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Abstract

Background: Bacteria have evolved a rich set of mechanisms for sensing and adapting to adverse conditions in
their environment. These are crucial for their survival, which requires them to react to extracellular stresses such as
heat shock, ethanol treatment or phage infection. Here we focus on studying the phage shock protein (Psp) stress
response in Escherichia coli induced by a phage infection or other damage to the bacterial membrane. This system
has not yet been theoretically modelled or analysed in silico.

Results: We develop a model of the Psp response system, and illustrate how such models can be constructed and
analyzed in light of available sparse and qualitative information in order to generate novel biological hypotheses
about their dynamical behaviour. We analyze this model using tools from Petri-net theory and study its dynamical
range that is consistent with currently available knowledge by conditioning model parameters on the available
data in an approximate Bayesian computation (ABC) framework. Within this ABC approach we analyze stochastic
and deterministic dynamics. This analysis allows us to identify different types of behaviour and these mechanistic
insights can in turn be used to design new, more detailed and time-resolved experiments.

Conclusions: We have developed the first mechanistic model of the Psp response in E. coli. This model allows us

to predict the possible qualitative stochastic and deterministic dynamic behaviours of key molecular players in the
stress response. Our inferential approach can be applied to stress response and signalling systems more generally:

in the ABC framework we can condition mathematical models on qualitative data in order to delimit e.g.
parameter ranges or the qualitative system dynamics in light of available end-point or qualitative information.

Background

Bacteria have evolved diverse mechanisms for sensing
and adapting to adverse conditions in their environment
[1,2]. These stress response mechanisms have been
extensively studied for decades due to their biomedical
importance (e.g. development of antibiotic therapies).
With the advent of molecular biology technologies it is
now possible to study biochemical and molecular
mechanisms underlying stress response signalling. How-
ever, due to the complexity of these pathways, the devel-
opment of theoretical models is important in order to
comprehend better the underlying biological mechan-
isms. Models can be especially useful when a system
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under study involves a large number of components and
is too complex to comprehend intuitively.

Unfortunately, however, suitable models are few and
far between. For most systems we lack reliable and use-
ful mechanistic models; this even includes systems that
have been attracting considerable attention from biolo-
gists and biochemists, and for which substantial
amounts of data have been generated. The phage shock
protein (Psp) response [3] in bacteria — in particular in
Escherichia coli — is one such system. We know much
about the constituent players in this stress response and
have a basic understanding of their function and evolu-
tion [4]. But so far we lack models that would allow for
more detailed quantitative, computational or mathemati-
cal analysis of this system.

The Psp system allows E. coli to respond to filamen-
tous phage infection and some other adverse

© 2011 Toni et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:ttoni@imperial.ac.uk
mailto:m.stumpf@imperial.ac.uk
http://creativecommons.org/licenses/by/2.0

Toni et al. BMC Systems Biology 2011, 5:69
http://www.biomedcentral.com/1752-0509/5/69

extracellular conditions, which can damage the cellular
membrane. The stress signal is transduced through con-
formational changes that alter protein-protein interac-
tions of specific Psp membrane proteins, which mediate
the release of a crucial transcription factor. This tran-
scription factor then triggers the transcription of seven
psp genes that activate and modulate the physiological
response to stress, which includes membrane repair,
reduced motility and fine-tuning of respiration.

The motivation for the research presented in this
manuscript is two-fold: (i) we want to construct and
analyze a mechanstic mathematical model for the Psp
stress response system; (ii) we will develop and illustrate
a general theoretical framework that can be employed to
make use of qualitative, semi-quantitative or quantitative
data and knowledge about biological systems in order to
develop useful explanatory and predictive mathematical
models of biological systems.

Our modelling strategy is guided by the following
questions: can we reverse-engineer a dynamical model
for the Psp response system based on limited qualitative
data? How much does this information allow us to deli-
mit the ranges of e.g. kinetic reaction rates of such mod-
els? We take a two-step approach: we will first subsume
all the available information into a Petri net framework
and undertake a structural analysis of the model. We
then study the dynamics of the model in stochastic and
deterministic frameworks. Since parameter values are
unknown, we employ an approximate Bayesian compu-
tation (ABC) method based on a sequential Monte
Carlo (SMC) framework [5] in order to fit the model to
the known facts. This allows us to predict what type of
dynamic behaviour we may expect to see in time-course
experiments.

As we will show in the context of the Psp response in
E. coli, such an approach can result in non-trivial
insights into the system’s dynamics. In particular, we
will compare the outputs of analyses assuming stochas-
tic and deterministic models, and show that some
aspects of the system, such as qualitative dynamic beha-
viour and some parameters can already be constrained
by using the limited information available. More gener-
ally, we will discuss how this procedure can be used in
the reverse-engineering of biological systems.

Introduction to the biology of phage shock protein
response

Depending on the type of changing environmental con-
ditions, bacteria can employ different stress response
mechanisms. Some of the well studied stress response
systems are the RpoE and Cpx extra-cytoplasmic sys-
tems [2] and the heat-shock response [6]. The stress
response systems that respond to alterations in the bac-
terial cell envelope are collectively known as extra-
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cytoplasmic or envelope stress responses. Recently a
wealth of information has been obtained about the Psp
response system [3,4,7,8], which also belongs to this set
of responses.

The Psp response was first observed during the fila-
mentous phage infection of a bacterial cell [9]. It can
also be invoked as a result of extreme temperature,
osmolarity, mislocalization of envelope proteins called
secretins, increase in ethanol concentration and pre-
sence of proton ionophores. These conditions damage
the bacterial cell envelope, which serves as an ion-per-
meability barrier for the establishment of the proton
motive force (pmf). The pmf is a result of an electroche-
mical gradient, which is caused by a charge difference
due to active pumping of hydrogen ions across the
membrane. When the cell envelope is adversely affected,
and the Psp response cannot be established, this proton
motive force dissipates. A physical change in the mem-
brane and/or an associated biochemical change leads to
switching on the cell’s stress response. The induction of
stress results in increased expression levels of the psp
genes. The Psp response has been extensively studied in
Escherichia coli [3,7,8,10-13] and a short overview is
given in the following paragraphs.

The psp genes in E. coli form the PspF regulon (Figure
1). In E. coli the regulon consists of the psp operon
(containing the pspA, pspB, pspC, pspD and pspE genes),
and the pspF and pspG genes. PspF is a transcription
factor that activates transcription of the pspA-E operon,
which is driven by a 6°* promoter [3,10]. pspF is tran-
scribed divergently from the pspA-E operon, via a ¢”°
promoter [14]. PspF also activates the transcription of
pspG.

The location of Psp proteins in the cell has been stu-
died in some detail [3,10,12]. PspF is a cytoplasmic pro-
tein, PspA is a peripheral inner membrane protein,
PspB, PspC, and PspD are inner membrane proteins,
PspE is periplasmic, and PspG is an integral inner mem-
brane protein (Figure 2).

Under no-stress conditions the protein PspA binds to
PspF, which inhibits the ATPase activity of PspF, result-
ing in basal transcription of pspA-E and pspG (Figure 2)
[10]. Under Psp inducing conditions (i.e. when stress is
present), the stimulus is converted into a signal, which is
transduced apparently independently through the trans-
membrane ArcB sensor kinase, and proteins PspB and
PspC. ArcA, a cytosolic cognate response regulator com-
plementing ArcB, plays a role in signal amplification.

S S VAT ST ) T
Figure 1 Genetic arrangement of the PspF regulon. The regulon
consists of the pspABCDE operon, pspF and pspG genes.
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Figure 2 A schematic model for the Psp response system in E.
coli. A schematic model for the Psp response system in E. coli.
Under normal conditions, PspA is bound to PspF, which prevents
PspF to initiate the transcriptional response. Under stress conditions,
PspA and PspF separate in an PspB, PspC and ArcB dependent
manner, which allows PspF to initiate the transcription. The sizes of
proton symbols H* around the inner membrane schematically
picture the established pmf under normal conditions and dissipated
pmf under stress conditions. Under normal conditions the PspA
protein plays the role of a negative regulator, while under stress
conditions PspA turns into an effector of the Psp response.
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Through PspB and PspC the signal disrupts the PspA-
PspF interaction and allows PspF to activate the tran-
scription. The roles of PspD, PspE and PspG in Psp acti-
vation, transduction, transcriptional regulation or
membrane repair are not yet fully understood.

The activation of transcription results in the increase
in concentration of several Psp proteins. PspA, PspD
and PspG play a major role in switching the cell to
anaerobic respiration and fermentation, while PspA also
binds to the inner membrane phospholipids, repairs the
membrane damage and prevents further proton leakage.
PspD is also involved in repair of the cell envelope,
while PspG play a major role in ne tuning the cell meta-
bolism towards anaerobic respiration and fermentation.
Moreover, when over-produced, they all (PspA, D and
G) down-regulate cell motility, which in turn down-reg-
ulates the pmf consumption and maintains energy
usage. Although the PspF regulon and regulation of psp
genes have been extensively studied, many open ques-
tions remain about the kinetics of signal transduction,
the function of Psp proteins, and physiological
responses. In particular, how does the response evolve
over time? How quickly do cells respond to stress when
it is induced, and how quickly does the membrane get
repaired? Finally, how does the system respond to dissi-
pation or removal of the stress?

Such behaviour is the result of a complex network of
interactions, and interplay between the conformational
changes of proteins, transcriptional activation and effec-
tor activities in the Psp system. All these mechanisms
also depend on kinetic rates, which at present are
unknown. The system has not yet been theoretically
modelled or analysed in silico. However, we feel that
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this rich behaviour cannot be understood using verbal
or reductionist models alone. Here we propose to
address these questions with the help of mechanistic
mathematical models of the system’s response. We use
inferential techniques to develop mathematical descrip-
tions of a mechanistic model of the Psp response sys-
tem, analyze these models, and interpret the biological
implications of this analysis.

Results and Discussion

A mechanistic model of the Psp system

Biological systems are complex and assumptions need to
be made and justified whenever building a model to
describe their behaviour. It requires biological knowl-
edge, intuition and mathematical skill to develop suita-
ble models that make the right and necessary
assumptions in order to simplify the model, while still
incorporating all the key players and capturing the
necessary level of complexity. Below we first frame our
model in the context of a Petri net framework [15-17],
which for the present purpose has the benefit of offering
a convenient graphical representation that is readily
translated into other modelling and simulation schemes.
We will make use of some of the specific Petri net tools
to check this model, but use ODEs and stochastic pro-
cesses in order to study the dynamics of these mechan-
istic models.

In order to build a simple model of the Psp response
system, we first need to make some assumptions. In
particular, we need to decide which of the molecular
species and numerous pieces of biological information
have to be included in the Psp model to capture the
basic stress response dynamics. Since the proteins PspD,
PspE and PspG are only involved in the physiological
response and their regulatory role is currently not
known, we only include proteins PspA, PspB, PspC and
PspF in our simplified model. Moreover, we model pro-
teins PspB and PspC as a complex (BC). Proteins ArcA
and ArcB play a role in amplifying the signal, but are
not necessary for capturing the basic stress response
dynamics [8]; we only treat them as an intermediate in
passing the signal from the damaged membrane to elicit
the change in conformation of PspB and PspC proteins,
and will therefore not include them explicitly in the
model here.

In the following paragraphs we describe the model in
detail (see Figure 3 and reactions 1) and comment on
further assumptions that we have made. When the
stress acts on the membrane, it inflicts physical damage
on it. We measure damage to the membrane in percent
(and therefore discretize the membrane so that we can
use it in a Petri net framework), and model it as consist-
ing of the “intact membrane” (im) parts and the
“damaged membrane” (dm) parts. When stress acts on
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Figure 3 A Petri net model of the Psp response system. The starting Petri net model, a graphical representation of reactions (1). The names
of places and the model are introduced in the text. Yellow, red and green coloured places correspond to P-invariants (see “Model validation
and fitting”), while those coloured in blue correspond to unbounded places.

TF

the membrane, it can get damaged (eqn. 1a); the pro-
portion of damaged membrane (i.e. the number of
tokens in the dm place, where the maximum number of
tokens is 100) tells us how severely the membrane has
been affected.

One of the consequences of membrane damage is dis-
sipation of the proton motive force, which is believed to
trigger the conformational changes of proteins PspB,
PspC, and presumably PspA as well; in our model this
corresponds to complexes BCA turning into B,.C A,
(eqn. 1k). The other consequence of the damaged mem-
brane is that the complex BCAF breaks into two parts
(eqn. 1i): the first part is PspF, which is then free to
form hexamers and acts as a transcription factor (7F)

(eqn. 1c), and the second part is conformationally chan-
ged, B.CA,.

The transcription factor TF activates the production of
PspA, PspB and PspC proteins (eqn. 1le). The ratio of
mRNA production of PspA, PspB and PspC has been
experimentally measured as 100:60:40 [7]. Because we
model PspB and PspC as a complex, we assume that the
same number of both mRNAs is produced; we take this
number to be 60 (but could have chosen e.g. 40 as
well). Moreover, we assume that the protein numbers
mimic this ratio. A fraction of PspA proteins forms a
complex with BC (eqn. 1g), while the other part forms
oligomers (olg) by binding of 36 PspA molecules into a
complex (eqn. 1f). These oligomers act as effectors and
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re-establish pmf; we model this by repairing the
damaged membrane parts (eqn. 1b). When the mem-
brane is not damaged, proteins PspB and PspC change
their conformation back into their native state (eqn. 1j).

When building this model we had to make some
further assumptions. Once PspA is in the complex with
PspB and PspC, it cannot be used anymore as an effec-
tor, i.e. PspA is never released from the complex. Only
the newly transcribed PspA can form oligomers which
act as effectors to repair the membrane. We also assume
that there is no threshold level in terms of proportion of
the membrane that needs to be damaged in order to
pass the signal on, i.e. we simply assume that the signal
is stronger if a larger proportion of the membrane is
damaged (i.e. when there are more tokens in the dm
state), and weaker if a lower proportion of membrane is
damaged. This is incorporated into the model through
marking-dependent rates; for example, the rate of a
BCAF break-down (eqn. 1i), and the rate of BCA con-
formational change (eqn. 1k) will be proportional to
how much of the membrane is damaged. Another
assumption, which is in line with experimental evidence,
is that the number of PspF proteins and related con-
structs (the sum of F, TF and BCAF) is constant in cells,
and we therefore incorporate this assumption by exclud-
ing production and degradation of PspF from the
model. However, we do model production and degrada-
tion of the other molecular species (eqns. 11-1p).

The model can be concisely presented as a graphical
model in Figure 3 in terms of the following reactions,

stress + im — stress + dm (1a)
dm + olg — im + olg (1b)
GF — TF (1)
TF — 6F (1d)
TF — TF + 100A + 60(40)BC (1e)
36A — olg (1f)
BC+A — BCA (1g)
BCA + F — BCAF (1h)
BCAF + dm — B.C.A. +F + dm (1i)
B.C.A; +im — BCA +im (1j)
BCA + dm — B.C,A.; +dm (1k)
BC — (11)
BCA — ¢ (1m)
B.CA;, — 0 (1n)
A— 0 (10)
olg —> ¢ (1p)

We next explore how this model can be simplified
further. Since we are only interested in the time course
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dynamics and want to avoid a large number of unknown
parameters, we can remove some of the species and
reactions from the model, while still capturing the cru-
cial components of the stress response. As a first simpli-
fication step, we model BCAF, B.C,A. and BCA
complexes in groups of six (to simplify the hexamer for-
mation of PspF). In a further simplification step we no
longer model the production of A, BC and the subse-
quent formation of complex BCA and oligomers inde-
pendently (eqns. le-1g), but instead model the
production of oligomers and BCA directly (¢r3, eqn. 2c).
The simplified Petri net is now as follows (see Figure 4
for graphic representation),

try :  stress +im — stress + dm (2a)
trp:  dm+olg — im + olg (2b)
trs :  TF — TF + olg + 10hBCA (20)
try :  hBCA + TF — hBCAF (24d)
trs :  hBCAF + dm — hB.C.A. + TF + dm (2e)
tr¢ .  hB.C.A; +im — hBCA +im (2f)
tr; : hBCA +dm — hB.C.A; + dm (2g)
trs: hBCA — ¢ (2h)
trg :  hB.CA. — @ (2i)
trip: olg— 9 (2)

To complete the definition of a Petri net, we need to
define the initial markings. This has to be done with
care, as a badly chosen initial marking can result in so
called “deadlocks”, i.e. when none of the transitions can
be fired anymore. A transition is said to be “dead” if it
can never fire in any firing sequence. A property related
to the absence of deadlocks is liveness, and different
levels of liveness exist [18]. A Petri net is L1-live if all
transitions can be red at least once in some firing
sequence. This property is, for example, satisfied by the
following initial marking: My = (stress; dm, im, olg,
hBCA, hB.C.A, hBCAF, TF) = (1, 0, 100, O, 0, 0, 20, 0).
That is, we start with the stress turned on, the whole
membrane in the intact state, and all Psp proteins pre-
sent in the system bound in the complex #BCAF. There
are no oligomers, #nBCA or hB.C.,A. complexes in the
system, and no transcription factors TF available at the
start of the simulation. The possible markings are: stress
€ {0, 1}; dm; im € {1, 2, ..., 100}, im = 1 - dm; olg,
hBCA, hB.C,A. € NU 0; hBCAF, TF € {1, ... 20}. The
marking of a place dm can be interpreted as the percen-
tage of membrane damage.

The above reaction scheme can also be transformed
into an ODE model [19,20]. This can be done by assum-
ing e.g. mass action kinetics acting on all molecular spe-
cies. Variables dm and im are the only non-molecular
variables; to de ne an ODE for them we assume a
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Figure 4 The simplified Petri net model of the Psp response system. The simplified Petri net model of the Psp response system. The colour
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constant rate of change from an intact to a damaged
membrane when stress conditions prevail, and the rate
of membrane repair to be proportional to the number
of oligomers in the system. The ODE model can be
written as follows:

d

% =kiy11(ys > 0) — kayal(y2 > 0)
d}/3 k

dar 111(ys > 0) + kayal(y: > 0)
d)/4

222 haye — k

o 3)8 10Y4

d}/s

—p = 100sys = kaysys + keyeys — kaysys — ksys
d

% = ksy7ya — keysys + kzysyr — koys
d}/7

2k —k

i 4Y5Y8 5Y7Y2

d

% = —k4)/5y8 + k5y7y2:

with (y1, ¥2, ¥3, Yo V5 Ve Y7, ¥s) = (stress, dm, im, olg,
hBCA, hB.C,A, hBCAF, TF ), y; € {0, 1} and the initial

condition y = (1, 0, 100, 0, 0, O, 20c, O),
1 10 molecules , .
0=— = —~ ™ and 1 is an indicator

navV.  6.023 IM
function.

Petri net markings form a discrete space (i.e. model-
ling the numbers of the molecules), while the ODE
model variables y;, i = 4, ..., 8 represent concentrations
of molecules. Variables y;, y, and y; are exceptions in
that they do not represent molecules but the stress con-
ditions, y; € {0, 1} and the state of the membrane, 0 <
y5 <100, y3 = 100 - y,. The relationship between the
number of molecules in the Petri net and the concentra-
tions in the ODE model is the following: for a concen-
tration y; (units M/l) in a volume of V litres, there are
M, = n4y;V molecules, where 1, ~ 6.02 x 10% is Avoga-
dro’s constant, which represents the number of mole-
cules in a mole [21].

To very good approximation we set the volume of E.
coli to be 1 um® = 10™° [22]. The number of M; mole-
cules then corresponds to the concentration of

M;

v 3)

Vi=
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measured in moles per litre. This applies to the mole-
cular species olg, hBCA, hB.C.A., hBCAF, TF.

This conversion rule does obviously not apply to the
stress condition, which is either on or off (i.e. 1 or 0), and
to the percentages of damaged and intact membrane. For
the first order reactions (i.e. of type X — Y) the relation-
ship between the stochastic rate ¢ and the deterministic
rate k is ¢ = k. In our Petri net this rule applies for transi-
tions trsy, trsy and trs - tryo. For the second order reactions
(i.e. of type X + Y — Z) this relationship becomes

k . . -

c= _— which applies to transition ¢ry, and a zeroth
na

order reaction’s (i.e. of type, & — X) stochastic rate is ¢ =

kn, V', which we use for transition fr;.

Model validation and calibration
Employing Petri net terminology we have developed a
simple mechanistic model, which summarizes our cur-
rent knowledge of the phage shock protein response sys-
tem [8]. We now combine discrete Petri net structural
analysis, and stochastic and deterministic simulation and
analysis of the model [19]. The classical discrete Petri net
theory offers several theoretical tools to analyse structural
properties of the Petri net, which are useful for qualita-
tive validation of the model. To validate the basic model
structure, we calculate the structural invariants (we
explain the meaning of these variants later) and calibrate
the dynamic model against qualitative data. This fitting
process also provides us with parameter estimates.

In order to obtain the invariants of the Petri net, we
can calculate the null space of the reaction matrix

A = Post — Pre

and its transpose (see Methods section for definitions
of these terms). A P-invariant is a non-zero vector y
that solves Ay = 0, and a T-invariant is a non-zero,
non-negative vector, «, that solves A” x = 0.

P-invariants correspond to conservation laws of the
network, while T-invariants represent the sequence of
transitions that lead back to the initial marking [21]. P-
and T-invariants can be used to check the model for
consistency, and to test the basic correctness of its bio-
logical interpretation [23].

We use the Matlab toolbox for Petri nets [24] to cal-
culate the minimal P- and T-invariants using the algo-
rithm of Martinez and Silva [25]. The P-invariants for
our model are given in Table 1. These invariants tell us

Table 1 P-invariants of the simplified Petri net Psp model

Stress dm im olg hBCA hB.CA. hBCAF TF
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
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Table 2 T-invariants of the simplified Petri net Psp model

trq try tr3 try trs trg try trg tro trio
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 10 0 1
0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 10 0 10 1
0 0 1 10 10 0 0 10 1

that the numbers of tokens in stress, dm + im and
hBCAF + TF are constant, which we reflect by the col-
our scheme in Figure 4. Furthermore, we see that the
net is not covered in P-invariants, meaning that the net
is in principle unbounded (species #BCA, hB.C A, and
olg do not have an upper bound). In practice, i.e. for
finitely lived prokaryotic cells this does not matter, and,
as we will show below can be elegantly addressed in the
ABC framework.

The T-invariants are given in Table 2. Starting from
some marking M and ring the listed reactions will bring
the Petri net marking back to its original marking M.
The biological interpretation of minimal T-invariants
that we have obtained is

+ the membrane gets damaged and then repaired;
(try, try).

+ proteins PspB and PspC change conformation, and
then return to back to the original state, (¢rg, tr7).

« transcription and translation of new PspA, PspB
and PspC proteins and their complexes, and their
subsequent degradation; (tr3, 10 trg, trip), (trs, 10 try,
10 tro, t}"lo).

« binding of protein PspF to the complex of PspA,
PspB and PspC, and subsequent breakup of the
complex; (try, trs, trg).

« transcription and translation of new PspA, PspB
and PspC proteins, formation of a complex between
PspA, PspB, PspC and PspF proteins, the breakup of
this complex and protein degradation; (¢r3, 10 try, 10
trs, 10 tro, tryp).

All these invariants are biologically sound (and may
also be deduced by inspection of the model). While the
basic system behaviour is determined by the minimal T-
invariants, the linear combinations of these invariants
describe all possible behaviours of the system. The
results here agree well with the P and T-invariants of
the full model in Figure 3, which are given in [Addi-
tional file 1].

Having obtained some level of support for the model
structure, we next study its dynamics. We are particu-
larly interested in the dynamics after the induction of
stress, as well as the dynamics following the subsequent
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removal of stress (which is experimentally challenging).
Despite the fact that many aspects and the molecular
players involved in the Psp system have been studied in
detail, not much is known about its temporal behaviour.
We know that upon the induction of stress, most of the
Psp protein levels rise and that the complex between
PspA and PspF (hBCAF in our model) is likely to be
broken down. However, the time course dynamics or
kinetic rates (e.g. production and degradation rates)
have so far not been measured. Moreover, the effects of
removal of stress after stress induction has also never
been experimentally studied. Our network model allows
us to theoretically predict the possible dynamic
behaviour.

We are going to employ stochastic and deterministic
simulation and approximate Bayesian computation
(ABC) (see Methods) in order to explore what dynamics
we can infer from the qualitative end-point data. By
qualitative end-point data we mean, for example, that at
the end of the stress induction period £; we expect all
the complexes to be broken down (hBCAF (¢;) = 0),
while at the end of the stress-free period t,, after the
system has had time to recover, we expect all PspF pro-
teins to be bound in the #BCAF complex and no free
transcription factor to be present (7TF(t,) = 0). Since no
quantitative data are available, we can rescale all units
in terms of the (arbitrary) time scale, and we simulate
the dynamics over 40 time units. The stress will be
induced during time interval [0, 10), turned off (i.e.
removed, washed away) in time interval [10, 30) and
induced again in time interval [30, 40). These time
intervals have been chosen arbitrarily and we later
explore the dependence on the choice of (relative)
lengths. The qualitative data can then be cast in the fol-
lowing terms,

S1: dmp(ty) =a,dmp(ty) =0,dmp(t3) =a

S, : hBCAFp(t1) = 0, hBCAFp(ty) = 20,
hBCAFp(t3) = 0

S3: olgp(ty) =0

Sy hBCAp(t) =0

Ss . hB.C:Ap(tr) =0,

where a represents the percentage of damaged mem-
brane at the end of the stress induction period. Here
we study the behaviour of the system for different
values of a.

In order to fit the model to the data we use a slight
modification to a previously published ABC SMC algo-
rithm (see Methods). For the stochastic simulations we
use Gillespie’s algorithm, and a numeric ODE solver
(odeint in Scipy) for the deterministic simulations; both
are implemented in the ABC-SysBio software [26]. We
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define the distance function as a vector of five functions,
on the summary statistics defined above:

d1 (S1(D), S1(D*)) = abs(a — dm*(11)) + dm* (12)
+abs(a — dm*(t3))

d,(S>(D), S2(D*)) = hBCAF*(11) + (20 — hBCAF*(1,))
+ hBCAF*(t3)

d3(S3(D), S3(D%)) = olg*(12)

ds(S4(D), S4(D¥)) = hBCA*(12)

d5(Ss5(D), Ss(D*)) = hB.C.A*(t2).

As opposed to the previous applications of ABC to
dynamical systems [5,27], where the distance was gener-
ally chosen to be the sum of squared errors, and where
we defined one tolerance level in each population, we
now need to define a vector containing five tolerance
levels corresponding to the above distance functions for
each population. The use of this ABC procedure also
allows us to control the potentially unbounded nature of
the underlying mathematical model in order to home in
onto biologically plausible scenarios for the ODE and
stochastic implementations. By inferring the parameters
(shown in Figure 5), we constrain the model simulations
to realistic behaviours and finite species concentrations
(example trajectories simulated with parameters drawn
from the posteriors are shown in Figure 6).

Figures 5(a)-(b) show the inferred posterior distribu-
tions of the parameters. Illustrated are the two dimen-
sional projections. Reassuringly, posterior distributions
of both deterministic and stochastic rates have the same
shape, with stochastic parameters allowing a slightly
broader range. We can see, for example, that parameter
ky is already easily inferred from the available qualitative
data. Moreover, some parameters are much more
restricted (i.e. better inferred) in the deterministic case
than in the stochastic case (e.g. k), while the other
parameters are equally inferable in both cases (e.g. ko).

Having obtained the posterior parameter distributions,
we can now simulate possible dynamic behaviours for
different parameter realizations in order to make predic-
tions of the dynamic model output. Figures 6(a)-(b)
illustrate the possible stochastic behaviour and Figures 6
(c)-(d) the possible deterministic behaviour for randomly
chosen parameters. These parameters were sampled
from the inferred posterior distributions obtained above
by using ABC SMC for calibrating the model against
the end-point data, represented by red dots. We present
the results for different proportions of the damaged
membrane a.

The trajectories generated from our posterior distribu-
tion over the model parameters do indeed provide inter-
esting insights into the dynamics of membrane damage
(dm). The proportion of damaged membrane is an
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Figure 5 Parameter scatterplots for stochastic and deterministic Psp models. Inferred parameter distributions. Shown are the two-
dimensional projections of the 10-dimensional intermediate and posterior parameter distributions, i.e. the output of the ABC SMC algorithm
consisting of all accepted particles (i.e. parameter combinations). Circles correspond to accepted particles (ky, .., kio), which result in a good fit to
the data (see Figure 6). Eight ABC SMC populations were run, and particles from each population are coloured by a different colour. The
particles of the last population are coloured in yellow - this population of particles approximates posterior parameter distribution, and its
particles are parameter combinations that give the best fit of the model to the data (in a Bayesian sense). The parameter determining the
damaged membrane was set to a = 60. (a) Parameters inferred in a stochastic frameworks. (b) Parameters inferred in a deterministic framework.
The parameters in deterministic framework were sampled from the following priors: ky, k3, ks, kg, ko ~ U (0, 1), ky ~ U(0, 100), ks ~ U(0, 0.05), ke, k7
~ U(0, 0.01), k1o ~ U(0, 5). In the stochastic framework, corresponding priors were calculated as explained in section. Tolerance levels used in ABC
SMC algorithm: &, = (100, 13.0, 100.0, 100.0, 1.5), &; = (80, 10.0, 100.0, 100.0, 1.3), &3 = (60, 8.0, 70.0, 70.0, 1.2), &4 = (50, 7.0, 60.0, 60.0, 1.1), &5 = (40,
6.0, 50.0, 50.0, 1.0), &5 = (30, 5.0, 40.0, 40.0, 0.9), &7 = (20, 4.0, 30.0, 30.0, 0.8), &g = (10, 3.0, 20.0, 20.0, 0.7). These tolerance levels together with the
distance function (d, .., ds) defined in the text, determine which proposed particles will be accepted.
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indicator of the severity of the induced stress. We inves-
tigate the dynamics in response to different stress sever-
ity (a ranging from 15 up to 100, results shown for
some representative values only). Under deterministic
dynamics and when the damage is expected to be low (i.
e. low a), oscillations may be observed (Figure 6(d)) for
many parameters. This behaviour can be explained by
the quick initial response to stress, which is then coun-
teracted and attenuated by the membrane repair. The
response machinery (specifically, membrane repair
through PspA oligomers) acts as a negative feedback on
stress induction. On the other hand, if the stress is
strong (i.e. high a), then the repair machinery will have
a smaller effect on the membrane relative to the damage
induced by stress (Figure 6(c)). The lower the signal, the
more pronounced the oscillations will be in molecular
species olg, hBCA, hB.C.A., hBCAF and TF as well.
When the stochastic framework is employed (Figures
6(a)-(b)), the membrane damage fluctuates a lot (i.e.
from nearly completely damaged membrane to almost
intact membrane) and rapidly. But this is again less

pronounced when the stress is strong (Figure 6(b)).
Another interesting feature that we can observe from
the simulated stochastic trajectories is the pronounced
difference in the noise levels of different protein com-
plexes. The highest variation is present in olg, followed
by hBCA and hBCAF. Interestingly, hB.C A, exhibits
relatively low noise; presumably this is due to its fre-
quency being a function primarily of the stress induc-
tion and is only very indirectly influenced by other
processes.

In the above analysis we have chosen arbitrary time
intervals of stress induction and removal. We therefore
repeat the parameter inference procedure for a different
stress induction schedule: stress is turned on during
intervals [0, 20) and [30, 50), while it is removed from
the system in [20, 30). The results are presented in Fig-
ures 7(a)-(b). Two features are noticeable from the
obtained results. First, the fits are not as good as for the
previous stress stimulation schedule (Figure 6(c)), and
second, the inferred parameter distributions are differ-
ent, which can be seen by comparing Figures 5(b) and 7
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Figure 6 Psp stochastic and deterministic model fits to the data. Simulated trajectories fitted to the data. Ten parameter combinations from
the inferred approximate Bayesian posterior parameter distribution (Figure 5) were randomly selected and models simulated. The red circles
represent the known data. (a)-(b) Stochastic trajectories fitted to “damaged membrane” data points chosen as a = 60 and a = 10, respectively.
(0)-(d) Deterministic trajectories of the ODE model, a = 60 and a = 25, respectively.
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Figure 7 Psp inference results for a different stress stimulation schedule. Repeated model fitting and parameter inference for g = 60 and a
different stress stimulation schedule: stress turned on in [0, 20) and [30, 50), and turned off in [20, 30). (a) Simulated trajectories of the ODE
model fitted to the data. (b) Scatterplots of inferred posterior parameter distributions.
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(b). These suggest that the chosen prior ranges do not
allow for a quick adaptation to a normal state during a
very short stress removal period. The overall qualitative
behaviour of the system is, however, in good agreement
with the results outlined above.

The next step for modelling the Psp response must be
obtaining real experimental quantitative and time-
resolved measurements. These will allow for the
improved estimation of posterior parameter distribu-
tions, and by having confidence in parameter estimates
inferred from quantitative experimental data we can
then explore the limits and behaviour of the Psp system
response when exposed to different stress induction and
removal schedules. In particular, even a small number
of additional measurements would allow to determine
the extent to which oscillatory behaviour is likely to
occur in reality.

Conclusions

Our study was motivated by the following general ques-
tions: Can knowledge about quantitative stress response
dynamics be inferred from available qualitative data?
And can we thereby generate hypotheses which can be
tested experimentally? We have approached these pro-
blems in an inference-based manner. This means that
we have developed a basic model structure and tested
its consistency using tools from Petri net theory; for the
proposed structure of our network model we have then
shown that we can use an ABC SMC algorithm to iden-
tify regions in parameter space that allow the model to
reproduce the observed (or desired) qualitative beha-
viour, and we have applied this framework to the Phage
shock protein stress response system in E. coli. From
the resulting posterior distributions over model para-
meters we were then able to sample plausible model
parameters (in the sense that they are in concordance
with our present state of knowledge about the system’s
behaviour) to study the type of deterministic and sto-
chastic dynamical behaviour likely to arise for the Psp
response.

The Psp system is part of the sophisticated stress
response machinery that E. coli has acquired over the
course of evolution in order to respond to adverse
environmental conditions [4]. The intricate interplay
between the different constituent components of the
Psp reponse, like many other signal transduction sys-
tems, has only been studied in a traditional reductionist
approach where the focus is on individual proteins, their
structure and their interactions. Although these studies
have already provided important insights into the stress
response, there is a need for consolidating these (some-
times somewhat disparate) pieces of information into a
mechanistic model of the stress response system. Here
we have developed an inferential framework to analyze
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such models quantitatively in light of the available quali-
tative data.

We have shown that for the Psp response system the
limited qualitative and semi-quantitative data alone can
already provide some insight into the dynamic nature of
the stress response. We have been able to narrow down
the parameter regions (i.e. we obtained the posterior
parameter distributions in a Bayesian sense) for determi-
nistic and stochastic dynamics of the Psp system.
Furthermore, we have predicted the possible dynamic
behaviour for all the molecular species involved in the
response; furthermore, analysis of the stochastic
dynamics has allowed us to predict the relative levels of
noise in all of the molecular species. Most importantly,
the predicted dynamic behaviour shows a non-trivial and
a priori unexpected dependence on the stress intensity;
oscillations can be observed for low stress intensity for
many parameter values that are in agreement with pre-
sent data, while no oscillations are observed for high
stress intensities. Such oscillations could underly popula-
tion heterogeneity and help to drive differences between
responses of otherwise identical cells to environmental
stresses. This in turn has recently been shown to have
important implications to e.g. drug treatment and escape
of some cells from therapeutic interventions [28].

The next step will be to collect quantitative time
course data, including the basal level expression of psp
genes, and “titrate” stress. Advances in quantitative real
time live cell imaging methods applied to visualising the
psp response across a range of stress conditions, magni-
tudes and durations of applied stresses are expected to
yield the key data needed to examine oscillatory beha-
viour. These methods produce highly resolved data that
will also enable us to target directly the role and biologi-
cal relevance of oscillatory behaviour of the Psp
response system.

This analysis has provided predictions of possible qua-
litative time course dynamic behaviours of crucial
players in stress response. Our model of the Psp system
has necessarily (given the amount of available data)
focused on the core of this stress response. It would be
desirable to extend the model by adding further layers
of detail and separate the PspB and PspC proteins into
two separate variables, since the proteins are passing the
signal on independently; conformational change of PspC
is a result of mechanical changes in the membrane,
while PspB changes its conformation as a result of che-
mical changes, and activates the phosphorylation of
ArcB and hence ArcA. It is believed that ArcA plays a
role in amplification of the signal [13], and it would be
of interest to incorporate ArcA explicitly into the model
and study how such amplifications are mediated in prac-
tice. The ArcA/ArcB two-component system is also
involved in other responses to environmental stimuli
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and is a potential relay of cross talk into the Psp
response; capturing the effects of cross-talk will almost
certainly require more involved mathematical formalism
in order to understand the different contributing factors
[29].

We initially developed and applied ABC SMC to deter-
ministic and stochastic dynamical systems as a means of
quantitative inference from quantitative time series data
[5,30]. In this paper we have applied ABC SMC in a
slightly different context and have shown that it can suc-
cessfully be applied to different and more limited types of
data. Another difference to previous applications is that
here our main purpose was not to infer parameters, but
mainly to explore the likely range of qualitatively differ-
ent trajectories that could reproduce the data. The scope
for this strategy is considerable: it can be applied across
all simulation models, and can perform inference tasks
from limited, qualitative or quantitative data.

One such area of potentially fruitful application is in
the comparative analysis of biological systems. For
example, it is well known that some bacterial species,
some of which are evolutionary closely related to E. coli,
lack certain psp genes [31]. An adaptation of our current
Psp model could then be used to study the likely
changes in stress response dynamics by removing these
genes from the model. This will allow us to predict how
the dynamic stress response in species lacking specific
molecular players differs from the stress response of the
well studied model organism E. coli.

To take this approach one step further still, one can
propose a set of candidate models and fit them to data
representing the desired behaviour of the system. Then a
model selection approach [30] can be employed in order
to determine which of the proposed models reproduces
the desired behaviour most reliably and most robustly.
Such an approach can for example be used to guide the
design of synthetic biological systems [32]; the function
or action that the synthetic system is required to perform
can be described by qualitative data (e.g. oscillations or
production of a specific protein etc.) and candidate mod-
els can be fitted to these data (which are really design
objectives) using an appropriate model selection techni-
que in order to (i) choose which model will best repro-
duce the behaviour we would like the system to
undertake, and (ii) infer the parameter distributions. In
simulation-based studies we have found this to be a very
promising and intuitive strategy to come up with signal
transduction pathways that respond to stimuli in the
environment in a desired and specified manner.

Methods

Introduction to Petri nets

Petri nets [33] are a graphical and mathematical model-
ling tool applicable to many systems and are often used
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to study concurrent processes [18]. Different kinds of
Petri nets have been developed and applied for model-
ling biological pathways including metabolic pathways,
gene regulatory networks, signal transduction pathways
and integrated signalling-regulatory systems. Reviews
and extensive bibliographies can be found in references
[15-17,34]. Here the main purpose of using them is as a
convenient pictorial representations that allows for the
efficient exchange of ideas between biological domain
experts and modellers.

In simple and descriptive terms, a Petri net is a gra-
phical model that consists of places, transitions and arcs
(a simple example is given in Figure 8). Petri nets are
well suited for describing temporal dynamics: when a
transition is fired, tokens are moved between places.
Simulation in combination with the rich analytic theory
for studying Petri nets have proven useful in helping us
to understand the behaviour of complex systems.

In the following paragraphs we de ne the components
of a Petri net and give a biological interpretation follow-
ing Goss and Peccoud [35]. A Petri net is a directed
bipartite graph, in which directed arcs connect two
types of nodes: places P = {py, ..., p,} and transitions T
= {try, ..., tr,,;. In a graphical representation, circles
represent places and rectangles represent transitions. To
model a system of molecular interactions as a Petri net,
each place represents a distinct molecular species or
condition. These places contain tokens, which represent
individual molecules or other biological entities. The
number of tokens in a place, p;, is its marking, and the
state of all places is called a global marking, M. The
initial marking, M,, represent the number of tokens in
each place at time ¢ = 0.

Transitions represent chemical reactions or a change
from one molecular state to another. Directed arcs,
which represent input and output functions, link places
to transitions and transitions to places. Each arc has an
associated weight; Pre € Ng'*" (where No = {0, 1,2, ...}
are the non-negative integers) is the matrix containing
the weights of arcs going from places to transitions, and
Post € Ni'*" contains the weights of arcs going from

O place

[ transition

® token

Figure 8 An example Petri net. Petri net representation of a
chemical reaction, 2H, + O, — 2H,0. The rows in Pre and Post
matrices correspond to the Petri net transitions (in this example
there is only one transition) and the columns to the three places in
the following order: p; = H,, p, = O, and ps = H,0. If no weight is
written on the arg, this corresponds to weight 1. The initial marking
is Mg = [2,2,0" and after the reaction has been red the marking
becomes M = [0,1,2]".
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transitions to places. These weights determine the stoi-
chiometric coefficients of the species involved in the
reaction. A transition tr; is said to be enabled when the
marking of a place is equal to or greater than the coeffi-
cient of its corresponding input arc, M; > Prey, j = 1, ..,
n. Enabled transitions can “fire”, moving the tokens
from input to output places. This defines the place/tran-
siton Petri net.

However, if we want to study how molecular species
change in time, we need to incorporate a time compo-
nent into a Petri net. Petri nets in which transitions fire
in discrete time (e.g. t, £t + 1, t + 2, . . .) are called timed
Petri nets. Molecular events, however, are known to be
governed by stochastic rate laws, which can be modelled
by a Stochastic Petri net [36]. A Stochastic Petri net is
derived from a place/transition Petri net, by assigning
the rates to transitions; these rates are marking depen-
dent and in the present context the markings of the sto-
chastic Petri net are discrete and represent the number
of molecular species. The times at which transitions fire
are exponentially distributed and given the kinetic laws
the stochastic Petri net can be simulated using Gilles-
pie’s algorithm [37].

If the number of molecules is sufficiently large and
stochastic fluctuations can be ignored then we can
choose to study how concentrations, rather than num-
bers of molecules, changer over time. We therefore
further transform the Petri net into a timed continuous
model, which can also be described with ordinary differ-
ential equations (how this is done, is described in detail
elsewhere [19,20]). Here, a continuous Petri net is just a
convenient graphical representation of a dynamical sys-
tem, which for modelling purposes is often described by
deterministic, ordinary differential equations.

Modelling of chemical reactions, such as the one in
the above example, is quite straightforward as the basic
purpose of Petri nets is to represent production/con-
sumption processes. In the same light, metabolic net-
works, which consist of biochemical reactions, can
naturally be represented by a Petri net. However, genetic
regulatory networks are more difficult to model with
Petri nets. While the reactants get consumed in the
metabolic networks, the regulators do not turn over
during a regulatory process: in addition to flux of mat-
ter, the flow of information gains in importance. There-
fore, a slightly different Petri net structure is needed for
modelling regulatory networks. The situation is similar
in signal transduction networks; molecules respond to
signals rather than turn over. For example, a molecule
might (transiently) change conformation in response to
a signal. Another example is the binding of a transcrip-
tion factor to DNA that result in new proteins being
produced (without consumption of transcription factor).
This type of information flow can be modelled by test
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arcs. Whenever a test arc is used in our model, the
number of tokens in the “test place” does not change,
and the rate of transition is dependent on the number
of tokens (i.e. marking-dependent). The test places in
our model are stress, dm, im, TF and olg.

In this manuscript, Petri nets are used in the following
way: the most basic, place/transition Petri nets are used
to validate the basic structure of the model and deter-
mine the initial markings. Petri nets, which define the
structure of our model, are then turned into stochastic
and continuous (deterministic) simulation frameworks,
which are used to study the dynamics.

Approximate Bayesian computation (ABC)

ABC methods have been developed in order to obtain
Bayesian posterior distributions where likelihood func-
tions are computationally intractable or too costly to
evaluate [5]. They replace evaluation of the likelihood
with a comparison of observed and simulated data. Let
6 be such a parameter vector to be estimated. Given a
suitable prior distribution, P(6), our goal is to develop
an approximation to the posterior, P (6 | Do) « f (D | 0
)P(0), where f (Do |0) is the likelihood of 0 given the
data Dy. ABC methods take the following generic form:

1 Sample a candidate parameter vector 6* from a sui-
table proposal distribution P(d) (our main constraint is
that P(0) > 0 wherever we expect the posterior to have
weight).

2 Generate a simulated dataset D* from the condi-
tional probability distribution f (D|6¥).

3 Compare simulated and experimental data sets, D*
and D,, respectively, using a distance function, d, and
tolerance ¢; if d(Dy, D*) < ¢, accept 6%, otherwise reject
6* and return to 1. Here ¢ > 0 is the required level of
agreement between D, and D*.

The output of an ABC algorithm is a sample of para-
meters from the distribution

P(01d(Do, D*) < ¢),

which for sufficiently small ¢ is our approximation for
the true posterior distribution, P(6|Dy). Instead of defin-
ing a distance function d(Dy, D*) between the full data-
sets, it may be more convenient to define it on sufficient
summary statistics, S(Dy) and S(D*), of the datasets.
That is, the distance function may be defined as d(D,
D*) = d'(S(Dy), S(D*)), where d’ is a distance function on
the summary statistic space.

The simplest ABC algorithm is the ABC rejection
sampler [38], which repeatedly executes the generic
ABC building block presented above. The disadvantage
of the ABC rejection sampler is that the acceptance
rate is low when the prior distribution is very different
from the posterior distribution, and this will nearly
always be the case in real-world applications. In order
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to speed up the procedure, ABC SMC has been devel-
oped [5,39,40].

ABC based on sequential Monte Carlo (SMC)
In ABC SMC particles, {9(1), .y Q(N)}, sampled from the
prior distribution, P(6), are propagated through a set of
intermediate distributions, n(0|d(Dy, D*) < &;), i = 1, ...,
T - 1, until it corresponds to a sample from the target
distribution, 7z(0|d(Dy, D*) < e7). The tolerance schedule,
&;, is chosen such that ¢; > . .. >er > 0; thus the distri-
butions gradually evolve towards the target posterior.
The ABC SMC algorithm proceeds as follows:

S1 Initialize ¢y, ..., e7 and set the population indicator ¢
=1.

$2.0 Set the particle index i = 1.

$2.1 When ¢ = 1 sample §** directly from P(0).

Otherwise sample 6* from {991} with weights w, _ ;
and perturb sampled particles to obtain 6** ~ K,
(0|6*), where K is the perturbation kernel.

When P (6**) = 0, return to S2.1.

Generate a simulated dataset D* ~ f (D] 0**).

If d(Dy, D*) > g, return to S2.1.

$2.2 Set Ot(i) = g** and determine the weight corre-
sponding to gt(i) as
1, ift=1,
P
;\11 w?let(et(l)|9z@1)

w6 =

Jift > 1.

Ifi<Nseti=i+1,gotoS2.1.
S$3 Normalize the weights.
If t <T, set t = t + 1 and return to S2.0.

Perturbation kernels K; are chosen here to be random
walk (uniform or Gaussian) processes, but other choices
are possible; in principle any update (e.g. from genetic
algorithms) can be used as long as weights can be calcu-
lated. For a “friendly” introduction to ABC SMC we
refer to [41].

This algorithm requires the provision of suitable prior
distributions, distance functions, tolerance schedules
and perturbation kernels. We choose uniform prior dis-
tributions for all parameters; this still allows us to con-
strain parameters — e.g. such that all reaction rates are
positive and within physiological ranges — but otherwise
makes no extraneous assumptions about the system.
Tolerance schedules need to be defined empirically to
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speed up convergence. The perturbation kernels we
employ are uniform and are automatically adapted for
population ¢ by feeding it information on the obtained
parameter ranges from population ¢ - 1:

K,(016%) = 6* + U(—0y, 01), (4)

where o, depends on the length of a parameter range
achieved in population ¢ - 1, e.g.

or = §(max{0},—; —min{6},1), JdeR. (5)

This choice of kernel ensures good mixing and has
been found to capture the extent of the posterior dis-
tribution faithfully; for kernels with narrower band-
witdh (due to the finite number of particles as well as
the hard rejection criterion in S2.1 above) the var-
iance of the posterior is likely to be underestimated
[5,40].

Additional material

Additional file 1: Petri Net Invariants for the Full Model. Table 1 and
Table 2 show the P and T invariants of the full Petri net model shown in
Figure 3.
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