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Although killer whale (Orcinus orca) dialects have been studied in detail in several 33 

populations, little attempt has been made to compare dialect characteristics between populations. 34 

In this study we investigated geographical variation in monophonic and biphonic calls among 35 

four resident populations from the North Pacific Ocean: Southern and Northern Vancouver 36 

Island residents, southern Alaska residents, and eastern Kamchatka residents. We tested 37 

predictions about call variation across populations which are due to an accumulation of random 38 

errors and innovations by vertical cultural transmission. Call frequency contours were extracted 39 

and compared using a dynamic time-warping algorithm. We found that the diversity of 40 

monophonic calls was substantially higher than the diversity of biphonic calls for all populations. 41 

Repertoire diversity appeared to be related to the population size: in larger populations, 42 

monophonic calls were more diverse and biphonic calls were less diverse. We suggest that the 43 

evolution of both monophonic and biphonic calls is caused by an interaction between stochastic 44 

processes and directional selection, but the relative effect of directional selection is greater for 45 

biphonic calls. Our analysis revealed no direct correlation between call repertoire similarity and 46 

geographical distance. Call diversity within pre-defined call categories – types and subtypes – 47 

showed a high degree of correspondence between populations. Our results suggest that dialect 48 

evolution is a complex process influenced by an interaction between directional selection, 49 

horizontal transmission and founder effects. We suggest several scenarios for how this might 50 

have arisen and the implications of these scenarios for call evolution and population history. 51 

Keywords: dialect, killer whale, acoustic repertoire, evolution, call type. 52 

53 
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Vocal variation among groups of animals may occur at different levels. Variations in 54 

vocalisations between neighbouring groups of potentially interbreeding individuals are called 55 

dialects, whereas differences in acoustic repertoires over long distances and between populations 56 

that normally do not interbreed are referred to as geographic variation (Conner 1982). Dialects 57 

are common in birds (Baker & Cunningham 1985), but rare in mammals, being mostly limited to 58 

cetaceans (e.g., Ford 1991; Rendell & Whitehead 2003), bats (e.g., Boughman 1997; Esser & 59 

Schubert 1998; Yoshino et al. 2008) and humans (Labov 2001). In contrast, geographic variation 60 

in vocal repertoires is common among both bird and mammalian populations (e.g., Krebs & 61 

Kroodsma 1980; Slobodchikoff et al. 1998; Mitani et al. 1999).   62 

Killer whales are widely distributed throughout the world’s oceans (Forney & Wade 63 

2007). Different populations display substantial variation in diet, behaviour, morphology and 64 

genetics (Ford et al. 1998; Pitman & Ensor 2003; Foote et al. 2009; Morin et al. 2010).  Rather 65 

than being genetically coded, the vocal repertoire of killer whales is thought to be learned 66 

(Bowles et. al. 1988; Ford 1991; Deecke 2000; Foote et al. 2006), which leads to formation of 67 

dialects between neighbouring groups in some populations and geographic variation between 68 

distant populations.  69 

As a species, killer whales feed on a wide variety of prey, but different populations often 70 

show a high degree of dietary specialization (Ford et al. 1998; Saulitis et al. 2000; Ford & Ellis 71 

2006). In several regions, sympatric populations show little or no dietary overlap and represent 72 

different ecotypes (Ford et al. 1998; Saulitis et al. 2000; Pitman & Ensor 2003). Three killer 73 

whale ecotypes have been described from the North Pacific and these differ in social structure, 74 

morphology, genetics and behaviour: residents specialize on fish and live in large stable social 75 

units (Ford & Ellis 2006; Ivkovich et al. 2010), transients hunt primarily marine mammals and 76 

live in smaller more fluid social groups (Baird & Dill 1996; Ford et al. 1998), and offshores are 77 

probably fish specialists (Ford et al. 2011) and live in large groups with an unknown social 78 

structure.  79 



 4 

Dialects have been described for several resident killer whale populations from the North 80 

Pacific (Ford 1991; Yurk et al. 2002; Filatova et al. 2007) and for killer whales from the 81 

northeastern Atlantic (Strager 1995). Resident killer whales from the North Pacific have a 82 

complex nested social structure comprised of 1) matrilines containing a matriarch and all her 83 

descendants, which always travel together; 2) pods containing a set of matrilines that associate 84 

frequently and use a common repertoire of stereotyped calls, which represents the vocal dialect 85 

of the pod; 3) acoustically distinct clans comprised of pods which share some repertoire calls; 86 

and 4) populations or communities containing one or more associating clans (Ford 1991; Ford 87 

2002; Ivkovich et al. 2010).  88 

Several distinct populations of resident killer whales have been identified in the North 89 

Pacific: Southern and Northern Vancouver Island residents, southern Alaskan residents in the 90 

northeastern Pacific (Ford 2002; Matkin et al. 1999), eastern Kamchatka residents in the 91 

northwestern Pacific (Ivkovich et al. 2010) and a number of less studied putative populations 92 

around the Aleutian and Kuril Islands and in the Bering and Okhotsk seas. Genetic and other 93 

research on these populations (Barrett-Lennard 2000; Hoelzel et al. 2002) has not, to date, 94 

provided detailed information about historical relationships among them.   95 

It has been suggested that repertoires of stereotyped calls may serve as a marker of 96 

maternal relatedness. Divergence between vocal repertoires of killer whale pods is thought to 97 

happen gradually as pods grow bigger and matrilines spend less and less time together (Ford 98 

1991). Vocal learning involves a series of call mistakes and innovations, which gradually make 99 

vocal repertoires diverge. For these reasons, Ford (1991) suggested a direct relationship between 100 

the maternal ancestry of different pods within clans and the degree of similarity of their vocal 101 

repertoires: the more distant the common maternal ancestry between pods, the fewer calls shared 102 

within their repertoires. This prediction was confirmed by Deecke et al. (2010), who showed that 103 

the similarity of one call type across matrilines was correlated with matriarch relatedness in spite 104 

of substantial male-mediated gene flow. 105 
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These findings suggest that populations with more recent common maternal ancestry 106 

must have more similar repertories as well. Although killer whale dialects have been described in 107 

detail in several populations, few studies have examined vocal variation between killer whale 108 

populations. Yurk (2005) compared distribution of call syllables among subpopulations and 109 

showed that distinct lower frequency syllables were shared between clans but differed between 110 

populations, whereas upper frequency syllables varied between clans of the same population. 111 

Foote & Nystuen (2008) showed that the frequency parameters of calls varied across ecotypes 112 

(resident, transient and offshore). In this paper, we investigate the variation of whole frequency 113 

contours across the three North Pacific resident killer whale populations.  114 

Comparing killer whale acoustic repertoires is complicated by the fact that killer whale 115 

sounds are not structurally homogenous. Killer whale sounds comprise several distinct structural 116 

categories, common to all killer whale populations studied to date. Killer whale sounds include 117 

whistles, echolocation clicks and pulsed calls. Most pulsed calls are highly stereotyped and can 118 

be easily divided into call types (Ford 1991) with varying degrees of variability within types. 119 

Many call types have an overlapping, independently modulated high-frequency component (Fig. 120 

1); this phenomenon is usually referred to as “biphonation” (Wilden et al. 1998; Fitch et al. 121 

2002) or, when two independent sources are responsible,  “two-voiced calling” (Zollinger et al. 122 

2008). Since the mechanism responsible for this pattern in killer whales is unknown, we use the 123 

former term in this paper. 124 

Biphonic sounds have been described in mammals as diverse as canids (Wilden et al. 125 

1998; Riede et al. 2000, Volodin & Volodina 2002), primates (Fisher et al. 2001, Brown et al. 126 

2003; Riede et al. 2004) and cetaceans (Tyson et al. 2007). While the functional significance of 127 

biphonation in calls is not readily understood, its presence in the vocalisations of different 128 

species suggests a potentially important communicative role. Proposed functions include the 129 

enhancement of individual recognition (Aubin et al. 2000; Fitch et al. 2002; Volodina et al. 130 

2006), or honest signalling of physical condition (Fitch et al. 2002). For killer whales, it has been 131 
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suggested that differences in the directionality of the lower- and higher-frequency components in 132 

biphonic calls can provide information on the orientation of a caller relative to a listener (Miller 133 

2002). Differences in usage of biphonic and monophonic calls in diverse social contexts suggest 134 

that they may have distinct functions in killer whale communication with biphonic calls 135 

functioning mostly as group identifiers and monophonic calls serving as short-range contact 136 

signals (Filatova et al. 2009). Moreover, biphonic and monophonic calls show substantial 137 

differences in source levels (Miller 2006) and structure (Filatova et al. 2007), which suggests 138 

that they should be considered two distinct structural categories. 139 

In this study we examined geographical variation in monophonic and biphonic calls 140 

among four resident populations from the North Pacific Ocean: Southern and Northern 141 

Vancouver Island residents, southern Alaska residents, and eastern Kamchatka residents (Fig. 2). 142 

We tested predictions about call variation across populations which are due to an accumulation 143 

of random errors and innovations by vertical cultural transmission. First, we compared the 144 

diversity of monophonic and biphonic calls within these populations. Second, we compared the 145 

similarity of monophonic and biphonic calls between each pair of populations. Finally, we 146 

measured call diversity within pre-defined call categories – types and subtypes, and examined 147 

whether call diversity within these categories differed across populations. 148 

Methods 149 

The study populations 150 

Southern Vancouver Island resident killer whales (referred to below as SR) inhabit the 151 

coastal waters of British Columbia and Washington State. The core area of this population is in 152 

the waters of southern Vancouver Island, but they sometimes range south to Monterey Bay, 153 

California. The population consists of the single acoustic clan – J-clan (Ford 1991), which 154 

comprised 86 individuals in 2003 (van Ginneken et al. 2005). 155 

Northern Vancouver Island resident killer whales (referred to below as NR) inhabit the 156 

coastal waters of British Columbia and southeastern Alaska, from southern Vancouver Island 157 
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north to southeastern Alaska (approximately 48°N to 58°N). The population is comprised of 158 

three acoustic clans: A-clan, G-clan and R-clan (Ford 1991).  159 

Southern Alaskan resident killer whales (referred to below as AR) range from 160 

southeastern Alaska to Kodiak Island (Matkin et al. 1999) and possibly into the Aleutian Islands 161 

and the Bering Sea (Allen & Angliss 2010). This population includes two acoustic clans: AB-162 

clan and AD-clan (Yurk 2002).  163 

Eastern Kamchatka resident killer whales (referred to below as KR) were encountered 164 

along the eastern coast of Kamchatka peninsula from Avacha Gulf to Karaginsky Gulf and east 165 

to the Commander Islands. This population comprises three acoustic clans: Avacha clan, K19 166 

clan and K20 clan (Filatova 2007). 167 

Some overlap exists in the ranges of the northeastern Pacific populations: SR overlap 168 

with NR in the waters of Vancouver Island, and NR overlap with AR in southeastern Alaska 169 

(Ford et al. 2000). Despite this overlap, none of the populations have been observed to mix (Ford 170 

et al. 2000). 171 

Data collection 172 

Sound recordings used for this study were taken from the existing long-term databases. 173 

Recordings of Southern residents were made from 1980-2009, Northern residents from 1988-174 

1999, southern Alaskan residents from 1984-2008, and eastern Kamchatka residents from 2000-175 

2009.  All recording systems had a flat frequency response from at least 0.1 to 7 kHz, although in 176 

most cases this extended up to 20 kHz. We only included recordings that had sufficient 177 

frequency bandwidth and signal-to-noise ratio to clearly display all call features.  178 

The recordings were made from small (4-9 m) boats. Photographs were taken during all 179 

recording sessions and compared to identification catalogues to confirm pod and population 180 

identity, as described in Bigg et al. (1990).  181 

In the recording sessions made directly for this study, all approaches to the whales were 182 

conducted following procedures to minimize disturbance. To take photographs, the boat 183 
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approached at slow speed at 45° to the whale’s course when they were traveling and left the 184 

group immediately after the photographs of all group members were obtained. To make sound 185 

recordings, we moved the boat 200-300 m ahead of the animals and waited until they passed us. 186 

If the whales were feeding or milling, we stayed at a distance of 100-300 m from them to avoid 187 

disturbing their natural behaviour.  When the animals showed strong avoidance behaviour (e.g. 188 

change in the direction of movement away from the boat), we stopped our activities and kept a 189 

distance of at least 500 m from the group.  190 

Acoustic and statistical analysis 191 

We classified calls according to existing catalogues (Ford 1987; Yurk et al. 2002; 192 

Filatova et al. 2004). For Alaska and Kamchatka, however, some call types were split and others 193 

were added according to the results of more recent studies (see Filatova et al. 2007; Yurk et al. 194 

2010). Two calls from each type/subtype were used for the analysis, with some exclusion of rare 195 

call types for which we were not able to obtain at least two call samples of adequate quality. If a 196 

call type had no subtypes, two samples from this call type were used. For call types that fell into 197 

discrete subtypes, two samples from each subtype of this type were used. When possible, the 198 

pairs of call samples from the same type/subtype were selected from different encounters and 199 

different years to cover the presumed variation in the call structure. For calls which did not fall 200 

into discrete subtypes but showed apparent group-specific variations (e.g., N12, see Ford 1991), 201 

two calls from the opposite sides of the structural continuum were selected. In total, 348 samples 202 

of 174 call types/subtypes were used for the analysis: 34 SR monophonic, 28 SR biphonic, 34 203 

NR monophonic, 62 NR biphonic, 48 AR monophonic, 40 AR biphonic, 46 KR monophonic, 56 204 

KR biphonic. Because our primary interest was call evolution, rare calls were of equal interest to 205 

common calls, and we did not weight call similarities by the frequency with which each call 206 

occurred. 207 

Call contours were extracted using a custom-made MATLAB (The Mathworks, Inc., 208 

Natick, MA) routine for manually tracking frequency contours of each frequency component 209 
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(available online at www.russianorca.org/sound_pro.htm). After the operator selected enough 210 

points to track all modulations of the contour from the fundamental frequency and harmonics, 211 

the algorithm performed the generalization of frequency points by dividing them by the band 212 

number and joined them into a set of frequency measurements of the fundamental frequency, 213 

which were then smoothed and interpolated to produce a vector of frequency measurements with 214 

the sampling interval 0.01 s (Fig. 3). For biphonic calls, contours were extracted both from the 215 

low- and the high-frequency components. Calls were identified as biphonic if they contained the 216 

overlapping high-frequency component (Fig. 1). 217 

Similarity of calls was measured using dynamic time-warping. Dynamic time-warping is 218 

an algorithm developed for the automated recognition of human speech that allows limited 219 

compression and expansion of the time axis of a signal to maximise frequency overlap with a 220 

reference signal (e.g., Itakura 1975). For this study, we used a modified version of the warping 221 

algorithm of Deecke & Janik (2006). Percent similarity of contours was calculated by dividing 222 

the smaller frequency value by the larger value at each point and multiplying by 100:  223 

S(i) = min [M(i), N(i)] /max[M(i), N(i)]*100 224 

where M is the reference contour and N the input contour. From the resulting similarity matrix, a 225 

cost matrix was constructed that kept a running tab on the similarities of the elements making up 226 

the curves while adding up these costs to give a final number called the “similarity” between the 227 

contours. In our algorithm, each element of the cost matrix was obtained by comparing the 228 

weighted sum of similarity values from two columns and two rows distant from the weighted 229 

diagonal. 230 

Because the algorithm of Deecke & Janik (2006) only allows expansion or compression 231 

of the time axis by a factor of three, the algorithm cannot be used to compare calls that differ in 232 

length by more than a factor of three. In this case, their similarity is considered zero percent. 233 

This constraint biased the results in comparisons where many short or long contours were 234 

present in the repertoire of one population but not the other. To avoid this, we developed an 235 
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additional algorithm that stretched the shorter contour through interpolation to make it one point 236 

longer than 1/3 of the longer contour.     237 

For each pair of contours within each sample set, we measured their relative similarity in 238 

frequency using this dynamic time-warping algorithm. By generating all possible pairwise 239 

comparisons between call samples from sample sets, we used N samples to generate 0.5*N*(N - 240 

1) comparisons. Since the correlation structure of this data set was unknown, we assumed that all 241 

data points generated with the same sample were correlated. To achieve independence between 242 

the analysis units, we calculated the mean similarity for each call sample and used it as the unit 243 

of analysis for the further comparison.  244 

For the measurements of intra-population call similarity, we calculated the similarity 245 

between each pair of calls from each major category (monophonic/biphonic) within each 246 

population.  247 

For the comparison of intra- and inter-population similarity of calls, we calculated the 248 

inter-population similarity for each pair of populations as a set of similarity values between each 249 

call from the first population and each call from the second population.  The median inter-250 

population similarity obtained by this method would depend not only on the true similarity 251 

between populations, but also on the intra-population call similarity of each population. To get a 252 

less biased inter-population similarity measure, we divided the median inter-population 253 

similarity by the median of the pooled intra-population similarity values for each pair of 254 

populations. 255 

To measure call similarity within types and subtypes, we divided each of the six intra-256 

population sets of similarity values into the following three subsets: a) similarity values between 257 

pairs of calls from the different types; b) similarity values between pairs of calls from the same 258 

type; and c) similarity values between pairs of calls from the same subtype. To test for 259 

differences in the type/subtype threshold between monophonic and biphonic calls, the combined 260 
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sets from all three populations were used. To test the differences in the type/subtype threshold 261 

across populations, subsets b) and c) were compared for the each pair of populations. 262 

Statistical analysis was performed using R software (R Development Core Team 2010). 263 

Distribution of similarity values in most cases differed significantly from normal, so we used the 264 

non-parametric two-tailed Mann-Whitney U-test for all statistical comparisons. Bonferroni 265 

correction was applied in cases of multiple pairwise comparisons. A Mantel matrix permutation 266 

test (Schnell et al. 1985) was used to estimate the correlation of call similarity and geographical 267 

distance between populations. Distances were approximate based on the core summer 268 

distribution as the full extent of population ranges is unknown. In all statistical comparisons the 269 

significance level was accepted to be 0.05.  270 

Results 271 

Intra-population call similarity of monophonic and biphonic calls 272 

We compared levels of similarity among monophonic calls with the levels of similarity 273 

among biphonic calls. Within each of the four populations, call similarity was significantly less 274 

among monophonic calls than it was among the biphonic calls in each population (monophonic 275 

vs biphonic, Mann-Whitney U-test, KR: U = 109, N1 = 46, N2 = 56, p < 0.0001; AR: U = 89, N1 276 

= 48, N2 = 40, p < 0.0001; NR: U = 98, N1 = 34, N2 = 62, p < 0.0001) except SR in which the 277 

difference was close to significant (U = 338, N1 = 34, N2 = 28, p = 0.051). Differences between 278 

populations within these two categories were less pronounced (Fig. 4) though also significant in 279 

all cases except AR vs KR and NR vs SR monophonic, AR vs NR biphonic (Table 2).  280 

SR had the highest median similarity (that is, the lowest call diversity) for monophonic 281 

calls followed by NR, AR and KR. KR had the highest median similarity for biphonic calls 282 

followed by AR, NR and SR. Including the higher-frequency component into the analysis of 283 

biphonic calls increased the call similarity within all populations (Table 1). In this case, KR 284 

again had the highest median similarity, followed by NR, AR and SR.  285 
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Intra- and inter-population similarity of calls 286 

We compared intra- and inter-population similarity of monophonic and biphonic calls in 287 

the each pair of populations (Table 3). Differences in intra- and inter-population similarity of 288 

monophonic calls were non-significant for all comparisons. Intra-population similarity of 289 

biphonic calls was significantly higher than inter-population similarity for all comparisons 290 

(Table 3).  291 

The fact that the inter-population similarity of monophonic calls did not differ 292 

significantly from the intra-population similarity means that monophonic calls are equally 293 

diverse within and between populations. For this reason we did not compare the inter-population 294 

similarity of monophonic calls between pairs of populations. 295 

Inter-population similarity of biphonic calls was the highest between AR and KR, 296 

followed by KR-SR, NR-KR, NR-SR, SR-AR and NR-AR (Table 3). After dividing this value 297 

by the intra-population similarity to obtain the “true” similarity measure, SR and NR were the 298 

most similar, followed by NR-KR, SR-AR, AR-NR, AR-KR and SR-KR (Fig. 5A). 299 

Inter-population similarity of biphonic calls compared by analyzing both the lower-300 

frequency and the higher-frequency components was the highest between KR and NR, followed 301 

by KR-AR, SR-AR, NR-AR, SR-NR and SR-KR (Table 3). After dividing this value by the 302 

intra-population similarity, SR and AR were the most similar, followed by NR-KR, AR-NR, SR-303 

NR, AR-KR and SR-KR (Fig. 5B). The correlation between approximate geographical distance 304 

and call similarity measured by the lower-frequency component and by both the lower-frequency 305 

and the higher-frequency components was non-significant (Fig.5).  306 

Call similarity within types and subtypes 307 

We measured the similarity between monophonic and biphonic calls from different types, 308 

calls from the same type, and calls from the same subtype for each population (Table 4). 309 

Similarities between calls from different types followed the pattern revealed by the comparison 310 

of call similarities within populations: similarities between monophonic calls were significantly 311 
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lower than between biphonic calls (U = 826, N1 = 86, N2 = 71, p  < 0.0001; Fig. 6). The 312 

difference in similarity between monophonic and biphonic calls within types and subtypes was 313 

non-significant. The differences in similarity of calls within types and subtypes across different 314 

populations were non-significant.   315 

 316 

Discussion 317 

The comparison of monophonic and biphonic calls from the four North Pacific resident 318 

killer whale populations revealed a pronounced difference in the degree of similarity between 319 

monophonic and biphonic calls for each population. For all four populations, the diversity of 320 

monophonic calls was higher than the diversity of biphonic calls. Differences between 321 

populations in the diversity of call types from the corresponding category (monophonic or 322 

biphonic) were less pronounced. This result suggests that monophonic and biphonic calls have 323 

different principles of evolution that are shared among the different resident populations. This 324 

supports the suggestion that monophonic and biphonic calls are discrete categories.  325 

Our results are consistent with previous studies which found differences in source levels 326 

(Miller 2006), directionality (Miller 2002) and usage (Filatova et al. 2009) between monophonic 327 

and biphonic calls. Miller (2006) measured source levels of different killer whale sounds and 328 

showed that monophonic calls exhibited mean source levels lower than biphonic calls. This 329 

variation in intensity suggests that killer whale pulsed calls fall into two functional groups: 330 

‘‘long range’’ biphonic calls with a mean estimated active space of 10–16 km in sea state zero 331 

and ‘‘short-range’’ monophonic calls with an active space of 5–9 km (Miller 2006). Miller 332 

(2002) showed that the relative energy in the high-frequency components of biphonic calls was 333 

significantly greater when animals were moving toward the hydrophone array than away from it. 334 

It is likely that this difference could help listening whales to determine the direction of 335 

movement of a caller. Filatova et al. (2009) showed that the proportion of biphonic calls in the 336 

vocalisations of the eastern Kamchatka residents increased when more than one pod was present 337 
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in the area. The combination of these findings suggests that biphonic calls function mostly as 338 

group identifiers and help whales to define group affiliation and monitor the position of group 339 

members over long ranges. The function of monophonic calls is less clear, but, like killer whale 340 

whistles (Thomsen et al. 2002), they may serve as short-range communication signals. 341 

 The similarity of diversity levels in monophonic and biphonic calls in four populations 342 

raises the question of whether the repertoire structure in resident killer whales is genetically or 343 

culturally inherited. It is now generally accepted that killer whales acquire the detailed structure 344 

of stereotyped calls in their repertoire through vocal learning (Bowles et al. 1988; Ford 1991: 345 

Deecke et al. 2000; Foote et al. 2006); however, other aspects of the vocal repertoire could be 346 

innate. Many songbirds learn their songs from fathers or neighbouring males, but despite some 347 

variation their song remains species-specific and retains a certain structure. Moreover, gradual 348 

differences in the function, usage and raw structural difference of the songs versus calls appear 349 

to be innate in songbirds (Marler 2004). The same is probably true for human languages: 350 

although languages are learned and therefore extremely diverse, there is some inherited structure 351 

common to all human languages (Pinker 1994; but see Evans & Levinson 2009). 352 

The comparison of stereotyped call repertoires among populations produced rather 353 

unexpected results. The classical theory of call change through random drift predicts that the 354 

highest call similarity should occur in populations that are geographically close and therefore 355 

may share the recent common ancestors. However, our analysis revealed no direct correlation 356 

between call repertoire similarity and geographical distance (Fig. 5). There are several possible 357 

explanations for this. First, it is possible that call evolution is too fast to be phylogenetically 358 

meaningful on a population scale: call repertoires may be already so diverse that they retain no 359 

signs of common ancestry, and all similarities could be the result of random convergence. It has 360 

been suggested in resident killer whales that females choose mates with the most dissimilar 361 

dialects (Barrett-Lennard 2000). This would drive sexual selection towards faster call evolution 362 

to provide greater resolution in the recognition of kin (e.g., allowing discrimination between first 363 
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and second degree cousins). The opposite selection force may be caused by the need of killer 364 

whale groups to possess markers of population identity. Biphonic calls of all three clans of the 365 

eastern Kamchatka resident population have certain frequency features in common (Filatova et 366 

al. 2007). In southern Alaska resident killer whales, distinct lower frequency syllables are shared 367 

by clans within this population (Yurk 2005). In Northern residents, most stereotyped whistle 368 

types are structurally identical in two of the three acoustic clans (Riesch et al. 2006). Northern 369 

and Southern resident populations in British Columbia share a substantial part of their 370 

geographical range but retain strong behavioural reproductive isolation, although it is not 371 

obvious if the isolation is based on acoustic or other cues.  372 

The interaction of these opposite evolutionary forces (diversifying and standardizing) 373 

may lead to the “maximum diversity within the permitted range”, where the “range” is 374 

represented by vocal population markers. This scenario is consistent with the fact that in our 375 

study the diversity of biphonic and monophonic calls between populations was very similar to 376 

that within populations, suggesting that every population had already reached some optimal level 377 

of diversity for each call category. Moreover, the intra- and inter-population diversity of 378 

monophonic calls did not differ significantly, suggesting that for monophonic calls the pressure 379 

to standardise is lower.  380 

It is interesting to note that the diversity of monophonic and biphonic calls appears to be 381 

negatively correlated. This pattern is also related to the population size: monophonic calls are 382 

more diverse and biphonic calls are less diverse in larger populations. Although the SR 383 

population of about 86 animals (van Ginneken et al. 2005) is the smallest of the four populations, 384 

it has the highest diversity of biphonic calls and the lowest diversity of monophonic calls, 385 

followed by the NR with 216 animals (Ford et al. 2000), KR (650 individuals; T.V. Ivkovich 386 

unpublished data) and AR (more than 1000 individuals; Allen & Angliss 2010). In human 387 

languages, speaker population size was shown to be a significant predictor of phonemic 388 

diversity, with a smaller population size predicting smaller overall phoneme inventories 389 
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(Atkinson 2011). Our results demonstrate that the diversity of monophonic calls follows the 390 

same pattern as phonemic diversity in human languages, which suggests that their evolution is 391 

driven by the same stochastic processes that also affect human phonemes (Labov 2001). By 392 

contrast, diversity in biphonic calls shows the opposite pattern. This may be caused by the fact 393 

that in larger populations the inbreeding risk is lower, and the need for unique vocal population 394 

markers is higher, which shifts the balance of diversifying and standardizing forces in favour of 395 

the latter. Therefore, we suggest that the evolution of both monophonic and biphonic calls is 396 

caused by an interaction between stochastic processes and directional selection, but the relative 397 

effect of directional selection is greater for biphonic calls. 398 

 An alternative hypothesis suggests that call similarity between populations does reflect 399 

their ancestry, but the ancestry is not directly correlated with geographical distance. Killer 400 

whales are highly mobile and phylogeographic structure could very easily be disturbed by long-401 

distance movements. For example, genetic studies showed that the resident killer whales of the 402 

North Pacific are more related to the North Atlantic killer whales than to sympatric transient 403 

populations (Morin et al. 2010). This suggests a complex and multi-stage history of population 404 

formation and colonisation of the North Pacific Ocean. Moreover, the southern Alaskan resident 405 

population possesses two haplotypes of the control region of mitochondrial DNA; one matches 406 

with the single haplotype of the Northern resident population, the other with the single haplotype 407 

of the Southern resident population (Barrett-Lennard 2000) and the eastern Kamchatkan resident 408 

population (Hoelzel et al. 2007). It is possible that the AR population retains genetic diversity of 409 

an ancestral population, while the NR, SR and KR populations have reduced diversity due to a 410 

founder effect. Founder effects have been shown to reduce the diversity of syllables in bird songs 411 

(Baker & Jenkins 1987) and phonemic diversity in human languages (Atkinson 2011). This is in 412 

agreement with the reduced diversity in KR biphonic and NR and SR monophonic calls, but it is 413 

in contradiction to the high diversity in SR biphonic calls. However, the information currently 414 

available does not allow testing of this hypothesis, and further study of genetic and acoustic 415 
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similarity is required to reveal the population history of North Pacific killer whales. A 416 

comparison of repertoire similarity with mitochondrial haplotype similarity across populations 417 

can provide an important insight into population history and dialect evolution. 418 

Similarities of biphonic stereotyped call repertoires measured by the low-frequency 419 

component and by both the low- and the high-frequency components were generally not 420 

consistent, although they agreed in some aspects (Fig. 5 A, B). It appears that the evolution of 421 

low-frequency and high-frequency components of biphonic calls is not always parallel, 422 

suggesting that it may be influenced by different factors. The inclusion of the high-frequency 423 

component in the analysis of the intra-population similarity always increased the similarity 424 

values (Table 1), indicating that the high-frequency component is less diverse within populations 425 

than the low-frequency component. It is possible that the high frequency component may be a 426 

more stable and reliable marker of population relatedness, than the more diverse and variable 427 

low-frequency component. Alternatively, the stability of the high-frequency component may be 428 

related to the radiation pattern of biphonic calls. The higher-frequency component is more 429 

directional than the lower-frequency component (Miller 2002), so it is clearly audible only when 430 

the signaller is orientated towards the receiver. Therefore, the more omnidirectional lower-431 

frequency component would appear to be more useful for the long-range recognition of pod 432 

members. This may result in the higher contour variability in the lower-frequency component to 433 

make the call more discernible. Consequently, the type-specific variation in the contour shape of 434 

the higher-frequency component may be redundant because the call type is already identifiable 435 

by the lower-frequency component.  In that case, the function of the higher-frequency 436 

component may be restricted to marking the orientation of a signaler while the lower-frequency 437 

component marks the pod membership. 438 

The diversity of calls within type and subtype categories had a high degree of 439 

correspondence between populations, despite the fact that the initial categorisations were made 440 

by different researchers (Ford 1991; Yurk 2002; Filatova 2004). Unlike the graded vocalisations 441 
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of some other odontocetes (e.g., Weilgart & Whitehead 1990), killer whale pulsed calls are 442 

highly stereotyped showing little variation within call types, but there are consistent differences 443 

between them. Differences within type/subtype diversity between populations were non-444 

significant. Moreover, the difference in diversity between monophonic and biphonic calls was 445 

non-significant within types and subtypes. This suggests that the observers had rather similar 446 

ideas of what they meant by call type and subtype. No one has yet provided a satisfactory 447 

definition of “call type” in killer whales, and the most common description of the categorisation 448 

process refers to “the distinctive audible characteristics of the calls”. Call structure changes 449 

subtly but continuously over time (Deecke et al. 2000), and call type divergence is thought to be 450 

a gradual process (Bigg et al. 1990; Ford 1991). Consequently, calls of different matrilines can 451 

differ to a greater or lesser extent, and it is not always obvious where to place the border. Deecke 452 

and Janik (2006) performed an automatic neural network categorisation of calls recorded from 453 

North Pacific transient killer whales and identified 8 monophonic and 5 biphonic call types. Our 454 

study provides an equally objective approach to call categorisation by comparing contours and 455 

using a threshold similarity level to delineate call types.     456 

In conclusion, our results suggest that divergence of vocal repertoires may not result 457 

solely from the accumulation of random errors and innovations by vertical cultural transmission. 458 

Repertoire diversity appears to be related to the population size: monophonic calls are more 459 

diverse and biphonic calls are less diverse in larger populations. Call similarity across 460 

populations does not correspond with geographical distance. All this suggests that dialect 461 

evolution is a complex process subject to an interaction between directional and non-directional 462 

agents of structural change. These may include opposing selecting forces to diversify and 463 

standardise vocal repertoires, horizontal transmission of calls, as well as random drift. 464 
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Table 1. Median time-warped frequency contour similarity (in %) between monophonic and 647 

biphonic call types of different resident killer whale populations in the North Pacific, calculated 648 

by the low-frequency component (LF) and by both low- and high-frequency components 649 

(LF+HF). 650 

 651 

 Population Median similarity 

monophonic 

KR 45.75 

AR 46.58 

NR 54.47 

SR 55.01 

biphonic LF 

KR 72.16 

AR 66.38 

NR 65.08 

SR 60.55 

biphonic 

LF+HF 

KR 77.73 

AR 72.36 

NR 72.87 

SR 71.19 

 652 

653 
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Table 2. Results of Mann-Whitney U-test comparison of intra-population call similarity of 654 

monophonic and biphonic calls across different resident populations. 655 

 656 

 Populations U N1 N2 p 

monophonic 

AR-KR 1068 48 46 0.789 

AR-NR 403 48 34 < 0.001 

NR-KR 322 34 46 < 0.001 

SR-NR 447 34 34 0.109 

SR-KR 416 34 46 < 0.001 

SR-AR 429 34 48 < 0.001 

biphonic 

AR-KR 606 40 56 < 0.001 

AR-NR 1205 40 62 0.814 

NR-KR 915 62 56 < 0.001 

SR-NR 345 28 62 < 0.001 

SR-KR 217 28 56 < 0.001 

SR-AR 292 28 40 < 0.001 

 657 
658 
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Table 3. Results of Mann-Whitney U-test comparison of intra- and inter-population similarity, 659 

median time-warped frequency contour similarity (in %) and “true” median similarity between 660 

repertoires of different resident killer whale populations in the North Pacific. 661 

 662 

 Populations 

Mann-Whitney test Similarity 

U 
Nintra Ninter 

p 
Inter- 

population 

Intra- 

population 

“True” inter- 

population 

monophonic 

AR-KR 2188 94 48 0.771 45.62 46.23 NA 

AR-NR 1634 82 48 0.108 47.21 49.15 NA 

NR-KR 1727 80 46 0.569 49.12 48.41 NA 

SR-NR 909 68 34 0.080 52.31 54.66 NA 

SR-KR 1663 80 46 0.371 48.77 47.84 NA 

SR-AR 1717 82 48 0.227 46.72 48.80 NA 

biphonic LF 

AR-KR 2037 96 56 < 0.05 64.95 70.29 0.924 

AR-NR 1614 102 62 < 0.001 60.71 65.43 0.928 

NR-KR 2825 118 62 < 0.05 63.93 67.37 0.949 

SR-NR 1719 90 62 < 0.001 62.14 64.48 0.964 

SR-KR 1480 84 56 < 0.001 64.03 69.71 0.919 

SR-AR 837 68 40 < 0.001 60.76 64.70 0.939 

biphonic 

LF+HF 

AR-KR 1447 96 56 < 0.001 70.83 76.25 0.929 

AR-NR 1590 102 62 < 0.001 69.05 72.86 0.948 

NR-KR 2567 118 62 < 0.01 71.58 74.78 0.957 

SR-NR 1455 90 62 < 0.001 68.42 72.65 0.942 

SR-KR 647 84 56 < 0.001 68.01 76.33 0.891 

SR-AR 874 68 40 < 0.01 69.22 72.22 0.958 

 663 
664 
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Table 4. Median and mean (in parentheses) time-warped frequency contour similarity (in 665 

%) between all calls within the vocal repertoire belonging to the different call types, between 666 

calls belonging to the same call type and calls of the same subtype for different resident killer 667 

whale populations in the North Pacific. For biphonic calls, similarity of the low-frequency 668 

component and both components combined are given separately. 669 

 Population 
different 

types 

same 

types 

same 

subtypes 

monophonic 

KR 
44.99 

(45.87) 

89.19 

(84.03) 

91.40 

(89.95) 

AR 
45.53 

(44.82) 

90.44 

(85.17) 

91.83 

(86.26) 

NR 
51.40 

(50.12) 

85.34 

(82.47) 

90.79 

(90.04) 

SR 
53.51 

(52.88) 

91.56 

(86.77) 

92.84 

(91.74) 

biphonic - 

LF 

KR 
71.15 

(68.34) 

92.62 

(91.26) 

93.87 

(92.04) 

AR 
65.88 

(63.61) 

88.69 

(84.4) 

93.76 

(92.17) 

NR 
64.46 

(64.97) 

90.73 

(89.1) 

93.45 

(91.45) 

SR 
59.30 

(57.16) 

87.66 

(76.44) 

93.97 

(91.26) 

biphonic – 

LF+HF 

KR 
77.42 

(75.05) 

92.88 

(91.43) 

93.53 

(92.51) 

AR 
72.21 

(70.97) 

89.63 

(89.66) 

94.74 

(93.97) 

NR 
72.44 

(71.74) 

92.51 

(90.69) 

95.08 

(92.58) 

SR 70.35 82.94 95.40 
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(69.25) (83.79) (93.35) 

 670 

671 
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Figure captions 672 

1. Spectrograms of monophonic (left) and biphonic (right) calls. Note the low-frequency 673 

component (LFC) with multiple harmonics in both sounds and the high-frequency 674 

component (HFC) which is not a multiple of the LFC in the biphonic call.  675 

2. Map of the North Pacific Ocean showing the home ranges of the resident killer whale 676 

populations investigated in this study.  677 

3. Example of frequency contours extracted from the low-frequency component (LFC) and 678 

the high-frequency component (HFC) of a K27 call from the eastern Kamchatka resident 679 

population. 680 

4. Intra-population time-warped frequency contour similarity between monophonic and 681 

biphonic calls of four resident killer whale populations. Horizontal lines represent 682 

medians, boxes interquartiles, and whiskers a 90% confidence interval. 683 

5. “True” similarity (inter-population divided by intra-population time-warped frequency 684 

contour similarity) of biphonic stereotyped call repertoires plotted by the approximate 685 

geographical distance between four resident killer whale populations. (a) – similarity 686 

measured by the low-frequency component; (b) - similarity measured by both the low- 687 

and the high-frequency components. 688 

6. Time-warped frequency contour similarity between monophonic and biphonic calls from 689 

different types, from same types and from same subtypes. Horizontal lines represent 690 

medians, boxes interquartiles, and whiskers a 90% confidence interval. 691 
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