a value per acre to the Forest Service holdings. At

both the Forest Service and the competitive sector hold virgin timber.

The multi-market partial equilibrium model (model) implies that the price

of stumpage must be rising fast enough to make the holding decision rational

for the private sector. A result is that it must also maximize Forest

Service revenues. So long as the private sector continues to hold mature

timber, there is no implications about Forest Service policy. However,

in twenty or thirty years, private sector holdings of old stock will be

negligible compared to the public holdings. It is at that time that the

Forest Service valuation of its standing stock will be revealed. Using

the model with an interest rate of 5%, it is possible to impute a value
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per acre to Forest Service land held past the time a private operator

would cut it. That is, the value per acre is the sum of the acres value

for timber plus the acres value for recreation, wildlife, etc. which we

shall call noncommercial use. Consider old growth timber in 2002. An

acre of land bearing old growth would sell for about $690. A profit

maximizing manager would cut the timber. Instead, suppose the Forest

Service owned the land and decided to save the trees for one more period

(30 years). The policy of holding the trees thirty years longer would

give the land an imputed value of 522 dollars. Thus the noncommercial

value of old growth must exceed $5.50 per year for it to be worthwhile

to the Forest Service to hold the timber. Similarly, in the year 2032,

an additional valuation of sixty cents per acre would make the differ-

ence between keeping and cutting ninety year old trees for thirty more

years.

At first glance these values seem small. Yet one must remem-

ber that something on the order of six million acres are involved. Thus

a complete no rent policy would cost thirty million dollars per year at

the computed expected prices. If the Forest Service were to cut none

of its holdings, prices would undoubtably be a good deal higher, so it

is erroneous to carry the analysis too far. Similarly, a first guess

at what it would cost the Forest Service to use a rotation age longer

by thirty years than the one employed in the private sector is three

and a half million dollars per year. All of these figures are not cash

payout, but own year foregone value of income, or shadow cost.

The previous exercise is meant mostly to be illustrative. The

model I have used predicts the gross shape of the forest economy. It

cannot distinguish between rotation ages of 80 and 110 years, nor can it
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say that an allowable cut that liquidates inventories in forty years

instead of twenty-five years is off base. What the previous exercise

shows is that a relatively modest value for noncommercial use per acre

will be enough to justify the broad outline of the Forest Service

management policy. By simply choosing a relatively small dollar value

per acre per year for noncommercial uses, the Forest Service could easily

justify their present policy (or virtually any other policy).
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