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Abstract

Data volumes are exploding. It is essential to use multiple machines to store such large
amounts of data. To address this explosion, storage systems like databases need to be
distributed across many machines.

Transactions that access a few tuples, often seen in web workloads such as Twitter, do
not run optimally using traditional partitioning schemes [25]. Hence, increasing the number
of machines often presents a bottleneck for workloads where each transaction accesses just
a few tuples.

Fine-grained partitioning can fix the scale out problem introduced by simplistic par-
titioning schemes. In this thesis, I introduce a design of a distributed query execution
system that handles fine-grained partitioning using look-up tables. I introduce look-up ta-
bles, which is a mapping from a tuple attribute to a tuple back-end location such that fine
grained partitioning can be supported.

I show through both synthetic and real data that fine-grained partitioning enabled
by look-up tables can increase throughput of a distributed database system. My goal is
scale-out with the number of machines used in the distributed database. I show in my
experiments that scale-out can be reached if an ideal partitioning can be created. I test my
implementation on a Wikipedia data set. I show in this example a factor of three times
better performance compared to the optimal hash partitioning scheme with eight back-ends
and signs of continual scale-out with more machines. Through the use of large data sets
and projecting my results onto even larger data sets, I show that look-up tables can be used
to represent complex partitioning schemes for databases containing billions of tuples.

Thesis Supervisor: Samuel R. Madden
Title: Associate Professor
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Chapter 1

Introduction

Data volumes are exploding. It is estimated that Twitter has around 200 million users

[23]. Facebook has approximately 300 million users and more that 3.9 trillion feed actions

processed per day [27]. It is essential to use multiple machines to store such large amounts

of data. For example, Facebook is running approximately 30,000 servers to hold and process

data [27]. To address this explosion, storage systems like databases need to be distributed

across many machines.

The primary method in which databases are scaled is through horizontal partitioning,

where different rows of table are placed on different machines. By placing data on separate

nodes, it is possible to achieve near linear speedup when executing analytical queries. Since

these queries scan large amounts of data, which can be accessed in parallel in a distributed

database. Transactions that access a few tuples, often seen in web workloads such as

Twitter, do not run optimally using traditional horizontal partitioning schemes [25]. The

problem is that if a small number of tuples are accessed on several machines, there is no

benefit of parallel I/O (input/output), but the query is distributed which adds network I/O

and substantially slows execution.

Hence, increasing the number of machines often presents a bottleneck for workloads

where each transaction accesses just a few tuples. Instead of partitioning data randomly

(e.g. using hashing) or via fixed partitioning of ranges, what is needed is a fine-grained

partitioning scheme that places tuples that are accessed together in the same partition.

Fine-grained partitioning can fix the scale out problem introduced by simplistic parti-

tioning schemes. In this thesis, I introduce a design of a distributed query execution system



that handles fine-grained partitioning using look-up tables. I introduce look-up tables, which

is a mapping from a tuple attribute to a tuple back-end location. Look-up tables map the

location of a tuple by storing a column value and back-end location for the tuple. They

enable fine-grained partitioning where hash or round robin limit the partitioning scheme to

something arbitrary. A basic look-up table is created for one column of a table, mapping

the value of a column to the tuple location on the back-ends. This column is normally a

unique id for the tuple. The distributed query execution engine uses the look-up table to

find tuple locations for a query so that it can route the query to the correct back-ends.

In Chapter 2, I discuss the related work in the field of distributed databases. I explain

how these related works do not solve the problem of transactions accessing a few tuples

over multiple back-ends. In Chapter 3, I describe a broad picture of the system and how it

fits into the Relational Cloud project [9] in which my thesis is a component.

In Chapter 4, I delve into the design details and how I minimize network I/O and use

the information stored in look-up tables to make smart routing decisions to the distributed

database back-ends. I also discuss how the router handles hundreds of transactions simul-

taneously. In Chapter 5, I go into more detail on the implementation in Java.

In Chapter 6, I show through both synthetic and real data that fine-grained partitioning

enabled by look-up tables can increase throughput of a distributed database system. Fur-

thermore, I show that when using an ideal partitioning, we see near-linear scale-up with the

number of machines even when traditional partitioning schemes achieve little or no scale-up.

I also test my implementation on actual Wikipedia data obtained from Mediawiki, the com-

pany behind Wikipedia. I show in this example a factor of three times better performance

compared to the optimal hash partitioning scheme with eight back-ends. I also show in this

example that my system shows signs of continual scale out with more partitions where the

hash partitioning scheme has a performance ceiling.

Look-up tables must be stored in memory, where as hashing or round robin are functions

of the tuple value and only need a quick operator to compute the back-end. In Chapter 7,

I address the scalability of look-up tables. A key concern of look-up tables is the ability

for look-up tables to scale to large data sets. I show through the use of large data sets and

projecting my results onto even larger data sets that look-up tables can be used to represent

complex partitioning schemes for databases containing billions of tuples.

In Chapter 8, I discuss the additional elements that would need to be created to make a



complete distributed execution system using look-up tables. Finally, in Chapter 9, I wrap

up my thesis and make final conclusions.
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Chapter 2

Related Work

In this chapter, I discuss related work and the problems that these works address. I explain

that each has a trade-off and does not solve the difficulty of scaling these large databases

with transactional web workloads. In this chapter, you will gather a better understanding

of how my thesis research fits into the world of databases and the problem it solves. You

will also learn that existing research has not solved the scale-out goal with web workloads.

The goal is to scale throughput with the number of machines in the distributed database.

2.1 Parallel Databases

A fair amount of research has gone into distributed and parallel databases to handle OLAP

workloads such as R* [15]. Online Analytical Processing (OLAP) refers to longer running

processes that often compute statistics over large amounts of data. OLAP transactions are

often run over historical data and are expected to take a long time to run as statistics are

computed.

These traditional databases enforce Atomicity, Consistency, Isolation, and Durability

(ACID) guarantees. ACID guarantees are often seen in computer systems in general and

are necessary in transactional systems such as banking applications.

Traditionally, parallel databases follow the design of a shared nothing architecture to

distribute the work among nodes. In a shared nothing database system, each node stores

a fraction of the data, and that data is only accessed by that node. The way information

is transferred between CPUs via an interconnection network [21]. See Figure 2-1 on the

general design of a shared nothing architecture.



Processor Processor Processor

Disk Dsk Disk

Figure 2-1: Shared Nothing Architecture.

In contrast to parallel databases aimed at optimizing for OLAP workloads, in this

thesis, I focus on web or Online Transaction Processing (OLTP) workloads. OLTP refers to

short online transactions such as individual updates, inserts, or deletes. OLTP workloads

emphasize quick response to user input. These traditional horizontal partitioned parallel

databases do not work well with transactions that access a few tuples, often seen in these

web workloads. The problem is that if a small number of tuples are accessed on several

machines, there is no benefit of parallel I/O (input/output), but the query is distributed

which adds network I/O and substantially slows execution.

2.2 Cloud Computing

Cloud computing systems are based on a "pay-as-you-go" usage model where users can

demand resources when needed and release resources as desired, paying for only what they

use. Many cloud systems are accessible over the Internet so that people can acquire and

release resources online. For example, Amazon's cloud services [1] are popular among

many companies including Dropbox [28], Quora, Reddit [22], NASA Jet Propulsion Lab,

Washington Post, Yelp, and PBS [4]. The draw of cloud services is the simplicity of setup

and low up front cost as compared to setting up a privately owned network of computing



power. Several different types of clouds exist: infrastructure clouds, which provide storage

or computer resources; platform clouds (e.g. SQL Azure [24]) which provide support for

running applications in the cloud; and application creation clouds (e.g. Google Docs [12])

[2, 3].

The research presented in this thesis, a distributed query execution system, is a compo-

nent of Relational Cloud, a database-as-a-service cloud.

2.3 Relational Cloud

Relational Cloud is a project that is aimed providing a "pay-as-you-go" database cloud

that can host a large and diverse set of OLTP/web applications, providing transactional

guarantees, scalability, and efficient resource utilization.

The intention of this project is to bring the power and versatility of cloud computing to

databases. Creating and maintaining a database can be cumbersome for small organizations.

For large organizations, having many small databases can be a waste of resources. Hence,

two goals of this project are to consolidate data management for large organizations and

outsource data management to a cloud-based service provider for smaller organizations [9].

Relational Cloud partitions clients' data across many machines. The client does not

know how information is partitioned among the database, instead interacting with Rela-

tional Cloud as it would with a centralized database management system [9].

In addition, Relational Cloud is workload aware so that data can be co-located on parti-

tions in order to reduce the overhead of distributed queries and transactions by locating data

that is accessed together on the same physical node, which, as described above, is impor-

tant for OLTP/web workloads. For OLAP workloads data may distributed in order to push

down joins and parallelize the work over all nodes in order to process queries/transactions

quicker.

This thesis describes a component of Relational Cloud. The research in this project

allows Relational Cloud to leverage partitioning strategies such as Schism [10] in creating

fine-grained partitioning in order to optimize for particular workloads.



2.4 Partitioning Approaches

Horizontal scaling grows the number of machines rather than the size of any particular

machine as the workload or data set grows. Horizontal scaling in the ideal case sees lin-

ear speedup with the number of machines and directly follows the shared nothing design.

The rest of this section describes different partitioning techniques developed to allow for

horizontal partitioning.

2.4.1 Hash Partitioning / Round Robin Partitioning

In databases, the question remains as to where should data be located when the database

scales horizontally. Common schemes used include hash and round robin partitioning.

Hash partitioning applies some hash function to the data to place the data evenly among

the back-ends. Round robin does the same thing by sending each successive tuple to a

different partition. This works well on OLAP workloads (analytical queries that scan large

amounts of data) where the time to answer a query depends mainly on disk access speed.

Hash partitioning and round robin partitioning fail to be the best scheme for OLTP/web

workloads [25].

2.4.2 Range Partitioning

Range partitioning is a partitioning technique where ranges of data are stored on different

back-ends. Cut-points are defined on the edges of where one partition ends and another

begins. Similar to hashing, range partitioning places data on arbitrary locations which may

not be favorable for web workloads.

2.4.3 Schism

Schism introduces more complex partitioning strategies. It uses information on data access

patterns to devise the optimal partitioning for the data. Schism shows through a series of

experiments that distributed transactions are expensive in OLTP settings. Schism produces

balanced partitions by analyzing the expected workload and producing a graph where edges

connect tuples that are in transactions together. It then attempts to minimize distributed

transactions by minimizing the number of cut edges while producing balanced partitions.

Schism works well for n-to-n relationships, typical of social network databases. Schism's



output can (and is) used as the input to my distributed query execution system. [10].

2.4.4 Handling Online Social Networks

This section outlines current designs aimed at handling large social network data sets and

the complicated workload on these sets.

The Little Engines that Could: Scaling Online Social Networks

Pujol et. al. describe a design, Social Partitioning and Replication (SPAR) middle-ware,

that guarantees that one-hop neighboring data is co-located. They do this by partitioning

the data in a smart way and then replicating one-hop neighbors on the same node as the

"master" [20). In the example of Facebook, all of a user's friends will be replicated on the

node with that user [19].

In choosing this design, they achieve data locality for the trade-off of replicating data.

For many partitions in complex graphs this may mean a significant amount of replica-

tion, which in turn increases the cost of updates. The system does not inherently support

consistency. They mention that they may use something like Dynamo [11].

Facebook's Architecture

Facebook developed and eventually made open source their distributed database, Cassan-

dra. Cassandra combines the ideas of Dynamo [11] and BigTable [7]. Cassandra is designed

to scale to a very large size across many servers. Cassandra supports eventual consistency

as a key-value store [14].

Twitter's Architecture

Twitter uses MemCache to make look-ups fast. Since requests to Tweets are often requested

based on a time filter, Twitter partitions by time on Tweets rather than user id or tweet

id. In order to easily look-up follows relations, Twitter replicates the Follows table to go

in the opposite direction. Therefore, it is quick to look-up the relation in either direction.

This table is partitioned by user id [13].



2.5 Key-Value Stores

Key-value stores have emerged in web applications as the current solution to the scaling

difficulties of large databases with many concurrent reads and writes. Yahoo's PNUTS [8],

Google's Bigtable [7], MongoDB [17], and MemcacheDB [16) are a few implementations of

such key-value stores. Key-value stores limit the types of queries that can be run on a

database fetching single rows or updating single rows by a key. They do not support joins

or aggregates. Such functionality must be supported at the user-level. In doing so, there is

no transactional guarantee for joins or queries more complex than single row operations.

Many key-value stores, including Bigtable [7] are eventually consistent, meaning that

it is possible to read an old value of a tuple rather than the current value. Key-value

stores relax ACID guarantees that traditional databases have. The aim of my thesis is

to research an alternative solution to scale to web workload sizes without sacrificing the

ACID guarantees the way key-value stores do. ACID is important in delivering reliable and

consistent data to the user. In addition, my system will support useful functionality that

traditional databases have such as joins which key-value stores leave out of the system.



Chapter 3

System Overview

In this chapter, I outline the overall system design for my distributed query execution system

and how this design fits into the Relational Cloud project.

3.1 Relational Cloud Overall Design

Relational Cloud is a cloud database architecture. It follows the general design of a shared

nothing architecture. Each database partition is stored on a single machine that is capable

of executing query statements.

Both databases and tables may be split up across nodes. The basic architecture of

Relational Cloud can be summarized in Figure 3-1.

The distributed transaction system sends a query to the router. The router must de-

termine which partitions to access, and construct a query for each partition. For example,

consider the following query.

SELECT * FROM mytable WHERE id IN(1,7)

Suppose id = 1 is on partition 1 and id = 7 is on partition 5. Then the query will be

modified such that the following query is sent to partition 1:

SELECT * FROM mytable WHERE id IN(1)

The following query is sent to partition 5:

SELECT * FROM mytable WHERE id IN(7)
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Figure 3-1: Relational Cloud Architecture [9].

The router also figures out how to combine separate results from different nodes. In

this example, the results will be merged. The end result should be what would have been

the result of the original running query on a centralized database. The focus of my thesis

is the implementation of the router when fine-grained partitioning is in use. In particular,

my router implementation stores this partition information in look-up tables.

3.2 Overall Router Design

The router and back-ends have been simplified from the design specified in Figure 3-1 in

order to create a prototype router. The main changes in design is the removal of replica

groups, the MetaDB, and Workload Analyzer. Additionally, the router communicates di-

rectly with MySQL back-ends rather than with nodes and replica groups as in Figure 3-1.

Currently, clients connect directly to the router via a JDBC interface. Figure 3-2 shows the

simplified router design.

3.3 Look-up Table Logic

A look-up table holds information about the partitions on which a set of tuples are stored.

In the table, each tuple is identified by the value of some key attribute(s), and partitions are

represented by an integer partition id. Figure 3-3 shows a simplistic database. Each back-

end holds one partition of the table. The partitions have an id column, which is a primary

key, along with a value. Table 3.3 shows the look-up table that is generated when id is used



Figure 3-2: Router Architecture Overview.

as the look-up table key. The mapping goes from tuple id to partition number. There can

be multiple underlying implementations of look-up tables, although one important feature

is that look-up of a partition given a key should be quick and require constant time.

Given this overview of look-up tables, in the next chapter, I will describe the design of

the router in more detail.

Back-end 1 Back-end 2 Back-end 3

id val Id val Id val
[7 v1 7 1 [4v757 ]
22 v2 27 v6 14 v10
55 v3 42 v7 77 v1
99 v4 81 v8 198 12

Figure 3-3: Example distributed database with data.

.... ............. ........ _ _ .... ..............



id Back-end node id
2 3
14 3
17 1
19 2
22 1
27 2
42 2
55 1
77 3
81 2
98 3
99 1

Table 3.1: Example look-up table generated from the database in Figure 3-3



Chapter 4

Router Design

In this chapter, I discuss the router design. Figure 4-1 shows the architecture of the router.

The router is designed to operate in parallel. The RouterServer that serves incoming re-

quests assigns the work to a TransactionWorker that computes the partitions that partici-

pate in a query and generates the modified queries that those partitions execute. There can

be several TransactionWorkers running at a time. The ConnectionWorkers handle the send-

ing of the query to the back-end node and send the results back to the TransactionWorker

once receipt of the results. The reason for ConnectionWorker is to have the distributed

query sent to each node simultaneously.

The following sections describe the logic the router has in order to modify queries and

how it chooses the correct back-ends in which to send the queries.

4.1 Query Manipulation

Since the database has multiple tables distributed over multiple back-ends, an incoming

query from a client may need to be modified before being sent to a back-end to get correct

results. The router needs to perform this transformation in addition to determining which

nodes should participate in a query. In the rest of this section, I describe how the router

works through a series of examples.

4.1.1 Filtering Queries

An IN query is a common query in applications such as social networks were information

about a group of people or things needs to be acquired at once. It is also building block in



Figure 4-1: Router communication with clients and back-end nodes.



creating more complicated joins queries in rounds discussed in Section 4.1.2.

For this example, the simplistic distributed database in Figure 3-3 and the look-up table

generated from the database in Table 3.3 is used.

Consider the following query sent to a router with the database described above:

SELECT * FROM mytable WHERE id IN (2, 19, 27, 77);

Suppose ids 2 and 77 are located on back-end 3 and ids 19 and 27 are located on partition

2. In this case, the following rewritten queries will be sent to the back-ends:

Back-end 2: SELECT * FROM mytable WHERE id IN (19, 27);

Back-end 3: SELECT * FROM mytable WHERE id IN (2, 77);

Rewriting the queries in this way ensures that each back-end only does the work neces-

sary to find and return the correct data. In the case of this example, no queries are sent to

back-end 1.

IN queries are not the only example of SELECT queries that are rewritten. The router

currently is able to rewrite SELECT queries that include greater-than, greater-than-equals,

less-than, less-than-equals, and equals operators. In the case of equals and IN queries, the

number of back-ends necessary to which queries must be sent can be much fewer than the

total number of partitions. Additionally, the router may be able to determine if the result

set will be empty enabling the router to send the result to the user immediately.

4.1.2 Joins

Joins over multiple tables are an important function in many database applications.

The router has multiple choices for how to handle joins depending on the layout of the

data and the information provided in the look-up tables. Several plans are described below,

outlining their strengths and weaknesses.

Push-down Joins

A push-down join happens when the join is sent directly to the back-end node. This means

that each back-end performs the join and the results are then combined by the router.

Push-down joins are most likely the fastest and simplest model of distributed joins. A join

can only be pushed down if it is known that data on one back-end does not need to be



joined with data from another back-end. This is the case when the join condition is the

same as the partitioning condition. Push-down joins cannot be used when information from

different back-ends must be joined together.

Optimistic Outer Joins

Optimistic outer joins are similar to push-down joins in that the back-end node does the

work of joining the data. These joins apply to primary key - foreign key joins, where at most

one primary key joins with any given foreign key. Typically, such queries includes a bound

variable where either the primary or the foreign key value is assigned to some constant value

in the query (otherwise these queries would involve cross products).

If the partitioning algorithm is good, in most cases such joins will be local to one back-

end. Hence, the join is sent to the back-end indicated by the bound values in the query.

Since some data required to answer the query may not be on that node, an outer join is

performed. If a primary key matching a foreign key is found, the data returned is a full

tuple in the set of results. In the case that the primary key is not found at the location,

then the outer join results in NULL data where the joining attributes should be. If NULLs

are present in the returned data set, the router sends an IN query to the back-ends with

the tuples that have the needed values.

An example case to use an optimistic outer join is Twitter. Consider the following query:

SELECT * FROM follows f, user u ON f.f2 = u.uid WHERE f.fl = 24;

Twitter has a follows table which is a relation in which user id f 1 follows user id f2

where f1 and f2 are foreign keys referring to the users table primary key, uid. The join

above selects information about the people who user id 24 follows. In an ideal partitioning,

all of the data for a user's followers will be on the same back-end as that user. However,

Twitter represents a complicated interconnection of users, so it may be that not all of the

people a person follows are on the same back-end as that user. However, since there is a high

probability that the query can be answered on the back-end with data on user 24, then the

following query is sent to the back-end to which the look-up table (built on f ollowers. f 1)

points for user 24.

SELECT * FROM follows f LEFT OUTER JOIN user u ON f.f2 = u.uid WHERE f.fl = 24;



This join result will contain NULLs where f .f2 = u. uid did not find a matching uid on

this back-end. For such results, an IN query will be sent requesting all of the data for the

missing ids. In the case that there are no NULL values, then the query result is returned

directly (requiring the router to only contact one back-end).

Joins in Rounds

Joins in rounds is useful when predicates for one of the tables is fairly selective. In this

scenario, a SELECT over one table is performed, filtering on the predicates for that table.

Then another SELECT is performed by sending a IN query on the returned results from the

first round. This can be extended to support an arbitrary number of rounds and hence an

arbitrary number of tables being joined.

Joins at the Router Level

The final and often slowest join plan is joining at the router level. This can be useful if all

predicates on the tables are selective, and is a fall-back that will always work for joins. In

this plan, each table is selected, retrieving all data from that table that satisfies predicates

specific to the table. The join is performed by joining at the router.

Choosing the Correct Join Plan

In order to pick the correct join plan, statistics about the cardinality of the tables and

information about location of tuples is necessary. This information can be stored at the

router in order to make a smart distributed query plan. The focus of my thesis is to argue

that look-up tables and fine-grained partitioning can solve the problem of large amounts of

data that must be partitioned over many nodes. For this reason, I did not implement a query

planner that chooses the correct join plan based on statistics and look-up table knowledge.

Instead, this decision is currently hard-coded into the client. In the experiments section,

the correct join plan is relayed from the client to match what a smart router would have

chosen.
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Chapter 5

Implementation Details

In this chapter, I discuss the important components in the implementation of the distributed

execution system router. The router is built in Java.

5.1 Component Interaction

The RouterServer is the component that the clients talk to in order to run queries on the

back-end databases. To the clients, it appears as if they are connecting to a single database

with ACID guarantees. The clients use a JDBC interface in order to provide the normal

interaction with a database for a Java program. The data is serialized using Protocol Buffers

(Protobufs) [18] as a method of encoding the structure data for communication over the

network.

Figure 4-1 on page 28 shows the communication model. Arrows denote the flow of

information between components. There is one TransactionWorker per Client that connects

to the RouterServer. A TransactionWorker receives a request that the client has made.

The TransactionWorker generates queries each back-end needs to execute. To allow queries

to be sent to multiple back-ends at once, each TransactionWorker is configured with one

ConnectionWorker object per back-end. ConnectionWorkers communicate with their back-

end, sending queries, and waiting for results.

The ConnectionWorker sends the results to the TransactionWorker, which completes

any final work on the query, such as merging the results from multiple ConnectionWorkers.

The TransactionWorker sends the completed results to the RouterServer to send back to

the client.



The RouterServer and all components of the router are written in Java. The RouterServer

and the components discussed in this chapter consists of approximately 4,000 lines of code

(1,700 semicolons). This does not include the rest of the Relational Cloud code, but only

the code specific for routing and look-up tables.

5.2 Key Components' Details

RouterServer

The RouterServer receives work and sends the work to a TransactionWorker. The underlying

implementation uses a java.util.concurrent.ThreadPoolExecutor as a thread pool to carry

out the TransactionWorker work. The RouterServer adds work to the thread pool by

creating a Runnable TransactionWorker object with the query to be executed and the

transaction id to execute on.

The RouterServer holds a central mapping of transaction id to the state of the transac-

tion which is used by other components in order to keep state for transactions.

TransactionWorker

The TransactionWorker class implements Runnable. One instance is created for each client

request. The TransactionWorker receives the sent query to execute, the transaction id, and

if the transaction is auto-commit. The TransactionWorker uses the look-up table in order

to determine the modified queries and the locations to which those queries should be sent.

In order for the system to be transactional, the TransactionWorker must know the state

of the query, which includes the following information:

" If the client connection is auto-commit.

" The ConnectionWorker objects.

" The partitions that have had queries run on them.

" The state of the operation (idle, active, finishing, done).

Auto-commit information is needed for 2 major reasons. 1) If the query is auto-commit,

then the query must be committed before returning results to the user and 2) If the query is



auto-commit and it only needs to run on one back-end, then the connection with that back-

end can also be set to auto-commit. Each TransactionWorker needs a ConnectionWorker

to each back-end that it communicates with in order to run queries on the back-end. In

addition, for a transaction, the same connection to a back-end node must be used for all

queries run in a transaction. For this reason, the TransactionWorker needs to ensure that

it uses the same ConnectionWorker for a given transaction as more requests come in.

The TransactionWorker must keep track of the partitions that queries have run on for

a given transaction in order to commit the transaction on these partitions. The state of

the operation is also maintained as a sanity check. For a given transaction id, the client

can only send one query at a time and must wait for results until sending the next query.

Therefore, the state is checked to ensure that the client is behaving correctly. Throughout

the implementation, there are many assertions that check that the components are behaving

as expected.

TransactionState

TransactionState is an object created to maintain the state that a TransactionWorker must

know in order to execute a query for a given transaction correctly. Since the Transaction-

Worker persists for the duration of one query in a transaction, a separate object is used

to maintain the transaction state. The transaction state is maintained in a mapping of id

to state for all running transactions. In this design, the thread pool used to run Transac-

tionWorkers can be smaller than the number of open transactions. The TransactionWorker

grabs the correct TransactionState object for a given transaction id from the central map-

ping, which is synchronized on the mapping to ensure no race conditions.

RouterLoader

The RouterLoader loads the router from the database. The user must define which table-

column pairs to build a look-up table over. The RouterLoader connects to each back-end

and runs queries over the desired column for each table to populate the look-up table with

the correct information. The reason for implementing the loading of look-up tables in this

way is to ensure that the look-up table is consistent with the back-end data at start-up.

In addition other configurations such as hash and range partitioning can be supported and

specified.



LookupTable

LookupTable is an interface which defines the abstract idea of a look-up table and how to

interact with a look-up table. The key function of this interface is getPartitionMap which

accepts a parsed statement and returns a mapping from partition id to the query to be run

on that partition. Two classes inherit the LookupTable interface:

" IntLookupTable - A look-up table over integers which uses the Colt int-int hash map

[5] as the storage engine for the look-up table.

" BasicLookupTable - A look-up table using the Java native hash map as the storage

engine for the look-up table. This look-up table supports integers and strings as the

column type that the look-up table is built on.

An alternative look-up table implementation that is not included in the current version

of the router is an array look-up table. In an array look-up table each index of the array

holds the partition information for a tuple with that id. Therefore, arrays would work

well for dense data. In Chapter 7, I compare the performance of different look-up table

implementations.

ConnectionWorker

The ConnectionWorker connects to a single MySQL back-end. It receives work on a block-

ing queue as input and adds results to a blocking queue as output. The TransactionWorker

sets the output queue that the ConnectionWorker places results on so that the Transaction-

Worker can receive the results. The TransactionWorker starts processing results as they

are received.

5.3 Thread Model

Figure 4-1 shows how the data is passed between components. The multiple layers of threads

(TransactionWorkers, ConnectionWorkers) is necessary to avoid bottleneck and allows for

queries from multiple clients to be run at the same time. Figure 5-1 shows how data is passed

over time between the components. TWI and TW2 are two different TransactionWorkers.

CW1, ..., CW5 are the different ConnectionWorkers in use. This diagram illustrates two



different queries processed and answered simultaneously. The red, downward arrows denote

work being done. CW1 and CW2 are doing work for TWI. CW3, CW4, and CW5 are doing

work for TW2. The diagonal arrows denote the passing of work between the components.

time

Client 1
sends uery

Client 2
sends ery

results sent
to client 1

results
sent to
client 2

TW1 CW1 CW2 TW2 CW3 CW4 CW5

Figure 5-1: Thread diagram of asynchronous distributed queries being executed across
different threads. The Router receives requests from clients and passes work to the Trans-
actionWorkers (TWs). The ConnectionWorkers (CWs) send the queries to the back-ends.

. ... ............... ......... .... .......... .......
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Chapter 6

Experimental Evaluation

In this chapter, I outline the experiments run using this distributed execution engine and

router. I start by introducing the framework for testing. Then I show scale-out with

synthetic data. Finally, I show a performance win on Wikipedia data.

6.1 Benchmarking Tools Implementation

I use throughput as a measure of system performance. The reason for this is that as

databases scale with more data and users, the number of requests increases. For this reason,

the database system needs to scale to handle a large rate of incoming queries. Specifically,

I compare the maximum throughput different schemes can achieve.

To measure throughput, I add load on the router by adding clients until the throughput

stops increasing. In order to get a full load on the back-end database, up to 500 clients are

used to drive the router. The clients run on the same machine as the router in these tests.

6.2 System Configuration

In the following experiments, the back-end machines consists of a cluster of machines with

the configuration outlined in Table 6.1. The software configuration is outlined in Table 6.2.

The front end machines run the router and the client driving the router with a workload.

In many scenarios, one front-end machine is sufficient to drive the back-end machines. In

such a scenario front-end 1 is used. In the cases where 1 front-end is not sufficient, then

front-end 2 is used in conjunction with front-end 1.



Machine # CPUs # Cores CPU Model clock speed RAM
per CPU (GHz) (GB)

back-end node 2 1 Intel Xeon 3.20 2
front-end 1 2 4 Intel Xeon E5530 2.40 23
front-end 2 2 4 Intel Xeon E5520 2.26 23

Table 6.1: Hardware statistics for experiments.

Machine

back-end node
front-end 1
front-end 2

I
Operating System

Linux 2.6.31-22-generic-pae
Linux 2.6.35-25-server
Linux 2.6.35-25-server

Table 6.2: Software statistics for experiments.

Each front-end machine is connected to the back-end machines via a single gigabit

Ethernet connection and a switch to the individual back-end machines.

6.3 Modeling the Benefit of Fine Grained Partitioning

Because the main benefit of fine grained partitioning is to reduce the number of distributed

operations, I begin with an experiment to measure overall system throughput. The experi-

ment uses synthetic data and varies the percent of distributed queries in a workload between

0% and 100%. This test shows that distributed queries are more costly than non-distributed

queries for OLTP-style workloads.

6.3.1 Effect of Adding More Back-ends

Experiment Setup

In this experiment, the database consists of 20,000 tuples with unique primary keys ranging

from 0 to 19,999. The construct for each table is the following:

CREATE TABLE "info" (

"id" int(11) NOT NULL,

"data" varchar(255) DEFAULT NULL,

PRIMARY KEY ("id")

);



This experiment tests the effect of adding more back-ends to support the same data

set. Each back-end is one of the back-end machines as shown in Tables 6.1 and 6.2. Each

back-end is limited to one CPU in order to reduce the work needed to be done by the router

to fully load the back-end.

In the four back-end test, each back-end is loaded with one quarter of the data (5,000

tuples). In the eight back-end test, each back-end is loaded with one eighth of the data

(2,500 tuples). Each tuple's data field is set to a 200 character string in order to mimic the

size of a tuple in a real-world database, such as Twitter.

This test varies the fraction of distributed queries across the nodes. An example query

for this test is something along the lines of:

SELECT COUNT(*) FROM info WHERE id IN (5, 555, 2424, ... );

The reason for selecting the COUNT is to reduce the network load. Selecting the payload

in the current configuration causes a bottleneck on the network side rather than on the back-

end's CPU capabilities. Fortunately, in a true distributed database, ten gigabit Ethernet

connections could be used and each back-end could have a dedicated Ethernet connection

to the router. The COUNT query does approximately the same work as a SELECT * query

since it has to verify the ids exist and then sum up the number of results, but it reduces

the payload to the router dramatically.

For this experiment, 80 different ids are in the IN clause. This is analogous to requesting

information for a user's friends such as their names or statuses. 80 ids is comparative to

the number of friends a user is likely to have in a real world web application.

Each client in the test repeatedly sends auto-commit queries of the above form to the

distributed database. Once a query returns, the client immediately issues another query.

When a client generates a distributed query, it is sent to each of the back-ends. For the four

back-end case, 20 ids will be found on each of the four back-ends. In the eight back-end

case, 10 ids will be found on each of the eight back-ends. In the case of a non-distributed

query, all ids will be found on one back-end. The target back-end is varied so that each

back-end sees approximately the same load.

The percent of distributed queries sent to the nodes varies in this experiment. For

example, if the percent of distributed queries is 50%, then half of the queries are sent

distributed and half of the queries will be non-distributed. In the four back-end case, one



forth of the non-distributed queries will be found exclusively on back-end 1, one forth will be

found on back-end 2, and so on. Figure 6-1 shows the example breakdown for the scenario

that the percent distributed queries is 50%.

Figure 6-1: Example query breakdown for percent distributed = 50% on four back-ends.

Results

As the number of back-end nodes responsible for data increases, the throughput increases.

Figure 6-2 shows the percent of distributed queries on the x-axis and the throughput in

queries per second on the y-axis. The target max for eight partitions is computed by

driving all eight partitions at 100% load directly and not through the router. We see that

the eight partition performance for 0% distributed transactions performs close to the ideal

case. The eight partition performance is 94% of the ideal performance expected. The reason

for this will be elaborated on in the Wikipedia experiment section, but it is likely attributed

to the difficulty of keeping 100% load on all back-ends.

This experiment shows that by partitioning the data and increasing the number of

partitions we can achieve ideal speedup as we add back-ends. The eight partition case

performs a factor of two times faster than the four partition case at 100% distributed

queries. When all of the queries are distributed, the eight partition scheme performs 2.1

.......... ........... .. .... .....
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Figure 6-2: Comparing eight and four nodes for a distributed database's back-ends: Request
rate (queries per second) vs percent of queries that are distributed.

times faster than a single database and the four partition scheme performs 1.7 times faster

than a single database. In the eight partition case, the database with 0% distributed queries

performs a factor of 4.5 times faster than the 100% distributed case. In the four partition

case, the database with 0% distributed queries performs a factor of 2.8 times faster than

the 100% distributed case. This supports that distributed queries have a high cost.

In summary, these results show that adding more back-ends scales out linearly when

there are 0% distributed transactions. This supports that, if an ideal partitioning can be

created, look-up tables can provide linear scale-out.

6.3.2 Effect of Fan-out of Distributed Transactions

Experiment Setup

This experiment uses the same database setup as Section 6.3.1, although the test is only

over four partitions. This again has the same IN query selecting 80 tuples. The percent of

distributed queries varies between 0% and 100%. Again, for a non-distributed query, the

query requests ids from one back-end and hence goes to one back-end. For a distributed

query, the query request ids from varying numbers of back-ends depending on the test.

...... ...... - ........ ........ ... ...... . .........



The distributed query either requests ids that will be found on four, three, or two of the

back-end nodes. A query that requests ids over all four back-end nodes requests 80 ids, 20

of which are located at each back-end. For a distributed query that goes to three back-ends,

27 ids are located on two of the nodes and 26 on another. Zero ids are found on a fourth

node. For a distributed query sent to two nodes, 40 ids are found on one node and 40 on

another node.

Results

Figure 6-3 shows the results of changing the measure of how distributed a distributed query

is on throughput. From these results we can see that queries that touch fewer nodes run

at a higher rate as compared to queries that touch all of the back-ends, even for the same

percent of distributed queries. It is also important to note that there is still a significant

cost to distributed queries even if they only touch two back-ends.

In the case of 100% distributed queries, the distributed query test accessing two back-

ends per request only performs a factor 1.4 times fast than the distributed query accessing

all of the back-ends. In the case of distributed queries accessing two back-ends the 100%

distributed case performs approximately half as fast as the 0% distributed case.
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Figure 6-3: Effect of changing how distributed a transaction is: Request rate
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6.4 Wikipedia Example

In this section, a subset of Wikipedia obtained from MediaWiki is used. The goal of this

experiment is to evaluate scaling on a real-world data set.

6.4.1 Wikipedia Data

Tables

The Wikipedia data set consists of three tables: page, revision, and text. The data is

made publicly available my Mediawiki [29]. The following is the table structure that was

used for the experiments. The important columns are listed while others are left out for

brevity.

page : { page-id PK I page-namespace I page-title I page-latest REF revision.revid | ... }

revision : {rev-id PK I rev-page REFS page.page-id I rev-text-id REF text.id | ..

text : {id PK I text I page REF page.page-id | ... }

Workload and Data

The data set has 100,000 entries in the page table, approximately 1.5 million entries in the

revision table, and approximately 1.5 million entries in the text table and was extracted

from Mediawiki, the software which powers Wikipedia. The database used totals about 36

GB of data.

An example transaction to look up the content of a page is as follows:

BEGIN;

SELECT page-id FROM page

WHERE page-namespace = 1

AND page-title = 'MITElectricalEngineering-andComputerScienceDepartment'

LIMIT 1;

SELECT * FROM page, revision WHERE (page-id=rev -page)

AND rev-page = 12760945 AND page-id = 12760945

AND (rev-id=page-latest) LIMIT 1;

SELECT length(text), flags FROM text WHERE id = 151111233 LIMIT 1;

COMMIT;



The reason for selecting the page-id and then doing a join with the page-id on page

and revision has to do with the Mediawiki and how Wikipedia caches data among layers.

I attempted to stay as close as possible to the Wikipedia workload for testing purposes. The

final query would most likely select the text or some other meta-data from the text table. In

order to reduce network bandwidth, I simply select the length of the text. The computation

on the back-end nodes is similar to selecting the whole text since the MySQL back-end still

needs to pull the text into memory to perform the computation. The difference is that a

much smaller amount of data is sent over the network, which allows me to saturate the

CPUs of the back-ends.

The first query extracts the page-id which the second query uses to find data about the

page, including the id for the text table, which is used in the third query.

For the Wikipedia experiment, the above transaction is used as the workload to drive

the database. An actual trace of what users selected in a Wikipedia log was used as the

workload for selecting pages [26]. In this trace, more popular pages are selected more often.

6.4.2 Hardware Setup

For this test, I varied the number of back-end machines. Each back-end machine has the

hardware setup described in Table 6.1 and the software configuration in Table 6.2. The

back-end machines are limited to using one CPU. The front-end machines are described in

the same table. Front-end 1 was used to drive the clients and the run the router.

6.4.3 Partitioning Schemes

Look-up Table Smart Partitioning

Since the workload performs look-ups by page. page-id, page. page-title, text. id, and

revision. rev-page, the following scheme for partitioning the data was used:

9 Range partition page on page-title such that accesses over title are approximately

uniform across back-ends.

e Create a look-up table on page. page-id so that the router knows where a page is

located based on page-id.

9 Partition revision on revision. rev-page so that revisions where revision. rev-page



= page . page-id are co-located on the same partition to make the join in the second

query local.

* Partition text on text. id so that revision. rev-text-id = text. id are co-located

on the same machine.

This scheme ensures that the router knows where the data is on the back-ends and that

all transactions will happen on one node. Based on the micro-benchmark in Section 6.3, we

would expect to see this plan for partitioning and look-up tables out perform a hash-based

partitioning of the Wikipedia data-set.

Hash Partitioning

The hash partitioning scheme was chosen to make joins for the second query run on one

back-end. The scheme is as follows:

" Hash revision on rev-page and page on page-id, and co-locate those hashes such

that page. page-id and revision. rev-page are located on the same back-end node.

" Hash text on id.

In the scenario of hash partitioning, the router no longer knows where to send query 1,

so it must send it to every partition. Query 2 can then be sent to one partition. Query 3

can also be sent to one partition, which could be the same partition as query 2 but may

not be.

Measuring Hash Partitioned Database Performance

Hashing is simulated by using look-up tables. Since latency was not a key measure of

performance (as explained in Section 6.1), and the added latency of the look-up table is

not significant compared to the network round trip time plus query answering time, this is

a fair measure.

For the look-up table experiment, the look-up tables are generated from the data and

loaded at start up time. Then multiple clients drive the router with the predetermined

workload.

For the hash partitioned experiment, the hash partitioning was simulated using the

router in order to keep the router implementation as similar as possible between tests. The



first query is sent to every location as opposed the location known to contain the page based

on title, since the hash partitioning scheme would not have knowledge of partition based

on title. The second query is sent to the correct back-end, which the router can determine

via hash partitioning. Likewise, the third query is also sent the correct back-end, which the

router can determine via hashing.

6.4.4 Growing the Database - Constant Partition Size

In this test, hash partitioning is compared to the smart partitioning with look-up table

routing as the number of partitions grows to accommodate more data. This experiment

tests the effect of throughput of transactions as the number of back-ends increases. In this

particular experiment, the number of tuples in each back-end remains the same. Figure 6-4

shows the results of this test which compares the effect of adding partitions.
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Figure 6-4: Effect of growing a database with more back-end nodes: Transactions per second
vs Number of Back-ends. Each back-end has 1/8 of the total Wikipedia data.

Eight partitions with smart partitioning provides throughput that is 6.6 times faster than

a single back-end. For hashing, eight partitions only yields 2.2 times faster performance

verses a single partition. In the case of eight partitions, the look-up table implementation

performs 3.0 times faster on throughput than hash partitioning.

It is also important to note in Figure 6-4 that the smart look-up table implementation
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is continuing to scale at a near-linear rate, while the hash partitioning scheme has started

to taper off. We would expect throughput to continue to grow as partitions increase for

larger numbers of partitions and start to taper off much later.

6.4.5 Adding Back-ends - Constant Database Size

In this experiment, the total database size is kept constant while the number of partitions is

varied. Figure 6-5 shows the performance of the system measured using throughput versus

the number of back-ends used. The eight partition data point in Figure 6-5 is the same test

as the eight partition data point in Figure 6-4. Eight back-ends' throughput is 5.9 times

faster than a the single database performance for the smart partitioning. Performance for

eight back-ends is only 2.0 times faster for the hash partitioning as compared to the single

database. In the case of eight back-ends, the look-up table implementation performs 3.0

times faster on throughput as compared to the hash partitioning scheme.

0 smart partitioning plus lookup tables
- hash partitioning

2 3 4 5
number of back-ends holding data

7

Figure 6-5: Effect of changing the number of back-ends storing the Wikipedia data. Trans-
actions per second vs Number of Back-ends. Each configuration has the entire data set.

6.4.6 CPU usage for Wikipedia Example

In the previous section describing the results of 8 back-ends versus a single database, we

would expect approximately an 8 times speed-up. Unfortunately there is only a 5.9 times



speedup. This is attributed to not completely utilizing the entire CPU of each back-end

machine. The root cause to this is still unknown. One reason may be that the requests

to the back-ends come in bursts. If there is a burst of requests that must be answered

on partition 1, then new requests will not arrive at the other partitions until these are

answered. If this is the case, it may be possible to perform live migration by moving data

based on the current workload in order to keep all machines working at 100% CPU usage.

Another possibility for under utilization of some back-ends is that the Java implemen-

tation and network protocol may be batching requests in the underlying implementation.

If this is the case, it may be possible to remove this problem by fine-tuning the system.

Figures 6-6 shows the CPU utilization of the eight CPUs from the eight back-ends for

the smart partitioning. In this figure, some of the CPUs are underutilized. It may be

possible to tune the system in order to max out the back-ends. In this scenario, the look-up

table scheme could perform better than the results presented above. Figure 6-7 shows the

same data for the hash partitioning scheme. This test takes three times longer to complete

so the two graphs are on different x-axis scales. In the hash partitioning scheme, the CPUs

are almost always running at 100%.
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Figure 6-6: CPU usage for Wikipedia data set experiment using the look-up table scheme:
Percent of CPU used vs time for the eight partition Wikipedia data set. Each line represents
data from a different back-end CPU.
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Figure 6-7: CPU usage for Wikipedia data set experiment using the hash-based scheme:

Percent of CPU used vs time for the eight partition Wikipedia data set. Each line represents

data from a different back-end CPU.
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Chapter 7

Scaling Look-up Tables to Large

Data Sets

One disadvantage of look-up tables as compared to hashing is that look-up tables must

be stored somewhere in memory. This means that look-up tables often grow linearly with

respect to memory as the database size grows. Another is that look-up tables must perform

a memory look-up to determine the tuple partition as opposed to a simple hash computation.

In this section, I explore the memory usage and performance of look-up tables in Java.

I also discuss a methods for scaling look-up tables by storing more important data.

7.1 Choosing the Correct Look-up Table Implementation

In choosing the correct look-up table implementation, it is important to minimize memory

usage and maximize throughput of accesses. In the implementation described above, the

Colt HashMap from the Colt Scientific library was used for integer look-ups and Java's

native HashMap was used to String look-ups. Arrays were not used, but arrays are faster

than map look-ups and can take up less memory if the keys are dense.

Figure 7-1 shows the effect of look-up table size on throughput of look-ups and memory

utilization. As a reference, hashing a value needs zero memory and is also shown on the

throughput graph to show how look-ups compare to hashing in speed. In this figure, the

array is completely dense, which means that the length of the array is the same as the table

size. In the scenario that the array is not completely dense, then the array size grows with

inverse of density. Density can be quantified as the range of values divided by the number



of values, since the array needs to allocate space for a tuple value regardless of whether or

not it is present in the database. For example an array that is 50% dense will require twice

as much space to hold the sparse data. In real data sets, it is normally the case that the

density of keys is close to 100%. This is because primary keys are normally auto-increment

fields and data is not deleted often. Even if data is deleted, many database applications do

an occasional id reshuffling. For example, in a Twitter data set obtained in September 2009,

the user table was 84% dense supporting that tables over primary keys are often dense [6].

0
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Figure 7-1: Look-up table performance: Throughput vs Look-up Table Size (top) and
Memory usage vs Look-up Table Size (bottom)

From Figure 7-1, it is clear that arrays are better than both hash map implementations

for dense keys from a memory point of view. We account only for the cost of selecting

the correct partitioning, ignoring parsing and network costs (which are the same for every

kind of partitioning). The top part of the figure shows throughput in millions of operations

(look-ups) per second. Here, the array based implementation outperforms the two HashMap

implementation by a significant amount (especially for large numbers of entries), and it

is very close in performance achieved by a very simple modulo-based hashing. In either

... ...........................



case; however, millions of look-ups happen per second, suggesting that look-ups will not

significantly impact latency.

7.2 Look-up Table as a Cache

The look-up table as a cache scheme allows restricting the size of the look-up table to be a

fraction of the size required to hold a look-up value for every tuple. Specifically, I propose

only storing the recently requested tuples in the look-up table. If the location of the tuple

is not in the cache, then the query must be sent everywhere. After it is found, it can be

added to the cache.

For the example of the Wikipedia data set used with an actual trace of requests show

that 90% of the requests over the revision table and text table represented only 1.6% of the

total data. The reason for this is that the revision and text tables hold every revision and

the text for every revision for every page. Queries over revision and text normally request

the newest version of the page. In addition, certain pages are much more popular than

others. This type of skew in data accesses suggests that caching should perform well. This

skew is present in many data sets and can be capitalized on in order to keep look-up table

sizes down. For example, if we cache 1.6% of the data, 96GB of RAM could handle over

one trillion tuples.

7.3 Hybrid Storage

Hybrid storage is similar to a cache, but instead of caching "hot tuples", the "hot" data is

partitioned using fine-grained partitioning and the rest of the data is partitioned using hash

partitioning. In this scenario, the look-up table can be much smaller than the data set and

the router will always know the location of the tuples. The router first checks the look-up

table for the tuple location. If it is found, then the location of the tuple is known and the

query can be modified and sent. If the look-up table has a miss, then the value is hashed

and the partition is still known and then the modified query is sent. The performance of

this system is expected to perform close to the same as a pure look-up table scheme. The

reason for this is that the location of a tuple is always known and the scheme can most

likely be chosen to minimize the fraction of distributed transactions.
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Chapter 8

Future Work

The look-up table implementation described in this thesis shows a proof of concept that

look-up tables coupled with fine-grained partitioning can yield higher performance results

as compared to hash-based partitioning. A few major components need to be built to make

this prototype suitable for real world deployment. These are outlined below.

Distributed Query Planner

Missing in this research is a query planner that picks the best strategy for breaking a query

into multiple queries for complex queries. In Section 4.1, I presented different joins plans

that should be chosen based on the specific scenario. To make this choice automatically,

information such as table cardinality and statistics on the database are needed. The planner

would also have to have a cost model which would be more complicated than traditional

planners for non-distributed databases. In addition it may be helpful for the planner to be

able to plan both at the router level and the back-end nodes, specifying the plan all the

way to the back-end nodes.

Two-Phase Commit

The implementation presented in this thesis supports transactions assuming the router and

back-end nodes do not fail. To handle failures, a distributed commit protocol like two-phase

commit is needed. Two-phase commit in the current version of MySQL is relatively slow. In

order to implement two phase commit without a large performance overhead, modifications

to the back-end node protocol are needed.
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Chapter 9

Conclusion

Contributions

Scaling distributed transaction processing databases linearly is a significant real-world prob-

lem. I presented look-up tables as a novel way to support fine-grained partitioning of

complex data that can yield linear speedups. My implementation and results show that

fine-grained partitioning supported through the use of look-up tables is both feasible and

one possible solution to the partitioning problem with growing database sizes. I used both

real and synthetic data to show that look-up tables can address difficulties in scaling out a

system when data relations are complex.

Results Summary

I show that a database can achieve near linear speed-up with scale out when ideal parti-

tioning is achieved. I also show that fine-grained partitioning can be supported through

look-up tables. Using a smart partitioning scheme on a Wikipedia data set, I show that my

look-up table implementation performs three times faster than the best hash partitioning

scheme using eight back-end machines. I also show promise that my scheme will continue

to scale-out where hash partitioning hits a wall in performance.
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