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ABSTRACT

This thesis develops analytical solutions for estimating the bending moments and
axial loads in a buried pipeline due to ground movements caused by tunnel
construction in soft ground. The solutions combine closed-form, analytical solutions
for tunnel-induced, free-field ground deformations in a plane orthogonal to the
heading (Pinto and Whittle; 2001) with Winkler models for pipe-soil interactions.
The free-field ground deformations are described in terms of two parameters
describing the modes of cavity deformation and the elastic Poisson's ratio of the
ground. The solutions have been evaluated by others through comparisons with
well-instrumented case studies for a variety of different tunneling construction
methods and ground conditions. Analytical approximations for the vertical and
horizontal spring stiffness coefficients in the Winkler models are interpreted from
numerical finite element analyses. The proposed analyses are compared with prior
solutions proposed by Vorster (2005) and Klar et al. (2005) that rely on empirical
procedures to estimate the ground deformations and focus only on bending
response of the pipeline. The current research provides independent validation of
the vertical spring coefficient proposed by Klar et al., and derives a novel
interpretation of the horizontal spring coefficient.

Results of the proposed analyses are presented graphically in design charts that
show the deformations of the pipeline as functions of the pipe and tunnel geometry,
tunnel cavity parameters, elastic properties of the ground and relative pipe-soil
rigidity parameters. The solutions are used to re-analyze the deformations of a
water main associated with a pipe-jacking procedure at an instrumented site in
Chingford, London reported by Vorster (2005). The thesis also presents a
hypothetical example that considers the impacts of the construction of a large-
diameter sewer tunnel in soft clay using EPB construction methods (using free-field
performance data from the N-2 project in San Francisco) on existing utilities. In this
case, potential damage to cast-iron water pipes is clearly linked to the pipe section
properties and the EPB tunnel face pressure. Data from well-documented case
studies must now be obtained to validate the proposed analyses.

Thesis Supervisor: Andrew J. Whittle
Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

One of the great challenges that civil engineers have to face in the 21st century

is the management of ageing infrastructure assets such as the networks of

urban water distribution and sewer pipelines. The structural integrity of water

pipes is related to many factors including material degradation (notably internal

and external corrosion), fluctuations in hydraulic pressures, external loading

from third party activities and deformations within the surrounding soil. This

thesis considers the effects of ground movements associated with tunneling as

a potential source of damage to existing water utilities.

The construction of tunnels by boring machines (TBM) or sequential excavation

and support (e.g. NATM) is increasingly common in congested urban areas.

Good examples are associated with the expansion of metro systems in many

cities such as the Athens metro (Marinos, 1998), Bangkok underground system

(Lueprasert et al., 2009), New York subway, and others. Although tunnel

construction generates disruptions associated with more conventional cut-and-

cover excavation projects, there are risks associated with the stress changes

and ground loss around a tunnel heading. The magnitude and distribution of

tunnel-induced ground movements is a challenging problem as the source of

ground movements vary, according to details and methods of tunnel

construction, while ground response is influenced by stratigraphy, ground water

conditions etc.

There are three main methods used to estimate the tunnel-induced ground

deformations: a) empirical methods based on case studies, b) analytical

solutions based on simplified models of the tunneling process and constitutive
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ground behavior, and c) numerical analyses that attempt to simulate the soil-

structure interaction for a given tunneling process. Recent work by Zymnis

(2010) shows that simplified analytical models (Pinto and Whittle, 2001) are able

to describe realistically the net 2D ground deformations in a plane orthogonal to

the tunnel. This thesis describes a simplified method for estimating the

deformations and stresses in a pipeline to tunnel-induced ground deformations

based on 2D closed-form analytical solutions proposed by Pinto and Whittle

(2001).

Chapter 2 presents a literature review with background information on different

methods for predicting the tunnel-induced ground deformations and the

response of existing pipelines to these ground displacements.

Chapter 3 presents an analytical model for estimating the settlements and

bending moments of continuous pipelines due to tunnel-induced vertical ground

deformations.

Chapter 4 extends the aforementioned model to include induced lateral ground

displacements.

Chapter 5 describes the 3D finite element analyses of a circular tunnel

excavation that were conducted to verify the analytical solutions of free field

ground displacements and deformations of the pipeline.

Chapter 6 illustrates and compares the proposed analyses with prior predictions

of stress conditions in a hypothetical pipeline due to ground displacements

induced by the excavation of N2 sewer tunnel in San Francisco (Clough et al.

1984).

Chapter 7 summarizes the main conclusions of the current research and

presents suggestions for future advancement of this study.
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CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

This chapter presents a summary of the existing literature regarding two topics:

a) the movements of the free-field soil mass due to tunneling, and b) the

response of buried pipelines to tunneling. Three main methods exist for

modeling and predicting the free-field ground movements induced by tunneling:

a) empirical methods, b) closed-form analytical solutions based on simplified

constitutive solutions and c) numerical analyses using non-linear FE methods.

The response of buried pipelines to tunneling is investigated by reviewing

results from analytical studies and observations of instrumental field tests and

laboratory pipe - soil - tunnel interaction experiments.

2.1 FREE-FIELD GROUND MOVEMENTS

Tunneling in soft ground causes inevitably surface and subsurface ground

deformations. Figure 2-1 illustrates the three-dimensional surface settlement

trough caused by tunnel construction. The methods and the characteristic

parameters for predicting the ground deformations due to tunneling are

presented in the following sections.

2.1.1 Volume Loss

Volume loss refers to the over-excavation of soil around tunnel heading due to

several factors. As shown in Figure 2-2, these factors include: a) stress relief at
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the tunnel face, b) over-cutting and ploughing of the tunnel shield, c)

deformations of the lining system and d) long term consolidation due to

dissipation of excess pore pressures caused by tunnel construction. It is

generally not possible to measure these sources of ground loss directly.

Although Cording and Hansmire (1975) suggested measuring soil movements

close to the tunnel by means of extensometers, instead most tunnel engineers

assume that volume loss at the tunnel can be inferred from the deformations

observed at the ground surface. This assumption is reasonable for short-term,

undrained deformations in clays, but does not account for contraction or dilation

that can occur due to drained shearing in more permeable soil layers.

Mair et al. (1981) proposed that in clays the volume loss is related to the load

factor N/N,, which is the ratio between the force stability number N, and the

critical stability number No. Broms and Bennermark (1967) defined the stability

number N, which provides an indication of tunnel stability for changing

conditions of tunneling as follows:

N = +yH-0T (2.1)
Su

where:

s = surface surcharge pressure

y = unit weight of the soil

H = depth of the tunnel axis

oT = tunnel support pressure

s = undrained shear strength of the soil

Based on laboratory testing and field observations, they concluded that the

critical stability value required to prevent collapse is approximately, Nc=6.

Kimura and Mair (1981) performed centrifuge tests considering a three-
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dimensional tunnel heading and observed that N varies with both the soil cover

to tunnel diameter ratio, C/DT and the unsupported length to tunnel diameter

ratio, P/DT (where C is the depth till the tunnel crown, DT is the tunnel diameter

and P is the unsupported length), Figure 2-3. Mair and Taylor (1997) extended

the design curves in Figure 2-3, for fully lined tunnels (P/Dr=O), based on field

cases and model tests (Figure 2-4). They also reported that typical volume

losses for stiff clays (London clay) range from 0.3% to 2% while in sand and soft

clays volume losses vary between 0.5% and 1 % for EPB method or up to 2% for

slurry shields. For mixed face conditions, the situation can be more variable with

volume losses varying between 0.3% and 4% (Mair and Taylor, 1997). Macklin

(1999) observed that the values of volume loss for overconsolidated clays,

based on field and laboratory data, is related to the load factor N/Ne and lie

within a distinct range enclosed in the dashed lines, as shown in Figure 2-5. A

linear regression line of the data is given by:

AVL(%) = 0.23e4'Ic (2.2)

2.1.2 Empirical Methods for Distribution of the Free-Field

Ground Deformations

2.1.2.1 Surface vertical movements

The most commonly used empirical method for interpreting surface settlements,

is the one proposed by Peck (1969) and Schmidt (1969). This method suggests

that the transverse settlement trough due to tunneling can be described by a

Gaussian curve, Figure 2-6.

u, = u0 exp( 22 (2.3)
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where:

uy = centerline settlement

x = horizontal distance to the inflection point in the settlement trough

Hence, the volume of the settlement trough, AVs can be found by integrating

Equation 2.3:

AV = V2 -uy, -xi in- (2.4)

The volume loss in the region close to the tunnel is equal to:

AVs = AVL + AV (2.5)

When tunneling occurs in clays under undrained conditions, AVg=O (volume

change in ground) and thus AVL = AIs. However, for tunneling in granular soils

AV can differ from AVL due to dilation or contraction within the soil mass.

In soft and stiff clays, the maximum surface settlement uy*, as well as the trough

itself, was observed to decrease inversely linearly with increasing tunnel depth

(Mair, 1979; Mair et al., 1993; Mair and Taylor, 1997). Figure 2-7 shows that x;

was generally wider in clays than in granular soils for similar geometries.

Based on data from tunnels in UK, O'Reilly and New (1982) showed that x;

changes approximately linearly with tunnel depth H, as shown in Equation 2.6.

x/H = K (2.6)

The trough width parameter, K ranges from 0.4 for stiff clays to 0.7 for soft silty

clays and between 0.2 and 0.3 for tunnels in granular soils above the water

table, as reported by New and O'Reilly (1991). Mair and Taylor (1997) reported

that a mean value for K should be 0.5 for all clays and 0.35 for granular soils, as
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shown in Figure 2-8. Mair and Taylor (1997) also reported that consolidation will

increase x; after construction.

Celestino et al. (2000) and Jacobsz (2002) reported that, in many cases, the

Gaussian curve fails to represent the ground movement. The same observation

was made by Vorster et al. (2005), who conducted several centrifuge tests to

simulate tunneling in sand. In order to fit better the observed soil settlements,

the authors proposed a modified Gaussian curve:

n
u =UO (2.7a)= UY (n - 1) + exp [A (X) 2 ]

n = 1 ) (2.7b)
2A + 1

where n is the shape function parameter controlling the width of the profile, with

O<n<2, while A is defined to fix the location of the inflection point x;. For n=1 and

A=0.5, equation 2.7a reduces to the simple Gaussian curve. Figure 2-9, shows

the effect of the shape function parameter n.

2.1.2.2 Surface horizontal movements

Based on the work of Attewell (1978) and O'Reilly and New (1982), it is often

assumed that the vectors of the tunnel-induced ground movements are directed

towards the tunnel axis (Equation 2.8), such that the horizontal and vertical

components are related as follows:

ux _x (2.8)
u, H
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The above assumption leads to the following expression for the horizontal

displacements corresponding to the Gaussian curve for vertical settlements (n=1

in Equation 2.7).

ux x x2
- = 1.65 - exp --- (2.9)us xi2x 2/

where ux*=0.61 -K -uy, the maximum horizontal free-field displacement at the

inflection point (Attewell and Woodman, 1982).

Figure 2-9 shows the distribution of Equation 2.9, the settlement trough and the

resulting horizontal strain. Mair and Taylor (1997) reported that subsurface

horizontal ground movements appear to be a function of the tunneling method.

More specifically, during open face tunneling, movements are believed to occur

towards the tunnel axis, while in EPB tunneling, the direction of movements is

related to the magnitude and control of the face pressure.

2.1.2.3 Subsurface ground movements

Mair et al. (1993) showed that the Gaussian function can also be adapted to fit

subsurface settlement troughs by modifying the trough width parameter x;:

xiy
-=K 1 (2.10)H H)

where K is a function of depth (Figure 2-10). For tunnels in clay, Mair et al.

(1993) proposed the following non-linear equation for K:

0.175 + 0.325 (1 -
(1K =y (2.11)

H
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This equation tends to overestimate the lateral extent of the ground movement

zone and underestimate the width of the surface settlement trough, close to the

tunnel. Assuming that Equation 2.11 applies, Taylor (1995) showed that vectors

of ground movements under undrained conditions, direct to a point

(0.175/0.325)H below the tunnel axis, resulting in approximately 65% of the

horizontal ground movement predicted by Equation 2.7.

Jacobsz (2002) conducted a series of centrifuge tests in dense sand and found

that the settlement troughs were narrower than in clay. He proposed a modified

expression for K:

0.09 + 0.26 (1 -
K = H (2.12)

H

2.1.3 Analytical Solutions

2.1.3.1 Overview of different analytical approaches

Several researchers have proposed analytical approaches for estimating tunnel-

induced ground deformations. These solutions make gross approximations of

real soil behavior by assuming linear, elastic soil properties but require only a

small number of physical input parameters.

Sagaseta (1987) proposed approximate solutions for a linear elastic, isotropic,

homogeneous and incompressible undrained soil subjected to a concentrated

ground loss (point sink), based on the superposition of singularity solutions to

represent the uniform convergence and pure ovalization modes of a tunnel

cavity. Verruijt and Booker (1996) extended these solutions to include both

drained and undrained soils.



Loganathan & Poulos (1998) modified the Verruijt & Booker (1996) solutions by
introducing a semi-empirical ground loss parameter, defined from non-linear soil

movements around the soil-tunnel interface. They assumed an oval-shaped

cavity, based on the solutions of Rowe and Kach (1983) for non-uniform radial

ground movements (Figure 2-11).

Pinto (1999) extended and compared the approximate solutions of Sagaseta

(1987) with the more exact conformal transformation solutions proposed by

Verruijt (1997) in a planar-elastic soil. Although Verruijt's (1997) solutions are

more accurate (exact), and include the physical dimensions of the tunnel cavity,
the results are only derivable in an infinite series form.

Pinto and Whittle (2001) showed that the 'approximate' and 'exact' analytical

solutions, produce very similar results for tunnels with radius over depth ratios

r/H<0.5 for all the range of expected elastic Poisson's ratios (v) (Figure 2-12).

Hence, the method proposed by Sagaseta (1987) can be used reliably for a

wide range of tunnel geometries.

2.1.3.2 Pinto and Whittle (2001) analytical solutions

The analytical solutions proposed by Pinto and Whittle (2001) relate the ground

displacements to three prescribed displacements happening at the tunnel cavity:

a) uniform convergence ut, b) ovalization u, and c) uniform vertical translation

Auy (Figure 2-13). Volume loss is uniquely defined by the uniform convergence

component, as described below:

2u - - VL 
(2.13)r V

where V,/ = tr 2 is the volume of the tunnel cavity per unit length.
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The complete analytical solutions proposed by Pinto and Whittle (2001) which

predict the vertical and horizontal ground movements at any depth, are shown

below. It should be noted that both convergence and ovalization modes produce

vertical translation to the tunnel cavity.

A. Uniform Convergence Mode

1 1 + 4(1-V)

x 2 +(y+H) 2  x2 +(y-H) 2  x 2 +(y-H) 2

4(y-H)y

[x2+(y+H)2]2

(y+H) (y-H)

x2 +(y+H) 2 X2 +(y-H) 2

I-
4(y-H)x 2 +2H[x 2 -(yH) 2]

[x2 +(y+H) 2] 2

4(1-v)(y-H

x 2 +(y-H) 2

Associated uniform translation:

UE

4r

H

Ovalization Mode

ux =_
us

(3-4v) [X2+(y+H)12 2-[3(y+H)2_x2 [X2 +(y+H)2_-r2]
[x2 +(y+H) 2] 3

xr (3-4v)[x 2 +(y-H) 2 ]2 -[3(y-H) 2 -x 2 [x 2 +(y-H) 2 -r 2 ]
3-4v [x2+(y-H)2+

8(1-v)-(x 2 +y 2 _r2 ) 8y[y(x 2 +y 2 )+2H(H 2-x 2 )-3yH 2 ]
+ [x2+(y-H)2]2 [x2+(y-H)2]3
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(2.14b)
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uy r

U 6 3-4v

((y-H)t(3-4v)[x2+(y-H)2 2- [3x 2 -(y-H) 2] [X2 + (y-H) 2 -r 2]1
[x2+(y-H)2]3

(y+H){(3-4v)[x2+(y+H)2] 2 -[3x2-(y+H)2][X2+(y+H)2-r2]1

[X2+(y+H)2] +

(2.15 b)

+ (X 2(2 H-y)-yty-H )2|-8(1-V)
..- _ _X2+(y-H)2 _2

8(y-H){Hy(y-H) 2 -x 2 .[(X 2 +y 2 )+H(y+H)]
[x2+(y-H)2]3

Associated uniform translation:

u -y 2 4r (1-8v) +4(1

us 3-4v H
1 4+

(2.15c)
)2]3

The input parameters used in the analytical model are: the tunnel radius r, the

depth to the tunnel springline H, the Poisson's ratio v, the uniform convergence

u, and the ovalization u6 of the tunnel. The notation and sign convention are

shown in Figure 2-13. The ratio of the ovalization u, to the uniform convergence

ut is referred to as the 'relative distortion' p = -us/u, , and typically ranges

from -0.5 to 3. Figure 2-14 illustrates the effects of the input parameters on the

surface settlement distribution.

Comparison between results from the analytical solutions and from real field

monitoring cases, showed generally good agreement between those two apart

from the case of the Heathrow Express Trial tunnel in London. Pinto (1999)

suggested that this disagreement could be due to limitations of the isotropic

analytical model for heavily overconsolidated and highly fissured soils, like

London clay. Subsequently, Chatzigiannelis and Whittle (2001) conducted an
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extensive study on elastic anisotropic parameters reported from laboratory tests

existing in the literature, for various types of soils and proposed analytical

solutions for cross-anisotropy elastic soils. Zymnis (2009) studied five real

tunnel cases and concluded that analytical solutions proposed by Pinto and

Whittle (2001) succeed in correctly predicting the tunnel induced ground

deformation, but the incorporation of anisotropic stiffness parameters

significantly improves the results.

2.1.4 Finite Element Analyses

Non-linear Finite Elements are numerical methods used to simulate various

forms of tunnel construction. Although 3D analyses are preferred for modeling

tunnel construction, 2D analyses are more widely used for simplicity reasons.

However, it has often proven difficult to reproduce the Gaussian distribution

curve for modeling the transverse surface settlement trough. Clough and Leca

(1989) suggested that one of the reasons is that 2D analyses try to represent a

set-up which is, by its nature, three-dimensional.

Mair et al. (1981) reported that another drawback of the 2D analyses is that they

require sophisticated soil models to produce a realistic surface settlement

trough, especially for tunnels in heavily overconsolidated clays, since isotropic

linear elastic - perfectly plastic soil models lead to wider surface settlement

troughs than the simple Gaussian distribution. Lee and Rowe (1989) suggest

that the introduction of anisotropic soil properties can significantly improve the

FE analyses results.

Moeller (2006) reported that in finite element analyses, surface settlements due

to tunneling are influenced by the value of the coefficient of earth pressure at

rest (Ko), the overconsolidation ratio (OCR) and the ground stiffness E,.
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Regarding the two-dimensional analyses, he suggested that the surface

settlement trough is influenced predominately by the installation procedure,
rather than by the constitutive model.

For simulating shield tunneling in 2D, Moeller (2006) proposed using the grout

pressure method, where the tunnel lining is considered to be surrounded by a

thin grout layer with a known grout pressure og (Figure2-15). During excavation,
the initial ground stresses ao reduce to og by a pseudo-time parameter A, which

increases from 0 to 1 as shown in Equation 2.16:

a = (1 - A)ao + Aog (2.16)

Regarding 3D simulation, tunnel construction processes are in general difficult

to model. Figures 2-16 and 2-17 illustrate step-by-step procedures, to simulate

construction of open-face NATM tunnels and closed-face shield tunnels

suggested by Moeller (2006).

Furthermore, parameters such as the geometry of the tunnel lining and

dimensions of the tail void are often hard to define or represent. Finally, due to

usual change in soil stratigraphy and tunnel elevation, multiple FE analyses are

required for different sections of the tunnel.

2.2 PIPE - SOIL - TUNNEL INTERACTION

One of the main uncertainties when designing underground pipelines is their

response to the induced ground movements. For this reason, pipe-soil

interaction designs are relatively conservative with high factors of safety.

As reported by O'Rourke and Trautmann (1982), tunnel-induced ground

movements can cause damage on existing pipelines due to three main reasons:

a) tensile strains, b) joint rotation and c) joint axial pullout. They suggested that
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most pipelines would behave either as perfectly flexible, where the pipe deforms

as the ground, or as perfectly rigid, where the pipeline behaves as individual

rigid sections rotating at the joints.

A variety of methods has been proposed for estimating the effect of ground

movements on existing pipelines, by combining empirical data and simple

theoretical analyses based on linear elasticity of soil and pipe (O'Rourke and

Trautmann, 1982; Tagaki et al., 1984; Yeates, 1984; Attewell et al., 1986).

Attewell et al. (1986) first illustrated the importance of the relative soil-pipe

rigidity in design. They reported that the soil settlement trough would be

modified if the pipelines could resist to the ground movements, but the effect

would be smaller for pipes less than 1m diameter. In addition, O'Rourke and

Trautmann (1982) found that pipelines with diameters less than 200 mm, tend to

behave as flexible structures that conform to imposed ground deformations.

Fujita (1994) also pointed out the importance of the relative soil-pipe stiffness.

He reported that the large variety of pipe sizes, materials, quality, strength,

depth and methods of installation of pipes, may influence the pipeline response.

2.2.1 Factors Affecting Pipeline Response

Attewell et al. (1986) modeled the soil - pipe interaction problem using a

Winkler-type beam on elastic foundation, where the pipe-soil stiffness is

1
described by

41 K _;_(2.17)
4EpIy

Keff = 2Koo (2.18)
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Keff is the effective subgrade modulus, based on a soil Poisson's ratio, v=0.5 and

assuming that the pipeline is buried at infinite depth and Kc is the subgrade

modulus proposed by Vesic's (1961), given by the following equation:

12 ED 4  E
K, = 0.65 - P V2 (2.19)EpI, 1-v 2

(

where Dp is the pipe diameter and Ep/p is the pipe bending stiffness with Ep the

pipe Young's modulus and lp the second moment of inertia of pipe section.

The main conclusions of Attewell at al. (1986) research are the following:

1) Soil yielding around the pipe, decreases stress and strain compared with

linear elastic analysis

2) Increasing the soil Young's modulus E, increases pipe stress and strain

3) Pipe yielding decreases stress but increases total strain compared with

linear elastic analysis

4) Stress and strain on jointed metal pipelines are less than on continuous

pipelines

5) Increasing the ratio of the tunnel depth to the tunnel radius (Hir), increases

the trough width and decreases the volume loss AVL, the maximum

settlement, the stress and strain

6) Increasing the volume loss AVL at the tunnel face, increases the settlement

trough volume, the maximum settlement, the stress and strain

7) Increasing the pipe elastic modulus Ep, increases the stress and decreases

the strain
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8) Increasing the pipe depth yp, increases the maximum settlement at pipe level

and decreases trough width resulting in increase of stress and strain

As it was also observed by Attewell et al. (1986), the trough width reduces as

the proximity to the tunnel increases. Takagi et al. (1984) reported that the

maximum pipe bending stress increases as the trough width decreases.

Moreover, Rumsey and Cooper (1982), observing small diameter pipelines

affected by surface excavations, reported that the pipe strain increases as the

distance from the excavation increased. Similar effects are observed for

tunneling, with shear strains decreasing in the free field soil with increasing

distance from the tunnel. This leads to wider surface settlement troughs for a

given tunnel position.

Another factor that affects pipeline response is the potential gap formation (loss

of bending support) between pipe and soil during tunneling. Rajani and

Tesfamariam (2004) reported that gap formation with continuation of external

loading after tunneling (e.g. traffic), would increase pipe strain. They also found

that pipelines with small bending stiffness react more flexibly than pipelines with

higher bending stiffness. This leads to the suggestion that, by resisting ground

movements, a stiffer pipeline would cause higher shear strains and lower soil

stiffness (due to pipe-soil interaction), and hence react even stiffer.

2.2.2 Pipe-Soil Interface Shear

Attewell et al. (1986) mentioned that in a plane parallel to a pipeline, the effect of

horizontal ground movement should be considered not only in the axial but also

in the bending strain. They pointed out that the pipe strain depends on a)
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different soil properties such as the grain size, the stiffness and the stress state,
b) the problem geometry, c) the pipe properties such as its bending and axial

stiffness and the joints, d) the pipe coating and e) the degree of the pipe

deterioration. All the previous parameters contribute to the development of the

pipe - soil interface shear.

They also reported the influence of the width of the settlement trough in relation

to pipeline diameter Dp/xi, on the axial strain built-up due to pipe-soil interface

shear, for different pipe-soil axial rigidity K*. The later is defined as:

E, 4(D, - t)t
K = - D (2.20)

where:

E = pipe Young's modulus

Es = soil Young's modulus

D = pipe diameter

t = pipe wall thickness

They showed that the larger Dp/x; and/or K*, the smaller the axial strain induced

to the pipeline. They also suggested that axial strain due to pipe-soil interface

shear should be limited to the smallest value of the case where pipe-soil

slippage is allowed.

_ 5 xi Tlm
Esh,lim 5 K D, Es (2.21)

where:

Esh,lim = limiting axial strain due to pipe-soil interface shear

Tlim = limiting pipe-soil interface shear strength

40



They mentioned that TlII/E, would be smaller for plastic pipelines and pipes with

protective sheathing, than for old pipelines where surface roughness might be

more developed.

Scarpelli et al. (2003) investigated the effect of pipe coating, by performing field

and laboratory testing of a 200mm and 610mm diameter pipelines buried in

different granular and clayey soils, were pulled longitudinally until pipe-soil

failure occurred. They found that smooth, hard coating resulted in a shear plane

forming on the pipe-soil interface associated with quick maximum load

mobilization and sliding of grains on the pipe-soil interface. On the other hand,

with soft, rough coatings, soil grains tended to roll along and even penetrate the

coating. The shear plane occurred in the surrounding soil, causing higher load

mobilization and inducing larger stress on the pipe due to the larger friction

angle.

2.2.3 Analytical and Empirical Predictions of Pipeline Response

Current methods for predicting the pipeline response to tunnel-induced ground

movements are based on empirical observations coupled with theoretical

analysis in elasticity. Below the most comprehensive and complete methods are

presented.

2.2.3.1 Attewell et al. (1986)

Attewell et al. (1986) method is the most widely used method for predicting

bending and axial strains, and joint rotation and pullout. This method utilizes a

Winkler-type model assuming that the pipe reacts as a beam on an elastic

foundation. Due to the assumption of a Winkler foundation, the pipeline and the

surrounding soil are not allowed to separate.
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The method considers a relative pipe-soil bending rigidity by means of Vesic's

(1961) damping factor, Av, as described in Equation 2.17, pipe-soil rigidity factor,
K*, as described in Equation 2.20 and it provides information on the location of

the bending strain. To take into account that the pipelines are buried, the

authors proposed to apply twice the value of the subgrade modulus K,

proposed by Vesic (1961) (Equation 2.19). However, with this assumption, they

have in fact modeled a pipeline buried at infinite depth.

Attewell et al. (1986) design method is based on the Gaussian curve, despite

the fact that the authors indicated that the exact ground deformation is required

in order to estimate accurately the bending strain in very flexible pipelines. To

calculate the axial strain due to pipe-soil interface shear, they assume that

ground movement vectors point towards the tunnel axis.

Attewell et al. (1986) method is overly conservative and lacks in reflecting the

effect of strain distribution along the pipe length, stiffness and volumetric

changes. All these effects are directly linked with the choice of the appropriate

subgrade modulus, which is suggested to be obtained from laboratory or field

testing.

2.2.3.2 Vorster et al. (2005)

In order to estimate the response of buried pipelines to tunneling, Vorster et al.

(2005) suggested a closed-form solution based on a Winkler model, assuming

that the pipe behaves as a beam on elastic foundation. The key assumptions for

this model are:

1) The pipeline is buried in homogeneous soil

2) The pipe is always in contact with the soil
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3) The pipe doesn't affect the tunnel

4) The soil response to loading, at the pipe level is not aware of the tunnel

5) The pipeline is continuous

6) The free field soil displacement at the pipe level is described by a Gaussian

curve (Equation 2.2):

The closed form solution is in fact derived by solving analytically the differential

equation which represents the pipeline behavior.

+ 4A4uy = 4A4u
Ox4 Y 4V ,u (W (2.22)

where A = 4 K and uyp is the vertical pipe displacement.V4 4Ep Ip

To enable a general solution corresponding to different soil and pipe

characteristics, the results were normalized with a relative pipe-soil bending

rigidity factor:

EI
ERr=x

(2.23)

Winkler models have the advantage of

description of nonlinear pipe-soil interaction.

simplicity and

In order to consider the effects of the soil continuum in the

response of the pipelines, Klar et al. (2005) carried out finite

of the elastic continuum solution in order to develop

representation of Kv in the Winkler model (Figures 2-18

proposed subgrade modulus is given by:

allow convenient

predictions of the

element analyses

a more realistic

a) and b)). The

(2.24)12E r
K,= "

43



Vorster et al. (2005) performed centrifuge tests on model pipelines buried in

sand, in order to observe the response of the pipelines to tunnel induced ground

deformations and to verify the elastic continuum solution proposed by Klar et al.

(2005). They also suggested a modified Gaussian curve in order to achieve a

better fit of the observed surface settlement trough, as described by Equations

2.7. Figure 2-19, shows the normalized vertical displacement and bending

moments of a pipeline relative to the relative pipe-soil bending rigidity factor Rb,

proposed by Klar et al. (2005). It is assumed that the free-field settlements are

described by modified Gaussian curves proposed by Vorster et al. (2005).
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Figure 2-1: 3D settlement trough caused by tunnel advance (Attewell et al.,

1986)
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Figure 2-2: Sources of ground movements associated with tunneling

(after Moeller, 2006)
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Broms and Brennermark (1967) is optimistic
where Ne< 6 and conservative where N >6

0 M.5 1 1.5 2 2.5 3 35 4

Figure 2-3: Dependence of the critical stability number No on the unsupported
heading length (Kimura and Mair, 1981)
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Figure 2-4: Critical stability number No for fully lined tunnel headings with thin
clay cover (Mair and Taylor, 1997)
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Figure 2-5: Field and laboratory monitoring data for overconsolidated clays

(after Mackin, 1999)
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Volume Change
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V = AV /V ; AV = AV + AV,

Figure 2-6: Empirical function for transversal surface settlement trough

(Whittle & Sagaseta, 2003)
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Figure 2-7: Variation in surface settlement trough width parameter xiwith tunnel

depth for soft ground tunneling (after Mair & Taylor, 1997)
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Figure 2-8: Modified Gaussian curve describing the settlement distribution

(after Vorster, 2005)

Figure 2-9: Horizontal ground movement and strain (Mair et al., 1996)
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Trough width parameter K = '
H-y
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Figure 2-10: Variation of Trough width parameter K with normalized depth (y/H)

for tunnels in clay (Mair et al, 1993)
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Figure 2-11: Assumption of ovalization and distribution of ground movement
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Figure 2-12: Comparison of elastic solutions for shallow tunnels (Pinto, 1999)
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Figure 2-13: Deformation modes around tunnel cavity
(after Whittle and Sagaseta, 2003)
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Figure 2-14: Effect of input parameters on surface settlement distribution

(Whittle and Sagaseta, 2003)
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Figure 2-15: Display of the grout pressure method (Moeller, 2006)

54

I'll, ........................................... - . .......



D -7

H

I-1 I+1 I+n

Figure 2-16: Simulation of open-face, NATM tunneling (Moeller, 2006)
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Figure 2-17: Simulation of closed-face, shield tunneling (Moeller, 2006)
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Figure 2-18: Comparison between continuum solution and Winkler model using

a)Vesic analog and b) new proposed analog (Klar et al., 2005)
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Figure 2-19: Normalized bending stiffness and settlements of a pipe relative to

the relative pipe-soil bending rigidity factor Rb (after Vorster et al., 2005)
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CHAPTER 3

BENDING RESPONSE OF CONTINUOUS
PIPELINES TO TUNNELING

3.0 INTRODUCTION

This chapter describes the model used to simulate the response of continuous

pipelines to tunnel-induced ground deformations, assuming that the latter are

described either by a modified Gaussian curve distribution or by the analytical

solutions proposed by Pinto & Whittle (2001). Interactions between the pipe and

the soil are described using a beam-on-elastic-foundation model. The

approximations in this model are then validated using numerical finite element

analyses.

3.1 FREE-FIELD SETTLEMENTS

Bending moments and settlements of continuous pipelines occur due to external

forces associated with tunnel-induced ground displacements. Vertical

components of ground displacements have been described by Vorster (2005)

using empirical modified Gaussian functions, while Pinto & Whittle (2001)

proposed analytical solutions for assumed modes of tunnel cavity deformations

(Equations 2.13 and 2.14). Differences in the two solutions give rise to different

sets of loads on the pipelines and hence, in predictions of critical stress

conditions.
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3.1.1 Empirical Solutions (Vorster, 2005)

As it is described in Chapter 2, Vorster (2005) suggested the use of a modified

Gaussian function to describe free field settlements observed in a series of

centrifuge tests.

nU= UO2 (3.1a)

(n - 1) + eA )

e A (2A _ 1 )
n (2A + 1) +1 (3.1b)

where:

x = horizontal distance between the tunnel centerline and the inflection

point

n = shape function parameter controlling the width of the profile

A = parameter that ensure x; remains a fixed distance to the inflection

point

It has to be noted that a parameter is a number chosen by the user, such that it

ensures that xi remains the distance to the inflection point.

Figure 3-1 illustrates a flow chart shows which shows what the required input

parameters are, and what the procedure is in order to obtain the final solution

which describes the free field settlements at any depth, by using Vorster's

method.

3.1.2 Analytical Solutions (Pinto & Whittle, 2001)

Pinto and Whittle (2001) proposed closed-form analytical solutions for

describing the vertical and horizontal tunnel induced free-field displacements.

They related the ground displacements to three prescribed displacements
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happening at the tunnel cavity: a) uniform convergence u,, b) ovalization u, and

c) uniform vertical translation Auy (Figure 2-13). The values of Auy are functions

of the input parameters u. and u6 as shown in Equations 2.14c and 2.15c. The

simplified closed form solutions are given by Equations 2.14 and 2.15. Figure 3-

2 summarizes the required input parameters and the procedure in order to

obtain the final solution which describes the free field settlements at any depth.

Comparing the two methods, it can be observed that both require the same four

parameters; the tunnel depth (H), the tunnel radius (r), the pipe depth (y) and

the volume loss (AVL), with L = - f. In addition, Vorster (2005) method
V0  r

requires the trough shape parameter (A) which best fits the free field settlement

data, while Pinto & Whittle (2001) requires the relative distortion p = -uj/u. and

the Poisson's ratio (v) of the soil.

Figure 3-3 shows a comparison of the Vorster (2005) and Pinto & Whittle (2001)

surface settlement troughs for a circular tunnel with r/H=0.2 and soil Poisson's

ratio v=0.5. These examples show that Pinto & Whittle (2001) solutions with

relative distortion p=1, are comparable to surface settlements obtained by

Vorster (2005) (modified Gaussian curve) with n=0.5, while results for relative

distortion p=2, are in close agreement with the simple Gaussian curve (n=1).

The subsurface free field-settlements for the same case at a depth ratio

yp/H=0.2, are shown in Figure 3-4. It can also be observed that P&W solutions

can actually give similar results with simple or modified Gaussian curves. More

specifically, for this case, P&W with a relative distortion p=1 fit a simple

Gaussian curve and for p=0.5, fit a modified Gaussian curve with n=0.5.
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3.2 PIPELINE BENDING RESPONSE

One of the goals of this research is to derive analytical solutions describing the

bending response of an existing continuous pipeline due to tunnel-induced

ground deformations. For this reason, the mathematical model must be first

described.

3.2.1 General Solutions Using a Winkler's Model

Figure 3-5, shows a pipeline of radius ro, Young's modulus Ep and wall thickness

t, buried at a depth y, in a soil with Young's modulus Es and Poisson's ratio v.

By using a Winkler's model, we assume that the pipeline is connected with the

soil with vertical and horizontal spring coefficients, K, and Kh, respectively. The

basic assumptions made are:

[1] the soil is homogeneous and elastic

[2] the pipe is continuous

[3] the pipe does not affect the tunnel

[4] the pipe is always in contact with the soil

Ignoring the horizontal springs and keeping only the vertical, the mathematical

model which describes the bending response of a buried pipeline is the same as

the model describing a beam on elastic foundation (after Hetenyi 1946). Figure

3-6 shows the response of a beam pipe (uyp) connected to the soil with vertical

springs of coefficient Kv, to the vertical displacements of the soil (uy). The

general mathematical equation which describes the problem is:

"+ 4A -U = 0 (3.2a)aX4 V
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4 K
4EI

where:

uy = pipeline vertical displacement

K,= vertical spring coefficient

El = bending stiffness of the pipe

(3.2b)

The general solution of Equation 3.2 is:

uY ' = Eie~Ax(cos~x + isinA~x) + E2e-AVX(cosLx - isin{vx)

+ E3e Avx(cosAx + isinla~x) + E4eAvx(cosAtx - isinltvx)

uyj = e-Avx(Cicosvx + C2sinAtx)

+ e Avx(C 3cosAhx + C4singx) (3.3)

Where E1, E2, E3 and E4are grouped as:

C1 = E1 + E2

C2 = iE 1 - iE 2

C3 = E3 + E4

C4 =iE3 - iE4

The following boundary conditions are needed in order to solve the Equation

3.3.

e At x -* oo, uyP = 0

Because e~Avx(CicosAvr + C2sinAx) = 0 for x -+ oo, it suffices that

e Avx(C 3cosAx + C4sinAx) = 0. Therefore, C3 = C4 = 0

63



* Atx = 0, -7- 0
ax

Therefore, -(C 1 - C2) = 0 => C1 = C2 = C

Finally we end up with:

uYf = Ce-Avx(cosLx + sinAtx) (3.4)

The next step is to define the constant C.

The pipe is subjected to an equivalent distributed load dP = K,uy(x)dx

(based on the free-field displacements, uy(x)) shown in Figure 3-7, such that:

8 up -vdP(x) -(35

Su, = 2K, - e -;tvx(cos)x + sinAgx) (3.5)

Thus Equation (3.5), becomes:

Suy =V - Kdu,(x) - e~Avx(cos2vx + sinkx) =>

Suy = -du (x) - e~vx(cos1vx + sinAx) (3.6)
2 ~

The integration of Equation 3.6 gives the total settlement distribution of the

pipeline (Figure 3-6).

The bending moments acting on the pipe are given by the following equation:

M = -EI a(3.7)

The distribution of the bending moments along the pipeline is given by the

integration of the bending moments of all the infinitesimal elements of the

pipeline which are described by:

dP_
SM = - e tvx(cosAx - sinAvx) (3.8)
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As it is shown in Figure 3-6, dP = Kuy(x)dx, thus Equation 3.8 becomes:

SM = K-duy(x) ee-Ax(CoS2Lx - sinLx) (3.9)
4AV

Equations 3.6 and 3.9 are not analytically soluble but are reliably solved

numerically, (using Mathematica 7.0 software). In addition, several sets of pipe

settlements and bending moments graphs were drawn, for different parameters

of the equation that is chosen each time to describe the soil settlements

distribution.

Assuming that the free-field settlements are described by a function f(x), with

maximum value at x=0, the pipe settlement at a point C (Figure 3-8), can be

obtained by:

u , A. (f 2 ( - b + x) -e~vx(cosA1x + sinAIx)dx

+ f a 2 b - ) eAvx(cosAx + sinAtx)dx) (3.10)

Similarly, the bending moments at point C are given by:

K /- (a-b \
M= --. (J f 2+ x) -eAvx(cosAx - sinAx)dx

4AV 0 2

+ f - x -e~Av(coshx - sinA~x)dx) (3.11)

Following the same procedure for all the infinitesimal points of the pipe (by

varying points a and b), we end up with the total settlement distribution of the

pipeline.

For example, in the case of f(x) being a simple Gaussian curve (Equation 2.3).

The pipe settlements and bending moments will be given as follows:
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a-b~x 2( _)_2

u = u, -"(f e ~~ )e-vx(cos i~x + sin ~A~x)dx

a-b 2

af _2

+ ja e x) e~ Avx (cosAx + sinAvx)dx (3.12)

S2+x
K (b () x

M = , - e e-vx(cosAtx - sintvx)dx

+ ja e-AvX(cosAVx - sinkvx)dx (3.13)

Application of the modified Gaussian equation and Pinto & Whittle (2001)

analytical solutions, are presented in Appendix 1.

The above equations are solved numerically and the solutions are presented in

Figure 2-19. These graphs reproduce pipe settlements and bending moments of

the analyses proposed by Vorster (2005) analyses, estimating using modified

Gaussian curves, for different bending rigidity factors Rb.

EI
Rb = Esroxi (3.14)

The factor Rb indicates the relative rigidity of the pipe in bending. For typical

water pipes, the range of Rb is 0<Rb:8.

Pinto & Whittle (2001) free field settlements have been integrated in Equations

3.12 and 3.13 (for details, see Appendix I) and twelve sets of normalized pipe

settlements and bending moments are proposed for different values of p, y/H,
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rH, v and Rb in Figures 3-9 through 3-16. The pipe settlement are normalized by

the maximum free-field settlement at the pipe level (uy /uy"), while dimensionless

pipe bending moments follow the expression Mn=Mxi 2/Eluy" proposed by Vorster

(2005). For the Pinto and Whittle (2001) solutions, the inflection point parameter

x; is found from the second derivative of the equation that describes the free field

settlements at the pipe level.

For all the analyses performed, the vertical spring coefficient Kv, is defined by

Klar et al. (2005).

12E r
K, = SO (3.15)

xi

This expression has been verified by matching the analytical solutions with finite

element analyses performed using PLAXIS 3D Tunneling as shown in Chapter

5.

From Figures 3-9 through 3-16 the following conclusions are drawn:

" As the ratio r/H increases, the settlement trough becomes wider and the

normalized bending moments M, slightly increase (Figures 3-9 and 3-12).

" As the relative distortion (p) increases, the settlement trough becomes

narrower, the maximum value of uy//uy" decreases and the normalized

bending moments (Mn) also increase for any Rb value (Figures 3-10 and 3-

14).

" As the pipe depth (y/H) increases, the settlement trough becomes narrower

and both the ratio uy//uy* and the normalized bending moments increase

(Figures 3-11 and 3-15).

" Finally, as the Poisson's ratio (v) increases, the settlement trough becomes

narrower, the ratio uyp/uy decreases, and the normalized bending moments

(Mn) increase (Figures 3-12 and 3-16).
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3.2.2 Pipe Strains and Stresses

The pipe settlements and bending moments are computed in order to estimate

the strains and stresses acting on the pipelines. The axial strain Eb is the strain

in the extreme pipe fiber due to bending.

M(x) a2P
E (3.16)

Figure 3-17 shows the sign of the axial strain Eb, considering tension as positive

and compression as negative.

The axial pipe stresses (ux), can be computed using the axial strains by:

ax = Ep - Eb (3.17)

where Ep is the pipe material Young's modulus. Once again, tensile stresses are

considered positive and compressive, negative.

The axial stresses acting on pipes due to bending are computed in order to

estimate the possibility of pipe failure in tension or compression. This is

achieved by comparing the axial stress acting on the pipe with the maximum

allowable stress (tensile and compressive) which depends on the pipe material.

It must be noted though that the maximum allowable axial stress decreases as

the age of the pipe increases and therefore, the value of the maximum stress at

failure of an existing pipeline will not be the one reported in the standards, for

new installed pipelines.

Figures 3-13 through 3-16 give the normalized bending moments Mn=Mxj1/Eluy*

acting on a pipeline, and in the mean time they can give the pipe normalized

strains and stresses. From Equations 3.7 and 3.16 we get:

2 y P M Eb
M = -EI - => - = (3.18)dx 2 EI ro
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Also from Equations 3.17 and 3.18 we get:

M - 8b = -.... (3.19)
EI r r

Therefore, Figures 3.13 through 3.16 also illustrate the normalized axial pipe

strains, Ebn = EbX /rOuY and stresses = o-x/Eprou" due to bending.

Representatively, Figure 3-18 gives the normalized axial pipe strains and

stresses for r/H=0.25, p=0.5, yp/H=-0.2 and v=0.5.

3.3 SUMMARY

This chapter compares free-field settlements computed according to empirical

methods used by Vorster (2005) with analytical solutions from Pinto & Whittle

(2001). A Winkler model is used, in order to describe the response of an existing

continuous pipeline to tunnel-induced ground settlements. The pipeline

response (settlements and bending moments) was derived under the

assumption that the problem of a pipe on an elastic half-space is equivalent to a

Winkler's beam on elastic foundation, where the pipeline is connected to the soil

with vertical springs.

Solving the equations which describe the Winkler problem, assuming that the

free-field settlements are described analytical closed-form solutions (Pinto &

Whittle 2001), a set of graphs is produced for estimating the pipe settlements

and bending moments, by varying the pipe depth yp, the tunnel radius r, the

tunnel depth H, the Poisson's ratio v and the relative distortion p happening at

the tunnel cavity. All graphs are drawn for different pipe-soil relative bending

rigidity factors Rb, the value of which indicates how rigid is the pipe compared to

its surrounding soil.
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Finally, from the computed pipe bending moments, pipe axial strains and

stresses can be evaluated. In order to estimate the possibility of pipe failure to

tension or compression, axial stresses acting on the pipe should be compared

with the allowable axial stresses which depend on the pipe material.
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Figure 3-2: Pinto and Whittle (2001) method to describe free field settlements
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Figure 3-5: Winkler model for representing a buried continuous pipeline in the

ground

Figure 3-6: Bending response of a pipeline represented by a Winkler analogue

of a beam lying on elastic foundation (Hetenyi, 1946)
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Figure 3-7: Vertical loading of a pipeline with infinite pointed loads dP

Figure 3-8: Defining the location of an arbitrary point C, where pipe

displacements are computed due to vertical loading at parts a and b
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Pinto & Whittle (2001): y/H=-0.2, p=0.5 and v=0.5
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Figure 3-9: Effect of pipe radius and relative pipe-soil bending rigidity factor,

Rb=EI/Er ox3 , on normalized pipe settlements
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Pinto & Whittle (2001): y /H=-0.2, r/H=0.25 and v=0.5
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Figure 3-10: Effect of relative distortion, p and relative pipe-soil bending rigidity

factor, Rb=EI/Erox 3 , on normalized pipe settlements
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Pinto & Whittle (2001): r/H=0.25, p=0.5 and v=0.5
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Figure 3-11: Effect of pipe embedment depth, y and relative pipe-soil bending

rigidity factor, Rb=E/Erx 3 , on normalized pipe settlements
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Pinto & Whittle (2001): r/H=0.25, p=0.5 and y,/H=-0.2
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Figure 3-12: Effect of soil Poisson's ratio, v and relative pipe-soil bending

rigidity factor, Rb=E/Er ox 3 , on normalized pipe settlements
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Pinto & Whittle (2001): y/H=-0.2, p=0.5 and v=0.5

-2
-1-

0

4 ----
3 -- R=0.5-

4 - -a -Rb .-

5 - a) r/H=0.1 --- R=

-4 -3 -2 -1 0 1 2 3 4
x/H

-2
-2

0

2 ~ -- -R=0 ~

3 -- - Rb=0.5 -

4 A

5 b) r/H=0.25 Rb=8

6
-4 -3 -2 -1 0 1 2 3 4

x/H

-2
-1 --

0

x
- Rb=0

3 -- Rb=0.5

4 - -A-- Rb=2
Vi- Rb=8

5 -c) r/H=0.5-- -R= _

-4 -3 -2 -1 0 1 2 3 4
x/H

Figure 3-13: Effect of pipe radius and relative pipe-soil bending rigidity factor,

Rb=E/Eroxi3, on normalized pipe bending moments
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Pinto & Whittle (2001): y/H=-0.25, r/H=0.25 and v=0.5
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Figure 3-14: Effect of relative distortion, p and relative pipe-soil bending rigidity

factor, Rb=EI/Esroxi3, on normalized pipe bending moments
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Pinto & Whittle (2001): r/H=0.25, p=0.5 and v=0.5
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Figure 3-15: Effect of pipe embedment depth, y and relative pipe-soil bending

rigidity factor, Rb=El/Esroxi3, on normalized bending moments
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& Whittle (2001): r/H=0.25, p=0.5 and y,/H=-0.2
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Figure 3-16: Effect of soil Poisson's ratio, v and relative pipe-soil bending

rigidity factor, Rb=EI/Earoxi3, on normalized pipe bending moments
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Figure 3-17: Sign notation of pipe strain and stresses due to bending
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Figure 3-18: Effect of the relative pipe-soil bending rigidity factor, Rb=EI/Esro x 3,

on normalized axial pipe strains and stresses
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CHAPTER 4

AXIAL RESPONSE OF CONTINUOUS PIPELINES
TO TUNNELING

4.0 INTRODUCTION

This chapter describes the modeling of the axial response of continuous

pipelines to horizontal components of ground deformations induced by

tunneling. The free-field movements are described by empirical methods or by

analytical closed-form solutions proposed by Pinto & Whittle (2001). The pipe-

soil interaction is modeled analytically in elasticity, using a Winkler spring

approach.

4.1 FREE-FIELD HORIZONTAL DISPLACEMENTS

4.1.1 Empirical Solutions

Prior studies by Attewell (1978), O'Reilly & New (1982) and Taylor (1995)

assume that the horizontal vectors of displacements induced by tunneling are

directed to the tunnel axis (Figure 4-1) and hence, the displacement component

ux can be related to the vertical component uy of deformations presented in

Chapter 3.

x
ux = T * UY (4.1)

If the vertical settlements are described by a Gaussian curve distribution, the

above assumption leads to the following expression.
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ux x X2
- -= 1.65 - exp (4.2a)ux xi2x 2J

u" = 0.61 - K -u" (4.2b)

where the empirical constant K has been discussed in Chapter 2, (Mair et al.,

1993 and Jacobsz, 2002).

Vorster (2005) assumes that the subsurface displacement vectors are also

directed to the tunnel centerline (Figure 4-1) and suggested the following

expression:

x
ux = (1+ dH -y uy (4.3)

where y is the depth of interest, H is the tunnel depth, x is the distance from the

tunnel centerline, uy is the equation which describes the vertical displacements

at the depth of interest. The coefficients d=0.175, c=0.325 are based on

correlations proposed by Mair et al. (1993) for clay, and d=0.09, c=0.26 were

proposed by Jacobz (2002) for sand.

4.1.2 Analytical Solutions

Pinto and Whittle (2001) proposed closed-form analytical solutions for

describing the horizontal components of the free-field displacements. They

related the ground displacements to three boundary displacements happening

at the tunnel cavity: a) uniform convergence uE, b) ovalization u6 and c) uniform

vertical translation Auy (Figure 2-10). These parameters must be interpreted

from measured ground movements as described in Chapter 2. The simplified

closed form solutions are given by Equations 2.13 and 2.14. Figure 4-2 shows a

flow chart which summarizes the required input parameters and the procedure
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in order to obtain the final solution which describes the free field horizontal

displacements at any depth, by using Pinto & Whittle (2001) method.

The analytical solutions provide a complete prediction of the distribution of

ground movements without further assumption. Zymnis et al. (2011) show that

the analytical solutions are able to represent ground displacement patterns for a

range of soil conditions and methods of tunneling (EPB, NATM etc.)

4.2 AXIAL PIPELINE RESPONSE

4.2.1 Winkler's Model

Figure 4-3, shows a pipeline of radius ro, Young's modulus Ep and wall thickness

t, buried at a depth yp in a soil with Young's modulus E, and Poisson's ratio v.

Using a Winkler's model, we assume that the pipeline is connected with the soil

with vertical and horizontal springs of Ky and Kh coefficients respectively. The

basic assumptions made are:

[1] the soil is homogeneous and elastic

[2] the pipe is continuous

[3] the pipe does not affect the tunnel

[4] the pipe is always in contact with the soil

As the model is linear, the system can be superimposed. Hence, this chapter

considers only the horizontal springs. The mathematical model which describes

the axial response of a buried pipeline is analogous to the model describing a

pile loaded vertically in an elastic soil. Figure 4-3 shows the response of a pipe

(represented as a pile) connected to the soil with springs along its length, of
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coefficient Kh, to the horizontal displacements of the soil (ux). The general

mathematical equation for this problem is:

82uP

=02 Ah - (4.4a)

A = (4.4b)

where:

uX = pipeline horizontal displacement

Kh = horizontal spring coefficient
EA = axial stiffness of the pipe

The general solution of Equation 4.4 is:

ux = Ce-AhX + C2 e*hX (4.5)

The following boundary conditions are needed in order to solve the Equation

4.5.

* At x -> oo, u = 0

As e-AhX = 0 for x -> oo, it suffices that C2 e'IhX = 0. Therefore, C2 = 0

Therefore we end up with:

uxj = Ce~AhX (4.6)

To define the constant C, we use the general case that the pipe is loaded by a

distribution of loads dPr(x) based on the predicted free-field ground

deformations.

The horizontal displacement of an infinitesimal element on the pipe is:

ux = -dP . e-hX (4.7)2K e
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The load Px is actually equal to Khux(x)dx where ux(x) is the horizontal

displacement of the soil at the pipe level, due to tunneling (Figure 4-4). Thus

Equation 4.7 becomes:

Sux P= dKhux(x) - AhI e -

SuX = -dux(x) - e~Ahx (4.8)
2

Integrating Equation 4.8 over the total length of the pipe (-oo, oo) by applying the

appropriate Ah parameter, the total pipe horizontal displacements distribution is

estimated.

Assuming that the free-field lateral displacements are described by a function

g(X), which become 0 at x=0 (e.g. empirical Equation 4.3, or Pinto & Whittle

(2001) analytical solutions (Figure 4-2)), the horizontal pipe displacements at a

specific point on the pipeline, can be obtained by:

uxP = -fb-- g +x -e~hdx+ g -x -e-Ahxdx (4.9)
2 fo 2 0 2

Application of the empirical equation (Equation 4.3) assuming the uy are

described by a modified Gaussian curve (Vorster, 2005), and Pinto & Whittle

(2001) analytical solutions in Equation 4.9 are presented in Appendix 1.

4.2.2 Estimation of the Horizontal Spring Coefficient Kh

A key parameter for solving Equation 4.11 is the Ah parameter which includes

the horizontal spring coefficient Kh (Equation 4.5b). Scott (1981) proposed that

the coefficient of the springs along the length of an axially loaded pile in an

elastic soil, is given by:
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K, = 2r - ks (4.10)

ks = 2( (4.11)
2(1 - V2 )rO

From Equations 4.10 and 4.11, we get:

rcE
Ks = 4(1 -2) (4.12)

4(1 - V2

where E. is the soil stiffness and v is the soil Poisson's ratio.

In order to examine the appropriateness of this spring coefficient for the problem

of a pipe buried in an elastic soil and loaded axially, 130 finite element analyses

were carried out (using PLAXISTM 3D Tunnel) for various pipe, soil and tunnel

characteristics and depths. The purpose was to compare the horizontal

displacements of the pipe computed numerically to those acquired analytically

from Equation 4.8, using the pipe-soil horizontal spring coefficient defined in

Equation 4.12. Details of the numerical analyses are presented in Chapter 5.

Figure 4-5 compares the numerical and analytical horizontal pipe displacements

Ux ,max, as a function of the relative pipe-soil axial rigidity factor (EA/Errro2),

proposed by Attewell et al. (1986) for various values of the relative distortions, p
at the tunnel cavity. The numerical solutions (by PLAXIS) are in modest

agreement with the analytical solutions, suggesting that a better definition of Kh

parameter is required.

4.2.2.1 Proposed horizontal spring coefficient Kh

After a trial and error procedure the following horizontal spring coefficient was

found to provide an accurate matching between analytically and numerically

computed pipe deformations.
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15Esr0
Kh = "1+) p (4.13)

(1 + V)(1 + p)x;

The parameter x; is the characteristic length that represents the lateral distance

to the point of maximum free-field lateral displacement at the pipe level (Figure

4-6). The value of x; is controlled by the relative distortion, p, associated with a

particular ground condition and method of tunneling.

As it can be seen from Equation 4.13, the parameters which were found to affect

the horizontal spring coefficient Kh (Equation 4.13) are the pipe radius, ro, the

relative distortion of the tunnel cavity, p and the Poisson's ratio of the soil, v. The

pipe depth, yp does not affect the coefficient as it is explained below.

Figure 4-7 compares the normalized maximum horizontal pipe displacements

Ux ,max as functions of the relative pipe-soil axial rigidity factor (EA/Errro2), for

selected values of relative distortions values p. The results show very good

agreement between the analytical solutions and the numerical results of the FE

analyses with PLAXIS, for a wide range of pipe and tunnel characteristics. Good

agreement is also observed for the full range of soil Poisson's ratios v=0. 1, 0.4

and 0.495 (approximately incompressible soil with v=0.5).

Figure 4-8 shows the good match between the analytical and the finite element

solutions for v=0. I by using the new proposed horizontal spring coefficient

(Equation 4.13). Finally, Figures 4-9 and 4-10 show the case of v=0.5, p=0 and

p=1.5, for 3 pipes of different axial stiffness where the analytical solutions also fit

PLAXIS solutions. Complete results for the horizontal pipe displacements for all

the different pipe stiffness selected (EA), different uniform convergence values

(u), relative distortion (p), soil Poisson's ratio (v) and pipe depths (yp), are

presented in Appendix II.
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Figure 4-11 shows the case of v=0.4, p=1 and yp=-2m, where it can be seen that

the pipe depth (yp) does not affect the spring coefficient Kh as the analytical

solutions are derived with the new proposed Kh of Equation 4.13 which does not

take into account the pipe depth.

4.2.3 Relative Pipe-Soil Axial Rigidity Factor Ra

To consider the different pipe and soil characteristics and the relation between

them, a relative pipe - soil axial rigidity factor Ra is introduced, analogous to the

relative pipe - soil bending rigidity factor Rb for the bending pipe response.

Attewell et al. (1986) suggested an axial rigidity factor Ra expresses by the

following equation:

EA
Ra = EsAs (4.14)

where EA is the axial stiffness of the pipeline, Es is the soil Young's modulus, A

is the cross-sectional area of the pipe section and A, is the full cross-sectional

area of the pipe represented as a solid element (As = wrOz).

Following the same logic as for the relative pipe-soil bending rigidity factor (Rb)

proposed by Klar et al. (2005), and taking into consideration that x; is a

characteristic length controlling the horizontal displacements, it is suggested that

Ra should be given by:

EA (r EA
Ra -- (4.15)Es r2 Es irrax;

For Ra=O, the pipe is very flexible and follows the free-field movements, while for

values of Ra>100 the pipe is effectively rigid compared to its surrounding soil.
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Figures 4-12 through 4-15 show the analytical solutions for the normalized pipe

horizontal displacements (uux4), for various values of parameters p, y/H, r/H,

v, and for different pipe-soil axial rigidity factors R.

From these figures the following conclusions are drawn:

" The distribution of the horizontal displacements is anti-symmetric with the

axis of symmetry at x=O which marks actually the tunnel centerline (Figure 4-

12).

* As the ratio r/H increases, there is no effect in the pipe horizontal

displacements (Figure 4-12).

* As the relative distortion (p) increases (Figure 4-13), the pipe horizontal

displacements, as well as their maximum value decreases faster for a

specific Ra value. There is a well-defined change in mode shape for relative

distortions, p>1. It has to be mentioned that the change in mode shape is

influenced by the value of the soil Poisson's ratio, v. More specifically for

v0.25, change in mode shape is observed for p>1, while for v>0.25, the

change in mode shape can be observed for 0.5<p<1.

* As the pipe depth (y/H) increases (Figure 4-14), the horizontal pipe

displacements and their maximum value decrease for a specific Ravalue.

* Finally, as the Poisson's ratio (v) increases (Figure 4-15), the horizontal pipe

displacements and their maximum value also decrease for a specific Ra

value.

4.2.4 Axial pipe strains and stresses

The pipe horizontal displacements are computed in order to estimate the

produced strains and stresses acting on the pipelines. The axial strain Ea is the
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strain in the extreme pipe fiber due to axial deformation. The equation which

gives &ais:

aupX
Ea ax (4.16)

The axial pipe stresses (u-), can be computed using the axial strains by:

a-x = EP - Ea (4.17)

where Ep is the pipe material Young's modulus. Tensile stresses are considered

positive and compressive stresses, negative.

The axial pipe stresses due to axial pipe deformation in addition to the axial

stresses due to bending (Chapter 3) are computed in order to estimate the

possibility of pipe failure in tension or compression, as illustrated in Chapter 6.

4.3 SUMMARY

The response of continuous pipelines to lateral ground displacements due to

tunneling is estimated using a Winkler model, assuming that a pipe loaded

axially on an elastic half-space is equivalent to a pile loaded axially. The pipe is

connected to the ground with horizontal springs and the ground displacements

are described by Pinto and Whittle (2001) closed-form solutions.

A new horizontal spring coefficient Kh is introduced (Equation 4.13) so that the

analytical solutions fit numerical solutions derived by finite elements simulations

in PLAXIS 3D Tunneling. This coefficient includes a new characteristic length x;,
which is the distance to the maximum free-field horizontal displacements at the

depth of the pipe, and it is analogous to the distance to the inflection point x; for

the bending pipe response.
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Analytical solutions for the pipe horizontal displacements are given in graphs for

various values of the pipe depth yp, the tunnel radius r, the tunnel depth H, the

Poisson's ratio v, the relative distortion p at the tunnel cavity and for various

relative pipe-soil axial rigidity factor Ra.

Finally, in order to estimate the possibility of pipeline failure due to the free-field

lateral ground displacements induced by tunneling, pipe axial strains and

stresses must be computed. Axial stresses acting on the pipe due to axial

deformation and due to bending are compared with the allowable stresses of the

pipe (depending on the pipe material) in order to estimate the possibility of the

pipe failure to tension or compression.
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& New (1982)

4 Jacobsz (2002) for sand
A Mair et al. (1993) for clay

Figure 4-1: Ground displacement vectors pointing at three positions on the
tunnel centerline, suggested by O'Reilly & New, 1982, Jacobsz, 2002, and Mair

et al., 1993
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Note: AWL 2;
VO r

and P=-u/u,

Figure 4-2: Pinto and Whittle (2001) method to describe free-field lateral

displacements
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Figure 4-3: Pipeline connected to the soil with horizontal springs and Winkler

analog assuming that a pipe loaded axially is equivalent to a pile loaded axially
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I IdPx = Kux (x)dx
Figure 4-4: Axial loading of a pipeline with infinite pointed loads dPx assuming

P&W (2001) analytical solutions for the free field horizontal displacements ux
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Figure 4-5: Comparison between numerical and analytical solutions for

horizontal pipe displacements, using Scott (1981) recommendation for Kh
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Figure 4-6: Characteristic length xfor axial pipe deformations distortion of two

different relative distortion (p) values
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Figure 4-7: Comparison between numerical and analytical solutions for axial

pipe displacements, using the proposed pipe-soil coefficient Kh
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Figure 4-8: Comparison between numerical and analytical solutions for axial

pipe displacements, using the proposed pipe-soil coefficient Kh
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Figure 4-9: Comparison between

axial pipe displacements for

numerical and analytical solutions for

v=0.5, p=O and yp=-3.5m
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Figure 4-10: Comparison between numerical and analytical solutions for

axial pipe displacements for v=0.5,p=1.5 and yp=-3.5m
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Figure 4-11: Comparison between

axial pipe displacements for

numerical and analytical solutions for

v=0.4, p=1 and yp=-2m
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Figure 4-12: Effect of pipe radius and the relative axial pipe-soil rigidity factor

Ra=EA/Eroxj on normalized horizontal pipe displacements
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Figure 4-13: Effect of relative distortion, p and the relative axial pipe-soil rigidity

factor Ra=EA/Erox on normalized horizontal pipe displacements
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Figure 4-14: Effect of the embedment depth of the pipe, yp and the

relative axial pipe-soil rigidity factor Ra=EA/Esrox on normalized horizontal pipe
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rigidity factor Ra=EA/Esrox on normalized horizontal pipe displacements
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CHAPTER 5

FINITE ELEMENT ANALYSES OF PIPE
RESPONSE

5.0 INTRODUCTION

A series of numerical elastic finite element solutions have been carried out in

order to develop a reliable basis for the analytical models of pipe-soil

interactions (i.e. to define spring coefficients Ky and Kh). This chapter presents in

details the geometry and the material properties of the model used in the

numerical analyses, as well as the limitations of using the specific software for

simulating this problem.

5.1 FINITE ELEMENT MODEL

The goal was to model a pipe at a specified embedment depth and its response

to a set of ground movements induced by the excavation of a tunnel passing

orthogonally beneath the pipeline. The PLAXIS 3D Tunnel software was mainly

used (Vortser et al., 2005; Klar et al., 2005) for modeling this problem. However,

PLAXIS 2D was also used as a first step for the following two reasons:

a) to specify the appropriate boundaries of the model

b) to ensure that the free-field ground deformations computed in PLAXIS,

match the analytical solutions given by Pinto and Whittle (2001).
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5.1.1 Model Geometry and Properties

Figure 5-1 shows the problem geometry schematically in a 2D model. The

tunnel excavation was modeled as a circular cavity at a constant depth H=10m,

with a constant radius r=3m. The uniform convergence of the tunnel cavity (ud
and the relative distortion (p) of the tunnel cavity varied as follows: u,=-0.01m

and -0.025m and p=0, 0.5, 1, 1.5, 2 and 3.

The soil was assumed to be massless clay of Young's modulus E=30MPa, with

various Poisson's ratios v=0.1, 0.25, 0.4 and 0.5. It has to be mentioned that

undrained (incompressible) conditions are approximated using v=0.495. Table

5.1 summarizes the combinations of the input parameters for the tunnel wall

deflections.

The pipeline was assumed to be continuous hollow cylinder of constant radius

ro=0.5m, with wall thickness t=0.01 and 0.05m and stiffness Ep=1.7, 17, 170 and

1700 GPa. It should be noted that the values of the pipe Young's modulus (EP)
do not represent real pipe materials (apart from the value 170GPa which

corresponds to high quality ductile iron), but were selected to represent a wide

range of relative pipe-soil stiffness conditions. The depth of the pipe was also

varied with yp=-1, -2 and -3.5m. Table 5.2 summarizes the different pipe

characteristics used in the model.

Accurate simulation of the free-field ground movements requires careful

selections of boundary conditions, mesh, and pipe and tunnel representation.

5.1.1.1 Boundary conditions and mesh

To simplify the model and save computational time, it was chosen to simulate

half of the problem with the axis of symmetry at the tunnel centerline (Figure 5-

2). Thus, the boundary conditions should be as follows:
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. at the bottom of the model, total fixities should are used

" the top part is left free

* the right side of symmetry (tunnel position) has rollers

e and the left side is also free to be able to capture far field displacements

The far-field boundaries are set at x axis [0, 300] and y axis [-300, 20], for a

tunnel with centerline at (0, 0). Regarding the 3D model, it was found that the

boundaries in the z direction do not affect the solution and therefore -40 z <

40 with the pipeline located at z=0. It has to be noted that the mesh should be

very fine and the planes in z direction (3D model) should be sufficiently close to

each other so as to form thin slices with adequately small 3D elements. The

slices were chosen to be 1m thick.

5.1.1.2 Tunnel cavity deformations and pipeline representation

Uniform convergence of the tunnel cavity is modeled by setting prescribed

displacements of the same magnitude at the nodes of the tunnel cavity, pointing

to the center of the tunnel. Ovalization, is the change of the circular cavity to an

oval shape. This shape cannot be modeled in PLAXIS by using the equation of

a random ellipsis. In order to model the exact shape of the cavity resulting from

the tunnel ovalization (u5), we have to impose the displacements described by

the exact solutions (Verruijt, 1997). The exact solution of the tunnel wall

displacements at the tunnel cavity due to ovalization is:

r
uz(#) = u(p) + N (5.1a)

where:

uz(f3) = u, + iuy (5.1b)
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z(#) = x + iy

with u6 being the ovalization, r the tunnel radius and H the tunnel depth.

From Equation 5.1 b, it can be seen that uz(#8) is a complex number with ux being

the wall displacement at the x axis and uy the wall displacement at the y axis.

z(#) (from Equation 5.1c) is also a complex number, with x and y the

coordinates of the point of interest on the tunnel wall.

Figure 5.3 shows the distortion of a circular tunnel cavity in PLAXIS 2D due to

ovalization, assuming: a) an ellipse and b) the correct oval shape (based on the

exact solutions). Figures 5.4a) and b) show that PLAXIS 2D solutions fit the

analytical solutions for both vertical and horizontal free field displacements by

using the exact solutions (Verruijt, 1997) describing the tunnel cavity distortion.

It has to be mentioned that uniform translation (Auy) (Equation 2.13c) and

2.14c)) has to be added to the tunnel nodes vertical displacements in order to

get the correct free field displacements.

The PLAXIS 3D Tunnel software allows the user to create the problem geometry

in x-y plane and then extrude it as multiple planes in the z direction, creating a

3D mesh in which slices can be activated or deactivated. Hence, the pipeline is

approximated as a beam element of 1m width with bending (EI) and axial (EA)

stiffness, corresponding to the actual cylindrical pipe section (Table 5.2). The

beam - pipe was only activated in the middle slice of the mesh (z=O) as it is

shown in Figure 5-2.

5.2 COMPARISON BETWEEN ANALYTICAL AND FE SOLUTIONS

Having modeled accurately the problem in PLAXIS 3D, the solutions obtained

using the FE analyses should fit the analytical solutions for both the vertical and
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horizontal pipe and free field displacements. The free field displacements

derived numerically fit the analytical solutions, as it is shown in Figures 5.4.

Regarding the vertical pipe displacements, FE analyses were used in order to

verify the analytical solutions derived by the assumption of a Winkler's model,

using as vertical spring coefficient (Ky), the expression proposed by Klar et al.

(2005) (Equation 3.15). Figures 5-5 through 5-9 show PLAXIS and analytically

derived pipe displacements for different pipe stiffness and different sets of

parameters (v, p and u,). The analytical solutions have been derived by using K,

from Equation 3.15. From the figures it is observed that PLAXIS fit the analytical

solutions with small discrepancies, basically at the region of the maximum pipe

settlement. This occurs due to the precision of the mesh. As the mesh becomes

finer, the discrepancies diminish while the computational time increases.

On the contrary, for the case of the horizontal pipe displacements, the FE

analyses were conducted to define the appropriate horizontal spring coefficient

(Kh) used in the analytical solutions presented in Chapter 4. This coefficient was

defined through a trial and error procedure, till matching between the FE and

analytical solutions. Appendix Il summarizes all the graphs showing the

comparison of the analytical solutions against FE analyses for different pipe

stiffness and different set of parameters (v, p, u. and yp).

5.3 SUMMARY

This chapter summarizes the numerical analyses conducted with the finite

element codes PLAXIS 2D and 3D Tunnel, to estimate the response of

continuous pipelines to tunnel induced ground deformations. The problem

geometry, the material properties and the boundary conditions are presented in

details.
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Using PLAXIS 2D analyses, the vertical and lateral free-field movements

estimated by Pinto and Whittle (2001) closed-form analytical solutions were

verified, for different combinations of the parameters p, v, u,, and yp. Three-

dimensional numerical analyses (using PLAXIS 3D Tunnel) were conducted in

order to verify the vertical pipe displacements estimated by analytical solutions

assuming a Winkler's model, where the vertical spring coefficient Kv is computed

by Equation 3.15. The same three-dimensional numerical analyses were also

used to estimate the horizontal spring coefficient (Kh) used in the analytical

Winkler's model for estimating the axial pipe displacements. The proposed

horizontal spring coefficient Kh is presented in Chapter 4 in details.
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Table 5.1: Input parameters for the tunnel wall deflections

0.1
Soil Poisson's 0.25 0.1 0.1 0.1 0.1 0.1ratio 0.25 0.40.25 0.25

v 0.495 0.495 0.495

Relative
distortion 0 0 0.5 1 1.5 2 3

P

Uniform -0.01
convergence -0.0 0025 -0.025 -0.025 -0.025 -0.025 -0.025converence -0.05

u, (M)

Table 5.2: Pipe characteristics

PIPE 1 PIPE 2 PIPE 3 PIPE 4 PIPE 5 PIPE 6

Wall thickness 0.01 0.05 0.05 0.01 0.05 0.05
t(m)

Young's
modulus Ep 1.7 1.7 17 170 170 1700

(GPa)

El (MNm2/m) 6.54 28.7 287 654 2870 28700

EA (MN/m) 53 254 2540 5300 25400 254000
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t =O.1, 0

Ep = 1.7, 1

Linear Eli

E, =30 Mp

v=0.1, 0.2

.05m, ro = 0.5m 2 =1,2,3.5m

7, 170, 1700 GPa

Ht 10m

stic
uE =0.01, 0.025m

'a
p= 0, 0.5, 1, 1.5, 2, 3

5, 0.4, 0.5 3m

Figure 5-1: Schematic representation of the problem in 2D

BOUNDARIES

x e [0,300]
y e [-300,20]

z e [-40,40]

| | |

Figure 5-2: Boundary conditions and pipe representation in the 3D model
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Figure 5-3: Distortion of tunnel cavity assuming a) an ellipse, b) oval shape

resulting from the exact solutions
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Figure 5-4 a): Comparison of free-field ground settlements computed
numerically and analytically using exact solutions for tunnel cavity

displacements
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Figure 5-4 b): Comparison of free-field ground lateral displacements computed
numerically and analytically using exact solutions for tunnel cavity

displacements
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Figure 5-5: Comparison between numerical and analytical solutions of vertical

pipe displacements for v=0.25, p=O, yp=-3.5m and u,=-0.025m
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Figure 5-6: Comparison between numerical and analytical solutions of vertical

pipe displacements for v=0.25, p=0, yp=-3.5m and u,=-O.O1m
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Figure 5-7: Comparison between numerical and analytical solutions of vertical

pipe displacements for v=0.25, p=1, yp=-3.5m and u,=-0.025m
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Figure 5-8: Comparison between numerical and analytical solutions of vertical

pipe displacements for v=0.25, p=0.5, yp=-3.5m and ue=-0.025m
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Figure 5-9: Comparison between numerical and analytical solutions of vertical

pipe displacements for v=0.25, p=O, yp=-3.5m and u,=-0.05m
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CHAPTER 6

APPLICATION OF THE PROPOSED ANALYSES

6.0 INTRODUCTION

This chapter presents the application of the proposed analyses in two cases.

The first is the Chingford Pipe Jacking case, where the analyses are used to

interpret deformations of an instrumented water main due to the construction of

a new tunnel. The second is the N-2 Sewer Tunnel project in San-Francisco,

where the analyses are applied to estimate the effects of ground movements

caused by the construction of the sewer tunnel, on hypothetical pipelines. In

both cases, the free-field ground movements are computed using both empirical

and analytical (Pinto & Whittle, 2001) solutions.

6.1 APPLICATION TO CHINGFORD PIPE-JACKING CASE

This section describes the case of a 30" concrete-lined steel cylinder water main

which was affected by pipe jacking at a site in Chingford, North London (Vorster,

2005) and how the analytical solutions are applied. As part of the upgrading of

the Chingford Water Treatment Works (CWTW), a 2.465m diameter tunnel was

constructed at a depth of 11.8m by the method of pipe-jacking. In order to

estimate the potential effect of the tunnel construction on the overlying jointed

water main, the designers assumed a volume loss of 2% to 3% and it was

proposed that the tunnel would cross at a depth of 10.2m approximately below

the invert of the water main. During construction, the free-field and the pipeline

settlements were monitored.
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6.1.1 Site Description and Geology

Figure 6-1 and 6-2 show a cross-section of the stratigraphy and plan view of the

instrumentation for monitoring the ground movements due to tunnel

construction. The geology of the site comprises 1.1m of made ground, 1.9m

River Terrace Gravels, overlying a 10.9m thick layer of London Clay.

The water main comprises a 4.57m long jointed composite concrete-steel pipe

with outer diameter 942mm and wall thickness, 90mm. The longitudinal bending

stiffness (Ep/p=358 MNm 2) was calculated by taking account of the transformed

section of the composite material (concrete-steel). The edge of the entry shaft

was located 8.9m from the pipeline centerline, with the jacking route crossing

the longitudinal axis of the pipe at 87.50 and at a depth of approximately 10.2m

from the invert of the pipe.

The project was monitored with settlement rods installed in 3 lines, one directly

on top of the pipe and two others on either sides of it, at offsets of 2m (Line R)

and 4m (Line L) respectively from the pipe centerline (Figure 2-6). Ribbon optic

fibers were also used on the crown of the pipeline to monitor strain changes.

The general objective of monitoring was to capture: a) the free-field response of

the soil surrounding the pipeline, b) the pipeline response compared to the free

field soil, c) the pipe joint rotation and d) the development of pipe strains,

including movements across joints (full details are presented by Vorster, 2005).

6.1.2 Free-Field Soil and Pipe response

Pipe jacking is a technique of installing underground pipelines, ducts etc, by

minimizing surface excavation (Vorster, 2005). Pipe sections are jacked from an

entry shaft, while the spoil is disposed of by means of a conveyor system. After

breaking through the exit shaft, the shield is removed and the remaining annulus
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between the jacked pipe and the surrounding soil is grouted up to limit further

ground movement due to contraction of the excavated cavity around the pipe. At

the Chingford site, hydraulic jacks pushed the bottom half of the 2.43m outer

diameter concrete pipe sections in jacking stages along the tunnel. Bentonite

was used to lubricate pipe work during jacking in order to minimize friction

between the pipe and the surrounding soil (Figure 6-3).

Excess pore pressures can develop in the low permeability clay around the

jacks of the shield due to displacement of clay. Behind the shield, a cavity was

formed due to overcutting of the shield. This tail void remained unsupported until

grouting took place after breaking through the exit shaft. As excavation

progressed, the tail void is believed to have acted as a drain, allowing excess

pore pressure to dissipate into the cavity, leading to increases in ground

movements. Further excess pore pressured are also believed to have been

caused by the application of bentonite of pipe sections during jacking

(Immediate response).

An additional mechanism of ground movements is the stress relief behind the

shield due to the lack of support of the tail void. This resulted in a further

component of ground movement associated with the swelling into the

excavation (Intermediate response).

Finally, 2 months after completion of grouting, ground movement continued,

possibly because of the dissipation after grouting of the excess pore pressures

which were developed during jacking of the shield, resulting in further

consolidation (Post grouting response). Table 6.1 shows the volume loss

associated with the ground movement development. The volume losses are

estimated from the curves fitted to the surface settlement trough. Figure 6-4,

shows the total duration of the project and the staged of the construction.
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Vorster (2005), fitted the modified Gaussian curves (Equation 2.6) to the free

field settlement trough (Line L). The parameters used are: pipe bending stiffness

EI=358MNm 2, pipe radius ro=0.471m, soil stiffness Es=40MPa. The assumed

maximum free-field settlement at line L is uyO=7.6mm, n=0.39 (A=0.16) and

distance to the inflection point x;=7.5m. In order to compare the modified

Gaussian curve with analytical solutions of Pinto & Whittle (2001), data from

Line L were fitted using genetic algorithms, for uniform convergence

u,=23.43mm and relative distortion p=0.23. Figure 6-5 shows the monitored

free-field settlements after grouting the tail void (68th day), the modified

Gaussian curve suggested by Vorster (2005) in order to fit the data and the

analytical solutions proposed by Pinto & Whittle (2001). It can be seen that the

analytical solutions predict more accurately the free-field settlements than the

modified Gaussian curve.

The basic assumption in order to estimate the water main response is that the

pipe behaves as a continuous pipeline. Based on Vorster's predictions, the

distance to the inflection point of the free-field settlement trough at the pipe level

is x;=4. I Im and the maximum free field settlement is uyO=3.9mm. Taking into

account that EI=358MNm 2, ro=0.471m and Es=40MPa, the relative pipe-soil

bending rigidity factor Rb (Equation 3.14) is 0.16. Vorster et al. (2005) reported

that pipelines with Rb<0.5 behave as very flexible and simply follow the ground

movements. Hence, the water main is expected to be very flexible compared to

its surrounding soil.

The pipe settlements are estimated by applying the proposed analytical method,

assuming that the free-field settlements at the pipe level are described by the

analytical solutions of Pinto & Whittle (2001). Figure 6-6 shows the monitored

pipe settlements, the free-field settlements at the pipe level and the predicted

pipe settlements based on the proposed analytical method. It can be seen that
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the pipeline simply follows the ground movements and therefore the Chingford

case does not contribute much in verifying of the proposed analytical method.

Vorster (2005) also reported that the horizontal free-field ground displacements

should be given by the empirical Equation 4.2 for d=0.175, c=0.325, H=11.8m

and y=1.6m. Taking into account that the free-field settlements are described by

a modified Gaussian curve with uy =7.6mm, n=0.39 (A=0.16) and x;=7.5m, the

lateral free-field displacements are given by:

x 0.39
ux = 0.0076 - 1. (6.1)

16.55 (0.39 - 1) + e"-.1*()

In order to compare the empirical solutions with analytical solutions of Pinto &

Whittle (2001), lateral free-field displacements were computed using uniform

convergence u,=23.43mm and relative distortion p=0.23. Figure 6-7 shows the

empirical and the analytical predictions for the free-field horizontal movements

at the pipe level. It can be seen that the two methods converge close to the

tunnel, while the empirical solutions underpredict the horizontal free-field

movements, as the distance from the tunnel centerline increases.

The pipe axial displacements are estimated by applying the proposed analytical

method, assuming that the free-field lateral displacements at the pipe level are

described by the analytical solutions of Pinto & Whittle (2001). Figure 6-8 shows

the pipe axial displacements for pipe stiffness, Ep=3060OMPa, pipe radius, ro=

0.4 71m, wall thickness, t=45mm (Ap=O. 1266m 2).

The settlements and axial displacements of the water are used to estimate the

pipe strains and stresses. Equations 6.2 and 6.3 give the axial component of the

bending strains, the axial strains due to horizontal pipe displacements, the total

pipe strains and the axial pipe stresses.
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Ero ax2 (6.2a)

aupX
=a (6.2b)ax

-= Ep (b + ca) (6.3)

where

u,, u, = Vertical and horizontal pipe displacements

Figure 6.9 illustrates the predicted pipe axial, bending and total strains and

stresses by using the proposed analytical method.

6.2 APPLICATION To N-2 SEWER TUNNEL PROJECT

This section considers the effects of ground movements caused by construction

of the N-2 sewer tunnel in San Francisco, on hypothetical pipelines. As reported

by Clough et al. (1983), the N-2 San Francisco is a 3.7m diameter and 915m

sewer tunnel, part of the San Francisco Clean Water Project started at 1981. It

is located on the northeastern portion of the Peninsula near San Francisco Bay.

The tunneling was a challenge because of the following reasons:

a) the overlying activities could not be disrupted

b) there was an average of only 9.1 m cover

c) the tunnel section was in a soft layer of sediments overlain by a rubble fill of

indeterminate quality

d) the ground water table was about 4.6m above the crown

e) wooden piles passed through the tunneling section

128



f) a high pressure water line was located near the surface only 1.5m off the

tunnel center line.

The major portion of the subsurface profile consists of an average of 6.1m

rubble fill underlain by 9.1m soft sediment (Recent Bay Mud). A stratum of

colluvial and residual sandy clay is encountered below the Bay Mud. The tunnel

was advanced entirely within the Recent Bay Mud, which consists of silt and

lean clay with some beds of fine sand. The soil is essentially normally

consolidated except near the top of the stratum, where it has been lightly

overconsolidated by desiccation. Triaxial test data suggest that the undrained

shear strength of the Recent Bay Mud, s,= 24.3 kN/m2 just below the fill and

increases approximately at As/Az= 0.63 kN/m2/m with depth. An idealized soil

profile is shown in Figure 6-10.

6.2.1 EPB Tunneling Method

The tunneling method used is the EPB (Earth Balance Pressure) method. The

EPB tunneling machine (Figure 6-11) consists of a rotating cutterhead which

excavate the soil and pass it through slots to a spoil retaining area behind the

cutterhead. Two rows of teeth are set on the cutterhead between the slots to cut

the soil at the face of the shield. The soil is removed via a screw auger, is

deposited onto a conveyor belt and is transferred outside the tunnel.

The main idea of the EPB shield is that it allows control of the amount of the soil

excavated as the shield advances. If the auger operates too fast, the void

created by the soil removal can lead to possible flowing soil conditions. This is

avoided by monitoring the amount of soil in the spoil retaining area and the rate

of screw auger rotation. For the N2 project, the earth pressure was chosen so

that the screw auger would remove soil from the retaining area at a slightly
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slower rate than the rate of the soil entering the cutterhead. This practice was

designed to initially heave the soil outwards from the shield to some degree and

to compensate partially for the subsequent inwards movement caused by the tail

void closure (Kimura et al. 1981).

6.2.2 Measured Free-Field Movements

In order to monitor the free field ground displacements, ground instrumentation

was installed at four locations along the tunnel alignment as it is shown in Figure

6-10. Lines 2, 3 and 4 were monitored throughout the total tunneling procedure,

while Line 1 readings were taken less frequently. Lines 1 and 2 were located at

the first third of the project, and Lines 3 and 4 were located at the middle third,

close to areas where piles existed.

As reported by Clough et al. (1983), readings from all the Lines showed that

initially the ground heaved vertically only a small amount of 0.63cm. After the

shield passage, the ground began to settle and continued so for about 40 days.

A maximum settlement of 3cm was reached at this time. Readings taken at 150

days showed actually no further settlement. This vertical soil movement

occurred due to closure of the tail void.

Regarding the lateral movements, inclinometers at Lines 1 and 2 showed lateral

soil movements towards the centerline of the tunnel, while readings from

inclinometers at Lines 3 and 4 showed that the soil was actually pushed ahead

of and away from the shield as it advanced. However, after shield passage the

vectors reflected incremental inwards movements towards the tunnel, caused by

the presence of the tail void, but still the net positions were away from the

tunnel. Figure 6-12 shows vertical and horizontal movements at Line 4, fifteen

days after shield passage.
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Figure 6-13 shows the 'long-term' lateral movements measured 15 - 30 days

after shield passage at the inclinometers immediately adjacent to the tunnel for

all four Lines. Where the net movements were inwards, the earth pressure was

low (Lines 1 and 2), while where the net movement was heave, the earth

pressure was high. Table 6.2 summarizes the non-dimensional earth pressure

of the shield machine and the maximum net lateral movement after shield

passage for the four Lines.

6.2.3 Interpreted Free-Field Movements

6.2.3.1 Empirical Solutions

Empirical solutions were used to fit the high earth pressure data (Line 4),

assuming the Gaussian curve (n=1) distribution for the free field ground

settlements, with maximum settlement of uy'=0.033m and distance to the

inflection point xi=3.13m.

The ground displacements are assumed to be directed towards the tunnel

centerline. Taking into account that at the tunnel is entirely excavated into the

Recent Bay Mud, we assume that the fill above it has the same properties and

thus the whole soil profile is actually clay with undrained shear strength su=24.3

kN/m2. Following Mair et al. (1993), we obtain:

ux = 6e 23.13) (6.4)

Equation 6.4 has been derived by Equation 4.3 with d=O. 175, c=O.325, H=9.6m

and y=2m.
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6.2.3.2 Analytical Solutions

Analytical solutions (Pinto & Whittle, 2001) were used to fit high (Line 4) and low

(Line 2) face pressure data. Zymnis et al. (2011) report uniform convergence ut

= -0.017m and relative distortion p = 2.06 for Line 4, and ue= -0.031m and p =

0.32, for Line 2 data. Figure 6-14 compares the-free field ground settlements

evaluated by the empirical and analytical solutions at an embedment depth y=-

2m. The displacements are very similar in a region of x 6m (20ft) from the

tunnel centerline. However for x>6m, the analytical solutions show heave of the

soil (negative settlements), that is not described by the empirical functions. The

measured data do not extend more than 6m from the tunnel centerline and thus

they cannot verify the occurrence of heave described in the analytical solutions.

Regarding the horizontal free-field ground displacements, empirical solutions

assume that the displacements point at the tunnel centerline. However, data

from Line 4 showed that the soil was actually pushed away from the tunnel

centerline after some distance (Figure 6-13), due to high earth pressure. Figure

6-15 shows that analytical solutions are able to capture this mechanism.

For Line 2, analytical solutions are used. Figure 6-16 shows the free-field

settlements and horizontal displacements described by P&W (2001) analytical

solutions, at a depth of y= -2m. The horizontal free-field displacements indicate

horizontal soil movements towards the tunnel centerline. This was expected as

the Line 2 data from Figure 6-13 show that soil moved laterally towards the

tunnel.

6.2.4 Response of Hypothetical Pipelines

The response of hypothetical pipelines at y=-2m is now considered using the

proposed pipe-soil interaction models.
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6.2.4.1 Pipeline characteristics

The pipelines of primary interest are continuous cast-iron sections (the majority

of old water mains are made of cast-iron). Typical pipeline diameters, range

between 0.3m and 1.0m. Figure 6-17 shows the model geometry and properties

of this problem with the N2 - San Francisco tunnel at a depth of 9.6m and a

continuous pipeline buried at depth yp=-2m. Table 6.2 summarizes all the

characteristics of the pipelines considered in the analyses, with Young's

modulus of cast iron Eci=100 GPa. The vertical spring coefficient Ky is defined

by equation 3.15 with x;=4.88m and the horizontal spring coefficient Kh is defined

by Equation 4.13 with x;=3.125m, where x; and xj are defined by the free-field

displacements at the depth of interest (e.g. y=-2m).

6.2.4.2 Vorster method (2005)

Due to the fact that empirical solutions were used to evaluate free field

displacements produced only by high earth pressure (Line 4), Vorster (2005)

method, which uses empirical solutions, was also used for estimating pipeline

response to free field movements in Line 4. Figure 6-18 shows a flow chart with

the required input parameters and the procedure to obtain the vertical pipe

displacements with Vorster's method.

Horizontal pipe displacements are not included in Vorster (2005) method and

thus they are not computed in this analysis. The pipe settlements evaluated by

Vorster (2005) method for the 8 different pipes selected, are therefore used to

compute the bending pipe strains and stresses (Equations 3.13 and 3.14) which

are described below in details.

133



6.2.4.3 Proposed method

The proposed method estimates the pipe response to vertical and horizontal

displacements, using the analytical free-field solutions (Pinto & Whittle, 2001).

Figure 6-19 shows a flow chart with the required input parameters and the

procedure to obtain the vertical and horizontal pipe displacements with the

proposed method. The method is used for both cases of low (Line 2) and high

(Line 4) face pressure of the EPB machine.

Low face pressure - Line 2

The vertical and horizontal pipe displacements computed by the proposed

method are used to evaluate the axial and bending pipe strain and stresses

(Equation 6.2, 6.3).

Figures 6-20 shows the axial, bending and total pipe strains and stresses for

both the upper and lower fiber of the pipe30 (diameter 0.3m) representatively.

The corresponding graphs for the rest of the pipes selected (Pipe40 to Pipe 100)

are presented in Appendix 111. The largest compressive stress (62MPa) was

observed in pipe30. Smaller stresses were observed over the larger pipe section

(Pipe40 to Pipe100 - Appendix Ill). This was expected, as the pipes with bigger

diameters are stiffer and thus they undergo smaller strains.

High face pressure - Line 4

Figure 6-21 compares the pipe strains and stresses for the 0.3m diameter cast-

iron pipe (Pipe30) representatively, using Vorster (2005) and the proposed

analyses method. The corresponding graphs for the rest of the pipes selected

(Pipe40 to Pipe100) are presented in Appendix Ill. The method of Vorster
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(empirical) tends to overestimate the pipe strains and stresses, as it does not

account for axial compression due to lateral displacements in the soil. More

specifically, the maximum axial stress observed is 125MPa computed

empirically, while with the proposed method the axial stress drops to 115MPa.

Smaller differences arose in larger diameter pipes. This happens due to the fact

that the pipes are stiffer and thus they get smaller trains and stresses.

6.2.5 Possibility of Pipeline Failure

To estimate the possibility of pipeline failure, comparison between the applied

stresses and the allowable stresses on the pipes has to be done. In the previous

paragraphs, the applied pipe stresses are computed with empirical and

analytical methods due to ground movements at Lines 2 and 4. The following

paragraphs present the cast iron allowable stresses and the possibility of failure

of the hypothetical pipelines chosen.

6.2.5.1 Cast-Iron strength

In general cast-iron pipelines can be divided in 2 categories: the pit and the

spun cast iron pipes. The pit cast-iron pipes are cast vertically, while the spun

cast-iron are cast horizontally. Due to the difference of casting direction, the two

categories have significant different strengths.

Many researchers have reported results from tests conducted to find the tensile

and compressive strength of cast-iron pipelines. Most of the tests were done on

coupons cut from old cast-iron pipelines which were excavated from the ground.

The coupons were mainly tested in tension as the compressive strength of cast-

iron is much higher than its tensile strength. Table 6.4 summarizes the tensile

strength of pit and spun cast- iron pipes reported from different researchers.
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The most complete research on cast-iron pipe strength is Seica & Packer (2004)

who tested 111 old, preexisting and corroded pipes. Four kinds of tests were

performed: a) tension, b) compression, c) ring bearing and d) bending. Tension

and compression were done on pipe coupons, ring bearing tests on pipe ring

sections and four - point bending tests on whole pipes.

The compression strength reported from the tests ranges from 519 MPa to 1047

MPa (mean value 783 MPa), while the tensile strength reported ranges from

47MPa to 297 MPa (mean value 172 MPa) for all pit and spun cast - iron pipes.

Regarding the bending tests, the results from the six pipes tested are

summarized in Table 6.5. It has to be mentioned that Seica & Packer (2004)

reported only the total failure load and not the failure moment. The latter are

calculated by the failure loads, assuming a pipe wall thickness t=35mm for a

152mm diameter pipe and, t=9.6mm for a 102mm diameter pipe. Figure 6-22

shows the typical four point pipe bending load configuration with its

corresponding [Q] and [M] diagrams.

The bending moments have been derived from diagram [M] of Figure 6-23 and

the failure stress is given by Equation 6.5.

x = Mr, (6.5)

From Table 6.5 it can be observed that pipes 2 and 6 have a low total failure

load. This happened because ID #2 had a lot of variations on its wall thickness

and #6 had a small diameter. For this reason these two pipes are excluded from

calculation of the mean value of the failure stress, which is finally 155 MPa.
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6.2.5.2 Estimation of the possibility of pipeline failure

The hypothetical pipelines at N2-San Francisco case act as beams under

constrained bending and axial conditions during the excavation of the tunnel.

For this reason, the pipe stresses computed empirically and analytically are

compared with failure stresses reported from the pipe bending tests by Seica &

Packer (2004). In addition the computed stresses are also compared with the

material compression and tensile strength.

The maximum compressive stress that is observed on the pipes examined is

125 MPa for Pipe30 at Line 4 case. The minimum cast - iron compression

strength reported by Seica & Packer (2004) is 519 MPa. Therefore, there is no

possibility of pipe failure in compression,.

Regarding possibility of pipeline failure in tension, Figure 6-21 summarizes the

cases where the computed tensile stresses using the proposed method exceed

the lowest estimates of tensile strength for cast-iron pipes. The results clearly

show that all pipes are more vulnerable to the case where high face pressures

were used for the N-2 tunnel (Line 4), while only small diameter pipes (ro<0.2m)

are vulnerable at the lower face pressure (Line 2).

Examining the failure stress in bending, it is observed that even Pipe30, which is

the most flexible, under high earth pressure ground movements (Line 4) does

not reach the lowest failure stress of 130 MPa (Table 6-5). Therefore, none of

the pipes examined is susceptible to bending failure.

6.3 SUMMARY

This chapter illustrates the application of the proposed method in 2 cases.

Chingford pipe-jacking tunnel case was used in order to examine whether
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analytical solutions (Pinto & Whittle, 2001) can accurately predict the free-field

settlements and also whether our mathematical model can accurately predict

the pipeline response. In Chingford (London) an existing concrete water main

was monitored as it was subjected to ground movements caused by tunneling.

Free-field subsoil displacements, as well as pipe settlements data are available

in Vorster (2005). Results from this research showed that the analytical

solutions can predict more accurately the free-field settlements than a Gaussian

or a modified Gaussian curve. Regarding the pipeline response, application of

the proposed method did not give a remarkable result as the pipeline was very

flexible relative to its surrounding soil and it simply followed the ground

movements.

This chapter also illustrates a proposed method for computing stress conditions

in a cast-iron water pipe due to ground movements caused by construction of

the N-2 San Francisco sewer tunnel. The proposed method considers the

effects of face pressure applied by the EPB tunneling method.

Data from the free field ground movements are matched with empirical (Vorster,
2005) and analytical (Pinto & Whittle, 2001) solutions for the lowest and highest

face pressure. Comparison between the two solutions shows that the empirical

approach does not estimate accurately the lateral free-field ground movements

under high face pressure conditions.

The case of hypothetical pipeline response to N-2 tunneling is examined,

assuming a pre-existing cast-iron continuous pipeline at 2m depth. The

response of the pipeline is estimated empirically using Vorster's method, and

analytically using the proposed method taking into account the lateral free-field

ground movements that empirical methods ignore. It is observed that in some

cases the empirical solutions slightly overestimate the stresses and strains

acting on the pipes.
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The computed stresses acting on the hypothetical pipes are compared to the

allowable stresses reported by several researchers. The allowable stresses are

given from tensile and compressive tests done on cast iron coupons cut from old

pipelines and also from bending tests done on while old excavated cast-iron

pipelines served as water mains. It is observed that comparing the applied

stresses with the lowest allowable stresses, there is possibility of pipeline failure

in tension for high earth pressure conditions.
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Table 6.1: Volume Loss associated with ground movements

End of Ground Movement Volume Loss Volume Loss
Development Stage Line L Line R
Immediate settlement

(3rd day) 0.60 % 1.30%

Intermediate settlement
(19th day) 2.70% 3.80%

Post grouting 3.80% 5.10%
( 6 8 th day) 3.80%_5.10%

Table 6.2: Earth Pressure and Net Lateral Movement

Line # Non-dimensional Earth Max. net lateral movement
Pressure after shield passage (cm)

1 0.4 -1.02 (inward)

2 0.4 -1.27 (inward)

3 1.0 5.84 (heave)
4 0.8 3.05 (heave)



Table 6.3: Cast - iron pipeline characteristics used

OUTER WALL 2
PIPE DIAMETER THICK. EA (kN) El (kNm) Kv (kPa) Kb (kPa)

(M) (M)

6 3 3 3
30 0.3 0.014 1.26*10 13*10 9*10 2.4*10

6 3 3 3
40 0.4 0.015 1.8*10 34*10 12*10 3.3*10

6 3 3 3
50 0.5 0.016 2.43*10 71*10 15*10 4.1*10

6 3 3 3
60 0.6 0.018 3.3*10 140*10 18*10 5*10

6 3 3 3
70 0.7 0.019 4.1*10 236*10 21*10 5.8*10

6 3 3 3
80 0.8 0.02 4.9*10 373*10 24*10 6.6*10

6 3 3 3
90 0.9 0.021 5.8*10 560*10 27*10 7.7*10

6 3 3 3
100 1 0.023 7.06*10 840*10 30*10 8.3*10

Table 6.4: Tensile strength of Cast-Iron pipes

REFERENCE SPUN CAST PIT CAST MEAN VALUE MEAN VALUE
R IRON IRON SPUN PIT

Rajani et al. (2000) 135- 305 33-267 220 150

Makar & Rajani (2000) 157 - 305 68 - 146 240 107

Conlin & Baker (1991) 137-212 175

Yamamoto et al. 100 - 150 -- 125 --
(1983)

Caproco Corrosion 70 -217 -- 144 -
(1985)

Ma & Yamada (1994) 40-320 -- 180 -
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Table 6.5: Tensile strength of Cast - iron pipes (Seica & Packer, 2004)

ID Nominal Tensile Total Bending Moment Failure
strength failure moment of inertia stressNo. D(mm) (MPa) load (kN) (MNm) (M4) (MPa)

1 152 130 211 0.047 2.4 x 10~5  149

2 152 131 75 0.017 2.4 x 10~5  54
3 152 141 182 0.041 2.4 x 10~5  130
4 152 159 192 0.043 2.4 x 10~5  136
5 152 244 286 0.064 2.4 x 10~5  203

6 102 222 85 0.019 3.06 x10 22
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Figure 6-1: Chingford geological profile and geometry

Figure 6-2: Monitoring layout of the Chingford project
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Chingford water main strains & stresses at lower fibre
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Figure 6-9: Axial and bending strains and stresses at lower fiber of Chingford
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Figure 6-11: Typical front view of EPB shield
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Figure 6-12: Line 4 vertical and lateral movement vectors, 15 days after shield

passage
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Figure 6-18: Vorster method (2005) for estimating pipe response u

P
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Figure 6-19: Proposed method for estimating pipe response
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Line 2 Pipe30 strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe30 strains at lower fibre (y=-2m)
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Figure 6-21: Strains and stresses of Pipe30 for soil movements at Line 4
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CHAPTER 7

SUMMARY, CONCLUSIONS AND

RECOMMENDA TIONS

7.1 SUMMARY & CONCLUSIONS

The goal of the present research was to develop an analytical method for

estimating the response of an existing continuous pipeline to ground

deformations induced by tunnel construction. The pipeline is assumed to be

aligned transverse to the direction of the tunnel, and is fully in contact with its

surrounding homogeneous soil. The closed-from solutions for the free-field

ground deformations are given from prior work of Pinto & Whittle (2001).

The method uses a conventional Winkler model to explain effects of ground

deformations on bending and axial loading of pipelines. The Winkler spring

coefficients are derived from matching the analytical results with results of linear

elastic finite element analyses. The vertical spring coefficient K, follows the

results presented by Klar et al. (2005).

K, = 12Ero (7.1)
xi

where x; is the distance to the inflection point in the free-field settlement trough

at the elevation of the pipe.

A new expression has been derived for the horizontal spring coefficient Kh.

15Esr0
Kh = 1Eo(7.2)

(1+ v)(1+ p)x;

where x; is the lateral location of maximum free-field horizontal movements and

p is the relative distortion that characterizes the field of ground movements.
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The pipe deformations are solved numerically with Mathematica 7.0 and their

results are presented in graphs for various input parameters and for different

relative pipe - soil bending and axial rigidity factors Rb and Ra. The later are

ratios of the pipe bending and axial stiffness respectively, over the soil stiffness

and they show the rigidity or flexibility of the pipeline compared to its

surrounding soil.

Following Vorster et al.(2005), the relative pipe-soil bending rigidity factor Rb is

given by:

EI

Rb = EIx~ (7.3)E, rxi

The relative pipe-soil axial rigidity factor Ra is then obtained as follows:

E A
Ra = Er(7.4)

Finite element simulations were conducted (using PLAIXS 2D) to verify the

closed-form free-field ground displacements reported by Pinto and Whittle

(2001). Simulations using PLAXIS 3D Tunnel were used to validate the

suggested expressions for the vertical and horizontal spring coefficients Kv and

Kh respectively.

Vertical and horizontal pipe displacements, bending moments and axial stresses

and stresses are evaluated in order to predict whether a pipeline can fail due to

tunnel- induced ground deformations.

The proposed method is illustrated for 2 cases: a) Chingford pipe-jacking case

and b) N-2 San Francisco sewer tunnel case. In Chingford pipe-jacking tunnel

case it is observed that the analytical solutions (Pinto & Whittle, 2001) can

predict more accurately the free field settlements than empirical solutions.

Regarding the pipeline response, application of the proposed method did not
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give a remarkable result as the pipeline was very flexible relative to its

surrounding soil and it simply followed the ground movements. In N-2 San

Francisco sewer tunnel case the proposed method is applied on hypothetical

continuous cast-iron pipelines that are buried at a depth of 2m. The specific

case was selected because the EPB method was used for this tunnel project

with a range of face pressures in the soft Bay Mud. The free-field ground

movements were estimated for cases of low and high face pressure using the

closed-form solutions of Pinto and Whittle (2001).

The results show that cast-iron pipelines are vulnerable to tensile failures due to

EPB tunnel construction, especially for cases of high face pressure and for

smaller diameter pipes.

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The proposed methodology presented in the current study needs to be validated

through well documented case studies. There are very limited data available in

the current literature and from laboratory physical model tests. Further

development of these analyses should include:

" Possible slippage between the pipe and the soil and possible separation

(through finite element simulations).

* Investigation of the effects on jointed pipelines.

* Investigation of other sources of stress, including surcharge loads (vehicle

loads), foundation excavations, changes of temperature, earthquakes and

others.
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APPENDIX I

* Settlement and bending moment at a certain point on the pipe, assuming

that the free-field settlements are described by:

a) A modified Gaussian curve (Vorster et al., 2005)

b) Pinto & Whittle (2001) analytical closed-form solutions

e Horizontal displacements at a certain point on the pipe,

free-field lateral displacements are described by:

a) Empirical method using modified Gaussian curve

(Vortser, 2005)

b) Pinto & Whittle (2001) analytical closed-form solutions

assuming that the

for describing uy

e Mathematica scripts for normalized pipe settlements, bending moments and

axial displacements using Pinto & Whittle (2001) for the free-field

movements

e Relationship between xi and xj with relative distortion,p and embedment

depth ratio, y/H
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e Settlements and bending moments

Application of Modified Gaussian Curve (Vorster et al., 2005)

n

(n - 1) + e

+
0

n

(n - 1) + e

2 - e-Avx(cosAx + sinXx)

A Xi

dx

a-b 2 - e-Avx(cosAvx + sinAx))

Xi
-1)+ e(

[ab 2 - e~Avx (costx + sinkAx) dx

A(U)
Xi)

+1f
0 (

(n-i1) + e

e Avx(cosA,x + sinAx)

A 

2
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Application of Pinto & Whittle (2001) Closed-Form Solutions

'b

2 f

0 (f (a2 b
+ x) - e-AVx(cosAx + sinx)) dx

+ f (f(ab - e- AVX(COSAX + sinkx)) dx

- e-vx(cosAx + sinkx)) dx

(a -b

2 - x) -e vx(cosAvx + sinx)) dx

f (x) = uEr

+u6r 
3-4v

I+(y + H) (y - H

(X) 2+ (y + H)2 (X)2 + (y -

) '
H)2

4(1 - v) (y - H)
-(X) 2+ (y - H)2j

4(y - H) (x) 2 + 2H [(x) 2 - (y - H) 2 ]

[(x) 2 + (y + H) 2]2

r(y-H){(3-4v) [(x)2 +(y-H)2]2 -[3(x)2-(y-H) 2] [(X)2+(y-H) 2 _r2}
[(x)2+(y-H)2]3

(y+H)((3-4v)[(x)2+(y+H)2] 2 -[3(x)2-(y+H)2][(X)2+(y+H)2-r2]1

[(x)2 +(y+H) 2 ] 3

8 (1-v) -((x)2 (2H-y) -y(y-H) 2}

8(y-H)(Hy(y-H) 2 - (x)2.[((x)2+y 2 )+H(y+H)]}

171

K 
[

M = -
a 2 b

+ f (f
0

with:

- x)



* Horizontal displacements

Application of Empirical Method Using Modified Gaussian Curve for Describing

u, (Vorster, 2005)

- 2 + x

10 (1+H)H-y
(n - 1) +

a - b

+ fa ( 2 ~)

0 (1 + H-

n - e-Ahxdx

e \

n

(n -1) +

Application of Pinto & Whittle (2001) Closed-Form Solutions
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0

a-b

2
-ehx) dx +

a-b
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g(x) = uexr
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e Mathematica scripts

(* Normalized free-field and pipe settlements and bending moments *)

(* General Parameters *)

r=0.25

y=-0.5
v=0.5

p=3

H=1 0

(* Free-field solution *)

Sv[x_]: =((((y+ 1)*r/((xA2+(y+ 1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*((xA2+(y+1 )A2)A2)-

((3*xA2-(y+1 )A2)*(xA2+(y+1 )A2-rA2)))/((xA2+(y+1 )A2)A3))-(((y-l)*r/((xA2+(y-

1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*((xA2+(y-1 )A2)A2)-((3*xA2-(y-1 )A2)*(xA2+(y-1 )A2-

rA2)))/((xA2+(y-1 )A2)A3))+2*r*(((2*(y-1)*(xA2)+1 *(xA2-(y-1 )A2))/((xA2+(y-1 )A2)A2))-(2*(1 -

v)*(y-1)/(x^2+(y-1 )^2)))-(8*p*r/(3-4*v)) *((((1 -v)*x^ 2*(2*1-y)-y*(y-1 )^2)/((x^ 2+(y-1 )^2)^ 2))-

(((y-l)*(1 *y*(y-1)A2-(xA2)*((xA2+yA2)+1 *(y+1))))/((xA2+(y-1 )A2)A3))))

Plot [Sv[x],{x,-5,5}]

FindMaximum[Sv[x],x]

{3.94444,{x->1.01425*1 A14}}

Export ["name.dat", Table[Sv[x],{x,-5,5,0.02}]]

(*Find the inflection point lt=xi/H*)

Solve[D[D[(((y+1)*r/((xA2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*((xA2+(y+1 )A2)A2)-

((3*xA2-(y+1 )A2)*(xA2+(y+1 )A2-rA2)))/((xA2+(y+1 )A2)A3))-(((y-1)*r/((xA2+(y-

1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*((xA2+(y-1 )A2)A2)-((3*xA2-(y-1 )A2)*(xA2+(y-1 )A2-

rA2)))/((xA2+(y-1 )A2)A3))+2*r*(((2*(y-1)*(xA2)+1 *(xA2-(y-1 )A2))/((xA2+(y-1 )A2)A2))-(2*(1 -

v)*(y-1)/(x^2+(y-1 )^2)))-(8*p*r/(3-4*v))*((((1 -v)*x^ 2*(2*1 -y)-y*(y-1 )^2)/((x^ 2+(y-1 )^2)^ 2))-

(((y-1)*(1*y*(y-1)^2-(x^ 2)*((x^ 2+y^2)+1 *(y+1))))/((x^2+(y-1 )^2)^ 3))),x],x]==0,x]
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(* For Rb=E/Es*ro*xiA3 *)

R=8

lt=0.24047319446299206 (*It=xi/H*)

L=(1/lt)*((3/R)A( 1/4))

(* Vertical normalized pipe displacements uyp/uyo, x is normalised vs H*)

Do[Export["uypR_8.dat",Table[(((U2)*(Nintegrate[((((y+1)*r/(((a-

6+x)A2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*(((a-6+x)A2+(y+1 )A2)A2)-((3*(a-6+x)A2-

(y+1)A2)*((a-6+x)A2+(y+1 )A2-rA2)))/(((a-6+x)A2+(y+1 )A2 )A3 ))-(((y-1)*r/(((a-6+x)A2+(y-
1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*(((a-6+x)A2+(y-1 )A2)A2)-((3*(a-6+x)A2-(y-1 )A2)*((a-

6+x)A2+(y-1 )A2-rA2)))/(((a-6+x)A2+(y-1)A2)A3))+2*r*(((2*(y-1)*((a-6+x)A2)+1 *((a-6+x)A2-

(y-1)^2))/(((a-6+x)^ 2+(y-1 )^2)^ 2))-(2*(1 -v)*(y-1)/((a-6+x)^ 2+(y-1 )^2)))-(8*p*r/(3-

4*v))*((((1 -v)*(a-6+x)A2*(2*1-y)-y*(y-1)A2)/(((a-6+x)A2+(y-1)A 2 )A2 ))-(((y-1)*(1 *y*(y-1 )A2-

((a-6+x)A2)*(((a-6+x)^2+yA2)+1 *(y+1))))/(((a-6+x)A2+(y-1 )A2)A3))))

*Exp[-L*x]*(Cos[L*x]+Sin[L*x]),{x, 0,12-al]+N Integrate[((((y+ 1)*r/(((a-6-

x)A2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*(((a-6-x)A2+(y+1 )A2)A2)-((3*(a-6-x)A2-

(y+1)A2)*((a-6-x)A2+(y+1 )A2-rA2)))/(((a-6-x)A2+(y+l)A 2 )A3 ))-(((y-1)*r/(((a-6-x)A2+(y-
1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*(((a-6-x)A2+(y-1 ) 2) 2)-((3*(a-6-x)2-(y-1)A2)*((a-6-

x)A2+(y-1 )A2-rA2)))/(((a-6-x)A2+(y-1 )A2)A3))+2*r*(((2*(y-1)*((a-6-x)A2)+1 *((a-6-x)A2-(y-

1)A2))/(((a-6-x)A2+(y-1 )^2)^ 2))-(2*(1 -v)*(y-1)/((a-6-x)A2+(y-1 )A2)))-(8*p*r/(3-4*v))*(((( 1-

v)*(a-6-x)A2*(2*1-y)-y*(y-1 )A2)/(((a-6-x)A2+(y-1 )^ 2)^2))-(((y-1)*(1 *y*(y-1)A2-((a-6-

x)A2)*(((a-6-x)A2+yA2)+1 *(y+ 1))))/(((a-6-x)A2+(y-1 )A2)A3))))*Exp[-

L*x]*(Cos[L*x]+Sin[L*x]),{x,0,a}])))/3.944444444444444,{a,0,6,0.02}]],{a,0,6,0.02}]

(* Free-field moments Mn (Mn=M*HA2/El*uyo), x is normalised vs H*)

D[D[(((y+ 1)*r/((xA2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*((xA2+(y+1 )A2)A2)-((3*xA2-

(y+1)^2) *(x^2+(y+1 )^2-r^A2)))/((x^ 2+(y+1)^A2)^ 3))-(((y-1 )*r/((x^ 2+(y-1 )^2)))+p*(r/(3-

4*v))*(y-l)*((3-4*v)*((xA2+(y-1 )A2)A2)-((3*xA2-(y-1 )A2)*(xA2+(y-1 )A2-rA2)))/((xA2+(y-

1)A2)A3))+2*r*(((2*(y-1 )*(xA2)+1 *(xA2-(y-1)A2))/((xA2+(y-1 )A2)A2))-(2*(1-v)*(y-1 )/(xA2+(y-
1)A2)))-(8*p*r/(3-4*v))*((((1- v)*xA2*(2*1-y)-y*(y-1)A2)/((xA2+(y-1 )A 2 )A 2 ))-(((y-1)*(1 *y*(y-

1)A2-(xA2)*((xA2+yA2)+1 *(y+1))))/((xA2+(y-1 )A2)A3))),x],x]

Mn[xJ:=-((1.' xA2)/(0.25' +xA2)A3-0.25'/(0.25' +xA2)A2+(3.' xA2)/(2.25' +xA2)A3-

0.75'/(2.25' +xA2)A2+0.5' ((24 xA2 (-2.25'-2.' xA2))/(2.25' +xA2)A4+(44.'
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xA2)/(2.25' +xA2)A3-(4 (-2.25'-2.' xA2))/(2.25' +xA2)A3-7.'/(2.25' +xA2)A2)+(1.125' (-16.'

xA2-6 (2.1875'+xA2)+4.' (2.25'+xA2)-2 (-2.25'+3 xA2)))/(2.25'+xA2)A3-(13.5' x (-6 x

(2.1875'+xA2)+4.' x (2.25'+xA2)-2 x (-2.25'+3 xA2)))/(2.25'+xA2)A4+(54.' xA2 (1.'

(2.25' +xA2)A2-(2.1875' +xA2) (-2.25'+3 xA2)))/(2.25' +xA2)A5-(6.75' (1.' (2.25' +xA2)A2-

(2.1875' +xA2) (-2.25'+3 xA2)))/(2.25' +xA2)A4+(0.375' (-16.' xA2-6 (0.1875' +xA2)+4.'

(0.25'+xA2)-2 (-0.25'+3 xA2)))/(0.25'+xA2)A3-(4.5' x (-6 x (0.1875'+xA2)+4.' x

(0.25' +xA2)-2 x (-0.25'+3 xA2)))/(0.25' +xA2)A4+(18.' xA2 (1.' (0.25' +xA2)A2-

(0.1875' +xA2) (-0.25'+3 xA2)))/(0.25' +xA2)A5-(2.25' (1.' (0.25' +xA2)A2-(0.1875' +xA2) (-

0.25'+3 xA2)))/(0.25' +xA2)A4-6.' (-((20.' xA2)/(2.25' +xA2)A3)+2.5'/(2.25' +xA2)A2+(24 xA2

(1.125'+1.25' xA2))/(2.25'+xA2)A4-(4 (1.125'+1.25' xA2))/(2.25'+xA2)A3+(1.5' (-10 xA2-2

(0.75'+xA2)))/(2.25'+xA2)A3-(18.' x (-2 xA3-2 x (0.75'+xA2)))/(2.25'+xA2)A4+(72.' xA2 (-

1.125'-xA2(0.75' +xA2)))/(2.25'+xA2)A5-(9.(-1.125'-xA2

(0.75' +xA2)))/(2.25' +xA2)A4))/3.944444444444444

Plot [Mn[x],{x,-5,5}]

Export ["*dat", Table[Mn[x],{x,-5,5,0.02}]]

(* Normalized pipe moments Mpn (Mpn=Mp*HA2/El*uyo), x is normalised vs H*)

Do[Export["MnpR_8. dat" Table[(((LA3)*(Nintegrate[((((y+1)*r/(((a-

6+x)A2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*(((a-6+x)A2+(y+1 )A2)A2)-((3*(a-6+x)A2-

(y+1)A2)*((a-6+x)A2+(y+1 )A2-rA2)))/(((a-6+x)A2+(y+ 1)A2)A3))-(((y-l)*r/(((a-6+x)A2+(y-

1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*(((a-6+x)A2+(y-1 )A2)A2)-((3*(a-6+x)A2-(y-1 )A2)*((a-

6+x)A2+(y-1 )A2-rA2)))/(((a-6+x)A2+(y-1 )A2)A3))+2*r*(((2*(y-1)*((a-6+x)A2)+1 *((a-6+x)A2-

(y-1)^2))/(((a-6+x)^ 2+(y-1 )^2)^ 2))-(2*(1 -v)*(y-1)/((a-6+x)^ 2+(y-1 )^2)))-(8*p*r/(3-

4*v))*((((1 -v)*(a-6+x)^ 2*(2*1-y)-y*(y-1)^A2)/(((a-6+x)^ 2+(y-1 )^2)^ 2))-(((y-1)*(1 *y*(y-1)^2-

((a-6+x)A2)*(((a-6+x)A2+yA2)+1 *(y+ 1))))/(((a-6+x)A2+(y-1 )A2)A3))))

*Exp[-L*x]*(Cos[L*x]-Sin[L*x]),{x, 0,1 2-a}]+N Integrate[((((y+ 1)*r/(((a-6-

x)A2+(y+1 )A2)))+p*(r/(3-4*v))*(y+1)*((3-4*v)*(((a-6-x)A2+(y+1 )A2)A2)-((3*(a-6-x)A2-

(y+1)^2)*((a-6-x)^ 2+(y+1 )^2-r^A2)))/(((a-6-x)^ 2+(y+1 )^2)^ 3))-(((y-1)*r/(((a-6-x)^ 2+(y-

1)A2)))+p*(r/(3-4*v))*(y-1)*((3-4*v)*(((a-6-x)A2+(y-1 ) 2) 2)-((3*(a-6x)^2-(y-1)A2)*((a-6-

x)A2+(y-1 )A2-rA2)))/(((a-6-x)A2+(y-1 )A2)A3))+2*r*(((2*(y-1)*((a-6-x)A2)+1 *((a-6-x)A2-(y-

1)A2))/(((a-6-x)A2+(y-1 )A2)A2))-(2*(1 -v)*(y-1)/((a-6-x)A2+(y-1 )A2)))-(8*p*r/(3-4*v))*((((1 -

v)*(a-6-x)^ 2*(2*1-y)-y*(y-1 )^2)/(((a-6-x)^ 2+(y-1 )^2)^ 2))-(((y-1)*(1 *y*(y-1 )^2-((a-6-
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x)A2)*(((a-6-x)A2+yA2)+1 *(y+ 1))))/(((a-6-x)A2+(y-1 )A2)A3))))*Exp[-L*x]*(Cos[L*x]-

Sin[L*x]),{x,0,a}])))/3.944444444444444,{a,0,6,0.02}]],{a,0,6,0.02}]

(* Normalized free-field and pipe axial displacements *)

r=0.25(*r=r/H*)

H=10

y=-0.5 (*y=y/H*)

v=0.5

p=0.5

(* Free-field solution*)

ux[xJ:=(((x*r/((xA2+(y+1 )A2))))-p*((r/(3-4*v))*(x)*((3-4*v)*((xA2+(y+1 )A2)A2)-((3*(y+1 )A2-

xA2)*(xA2+(y+1 )A2-rA2)))/((xA2+(y+1 )A2)A3))-((x*r/((xA2+(y-1 )A2))))+p*((r/(3-4*v))*(x)*((3-

4*v)*((xA2+(y-1 )A2)A2)-((3*(y-1 )A2-xA2)*(xA2+(y-1 )A2-rA2)))/((xA2+(y-1 )A2)A3))+4*r*((x*(1 -

v))/(xA2+(y-1 )A2 )-((y-l)*x*y/((xA2+(y-1)A2)A2)))-(8*p*r/(3-4*v))*((((1 -v)*x*(xA2+yA2-

1 2))/((x2+(y-1)A2)A2))-(x*y*(y*(xA2+yA2)+2*1 *(1 A2xA2)-3*y*(1 A2))/((xA2+(y-1 )A2)A3))))

Plot[ux[x],{x,-5,5}]

FindMaximum[ux[x],x]

{0.229595,{x->0.281912}}

Export ["ux_.dat", Table[ux[x],{x,-5,5,0.02}]]

(* For Ra=EA/Es*ro*\[Pi]*xj *)

Ra=10

J=0.2819117474991075(*J=xj/H*)

\[Lambda]=(1/J)*((1 5/(3.1415*Ra*(1 +v)*(1 +p)))A(1 /2))

(* Normalized axial pipe displacements uxp/uxo *)

Do[Export["uxpRa_1 0.dat",Table[(\[Lambda]/(2*0. 22959456037561465))*((N I ntegrate[
((((a-6-x)*r/(((a-6-x)A2+(y+1 )A2)))-p*(r/(3-4*v))*(a-6-x)*((3-4*v)*(((a-6-x) 2+(y+)A2)A2)-

((3*(y+1 )A2-(a-6-x) 2)*((a-6x)r2+(y+1)^2-rA2)))/(((a-6-x)A2+(y+1 )A2)A3))-(((a-6-x)*r/(((a-

6x)A2+(y-1)A2))-* r- )))((*(a-6-x)*((3-4*v)*(((a-6-x)A^2+(y-1)A2)^2)-((3*(y-1 )^2-(a-6-

x)^ 2)*((a-6-x)^ 2+(y-1 )^2-r^A2)))/(((a-6-x)^ 2+(y-1 )^2)^ 3))+4*r*(((a-6-x)*(1 -v))/((a-6-x)^ 2+(y-
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1)A2)-((y-1)*(a-6-x)*y/(((a-6x)2+(y-1)A2)A2)))-(8*p*r/(3-4*v))*(((( -v)*(a-6-x)*((a-6-

x)A2+yA2-1 A2))/(((a-6-x)A2+(y-1 ) 2) 2))-((a-6-x)*y*(y*((a-6-x)^2+y^2)+2*1*(^2-(a-6-

x)^ 2)-3*y*( 1^A2))/(((a-6-x)^ 2+(y-1 )^2)^ 3))))*(Exp[-\[Lambda]*x]),{x,0,a}]+Nintegrate[((((a-

6+x)*r/(((a-6+x)A2+(y+1 )A2)))-p*(r/(3-4*v))*(a-6+x)*((3-4*v)*(((a-6+x)A2+(y+1 )^2)^2)-

((3*(y+1 )^2-(a-6+x)^ 2)*((a-6+x)^ 2+(y+1 )^2-r^A2)))/(((a-6+x)^ 2+(y+1)^ 2)^ 3))-(((a-

6+x)*r/(((a-6+x)A2+(y-1 ) 2)))-p*(r/(3-4*v))*(a-6+x)*((3-4*v)*(((a-6+x)2+(y-1)A2)A2)-

((3*(y-1 )^2-(a-6+x)^ 2)*((a-6+x)^ 2+(y-1 )^2-r^A2)))/(((a-6+x)^ 2+(y-1 )^2)^ 3))+4*r*(((a-

6+x)*(1 -v))/((a-6+x)A2+(y-1 )A2)-((y-l)*(a-6+x)*y/(((a-6+x)A2+(y-1 )A2)A2)))-(8*p*r/(3-

4*v))*((((1 -v)*(a-6+x)*((a-6+x)^ 2+y^2- 1^A2))/(((a-6+x)^ 2+(y-1 )^2)^ 2))-((a-6+x)*y*(y*((a-

6+x)A2+yA2)+2*1 *(1 A2-(a-6+x)A2)-3*y*(1 A2))/(((a-6+x)A2+(y-1 )A2)A3))))*(Exp[-

\[Lambda]*x]),{x, 0,1 2-a}])),{a,0,6,0.02}]],{a,0,6,0.02}]
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e Relationship between xi and xj with relative distortion,p and
embedment depth ratio, y/H

-0.5
I I

relative distortion, p
0.5 1 1.5

I I 1 I i I 1

2.5
1

embedment depth ratio, y/H
0 -0.1 -0.2 -0.3 -0.4 -0.5
1| 1 1 1 1 1 1 1 

178

x

0.8 -

0.6-

0.4

0.2

x1/H (r/H=0.02, H=10m, v=0.5, y/H=-0.2)
-- - x,/H (r/H=0.3, H=10m, v=0.5, y/H=-0.2)

-a-- x/H (r/H=0.3, H=10m, v=0.5, y/H=-0.2)

-- - -

0

0

0.8
x/H (r/H=0.3, H=1Om, v=0.5, p=1)

A x/H (r/H=0.3, H=10m, v=0.5, p=1)

3I

lfI

0.6 -

0.4 -

0.2 -

0-

...

-



APPENDIX II

Evaluation of horizontal displacements of several pipelines with different axial

stiffness, using two methods:

a) finite element (PLAXIS 3D)

b) analytical solutions computed by using the new horizontal spring coefficient

Kh=15Esro/(1 +v)(1 +p)j.

The following graphs summarize the comparison between the two methods for

different sets of the following parameters:

" relative distortion of the tunnel walls (p)

* pipe depth (yp)

" uniform convergence of the tunnel walls (uE)

e soil Poisson's ratio (v)

The constant parameters are:

e tunnel depth H=10m

* tunnel radius r=3m

" soil stiffness Es=30 MPa
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APPENDIX III

Axial, bending and total pipe strains and stresses acting on the hypothetical

pipelines 40, 50, 60, 70, 80, 90 and 100, for low (Line 2) and high (Line 4) face

pressure at N-2 San Francisco sewer tunnel case.

Note: Pipe number corresponds to the pipe diameter in cm
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Line 2 Pipe40 strains & stresses at lower fibre (y=-2m)
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Line 2 Pipe5O strains & stresses at lower fibre (y=-2m)
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Line 2 Pipe60 strains & stresses at lower fibre (y=-2m)
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Line 2 Pipe70 strains & stresses at lower fibre (y=-2m)
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Line 2 Pipe70 strains & stresses at upper fibre (y=-2m)
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Line 2 Pipe8O strains & stresses at lower fibre (y=-2m)

0.0008 - 80

0.0006- -60

tension
0.0004- -40

0.0002 - 20
Cx

0 0

-0.0002- -- 20 0

-0.0004- compression -- 40

-,--- bending
-0.0006 -- axial -- 60

total -

-0.0008- -- 80

-50 -40 -30 -20 -10 0 10 20 30 40 50
x(m)

Line 2 Pipe8O strains & stresses at upper fibre (y=-2m)
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Line 2 Pipe90 strains & stresses at lower fibre (y=-2m)
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Line 2 Pipe100 strains & stresses at lower fibre (y=-2m)

0.0008 80

0.0006- -60

tension
0.0004 - -40

0.0002 - 20
Cx

0 0

-0.0002- -- 20 .

-0.0004 compression -40

-A-- bending
-0.0006 --- axial -60

total

-0.0008 -11v -80

-50 -40 -30 -20 -10 0 10 20 30 40 50
x(m)

Line 2 PipelOO strains & stresses at upper fibre (y=-2m)

0.0008 - 80

0.0006- -60

0.0004 _ tension 40

0.0002- -20 2
Cx

0 -0

-0.0002 - -20 0

-0.0004- -40
compression ---- bending

-0.0006 0 axial -60
-- total

-0.0008 t --- rI I I I I I I I I I I - -1 - -, 1 1 _--,-- - -80

-50 -40 -30 -20 -10 0 10 20 30 40 50
x(m)

200



Line 4 Pipe40 strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe5O strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe50 strains & stresses at upper fibre (y=-2m)

-50 -40 -30 -20 -10 0
x(m)

10 20 30 40 50

202

150

100

50 CL

0 $

0

-50 R

-100

-150

150

100

50 0'

0

-50

-100

-150



Line 4 Pipe60 strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe70 strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe70 strains & stresses at upper fibre (y=-2m)
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Line 4 Pipe8O strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe80 strains & stresses at upper fibre (y=-2m)
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Line 4 Pipe90 strains & stresses at lower fibre (y=-2m)
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Line 4 Pipe100 strains & stresses at lower fibre (y=-2m)
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