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Abstract 

 

Recent advancements in the field of network theory commence a new line of 

developments in portfolio selection techniques that stands on the ground of perceiving 

financial market as a network with assets as nodes and links accounting for various types 

of relationships among financial assets. In the first chapter, we model the shock 

propagation mechanism among assets via network theory and provide an approach to 

construct well-diversified portfolios that are resilient to shock propagation and contagion 

issues in the volatile and crisis periods. The second chapter analyzes the influence of the 

hedging network among assets on the portfolio diversification attributes. Building on the 

hedging network perspective of the market, we propose a network centrality measure to 

find stocks that are most suitable to form a well-diversified portfolio. The results clearly 

shows that our diversification strategy performs better than the conventional 

diversification strategies both in-sample and out-of-sample. In the third chapter, we 

analyze the market network constructed by adopting assets as nodes and their returns’ 

correlation as links. We theoretically show that there is a negative relationship between 

the centrality of assets in such a network and the weights assigned to them in the 

Markowitz prescription. Based on our theoretical findings, we propose a portfolio 

selection strategy that out-performs well-known benchmarks while presenting positive 

and significant Carhart alphas. 
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Resumen 

 

Los recientes avances en el campo de la teoría de redes suponen una nueva línea de la 

evolución de las técnicas de selección de carteras que se basa en plantear el mercado 

financiero como una red donde los nodos constituyen cada uno de los activos y los enlaces 

representan diversos tipos de relaciones (o conexiones) entre los activos financieros. En 

el primer capítulo, vamos a representar el mecanismo de propagación de shocks entre los 

activos a través de la teoría de redes y proporcionar un enfoque para construir carteras 

bien diversificadas que sean resistentes a los shocks y problemas de contagio en periodos 

de elevada volatilidad y/o crisis. El segundo capítulo se analiza la influencia de las redes 

de cobertura de los activos sobre los atributos de diversificación de la cartera. A partir de 

la perspectiva de una red de cobertura, se propone una medida de centralidad de la red 

para encontrar aquellas acciones que sean más adecuadas para formar una cartera bien 

diversificada. Los resultados muestran claramente que nuestra estrategia de 

diversificación se comporta mejor que las estrategias de diversificación convencionales 

tanto en la muestra como fuera de ella. En el tercer capítulo, se analiza el caso de una red 

construida mediante la adopción de activos como nodos y sus correlaciones como enlaces 

entre los nodos. Los resultados empíricos nos muestran una relación negativa entre la 

centralidad de los activos en esta red y los pesos asignados a en el marco del modelo de 

carteras clásico de Markowitz. En base a los resultados teóricos, se propone una estrategia 

de selección de cartera que supera los resultados bajo los modelos clásicos, permitiendo 

obtener alfas (bajo modelo de Carhart) positivos y significativos. 
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Chapter 1: Introduction 

 

The process of selecting a portfolio is an ongoing field of research in the finance litreture. 

The main argument in theorizing the portfolio selection process is built on the 

diversification rule that advises upon including a large number of assets in the portfolio 

for the purpose of minimizing the risk. Building on this argument, Markowitz provide a 

delicate mathematical perscription where he develops a static framework for investors to 

optimally allocate their wealth across a set of assets considering only the first and second 

moments of the returns’ distribution. Markowitz perscriptions can be categorized as a 

specific type of diversification rule where apart from the portfolio risk, the return is also 

considered as influential in allocating wealth among assets.  

Despite the logical reasoning behind the diversification argument and the Markowitz 

profound mathematical prescrption, these strategies face several challenges in real-world 

application. In one hand, diversified portfolios result in losses in the crisis and volatile 

periods. In particular, in the 2007-2008 financial crisis, investors who counted on 

diversification to protect them against shocks, suddenly find their investment plunging in 

value. Hence, practitioners criticize diversification strategy, pointing to “the end of 

diversification’’.  

In addition, although diversification advocates including a high number of stocks in the 

portfolio to minimize risk, there is no consensus on the optimum number of stocks needed 

in the portfolio to achieve the maximum diversification benefits. The litreture advises 

upon including a specific number of stocks as low as ten up to three hundred to obtain the 

maximum diversifiction benefits. This creates a confusion for investors as how to 

construct a well-diversified portfolio. 

On the other hand, with regard to the profound Markowitz perscriptions, the out-of-

sample performance of his strategies is not as promising as expected. The poor 

performance of Markowitz’s rule stems from the large estimation errors on the vector of 

expected returns and on the covariance matrices leading to the well-documented error-

maximization property. The magnitude of this problem is evident when we acknowledge 

the modest improvements achieved by those portfolio rules specifically designed to tackle 

the estimation risk. In addition, the evidence indicates that the simple yet effective 
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equally-weighted portfolio rule has not been consistently out-performed by more 

sophisticated alternatives. 

To tackle these issues, we adopt a network perspective of the financial market in this 

thesis. Recently, researchers from different fields have characterized financial markets as 

networks in which securities correspond to nodes and links relate to different types of 

relationships among securities (Barigozzi and Brownlees, 2014; Acemoglu et al., 2012; 

Billio et al., 2012; Bonanno et al., 2004; Diebold and Yilmaz, 2014; Hautsch et al., 2015; 

Mantegna, 1999; Onnela et al., 2003; Tse et al., 2010; Vandewalle et al., 2001; Zareei, 

2015). In spite of the novel and interesting insights obtained from these network-related 

papers, most of their results are fundamentally descriptive and lack concrete applications 

in portfolio selection process. This thesis contributes to this line of research by 

investigating the extent to which the underlying structure of the financial market network 

can be used as an effective tool in enhancing the portfolio selection process. 

In the first chapter, we address the poor performance of diversified portfolios in the crisis 

and volatile periods. In general, portfolio diversification overlooks the presence of lead-

lag relationships among assets performing as a shock propagation mechanism, which 

reduces the gains from diversification in the volatile and crisis periods. This paper 

investigates the influence of shocks propagation among assets on diversification benefits 

relying on insights from network theory. We introduce Granger network as a directed 

graph with nodes corresponding to individual assets and links accounting for lead-lag 

relationships. Analyzing this network, we show that (i) the influence of shocks on 

portfolio return is proportionate to the centrality ranking of assets in the Granger network 

and (ii) an asymmetrical network structure hinders diversification benefits by depleting 

portfolio volatility decay rate. Furthermore, we show that diversifying among assets with 

star-like network structure where a central asset leads all other assets in the portfolio result 

in the lowest diversification benefit. Finally, we empirically demonstrate that two distinct 

datasets of U.S. industries and international stock markets greatly resemble star-like 

network structures whose central nodes are financial industry and the U.S. market, 

respectively. Based on the findings in this paper, investors are able to construct well-

diversified portfolios that are resilient to shocks propagation and contagion issues in crisis 

periods. 
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The second chapter addresses the optimum number of stocks needed to gain the most of 

diversification benefits. We develop a new framework for portfolio diversification based 

on network theory and propose a new type of network, a hedging network, with nodes 

comprising stocks and links accounting for hedging relations. We then analyze different 

types of network structures (full, star and individual) and the relevance of their 

components in portfolio diversification. In addition, we propose a centrality measure in 

hedging networks to determine the best stocks that improve portfolio diversification. 

Employing this centrality measure, we build well-diversified portfolios with a low 

number of stocks that perform better than a naïve equally weighted portfolio or portfolios 

based on classical portfolio theory. 

In the third chapter, we address the poor out-of-sample performance of Markowitz rule 

using a network perspective of the financial market. In this study a financial market is 

conceived as a network where the securities are nodes and the links account for returns’ 

correlations. We theoretically prove the negative relationship between the centrality of 

assets in this financial market network and their optimal weights under the Markowitz 

framework. Therefore, optimal portfolios overweight low-central securities to avoid the 

large variances that result when highly influential stocks are included in the investor’s 

opportunity set. Next, we empirically investigate the major financial and market 

determinants of stock’s centralities. The evidence indicates that highly central nodes tend 

to coincide with older, larger-cap, cheaper and financially riskier securities. Finally, we 

explore by means of in-sample and out-of-sample analysis the extent to which the 

structure of the stock market network can be employed to improve the portfolio selection 

process. We propose a network-based investment strategy that outperforms well-known 

benchmarks while presenting positive and significant Carhart alphas. The major 

contribution of the paper is to employ the financial market network as a useful device to 

improve the portfolio selection process by targeting a group of assets according to their 

centrality. 

This thesis contributes to several strands of literature. First, it relates to the papers trying 

to take advantage of cross-dependencies among returns in order to construct profitable 

portfolio strategies. A well-known article in this category is DeMiguel et al. (2014) in 

which they provide an extensive analysis investigating whether they can profit from the 

cross-dependencies across assets and find that a strategy formed on returns' cross-

dependencies would perform well out-of-sample when the transaction cost is low (lower 
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than ten basis points). Moreover, Menzly and Ozbas (2010) find that trading strategies 

based on cross predictability of returns result in economically and statistically significant 

premiums and are significantly correlated with the return series of hedge funds that are 

presumed to exploit return predictability effects. Rapach et al. (2014) construct portfolios 

using industry returns' cross-predictability and gain 11.37% annualized abnormal returns. 

We complement this strand of litreture by modeling the cross-dependencies among 

returns in a network perspective and analyze the influence of this network on portfolio 

diversification attributes. In abstract, we provide theoretical background for this strand of 

empirical litreture.  

In addition, this thesis is also strongly related to the emerging literature concerning 

macroeconomic fluctuations stemming from microeconomic idiosyncratic shocks 

(Horvath, 1998; Dupor, 1999; Shea, 2002; Gabaix, 2009; Acemoglu et al., 2015). In an 

allied work, Acemoglu et al. (2012) show how an economy's aggregate volatility decay 

rate is determined by the topology of an industrial input-output network. In a closely 

related article, Acemoglu et al. (2015) determine the fundamental elements characterizing 

the contagion process on a network, enabling us to rank them in terms of their aggregate 

performance. This framework sheds light on the commonalities among different 

contagion-related papers and provides a sort of coherence to their results. 

On the other hand, this thesis complements the vast literature on the underlying attributes 

of portfolio diversification. This litreture starts by the classical article by Samuelson 

(1969), where he explores the diversification benefits among a fixed number of stocks 

when they are negatively correlated. Afterwards, researchers address this issue from an 

empirical standpoint and provide empirical results as to how many stocks determine the 

most of diversification benefits (Evans and Archer, 1968; Mao, 1970; Elton and Gruber, 

1977; Bird and Tippett, 1986, Evans and Archer, 1968; Statman, 1987; Domian et al., 

2007). 

In abstract, this thesis is the first comprehensive study on the application of network 

theory in improving portfolio selection process. Investigating from both theretical and 

empirical standpoints, we prescribe several portfolio selection rules that out-perform the 

conventional portfolio selection strategies relying on network theory.     

 



 
         
 

 
Chapter 2: Network Origins of Portfolio Risk 

 

1. Introduction 

In the 2007/2008 financial crisis, investors counting on their diversified portfolio to protect them 

against shocks, suddenly find their investment plunging in value. Hence, practitioners (e.g. Jaeger 

and Taraporevala, 2009) and researchers (e.g. James, Kasikov, and Edwards, 2012; Ilmanen and 

Kizer,2012) criticize diversification strategy, pointing to “the end of diversification”. This paper 

provides a remedy for poor performance of diversified portfolios in the volatile periods by 

investigating the contagion notion originating from interdependencies among assets. 

The standard theory in finance depicts a decreasing relationship between a portfolio's risk and its 

size where this negative association lingers until the aggregate variance reaches its asymptotic 

lower limits, commonly known as non-diversifiable or systematic risk. However, this assertion 

overlooks the presence of lead-lag relationships1 among assets performing as a shock propagation 

mechanism. This paper examines the influence of lead-lag relationships on portfolio volatility 

relying on insights from network theory. In particular, we show that lead-lag structures with 

asymmetrical spirit diminish diversification benefits and slow down portfolio volatility 

convergence. 

There is substantial empirical evidence of the presence of lead-lag relationships among returns.2 

Lo and MacKinlay (1990); Brennan, Jegadeesh, and Swaminathan (1993); Badrinath, Kale, and 

                                                           
1 There is lead-lag relationship between asset 𝑖 and 𝑗 if the asset  ’s return at time t influences asset 𝑖 ’s return 

at time t+1 ( in this case, asset 𝑗 is said to lead asset 𝑖). In the literature, other terms such as serial-dependency 
(DeMiguel, Nogales, and Uppal, 2014) and cross-predictability (Menzly and Ozbas, 2010; Rapach, Strauss, Tu, 
and Zhou, 2014) are also used to point to lead-lag relationships among returns. 

2 The returns cross-predictability literature is a subset of the well-established literature on the predictability of 
returns supported by many papers e.g. Fama and Schwert (1977); Campbell (1987); Lewellen (2004);  Breen, 
Glosten, and Jagannathan (1989);Fama and French (1988, 1989); Ferson and Harvey(1991); Lettau and  Ludvigson 
(2001); Campbell  and  Thompson (2008);Cochrane (2008); Pastor  and  Stambaugh (2009). Welch and Goyal 
(2008) nurtured doubts regarding the out-of-sample predictive power of returns, and in response, Cochrane(2008) 
criticized the reliability of their out-of-sample test and back up the return predictability evidence. Campbell and 
Thompson (2008) argue in favor of including restrictions in regressions to increase their predictive power. 
Subsequently, several robust out-of-sample evidence on the predictive ability of returns was provided by Campbell 
and Yogo(2006); Rapach, Strauss, and Zhou (2009); Henkel, Martin, and Nardari (2011);Ferreira and Santa-
Clara(2011), and Dangl and Halling (2012). Moreover, following successful evidence of returns predictability, 
several prominent asset pricing models have incorporated return predictability, such as those of Campbell and 
Cochrane (1999); Bansal and Yaron (2004). Finally, a branch of literature embodies return predictability as given 
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Noe (1995); Chordia and Swaminathan (2000); Hou (2007); Cohen and Frazzini (2008), and 

DeMiguel et al. (2014) substantiate lead-lag relationships among stock returns; Menzly and 

Ozbas (2010); Hong, Torous, and Valkanov (2007), and Rapach et al. (2014) verify cross-

predictability among industry portfolios and Eun and Shim (1989) and Rapach, Strauss, and Zhou 

(2013) document serial dependency in the international   market. Building on this extensive 

evidence, we construct a network that captures how shocks propagate among assets by 

summarizing the lead-lag relationships among asset returns, termed as Granger network, with 

assets as nodes and directed links signifying the serial-dependencies between assets.3  

Investigating the influence of Granger network, as a shock propagation mechanism, on portfolio 

diversification, we make four contributions to the literature. First, we characterize the portfolio 

return of a naive investor by the centrality of assets in the Granger network and show that shocks 

to the central assets have a high ex-post influence on portfolio return, while the unconditional 

expected return of the portfolio is insusceptible to the structure of the network. Accordingly, the 

structure of Granger network have direct influences on the portfolio risk of a diversified portfolio.  

Second, we decompose the portfolio variance to two components: contemporaneous and Granger 

components where the former measures the risk associated with the simultaneous movements in 

the asset returns and the latter explains the risk stemming from the structure of Granger network. 

Subsequently, we theoretically show that higher heterogeneity in the structure of Granger 

network, as motivated by fat-tail centrality distribution, increases portfolio risk and cuts back 

portfolio diversification benefits. In particular, we argue that diversification in a stylized star 

network structure, in which one central asset cross-effects other assets, results in the lowest level 

of diversification benefits. Third, we empirically demonstrate that two distinct sets of assets, U.S. 

industry portfolios and international stock markets, resemble star-like network structures whose 

central nodes are the financial industry and U.S. stock market, respectively. Moreover, we show 

that the Granger component of portfolio risk, when diversifying across industries or international 

markets, increases in periods of crisis when there is a higher propensity for shocks to influence 

the central nodes. Fourth, we build well-performing diversification strategies based on the 

information in the Granger network. Knowing that high central assets in the portfolio would 

                                                           
in asset allocation approaches, leading to a series of   papers such as Campbell and Viceira (2002); Campbell, 
Chan, and Viceira (2003). 

3 We use a vector auto-regression model (VAR) to capture the lead-lag relationships among returns (DeMiguel 
et al., 2014; Rapach et al., 2014). The element in row i and column j in Granger network's adjacency matrix 
signifies the cross-effect of asset j at time t on asset i at time t+1. It should be noted that Rapach et al. (2014) 
consider a similar network representation derived from VAR estimation.  
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extensively propagate shocks in the portfolio and decrease our diversification benefits, we expect 

diversification among the lowest central assets to lead to lower portfolio volatility and higher 

diversification benefits. Our in-sample and out-of-sample analyses clearly demonstrate better 

performance from diversifying among lowest central assets. Moreover, we also compare our 

strategy to naive diversification among all assets and assets with lowest average correlation, and, 

in both cases, diversification among the lowest central assets in the Granger network 

demonstrates superior performance in-sample and out-of-sample. Therefore, based on our 

findings, we are able to improve diversification benefits and construct diversified portfolios 

robust to shocks propagation among assets in the volatile periods. 

In order to give a picture of how Granger network looks like in real-world, we proceed by 

presenting two examples that have been already established in the literature. The net- work in 

Figure 1(a) summarizes lead-lag relationships across 30 industry portfolios and is already 

established in Rapach et al. (2014). The nodes in this network represent the industry portfolios 

and the links account for the lead-lag relationships. The financial industry is clearly positioned 

as the highest central node in the network. The network in Figure 1(b) illustrates the cross-

dependencies among 11 industrialized countries with a clear central placement of the U.S. market 

(Rapach et al., 2013). If we suppose an investor decides to diversify among assets in these 

networks (performing industrial diversification or international diversification), an important 

question arises: To what extent does Granger network structure influence diversification benefits? 
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Figure. 1. Granger network examples (a) 30 value-weighted industry portfolios from Kenneth French's Data Library 

(Monthly excess returns from 1980:01 to 2014:12); (b) Total return indices (Stocks) from Global Financial Data for 

11 industrialized countries (Monthly excess returns from 1980:12 to 2014:12 adjusted for difference in closing times 

across countries); The nodes in the network represent the assets and the directed lines account for lead-lag 

relationships. The darker and bigger is the node, the more central it is in the network or the more leading characteristic 

the asset has in the market. 

To answer this question, we consider two types of investors both relying on naive diversification 

as their main strategy: a myopic investor that only cares about tomorrow and a long-term investor 

who holds a portfolio for a long period of time. Regarding the myopic investor, we find 

threatening-degree centrality of assets in the Granger network to characterize the impact of 

idiosyncratic shocks to his-her portfolio return. Threatening-degree centrality is simply the 

aggregate one-period impact of an asset on other assets in the network. However, the 

unconditional expected portfolio return is resilient to the structure of the Granger network. Next, 

we decompose myopic portfolio variance into two parts: contemporaneous and Granger 

components where the granger component quantifies the impact of Granger network on portfolio 

variance. Disregarding the contemporaneous component, we provide a proposition showing that 

fat-tail distribution of threatening-degree centrality results in higher portfolio variance. This is to 

be expected as shocks to a low number of highly central assets would transmit rapidly across the 

whole portfolio and drive up the portfolio risk. 

In an additional comprehensive analysis, we discuss the portfolio volatility convergence in 

several stylized network structures. First, we consider a case with no lead-lag relationships among 

assets, termed as no-dynamic structure, and we find it to follow the standard diversification tenet, 

where the portfolio risk converges to mean correlations in the contemporaneous component. 

Next, we study a case in which each asset impacts itself; called disconnected network, this case 

only takes into account the presence of autocorrelations among assets. Diversification in this case 

leads to a higher portfolio volatility than in no-dynamic structure. Proceeding with network 

structural analysis, we consider the cases of an inverse-star network, where every asset cross-

predict one asset in the center; a circle network, where each asset leads only the one asset 

following it in a circle format; and a full network, in which all connections mutually exist. In 

these structures, we find that diversification converges to the same level as in the disconnected 

network. On the contrary, the star network, where one asset in the center cross-predicts all other 

assets, results in the highest portfolio volatility level, and diversification in this structure leads to 

higher asymptotic systematic risk. Moreover, disregarding contemporaneous correlation across 

assets, the risk suffered by a myopic investor remains positive, even for an extremely large 
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portfolio size while in other stylized network structures, it converges to zero. This concludes our 

proposition on the adverse effect of fat-tail centrality distribution on the portfolio risk. 

Analyzing the long-term case, we find Katz-Bonacich centrality to be a determinant factor on 

verifying the influence of shocks on portfolio performance. This makes sense for the long-run, as 

Katz-Bonacich centrality measures the aggregate long-term influence of an asset on the whole 

portfolio. We find the same results as the myopic diversification, with Katz-Bonaich centrality 

acting as a determinant of long-term shock influence on the portfolio. We also show that Katz-

Bonaich centrality does not influence the portfolio return of a static portfolio (unconditional 

portfolio return) and higher heterogeneity of the centrality distribution results in lower 

diversification benefits. Summing up, we conclude that, for both short-term and long-term 

investors, large concentration on the effects that an asset imposes on the rest of the system 

(measured by the corresponding centrality) undermines the benefits of diversification, not only 

in terms of risk's asymptotic limit but also for the intermediate sized portfolios following risk’s 

convergence rate modifications. 

Finally in the empirical part of the paper, we discuss the network characteristics for industry and 

international Granger networks and demonstrate that both networks show high propensity in 

resembling star network structure. This high conformity makes diversification highly exposed to 

shocks propagation in the volatile periods. We put this into a test. Considering an investor 

diversifies among industry portfolios (industry diversification) or international stock markets 

(international diversification), we find the Granger component of portfolio risk through time to 

be higher in the crisis periods (for example 2007-2008 financial crisis). This is reasonable, as 

Granger network captures how shocks propagate among assets, and in the crisis periods, shocks 

are more prone to occur in the market. In addition, we compare diversification benefits from 

diversifying among lowest and highest central assets in the Granger network with full sample 

diversification and also diversifying among stocks with lowest average correlation. For this 

analysis, we consider two datasets residing 100 stocks in S&P500 and FTSE500. We find lowest-

centrality diversification to be more beneficial in terms of lower portfolio risk and higher 

diversification benefits. This is reasonable as lower central stocks are more resilient to shock 

propagation and according to findings, are less intimidating for our diversification benefits. 

Our results are consistent with Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) which 

show that the structure of industrial input-output linkages influences the rate at which the 

aggregate volatility decays. Moreover, Rapach et al. (2014) find Granger network and the 

economy's production network mimicking each other; thus, our findings regarding the influence 
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of Granger network on portfolio variance convergence are in accordance with economy's 

production interconnections influencing the economy's aggregate volatility decay rate. However, 

we provide a novel framework to assess the extent to which cross-effect structures influence 

portfolio performance from an investor point of view. 

This paper complements Rapach et al. (2014). They find links in the industrial portfolios' Granger 

network to represent a more general notion of economic links in real economy and employ these 

links’ information to construct a portfolio strategy that result in 11.37% annualized abnormal 

returns. We build on their findings by investigating the influence of Granger network by 

employing network measures. In abstract, we analyze how Granger network impacts portfolio 

performance from a structural   perspective. 

This paper complements several papers in the literature. We relates to Billio, Caporin, Panzica, 

and Pelizzon (2015). They provide a framework to take into account the influence of market 

structure on portfolio variance using spatial statistics considering CAPM model to be a reduced 

form of a more general model that includes assets interconnections. However, having included 

the impact of network structure on portfolio variance, our approach is different; we use a VAR 

model that is already established in the literature for decomposing portfolio variance and 

extracting the portion originating from assets' cross-dependencies. Our work builds on Acemoglu, 

Ozdaglar, and Tahbaz-Salehi (2015). They provide a general framework to establish a 

relationship between network structure underlying shocks' amplification and an aggregate 

function. Additionally, we also relate to Rapach et al. (2013) and Eun and Shim (1989) where in 

our international Granger network, we find U.S. market leading the international market.  

Our findings have several important implications. Via the Granger network and centrality 

measures, we can track the threatening assets in a diversified portfolio where a shock to them 

would propagate rapidly through the portfolio. Obviously, this provides the investors with a 

unique approach to diminish the influence of threatening assets in volatile periods. In this regard, 

this study provides a response to the ongoing discussion on the end of portfolio diversification 

due to its inability to respond to contagion and shocks propagation issues. Employing the findings 

in this paper, investors are able to construct diversified portfolios immune to poor performance 

in crisis periods. Furthermore, our framework can help to find systemic assets in the market if we 

look at the market as a diversified portfolio. Consequently, we can identify the most threatening 

assets in the economy as systemic, in that a shock to them would propagate extensively in the 

market. 

2. Literature Review 
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Our paper is inspired by different branches of literature. First, we discuss the literature on the 

presence of lead-lag relationships among asset returns. On the one hand, there are papers 

identifying the determinants of lead-lag relationships. A first study in this regard is done by Lo 

and MacKinlay (1990), where they find the profitability of contrarian and momentum strategy 

to be partially caused by lead-lag relations among returns. Size is also found to be a determinant 

of lead-lag relations, with large firms leading small firms (their results are thoroughly 

investigated and confirmed by Lewellen (2002)). Exploring other determinants of lead-lag 

relationships, Brennan et al. (1993), Badrinath et al. (1995) and Chordia and Swaminathan 

(2000) find analyst coverage, institutional ownership, and trading volume   to be determinants 

of lead-lag effects, respectively. 

On the other hand, there are several papers trying to take advantage of cross-dependencies among 

returns in order to construct profitable portfolio strategies. With this aim in mind, they realized 

serial-dependencies among returns. DeMiguel et al. (2014) provide an extensive analysis 

investigating whether they can profit from the cross-dependencies across assets and find that a 

strategy formed on returns' cross-dependencies would perform well out-of-sample when the 

transaction cost is low (lower than ten basis points). Moreover, Menzly and Ozbas (2010) find 

that trading strategies based on cross predictability of returns result in economically and 

statistically significant premiums and are significantly correlated with the return series of hedge 

funds that are presumed to exploit return predictability effects. Rapach et al. (2014) construct 

portfolios using industry returns' cross-predictability and gain 11.37% annualized abnormal 

returns. 

Furthermore, there are several papers discussing the presence of serial-dependencies in the 

international market. In an early study, Eun and Shim (1989) document lead-lag relation- ships 

in the international market demonstrating the leading role of U.S. market. Moreover, in a recent 

study, Rapach et al. (2013), take advantage of up-to-date developments in statistical analysis to 

explore the cross-dependencies in the international market and clearly show the leading role of 

the U.S. market among 11 industrialized countries. 

The next question that we try to answer is: What are the explanations behind the presence of 

lead-lag relationships? Various papers provide explanations for the existence of cross-

predictability among returns, including slow diffusion of information originating from investor 

specialization, limited market participation and market segmentation (Allen and Gale, 1994; 

Hong et al., 2007; Hou, 2007; Cohen and Frazzini, 2008; Menzly and  Ozbas, 2010). Moreover, 

as discussed by Chordia and Swaminathan (2000); Hong et al. (2007) and Billio, Getmansky, 
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Lo, and Pelizzon (2012), even when traders decide to take action using their knowledge of market 

information, the cross-predictability among returns remains ex- tant due to the presence of 

market frictions. Therefore, even in the equilibrium, we are able to find cross-effects among 

returns (Hong et al., 2007), or in other words, as Chordia and Swaminathan (2000) indicate, 

discovering returns’ cross predictability does not necessary imply market inefficiency. 

Another important question discussed in the literature is: What is the economical meaning of 

lead-lag relationships among returns? Several papers discuss the economic reasons be- hind 

returns' cross dependencies. Cohen and Frazzini (2008) and Menzly and Ozbas (2010) document 

cross-predictability across supplier-customer firms, finding it to be an adequate explanation of 

return cross-predictability. On the other hand, Rapach et al. (2014) define the cross-predictability 

across firms to signify a generalized notion of economic links. This is consistent with Billio et 

al. (2012), who consider returns to contain all the information in the market and therefore, 

returns' granger-causality summarizes various types of relationships (e.g. supplier-consumer, 

contractual agreements) among firms. 

Our paper also follows the branch of literature on the aftermath of the last financial crisis that 

contributed to the elevated interest of the econometric and financial research communities in 

studying financial networks. In this category, there is a particular strand of literature whose 

purpose is to gain new insights on systemic risk issues by efficiently encapsulating cross-

sectional dependency structure in network form. For example, Billio et al. (2012) build a directed 

Granger-causality network that relies on lead-lag relationships among returns in order to capture 

the market interconnections. They consider centrality of firms in this net- work, conveying their 

systemic importance. 

We aim to disentangle the underlying attributes of portfolio diversification. The literature on 

portfolio diversification is enormous; here we just cover its salient findings. In a classical article, 

Samuelson (1969) explores the diversification benefits among a fixed number of stocks when 

they are negatively correlated. From an empirical standpoint, Evans and Archer (1968) focus on 

the negative relationship between portfolio volatility and the number of stocks in a randomly 

selected and equally weighted portfolio. They argue that most of diversification benefits are 

obtained with a small number of stocks (around 10 stocks). Mao (1970) provides theoretical 

support for this finding. However, Elton and Gruber (1977) and Bird and Tippett (1986) argue 

that the parametric relationship estimated by Evans and Archer (1968) is incorrectly specified, 

finding room for risk reduction well beyond the 10- stock rule. Consistent with this evidence, 
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Statman (1987) relies on a Security Market Line approach to conclude that well-diversified 

portfolios must include at least 30 or 40 stocks if no leverage is permitted. 

The studies regarding beta coefficients are also fundamental in the diversification literature. The 

so-called beta effect, documented by Klemkosky and Martin (1975), states the positive 

association between portfolio systematic risk (beta) and idiosyncratic risk (variance of the 

residuals from the market model). Thus, high beta portfolios require a larger number of securities 

to achieve approximately the same level of diversification as low beta ones. The dynamic nature 

of the diversification process is considered by Chen and Keown (1981), who provide evidence 

of the non-stationarity of both the beta coefficients and the idiosyncratic risk. Campbell, Lettau, 

Malkiel, and Xu (2001) report a noticeable increment in firm-level volatility relative to market 

volatility for the period of 1962-1997. This evidence led to a reduction in the correlation between 

the returns of individual stocks and the market. As a consequence, the number of stocks needed 

to obtain a given level of portfolio diversification rose in that period. 

This paper is also strongly related to the emerging literature concerning macroeconomic 

fluctuations stemming from microeconomic idiosyncratic shocks (Horvath, 1998; Dupor, 1999; 

Shea, 2002; Gabaix, 2009; Acemoglu et al., 2015).  In an allied work, Acemoglu et al. (2012) 

show how an economy's aggregate volatility decay rate is determined by the topology of an 

industrial input-output network. In a closely related article, Acemoglu et al. (2015) determine 

the fundamental elements characterizing the contagion process on a network, enabling us to rank 

them in terms of their aggregate performance. This framework sheds light on the commonalities 

among different contagion-related papers and provides a sort of coherence to their results. 

To our knowledge, there is no paper investigating the influence of lead-lag relationships among 

assets on diversification benefits. Our paper examines this issue and extend our perspective on 

to how diversification in volatile periods becomes inefficient. We proceed to define a Granger 

network that summarizes the cross-effects among assets and then, considering two types of 

investors, myopic and long-term, we elaborate on the influence of Granger network on portfolio 

diversification. 

3. Formation of Granger Network 

In this section, we define the Granger network of returns that encompasses all the in- formation 

on the autocorrelations and serial-dependencies of asset returns and next, we introduce measures 

of network centralities that help us analyze the role of Granger network on an investment 

portfolio. 
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The VAR model developed by Sims (1980) is proven to be particularly suitable to capture 

dynamic relations among economic and financial time series. With regard to a VAR model for 

capturing returns serial dependencies, we can mention Hodrick (1992), Campbell and Shiller 

(1988), Kandel and Stambaugh (1990), Campbell (1990), Campbell et al. (2003), Chordia and 

Swaminathan (2000), Barberis (2000), Campbell and Ammer (1993), Eun and Shim (1989), 

Rapach et al. (2013), DeMiguel et al. (2014). Following the literature, we use the VAR model to 

search for the lead-lag relationships among returns. 

Let us assume asset returns follow an n-dimensional and stationary VAR(1) process as follows: 

𝒓𝒕 =  𝑩𝒓𝒕−𝟏  + 𝒖𝒕                                       (1) 

Where 𝑟𝑡 is an 𝑛-dimensional demeaned vector of returns in period 𝑡, and 𝑩 =  [𝑏𝑖𝑗] is an 𝑛 ×

 𝑛 matrix where the element 𝑏𝑖𝑗 represents the impact of asset 𝑗 in period 𝑡 on asset 𝑖  in  period 

 𝑡 + 1  (presenting  a  granger-causal  relationship; Lupkepohl (2005), Chordia  and Swaminathan 

(2000)). Since there is not a constant term in expression (1), the implicit assumption is that 

𝐸 (𝒓𝒕 )  =  ∅. Furthermore, 𝒖𝒕 is a Gaussian white noise process with zero mean vector and 

positive definite covariance matrix 𝚺𝒖  =  [σ𝑢,𝑖𝑗]. We allow the shocks to be cross-sectionally 

correlated but we assume that they are homoscedastic.4  

Assuming the VAR model adequately captures the lead-lag relationships, we define the Granger 

network of returns as a weighed directed network where nodes corresponds to assets and the 

links account for return's lead-lag relationships summarized in the matrix 𝑩 of VAR(1) model. 

Formally: 

Definition  1.  The  Granger  network  of  returns  corresponding  to  the  process  in  (1) is 𝛀 =

 (𝑵,𝑩)  where  𝑵  is  the  set  of  assets  and  𝑩 =  {(𝑗 , 𝑖)  ∈  𝑵 ×  𝑵 ∶  𝑏𝑖𝑗 ≠ 0 },  the  set  of 

links. 

Accordingly, this network accounts for the overall cross-sectional dynamical interactions 

between assets.  Note  that  in  general  𝑩 ≠ 𝑩𝑻   and  thus,  the  impact  of  asset  𝑖  on  𝑗  is  not 

necessarily the same as the impact from 𝑗  to 𝑖, 𝑏𝑗𝑖 ≠ 𝑏𝑖𝑗.5  

                                                           
4 For a detailed explanation of VAR models, we refer to Luptkepohl (2005). 
5 In the paper by Campbell et al. (2003), they consider a VAR model with various stock returns and some state 
variables. It should be noted that even including state variables, we can still subtract the Granger network among 
returns and our theoretical findings that we derive in the following still holds. 
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The networks in Figure 1 represent the Granger network of 30 Fama and French industry 

portfolios in the U.S. and also 11 international countries examined by Rapach et al. (2013). One 

main advantage of a network depiction of serial-dependencies is the relatively easy identification 

of main players in the network. In the Industry network, we easily identify financial industry as 

the most central industry and in the International network, the U.S. stock market is the central 

one. Presumably, we expect any shock to these central nodes to propagate rapidly through the 

network. In the network theory context, there are several centrality measures that capture the 

relative centrality of nodes in the network. Since our Granger network is a directed network6, a 

node can be central in impacting other nodes in the network (threatening centrality) or it can be 

central by being impacted by a large number of nodes (vulnerable centrality). Due to the 

importance of threatening centrality on the notion of risk attribute of a portfolio, hereby, we 

formally define two measures: threatening-degree centrality and Katz-Bonacich centrality. 

Definition 2. Considering directed network, 𝛀 = (𝑵, 𝐁), the threatening-degree centrality of 

asset j is defined as follows:  

𝑑𝑗 =∑𝐵𝑖𝑗

𝑵

𝒊=𝟏

            𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁 (2) 

 
Threatening-degree centrality is simply the summation of weights in the columns of matrix 𝑩. 

In our industry and international Granger networks, financial industry and U.S. stock market are 

the most central nodes based on threatening-degree centrality. In the next step, we define a 

centrality measure that captures not only the direct impact of an asset on other assets but also its 

indirect influence. 

Definition 3. Considering directed network, 𝛀 = (𝑵,𝐁), the Katz-Bonacich Centrality of asset j 

is defined as follows7:  

𝑣𝑗 = 𝟏′(𝐼 − 𝐵)
−1𝑒𝑗 = (𝟏′𝐿)𝑒𝑗             𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 (3) 

  
Where 𝒆𝑗 is the 𝑟 − 𝑡ℎ unit vector and 𝟏 is an n-dimensional vector of ones. Note that the 

existence of 𝑳 = [𝑙𝑖𝑗] = (𝑰 − 𝑩)−1 is guaranteed by the assumption of stationarity in process (1). 

It is worth mentioning that Katz-Bonacich centrality has a particular interpretation in the time 

                                                           
6 In a directed network, there is directions in links connecting the nodes. In our Granger network context, node 𝑖 is 
connected to node 𝑗 when asset 𝑖 is leading asset 𝑗 in our VAR estimation.  
7 Katz-Bonacich Centrality firstly developed by Katz (1953). We follow Newman (2010) for its derivation.  
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series literature. As it is clearly explained in Lütkepohl (2007), in impulse response analysis, the 

coefficient 𝑙𝑖𝑗 accounts for the long term and cumulative effect of asset i given a unit shock on 

asset j. Then, 𝑣𝑖 could be interpreted as the cumulative long term effect of a unit shock on asset i 

taking into account higher order connections upon the entire investment set. 

In the next section, we continue to investigate the role played by Granger network on portfolio 

risk of a myopic and long-term investor. Moreover, we also analyze the impact of Granger 

network on the outcome of diversification in several stylized structures of Granger network. 

4. Granger Network and Portfolio Risk 

We consider a naive investor that divides his wealth equally among assets. In order to analyze 

the impact of Granger network on portfolio variance, we further consider two cases: A myopic 

investor and a long-term investor. In each case, first we provide general propositions on how 

shocks to assets in Granger network influence portfolio risk.  

4.1. The case of a myopic investor 

We consider an investor that only cares about tomorrow, a myopic investor (DeMiguel et al. 

2014), and study the role of Granger network in determining her portfolio performance.  

Equation (1) can be written as the summation of innovations (a moving average representation). 

Due to the imposition of stationarity, 𝑩𝑖 converges to zero rapidly with increasing i.8 Therefore, 

a convenient approximation of equation (1) is given by equation (4) where the term 𝑩𝒊𝒖𝒕−𝒊 is 

negligible for 𝑖 ≥ 2.  

𝒓𝒕 =∑𝑩𝒊𝒖𝒕−𝒊

∞

𝑖=0

= 𝒖𝑡 + 𝑩𝒖𝒕−𝟏          (4) 

 

Where 𝑢𝑡−1 represents a shock to return series in the last period and this shock propagates through 

the Granger network in proportion to the elements in matrix 𝐵. Let us assume that the myopic 

investor diversifies naively among assets in her portfolio. In this case, she diversifies among the 

shocks in the current period and also the last period. Studying the portfolio return leads to the 

following proposition.  

                                                           
8 In order to demonstrate how fast it converges to zero, we provide several numerical examples in Appendix A. 
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Proposition 1: Given the return process in (1), and assuming 𝛴𝑢 = 𝜎𝑢2I, the portfolio return of a 
naive myopic investor is: 

𝒓𝒑(𝒎) =
1

𝑛
𝟏′𝒖𝒕 +

1

𝑛
𝟏′𝑩𝒖𝒕−𝟏 =

1

𝑛
∑𝑢𝑡

𝑖

𝒏

𝑖=1

+
1

𝑛
∑𝑑𝑖𝑢𝑡−1

𝑖

𝒏

𝑖=1

 (5) 

 

Where 𝒅 = 𝟏′𝐵 represents the threatening-degree centrality of assets in the Granger network. We 

conclude that the higher is the absolute value of threatening-degree centrality of an asset in the 

network, the higher impact a shock on this asset would have on the portfolio return.9 

 

Corollary 1: Given the return process in (1), the expected portfolio return of a naive myopic 

investor is: 

𝜇𝑝(𝑚) = ∅ (6) 
 

Corollary 1 shows that the expected portfolio return is not a function of the Granger network. 

Therefore, the pattern of interactions among assets in the Granger network does not present any 

economic consequences upon the myopic investor portfolio return in expected terms.  

Next, we delve into examining portfolio variance. Assuming our myopic investor divides her 

wealth among assets according to weight vector, 𝒘, the portfolio variance is as follows:     

  

σ𝑝(𝑚)
2 = 𝒘′𝚺𝒖𝒘+𝒘

′𝑩𝚺𝒖𝑩
′𝒘 (7) 

  

σ𝑝(𝑚)
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

+

𝑛

𝑖=1

∑∑𝑤𝑖𝑤𝑗(∑∑𝐵𝑖𝑘𝐵𝑗𝑙𝜎𝑢,𝑘𝑙

𝑛

𝑙=1

𝑛

𝑘=1

)

𝑛

𝑗=1

𝑛

𝑖=1

 (8) 

                                                           
9 Canceling the diagonally assumption of 𝜮𝒖, we can introduce this diagonality via Cholesky decomposition of 
covariance matrix of error terms. With regard to expression (1), we can decompose the contemporaneous covariance 
as 𝜮𝒖 = 𝑷𝑷′ and consider a new error term 𝒘𝒕 = 𝑷−𝟏𝒖𝒕 and the coefficients become 𝑩∗ = 𝑩𝑷. Thereby, we would 
have 𝒓𝒕 = 𝑷𝒘𝒕 +𝑩∗𝒘𝒕−𝟏. In this case, the errors covariance is diagonal and we should compute the centralities for 
matrix 𝑩∗. However, this does not depreciate the importance of Granger network. We compute the centrality values 
in both matrices 𝑩 and 𝑩∗ and compute the Pearson and Kendall rank correlations between these two centralities. 
Our results in Appendix B, for industry and international datasets, show that these are highly correlated. 
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The right-hand side of equation (7) is composed of two terms, the first one corresponds to the 

traditional portfolio variance when there is no Granger network effect. We name this term the 

contemporaneous component of portfolio variance. According to Eun and Shim (1989), the 

contemporaneous correlation between residual returns, in our case the contemporaneous 

component, represents the degree of economic integration or in other words, the degree to which 

new information generating an abnormal return in one asset is shared by other assets. 

 The second term is associated with the dynamical interactions among returns which captures the 

impact of the Granger network topology, 𝛀. This term is characterized as the Granger component 

of portfolio variance. In order to focus on the specific effects exerted by the topology of the 

Granger network, we assume 𝜮𝒖 = 𝜎𝑢2𝐈 and thereby assuming the correlations in the 

contemporaneous component to be zero.  The next proposition states the relationship between 

portfolio variance and the distribution of threatening-degree centrality of assets in the Granger 

network. 

 

Proposition 2: Given the return process in (1) and assuming 𝜮𝒖 = 𝜎𝑢2𝐈 , the portfolio variance of 

a naive myopic investor is: 

𝜎𝑝(𝑚)
2 =

𝜎𝑢
2

𝑛
+ (
𝜎𝑢
𝑛
)
2

‖𝒅‖2
2 (9) 

𝜎𝑝(𝑚)
2 =

𝜎𝑢
2

𝑛
+
𝜎𝑢
2

𝑛
𝒅̅𝟐(1 + 𝑪𝑽𝒅

𝟐) (10) 

Where ‖𝒅‖22 accounts for the square of the Euclidean norm of threatening-degree centrality 

vector. Furthermore, 𝒅̅ and 𝑪𝑽𝒅 are, respectively, the mean and the coefficient of variation of 

centrality vector elements. Proposition 2 states that, controlling for the mean centrality, those 

types of networks presenting fat-tail threatening-degree centrality distribution present larger 

portfolio volatility. 

In the next step, we proceeds to investigate the consequences of various stylized Granger network 

structures on portfolio variance and diversification benefits for a myopic investor.    

4.1.1. Portfolio diversification and special cases of network topology 

Figure 2 demonstrates the full list of network motifs (specific patterns of interactions) underlying 

Granger network that fundamentally determines portfolio risk. 
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In total, the weight invested in the stocks with in-going links (vulnerable stocks), and the 

individual variance and covariance between the stocks with out-going links (threatening stocks) 

are the major determinants of portfolio variance. This is reasonable as any variation in a 

vulnerable stocks comes from the threat exerted by threatening stocks.  

 

In the next step, we continue to examine various special network topologies and investigate the 

portfolio volatility in these structures. Hereby, we also cancel the assumption of diagonality of 

contemporaneous covariance in order to see how the correlations influence portfolio 

diversification benefits. Throughout this section, we impose simplifying assumptions following 

Mao (1970) to make our analysis more tractable. We consider a naive investor that allocates his 

wealth equally among assets in the investor’s portfolio set. As a consequence, the (column) vector 

of portfolio’s weights is 𝒘 = 1

𝑛
𝟏 where 𝟏 is a column vector of ones. Additionally, with the aim 

to isolate any other possible effect different from the network topology, we assume 𝜎𝑢,𝑖𝑗 = 𝜎𝑢2  

for 𝑖 = 𝑗 and 𝜎𝑢,𝑖𝑗 = 𝜌𝜎𝑢2  for 𝑖 ≠ 𝑗 where 𝜌 accounts for the equal pair correlation of returns. 

Additionally, we consider 𝑏𝑖𝑗 = 𝑏 < 1; ∀𝑖𝑗. We say that formula is under SSA, when all these 

sets of simplifying assumptions are in place for a particular formula. 

Case 0: No-dynamic structure  

Figure 2. Specific network motifs influencing portfolio variance (Detailed explanation in Appendix B) 
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When there is no dynamical structure in the return process, 𝑩 is a null matrix and as a 

consequence, portfolio variance follows its traditional formulation as in Markowitz 1952. 

Therefore,  

σ𝑝(𝑚)
2 = 𝒘′Σ𝑢𝒘 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (11) 

 

Consistent with Mao 1970, equation (12) under SSA is written as follows stressing the fact that 

portfolio variance is a function of the number of assets in the portfolio. 

σ𝑝(𝑚)
2 (𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] 𝜎𝑢

2 (12) 

 

Let us consider two extreme cases, i) none diversification where 𝑛 = 1 leading to σ𝑝(𝑚)2 (1) = 𝜎𝑢
2 

and ii) extreme diversification in which 𝑛 = ∞ (when every asset in the market is included into 

the investment basket) leading to σ𝑝(𝑚)2 (∞) = 𝜌𝜎𝑢
2. Note that since σ𝑝(𝑚)2 (1) > σ𝑝(𝑚)

2 (∞), there 

exist diversification benefit.10 

When there is a dynamical structure, the variance of portfolio, in comparison with the no-

dynamical case increases by the element 𝒘′𝑩𝚺𝒖𝑩′𝒘 which captures the effect of the network 

topology, Ω. Next, we assume that the set of assets included in the investment opportunity set 

form stylized network topologies.  

Case I: Disconnected Network 

The first case under analysis assumes each stock is affected only by itself as it is depicted in 

Figure 3 and thus there is no Granger interaction among assets beyond their own autocorrelation 

process. 

 

 

                                                           
10 Note that according to Mao (1970), 𝜌 represents the average of correlations of assets in the portfolio set and it is 
originally positive. 

Figure 3. Disconnected network: special case where each stock is threatening only itself 
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In this case, matrix 𝐵 is diagonal and since there is no cross-interaction, 𝑏𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, 

portfolio variance is as follows: 

 

σ𝑝(𝑚)
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

+ (

𝑛

𝑖=1

∑(𝑤𝑖)
2𝑏𝑖𝑖

2𝜎𝑢,𝑖
2

𝑛

𝑖=1

+∑ ∑ 𝑤𝑘𝑤𝑙𝑏𝑘𝑘𝑏𝑙𝑙𝜎𝑢,𝑙𝑘

𝑛

𝑙=1 𝑘≠𝑙

𝑛

𝑘=1

) (13) 

 

The first term of expression (13) is the standard portfolio variance and the second and third terms 

represent the impact from network topology. In the second and third terms, the weights, variance 

and covariance of each asset in the investment set affect the portfolio variance. With regard to 

variance, the impact is positive for all of stocks. Under SSA, as long as |𝑏| < 1, stationarity holds 

and the simplified portfolio variance is: 

 

σ𝑝(𝑚)
2 (𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝑏2]𝜎𝑢

2 (14) 

 

As before, two extreme cases are mentioned. For 𝑛 = 1, the portfolio variance is σ𝑝(𝑚)2 (1) =

[1 + 𝑏2]𝜎𝑢
2 and for the case of maximal diversification, 𝑛 = ∞, we have σ𝑝(𝑚)2 (∞) =

[1 + 𝑏2]𝜌𝜎𝑢
2. Apparently, portfolio variance is higher than no-dynamic case by 𝑏2𝜌𝜎𝑢2. Knowing 

𝜌 is positive, the higher is b, the higher would be the asymptotic variance of the portfolio.  

Assuming the correlation between assets to be zero, we compute the portfolio variance with 

regard to the distribution of the threatening-degree centrality following equation (10). In this 

regard, the threatening-degree centrality of each asset is equal to 𝑏, and thereby, mean degree 

centrality, 𝑑̅, is equal to 𝑏 and the coefficient of variance, 𝐶𝑉𝑑, is zero. Therefore, the variance of 

portfolio is 𝜎𝑢2(
1

𝑛2
+
𝑏2

𝑛
) that converges to zero as we include a large number assets in the portfolio. 

We clearly observe that in this case where the threatening-degree distribution is homogenously 

distributed or in other words, it does not present any fat-tail characteristics (where some assets 

take highly central positions), the portfolio variance consistently diverges towards zero as we 

increase the number of assets.  
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Case II: Star Network 

Case (I) assumes no interaction among assets in the Granger network. Another interesting case is 

when there is one asset influencing all other assets. We termed this case as star network and it is 

presented in Figure 4.  

 

  

 

Evidently, 𝑩 is a zero matrix expect for the first column. The variance of the portfolio is given 

by expression (15). Considering the second term on the influence of network topology, we 

observe that variance of the central stock, stock 1, and also the weights allocated to stocks in the 

periphery of the network, 𝑤𝑖 for 𝑖 = {2,3, … , 𝑛}, are relevant in determining portfolio volatility.  

 

σ𝑝(𝑚)
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+

𝑁

𝑖=1

∑∑𝑤𝑘𝑤𝑙𝑏𝑘1𝑏𝑙1𝜎𝑢,1
2

𝑁

𝑙=2

𝑁

𝑘=2

 (15) 

 

When SSA is imposed, matrix 𝑩 has all its entries equal to zero except for the components of 

column 1 which are equal to 𝑏. Matrix 𝑩 has all its eigenvalues equal to zero except for one which 

is equivalent to 𝑏. Therefore, as long as |𝑏| < 1, stationarity holds. In such situation, the portfolio 

variance is:  

 

σ𝑝(𝑚)
2 (𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
) + 𝑏2] 𝜎𝑢

2 (16) 

 

Figure 4. Star Network 
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When 𝑛 = 1, we have σ𝑝2(1) = (1 + 𝑏2)𝜎𝑢2 and for the case of maximal diversification where 

𝑛 = ∞ ,we have σ𝑝2(∞) = (𝜌 + 𝑏2)𝜎𝑢2. The Granger component inserts the expression 𝑏2𝜎𝑢2 to 

the asymptotic variance of the portfolio. Obviously, portfolio variance in this case is higher than 

it for no-dynamic and Disconnected network structures.   

In this network topology, the central asset, asset 1, has threatening-degree centrality equal to 𝑛𝑏, 

and thereby, it is equal to zero for all other assets in the system. Therefore, the mean centrality, 

𝑑̅ is equal to 𝑏 and the coefficient of variation of centralities, 𝐶𝑉𝑑, is √𝑛. This value of 𝐶𝑉𝑑 clearly 

demonstrates fat-tail characteristic in degree centrality (with some assets taking highly central 

positions) that increases as we include more assets in the portfolio. Consequently, assuming 

contemporaneous covariance between stocks, 𝜌, to be equal to zero, the portfolio variance is 

𝜎𝑢
2(
1

𝑛
+
𝑏2

𝑛
+ 𝑏2). This evidently demonstrates the role of fat-tail characteristic of threatening-

degree centrality distribution on portfolio volatility where the portfolio variance converges to a 

higher level than no-dynamic and also disconnected network cases.  

 

Case III: Inverse Star Network 

The inverse of case II is presented in Figure 5 where the center of the network receives impacts 

from other assets in the investment set. 

  

 

In this case, 𝑩 is a zero matrix expect for the first row. The corresponding portfolio variance is 

given by equation (18). Focusing on the granger component, we see that the only weight involved 

in the formula is the one from the most vulnerable asset, asset 1. However, all of the correlations 

between pairs of peripheral assets are crucial players in equation (18).  

Figure 5. Inverse Star Network 
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σ𝑝(𝑚)
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+

𝑁

𝑖=1

(𝑤1)
2∑∑𝑏1𝑘𝑏1𝑙𝜎𝑢,𝑘𝑙

𝑁

𝑙=2

 

𝑁

𝑘=2

 (17) 

 

Since this network topology is the transpose of star network, the eigenvalues for matrix 𝑩 is 

exactly the same. Therefore, Under SSA, as long as |𝑏| < 1, stationarity holds. Moreover, the 

portfolio variance with SSA conditions is exactly the same as the case of disconnected network 

and it is lower than the case of star network. This highlights the importance of concentration in 

the degrees pointing from a particular node (threatening centrality) in comparison to the 

concentration of the degrees pointing to a particular node (vulnerability centrality). It is clear that 

a highly out-degrees concentration in the network undermines the benefits of diversification. 

Moreover, threatening-degree centrality is equal to 𝑏 for each asset and consequently, the 

variation of degree centralities is zero. Thereby, we get the same results as in disconnected 

network structure when we neglect the impact of covariance between assets in contemporaneous 

component of portfolio variance implying portfolio variance decay to zero in extreme 

diversification.   

Case IV: Circle Network 

Another interesting case to study regards to the circle network which is depicted in Figure 6. In 

this symmetric structure asset 𝑖 affects asset i+1 and it is being affected by stock i - 1 (Each asset 

is influencing only one asset and is being impacted by only one asset in the network). 

  

 
Figure 6. Circle Network 
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The elements of matrix 𝑩 are zero except for those located in first diagonal below the main 

diagonal and for the one located in the upper right corner. The portfolio variance in this case is 

given by equation (18). Note that the variance of portfolio originated from the Granger network 

structure is determined by the weights and covariances of the consecutive assets. 

 

σ𝑝(𝑚)
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+∑∑𝑤𝑖𝑤𝑗𝑏𝑖(𝑖+1)𝑏(𝑗)(𝑗+1)𝜎𝑢,(𝑖+1)(𝑗+1)  

𝑁

𝑗=1

 

𝑁

𝑖=1

𝑁

𝑖=1

 (18) 

 

Under SSA, statitionary is preserved as long as |𝑏| < 1. We observe that variance is exactly equal 

to the one from the disconnected network. In this case, the threatening degree centrality for each 

asset is equal to 𝑏 and consequently, the coefficient of variation is zero. Thereby, we get the same 

results as in disconnected network structure by neglecting the impact of covariance between 

assets in contemporaneous component of portfolio variance.   

 

Case V: Fully Connected Network 

Finally, the case in which the network is fully connected is depicted in Figure 7 for the case of 

𝑛 = 4. In this situation, each asset is connected with the rest of the assets in the investment set 

implying a reciprocal relations in the network. Thus, all the cases depicted in Figure 2 regarding 

motifs come to play their role in determining portfolio risk.  

 

 

 

This topology is somehow different since in order to preserve stationary under SSA, the parameter 

𝑏 must be sufficiently small in relation to 𝑛. Therefore, it is assumed that 𝑏 = 1

𝑛
𝛿 for 0 < 𝛿 < 1. 

Figure 7. Fully Connected Network 
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It could be proved that the eigenvalues of 𝐵 are all equal to zero expect for the largest which is 

equal to 𝛿. The portfolio variance is as follows: 

 

σ𝑝(𝑚)
2 (𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝛿2]𝜎𝑢

2 (19) 

 

As before, two extreme cases regarding 𝑛 are mentioned. For 𝑛 = 1, the portfolio variance is 

σ𝑝
2(1) = [1 + 𝛿2]𝜎𝑢

2. For the case of maximal diversification characterized by 𝑛 = ∞, we have 

σ𝑝
2(∞) = [1 + 𝛿2]𝜌𝜎𝑢

2. The reader should note that expression (19) presents the same analytical 

structure than those prevailing for the disconnected network and it is identical as long as 𝑏 = 𝛿. 

In this case, the threatening-degree centrality of each asset is equal to 𝑛𝛿 and the coefficient of 

variation is zero. Therefore, it follows the same routine as in the disconnected case with regard 

to the impact of the threatening-degree centrality distribution on the portfolio variance level.  

In conclusion, after the careful analysis of different stylized networks, we close this subsection 

with a concluding proposition as follows.  

Proposition 3: Given the return process in (1), the portfolio variance of a naive myopic investor  

,assuming 𝛴𝑢 = 𝜎𝑢2I, as 𝑛 tends to infinite is zero for the disconnected, inverse-star, circle and 

full Granger networks. For the Star network case, it is 𝜎𝑢2𝑏2. 

Proposition 3 establishes an important result regarding the benefit of diversification. Consistent 

with the standard theory, ignoring contemporaneous correlation, the variance of the portfolio 

converge to zero expect for the star network. In this case, the risk suffered by a myopic investor 

remains positive even for an extremely large portfolio size. This results is align with the findings 

in Acemoglu et al. (2012) and stresses the disproportional effect of some central nodes on the 

aggregate performance of the system. 

4.2. The case of a long-term investor 

In this section, we continue to analyze the impact of Granger network on the portfolio 

performance for a long-term investor11. We assume an investor who decides to invest naively on 

                                                           
11 Several papers have investigated the case of long-horizon portfolio selection (Cochrane (2014), Barberis (2000), 
Campbell et al. (2003), Campbell and Viceira (2002). To be precise, we are considering an infinitely lived investor. 
Portfolio decisions for an infinitely lived investor is also investigated by Campbell and Viceira (1999). 
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a set of assets for a long period and our purpose is to analyze the influence of Ganger network on 

her portfolio performance. Since we are analyzing the long run effects of shocks on portfolio 

performance, we drop the time subscript in (1) leading to:12 

𝒓(𝑳𝑻) = (𝑰 − 𝑩)
−1𝒖 (20) 

 

Assume an initial scenario in which the system is in its steady state 𝒓 = ∅ and suddenly a shock 

in asset i happens. Taking derivatives on (20) with respect to 𝑢𝑖, we get: 

𝑑𝒓

𝑑𝑢𝑖
= (𝑰 − 𝑩)−1𝟏𝒊 (21) 

Where 𝟏𝒊 is an n-dimensional vector whose i th-component equals one and zero otherwise. The 

first order Taylor approximation of (21) around 𝜺 = ∅ is thus given by (22). The element 𝒓(𝑳𝑻) 

accounts for the long-run vector of returns after all the intermediate adjustments have taken place. 

 

𝒓(𝑳𝑻) = (𝑰 − 𝑩)
−1∅ +∑

𝑑𝑟

𝑑𝑢𝑖

𝑛

𝑖

𝑢𝑖 = (𝑰 − 𝑩)
−1𝒖 (22) 

 

In what follows, we consider a naive investor that proportionally distributes her wealth following 

the 1/𝑛 rule. Therefore, the n-dimensional vector of portfolio weights is given by 𝒘 = 1

𝑛
𝟏. Thus, 

the long-term portfolio return is given by: 

𝑟𝑝(𝐿𝑇) =
1

𝑛
𝟏′𝒓(𝑳𝑻) (23) 

  

The relationship between the long-term portfolio return in terms of the threatening Katz-Bonacich 

centrality of stocks is documented as follows: 

 

Proposition 4: Given the return process in (1), the long-term portfolio return of a naive investor,  

assuming 𝜮𝒖 = 𝜎𝑢2𝐈, is: 

                                                           
12 With 𝑅𝑡 = 𝐵𝑅𝑡−1 + 𝑢𝑡, in the long term, we have: 𝑅 = 𝐵𝑅 + 𝑢. This will conclude to the expression (21). 
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𝑟𝑝(𝐿𝑇) =
1

𝑛
𝟏′(𝑰 − 𝑩)−1𝒖 =

1

𝑛
𝒗′𝒖 =

1

𝑛
∑𝑣𝑖𝑢𝑖

𝑛

𝑖=1

 (24) 

The above results highlight that, the higher the Katz-Bonacich centrality of asset i, the larger is 

its effect on the performance of the entire portfolio. Therefore, negative (positive) shocks to those 

extremely central assets strongly reduces (increases) the long-run portfolio return. By denoting 

the expected portfolio return as 𝜇(𝐿𝑇)
𝑝 = 𝐸 (𝑟(𝐿𝑇)

𝑝 ), proposition 4 leads to the next corollary: 

Corollary 2: Given the return process in (1), the expected long-term portfolio return of a naive 

investor is: 

𝜇𝑝(𝐿𝑇) = ∅ (25) 

 

Corollary 2 shows that the expected portfolio return is not a function of the Granger network, a 

result consistent with the certainty equivalence property found in Acemoglu, Ozdaglar, and 

Thabaz-Salehi (2015). Thereby, the pattern of interaction between assets in the Granger network 

does not present any economic consequence upon the long-term portfolio return in expected 

terms. 

Let us move on to consider the effect of the Stock Granger network upon the portfolio volatility. 

The next theorem states the relationship between this variable and the distribution of Katz-

Bonacich centrality of assets. 

Proposition 5: Given the return process in (1), assuming 𝜮𝒖 = 𝜎𝑢2𝐈, the long-term portfolio 

variance of a naive investor is: 

𝜎𝑝(𝐿𝑇)
2 = (

𝜎𝑢
𝑛
)
2

𝒗′𝒗 = (
𝜎𝑢
𝑛
)
2

‖𝒗‖2
2 

𝜎𝑝(𝐿𝑇)
2 =

𝜎𝑢
2

𝑛
𝒗̅𝟐(1 + 𝑪𝑽𝒗

𝟐) 

(26) 

(27) 

 

Where ‖𝒗‖22 accounts for the square of the Euclidean norm of centrality vector, 𝒗. Moreover, 𝑣̅ 

and 𝐶𝑉𝑣2 are, respectively, the mean and the coefficient of variation of centralities. The main 

result from proposition 5 states that, controlling for the mean centrality, those types of network 

presenting fat-tail centrality distribution lead to larger portfolio volatility. Next, we provide a 
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proposition summarizing the portfolio diversification benefits in different stylized network 

topologies.13 

Proposition 6: Given the return process in (1), assuming 𝜮𝒖 = 𝜎𝑢2𝐈, the long-term portfolio 

variance of a naive investor when 𝑛 tends to infinite is zero for the inverse Star, circle and 

disconnected Granger Network. For the star network case, it is 𝜎𝑢
2𝑏2

(1−𝑏)2
. 

Proposition 6 posits the same consequence of Granger network topology on portfolio variance as 

the myopic investor. When there is homogeneity in the threatening centrality distribution, 

diversification force portfolio variance to converge to zero. However, in the star network, when 

there is a high heterogeneity in Katz-Bonacich centrality distribution, diversification result in 

higher level of portfolio volatility. More importantly, this result is in line with Acemoglu et al. 

(2012) where existence of highly central nodes would have major impact on the aggregate 

performance of the system. 

Moreover, we observe that in both cases, myopic (short-term) and long-term investors, the 

influence of Granger network topology on the portfolio risk has the same implication. In both 

cases, the star network structure deviates from other structures with respect to portfolio risk. We 

know that a determinant factor for analyzing the impact of Granger network on portfolio variance 

is the centrality measures: threatening-degree centrality for a myopic investor and Katz-Bonacich 

centrality for a long-term investor. The Katz-Bonacich centrality can be written as follows: 

𝒗 = 𝟏′(𝑰 − 𝑩)−1 = 𝟏′(𝐼 + 𝑩 + 𝑩2 + 𝑩3 +⋯) (28) 

 

Where the powers of matrix 𝑩 higher than 1 take into account higher order interactions in the 

Granger network. For example, suppose asset j impacts asset i and asset i impacts asset k in the 

Granger network; therefore, the element in row j and column k in matrix 𝑩2 would include this 

second order influence from asset j to asset k. Due to the stationarity of return process, we expect 

this influence to be lower and therefore, we can re-write the above equation by 𝒗 ≅ 𝟏′(𝑰 + 𝑩) =

𝟏′ + 𝒅. It can be concluded that if we neglect the higher order influences, both centrality 

measures provide the same ranking.14 Moreover, in the empirical part, we show that both of these 

                                                           
13 The details of network structures and portfolio variance parameters for the short-term and long-term cases are 

summarized in Appendix D.  
14 In an empirical analysis, we document that both of these centrality measures provide a close rankings of the assets 
and they are highly correlated. We analyze the correlation between centrality measures, threatening-degree centrality 
and Katz-Bonacich centrality. The correlation in the industry network is 0.9999 and in the international network is 
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centrality measures provide a close rankings of the assets and they are highly correlated. In this 

regard, they follow the same pattern in defining the portfolio volatility. In other words, regardless 

of investing in short-time or long-term, Granger network has the same influence on the portfolio 

diversification benefits.15 

4.3. Numerical experiment 

Next, we provide empirical evidence for portfolio variance convergence in different network 

topologies. We assume SSA. Two numerical analysis is implemented. In the first case, we simply 

compute the portfolio variance for different stylized network structures and discuss the portfolio 

variance convergence. We proceed by examining portfolio variance elasticity.  

Let us consider the case of a myopic investor diversifying naively among all the assets in the 

stylized networks. Figure 8 presents the results for no-dynamical, disconnected network and star 

network structures. We plot four graphs employing different values for two fundamental 

parameters, specifically 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.4,0.6}16. We consider positive values for 

𝑏 and we expect the negative values of 𝑏 leading to the same behavior for portfolio variance 

convergence in different network structures. Additionally, since 𝜌 is the mean correlation among 

𝑛 assets, such parameter is not bounded from above but it is bounded from below since the 

minimum negative correlation coefficient among the set of 𝑛 assets is given by −1 (𝑛 − 1)⁄ . 

Since the maximum portfolio size in Figure 8 is 20, this explains the values given to 𝜌.17  

                                                           
0.9961. Moreover, we also consider two daily datasets, SP100 with daily excess returns (split and divided adjusted) 
for the 100 most capitalized stocks in the SP500 index residing between 10/1/2002 and 12/31/2012 and FTSE100 
with 100 stocks in FTSE250 index between 2/27/2006 to 10/25/2013. The correlations between threatening-degree 
centrality and Katz-Bonacich centrality for these two datasets are 0.9797 and 0.9976, respectively. The scatter plot 
for centralities in all of these datasets are presented in the Appendix J. 
15 This view on the same portfolio specification by short and long horizon investors is shared also in the classic 
works of Samuelson (1969) and Merton (1969).    
16 We consider cases where 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.01,0.6}. The corresponding plots is presented in the 
Appendix E. 
17 Note that in the limiting case of 𝑛 → ∞, 𝜌 should not be lower than zero. (Mao, 1970). 
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There are three deductions that are worth to highlight. First, diversification benefits are evident 

given the negative slope shown by  σ𝑝(𝑚)2  in any of the network configurations and for any 

parameter specification. Thereby, larger portfolio size provides lower portfolio variance 

disregarding the network topology in place. Second, there is a clear ordering in terms of  σ𝑝(𝑚)2  

for any given level of portfolio size that prevails irrespectively of the parameter specification. 

The worst performance is assigned to the star network and the best one corresponds to the case 

of no-dynamic structure. The rest of the network configurations are located between these two 

extremes.  

In order to get further insights on the effects that Granger network has on the diversification 

benefits, the portfolio variance elasticity 𝜉(𝑛) is defined as follows: 

𝜉(𝑛) =
𝜕σ𝑝(𝑚)

2 (𝑛)

𝜕𝑛

𝑛

σ𝑝(𝑚)
2 (𝑛)

 (29) 

 

Figure 8. Portfolio variance for no-dynamical, disconnected and star network structures for 𝜌 ∈ {−0.04,0.04} 
and 𝑏 ∈ {0.4,0.6}. 
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Expression (30) and (31) provide the formulas for elasticity in the disconnected and star networks, 

respectively.18 

𝜉𝐷(𝑛) =
𝜌 − 1

𝜌(𝑛 − 1) + 1
 (30) 

𝜉𝑆(𝑛) =
𝜌 − 1

𝜌(𝑛 − 1) + 𝑏2𝑛 + 1
 (31) 

 

Figure 9 draws diversification elasticity for the same parameter specifications as before19. 

Consistent with Figure 8, four aspects should be mentioned. First, 𝜉 is negative stressing the 

benefit of diversification for any parameter specification and network configuration. Second, the 

elasticity corresponding to star network is always lower (in absolute terms) than for the rest of 

the structures which relates to the existing potential of diversification embedded in different 

network architectures. Third, for 𝜌 > 0, 𝜉 shows a positive slope representing the decreasing 

marginal benefit of diversification. However, for 𝜌 < 0, this behavior is preserved for the star 

network but this is not the case for the rest of the structures depicting increasing benefit of 

diversification. Finally, higher 𝑏 increases the difference between the benefit of diversification 

among the two types of structures. 

                                                           
18 The cases of no dynamics, circle and inverse star networks show the same elasticity given by equation (20).  
19 Other cases of 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.01,0.6} are provided in the Appendix F.  



33                                                                                                                               Chapter 2: Network Origins of   

                                                                                                                                                                                     Portfolio Risk 
 

  

 

 

As a summary it could be said that large concentration on the effects that an asset imposes to the 

rest of the system undermines the benefits of diversification, not only in term of its asymptotic 

limit but also for intermediate size portfolios. Additionally, this effect combined with negative 

mean correlation drastically changes the behavior of portfolio variance for different values of 𝑛. 

Thereby, special attention should be put on the evolution of the network structures as a way to 

monitor the potential advantage of diversification. 

5. Empirical Analysis 

In this section, we start by describing the datasets. Next, we explain the VAR estimation 

procedure and we continue to compute the Granger network for our datasets. We discuss the 

network characteristics of estimated Granger networks and examine their proximity to a star-like 

network structure. Moreover, we discuss the evolution of the granger component of portfolio 

variance through time. Finally, we close this section with additional analysis mainly focused on 

statistical significance of Granger network, and optimal diversification along Granger network.  

Figure 9. Portfolio variance for No-Dynamical, Disconnected and Star Network structures 
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5.1. Datasets 

We use two datasets. The first one, termed as industry dataset, includes monthly 30 Fama and 

French industry portfolio returns from 1980:12 to 2014:12. We compute excess returns using one 

month Treasury bill rates from Ibbotson Associates20. The statistical and economical cross-

dependency across assets in this dataset is already established in Rapach et al. (2015).  

The second dataset, named as international dataset, is monthly excess returns from 1980:12 to 

2014:12 for 11 industrialized countries: Australia, Canada, France, Germany, Italy, Japan, the 

Netherlands, Sweden, Switzerland, the United Kingdom, and the United States. The returns are 

from Global Financial Data denoted as “Total return indices: Stocks” series21. The excess returns 

are computed using each country’s three month Treasury bill rate. This dataset was constructed 

by Rapach et al. (2013) to analyze the leading role of U.S. in the international market. In this 

paper, however, we evaluate the impact of cross-dependency on international portfolio 

diversification.  

To estimate a VAR model on this dataset and verify Granger network, we need to correct for 

difference in closing times across international equity markets.22 The stock markets in Australia 

and Japan close before markets in Europe and North America. Next, the European markets open 

and about two hours before they close, the market in U.S. and Canada opens. We adopt the same 

approach in Rapach et al. (2013) to take these differences into account. Thereby, if market A is 

still open while another market closes, we exclude the last trading day of the month for market A 

in computing its monthly returns and use this series of returns in the VAR estimation.23  

5.2. Estimation procedure 

To estimate a VAR model of asset returns, various methodologies have been employed in the 

literature. Eun and Shim (1989) use OLS to estimate a VAR model of international markets; 

                                                           
20 We get these datasets from Keneth French website 
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) 
21 We get this dataset from Dave Rapach website (http://sites.slu.edu/rapachde/home/research). As Rapach et al. 
(2013) mention, the selection of countries and sample under analysis is bound to the availability of data and their 
appeal to consider a relatively large number of countries. 
22 Another concern with respect to our VAR estimations is the impact of non-synchronous trading. This issue has 
been already discussed in various papers (Lo and MacKinlay, 1990; Cohen and Frazzini, 2008; DeMiguel et al., 
2014). Based on findings in the literature, we can conveniently conclude that it is unlikely to impact our results. 
However, Lo and MacKinlay (1990) explains clearly the concern for non-synchronous trading as follows “Although 
some of the correlation observed in the data may be due to non-synchronous trading, to attribute all of it to the thin 
trading would require unrealistically thin markets.” 
23 However, as Rapach et al. (2013) indicate, this correction does not impact the VAR estimations in the international 
market. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://sites.slu.edu/rapachde/home/research
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Rapach et al. (2013) argue presence of correlated regressors as a major drawback of VAR model 

of returns and apply pooled OLS regression; moreover they also use Elastic Net to estimate a 

general VAR specification of international countries’ returns. DeMiguel et al. (2014), responding 

to regressors’ correlation problem, employ ridge regression and in a recent paper, Rapach et al. 

(2015) apply adaptive Lasso to estimate lead-lag relationships among U.S. industry portfolios.   

Due to the large number of regressors (for our industry dataset), the conventional estimation 

methods result in uninformative inferences and noisy estimates. Moreover, we also need to tackle 

the problem of correlated asset returns. In this regard, we employ a modified version of Adaptive 

Lasso as in Rapach et al. (2015). In the statistical learning literature, Lasso (Tibshirani (1996)) 

performs both variable selection and shrinkage. However, it does not satisfy oracle properties that 

are (i) consistent variable selection, (ii) optimal estimation rate (Zou, 2006; Fan and Li, 2001). 

To address this issue, we employ adaptive Lasso, proposed by Zou (2006), that apply a weighting 

mechanism to the Lasso penalty terms and moreover, it satisfies the oracle properties. Rapach et 

al. (2015) employ OLS estimates as weighting mechanism in the Adaptive lasso estimation. In 

this paper, we consider ridge regression estimates since this method is already employed by 

DeMiguel et al. (2014) to estimate a VAR model to deal with the correlation among the 

regressors. This weighting system encourage Lasso to penalize less the regressors found 

influential by ridge regression24. The statistical significance of the estimates are computed via 

bootstrap 90% confidence intervals (approach explained in details in Chatterjee and Lahiri 

(2011)).25 

 

5.3. Result discussion 

This subsection explains the adaptive Lasso estimates of Granger network for our industry and 

international dataset. The granger interactions among industry portfolios are presented in 

Appendix H and the corresponding Granger network is illustrated in Figure 126. The results are 

consistent with Rapach et al. (2015). Looking at the industries via their position in the stages of 

production process, we find the industries in the first stages, like Coal and Oil industries to 

negatively influence other industries in the market. This is sensible since any positive shock on 

                                                           
24 The estimation procedure for adaptive Lasso is explained in details in the Appendix G.  
25 We report the values according to the structure of Granger network adjacency matrix where the element in row i 
and column j specifies the impact of asset j on asset i. The results are consistent with Rapach et al. (2013) and Rapach 
et al. (2015). To conserve space, we provide these results in the Appendix H. 
26 Threatening-degree and Katz-Bonacich centrality values for Industry and International Datasets are presented in 
Appendix L. 
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these industries results in higher price and returns that would drive up the price of elementary 

materials and thereby, cut down the profit margin of industries in the later stages of production 

process. Moreover, for the industries located at the final stage of production, Retail industry, a 

positive shock would also exacerbate positively across the other industries. This is valid as Retail 

industry positively impact other industries in the Granger network. Moreover, Financial industry 

positively influence other industries in the market and it is reasonable, as a positive shock to this 

industry lead to more financial backing of other industries and a downturn in financial industry 

would impact negatively other industries. The 𝑅2 statistics are economically significant for all of 

the industries following Campbell and Thompson (2008) that advocate 𝑅2 statistics higher than 

0.5% to be economically significance.27 

In the international case, we provide the results in the Appendix H and the Granger network is 

depicted in Figure 1. The results are consistent with Rapach et al. (2013). Obviously, the U.S. 

market is the central node leading the international market. It impacts eight out of ten other 

countries positively and significantly and clearly, it has the strongest predictive power. As 

discussed by Rapach et al. (2013), the central position of U.S. market is attributed to its largest 

size (Consistent with Lo and MacKinalay (1990) that large-cap firms lead small-cap ones), its 

global partnership with many other countries, and high investors’ attention to the U.S. market 

(Following gradual information diffusion hypothesis). Moreover, Sweden and Switzerland 

influence positively other countries situated in Europe. This is consistent with institutional 

ownership in these markets (The largest ten firms have 52% and 68% in the Swedish and 

Switzerland markets, respectively). As explained in Rapach et al. (2013), the Swedish market is 

highly concentrated residing high institutional ownership and thus, exhibit higher pricing 

efficiency and a rapid reaction to shocks. Moreover, we also find the 𝑅2 statistics to be 

economically significant.28  

                                                           
27 The in-sample R2 statistics are provided in the appendix. As explained by Campbell and Thompson (2008), the 
R2 statistics should be large enough relative to squared Sharpe ratios for the investor to use the information in the 
predictive regression to obtain increase in portfolio return. A monthly R2 statistic more than %0.5 characterize 
economic significance. It should be noted that if we estimate the model using OLS, the R2 would be higher however 
since OLS suffers a major statistical drawback, we use Adaptive Lasso.  

28 In an additional analysis, we test the null hypothesis of 𝐵 =  0 for both industry and international datasets by 
adopting the procedure proposed by DeMiguel et al. (2014). In short, they consider the test statistic, 𝑀 =

−(𝐻 − 𝑁) ln(|𝚯̂|/|𝚪𝟎̂|); where 𝐻 is the estimation window used to estimate Granger network, 𝑁 is the number of 
stocks. The distribution is estimated through a bootstrap procedure. We consider 100 bootstrap errors from the 
residuals, 𝑢̂ and generate recursively bootstrap returns and estimate the VAR model on these returns. Following this 
procedure, we estimate 100 bootstrap replicates of the covariance matrix of residuals, 𝚯̂. Moreover, following the 
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5.4. Network characteristics 

In this subsection, we analyze in details the Granger network characteristics of industries and 

international markets. The network metrics for both networks are presented in Table 1. Among 

the most basic network measures, nodes and links account for the number of nodes and links, 

respectively, in the network. In industry network, we have 30 nodes and 85 links and in the 

international network, there are 11 nodes and 36 links. The low number of links comes from the 

sparcity associated with our estimation procedure where we force the insignificant values to zero. 

The sparsity is more evident via density that measures the fraction of links that actually exist 

relative to the maximum possible links in the structure29.For industry and international networks, 

it is 0.33 and 0.10 respectively.  

A path between nodes i and j is a sequence of successive links (𝑖1𝑖2), (𝑖2𝑖3),… , (𝑖𝑡−1𝑖𝑡) such that 

each (𝑖𝑠𝑖𝑠+1) ∈ 𝑎 for 𝑠 ∈ {1,… , 𝑡 − 1} with 𝑖1 = 𝑖 and 𝑖𝑡 = 𝑗. The length of such a path is the 

number of links traversed along that path. The geodesic path between nodes i and j is the shortest 

path between those nodes. The diameter of the network is the longest geodesic distance between 

any two nodes and the mean distance is the average over geodesic paths (note that the average 

distance is bounded above by the diameter). These two measures are helps us to investigate how 

shocks to an asset moves through the network to get to another asset. The diameter for industry 

network is 4 meaning the longest a shock travels through the network to influence another node 

is 4 periods. For international network, it is 2. Moreover, the mean distance for both are 2.12 and 

1.45, respectively that are approximately in the level. This points to the average of period a shock 

takes to get from one asset to another asset in the Granger networks.   

Another measure worth defining is the degree of assortativity. If the correlation between the 

degrees of connected nodes is positive, high (low)-degree nodes tends to be connected with other 

high (low)-degree nodes. This tendency is called positive assortativeness or just assortativity for 

short. An assortative network is expected to be arranged as a core/periphery structure where the 

core is composed by highly connected nodes and the periphery by poorly connected ones 

surrounding the core. For the case in which high-degree nodes tends to be connected with low-

degree ones, the correlation between the degrees of connected nodes is negative and we called 

this tendency as negative assortativeness or disassortative. In this case, the general configuration 

                                                           
same procedure and assuming 𝐵 =  0, we estimate the 100 bootstrap replicates of covariance matrix of returns, 𝚪𝟎̂. 
Finally, these bootstrap replicates are used to estimate the distribution of M, and its corresponding p-value regarding 
the hypothesis test, 𝐵 =  0. We find this test rejects the null hypothesis of 𝐵 =  0 for our industry and international 
datasets at a 1% significance level. 
29 Assuming node size, 𝑛 and link size, 𝑚, the density mathematically computed as 𝑑 = 𝑚 (𝑛

2
)⁄ . 
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of the network presents star-like features. In both networks, we observe negative values that is 

the first indication of these networks resemblence to a star-like structure.  

In mathematics, a relationship is said to be transitive when 𝐴 → 𝐵 and 𝐵 → 𝐶, then 𝐴 → 𝐶. In a 

network context, this relationship means that if node i is connected to j and j is connected to k, 

then i is connected to k. The level of network transitivity captures the likelihood that any given 

pair of nodes shares another common neighbor. Mathematically, it is calculated as the ratio 

between the number of triangles in the network divided by the total number of connected triples 

of nodes. This value is high in the international network showing the transitive nature of lead-lag 

relationships in the international market. However, this is not true for the industry portfolios. For 

the directed network case, reciprocity is measured accounting for the fraction of edges that are 

reciprocated (there is a link from node i to node j and another one from node j to node i). 

Therefore, this metric quantifies the probability of a reciprocal relationship in the structure. In 

the industry network, reciprocal probability is low, 0.02, pointing to one direction nature of 

production path and in the international market is 0.12.  

 

 

 

 

 

 

Table 1. Granger network metrics 
This table reports the network metrics for industrial and international granger networks. The corresponding network 
adjacency matrix is reported in Appendix C. 

  Industry Network International Network 

Basics   

 Nodes 30 11 

 Links 85 36 

 Density 0.10 0.33 

Distance   

 Diameter 4 2 

 Mean Distance 2.12 1.45 

Patterns of Connectivity   

 Assortativity -0.28 -0.29 
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 Transitivity 0.13 0.51 

 Reciprocity 0.02 0.12 

 

From negative assortativity measure, we get a first look on the star-like feature of the networks. 

Next, we discuss Freeman centralization measure to verify how close the networks are to the star 

network. Freeman (1978) propose a measure to capture the proximity of networks to a star like 

structure. Basically, the Freeman centralization measures how central is the most central node 

(Financial industry in the Industry network, and U.S. in the international network) with regard to 

the centrality of other nodes. Accordingly, first, we compute the sum of the difference between 

the centrality of the most central node to other nodes in the network. Next, we assume a 

hypothetical star network with our most central node as the center of this network and we compute 

the summation of centrality differences to the most central one in this hypothetical network. This 

measure gives us the maximum possible value of sum of centrality differences in any network. 

The division of these two numbers tells us how close our network is to a star-like structure.  

We consider two centrality measures, degree centrality and the Katz-Bonacich centrality as our 

centrality measures. Moreover, we consider two types of Granger network, unweighted network 

where its adjacency matrix adopt values equal to one when there is a connection between any two 

nodes and zero otherwise, and weighted network as computed directly from VAR model. The 

results are presented in Table 2.   

 

 

Table 2. Freeman centralization values for Granger networks 
This table reports the Freeman centralization values in percentages for industry and international Granger networks. 
We consider an un-weighted and weighted form of Granger networks and two measures of centrality: degree 
centrality and Katz-Bonacich centrality. We consider financial industry as the central node in industry network and 
the U.S. market as the central node in the international network. The values are reported in percentages with values 
between 0% and 100% where a centralization of 100% represent an exact star-like structure.  

Centralization Industry Network International Network 
Panel A:Un-weighted   

Threatening-degree centrality 78.43% 60.0% 

Katz-Bonacich centrality 87.65% 65.8% 

Panel B: Weighted   

Threatening-degree centrality 94.39% 88.1% 

Katz-Bonacich centrality 94.09% 87.0% 
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Clearly, we observe that the industry network with centralization values between 78.43% to 

94.39% is close to a star network structure with financial industry as the central node; moreover, 

in the international market, with U.S. market as the central node, it is close to a star network with 

values between 60% to 87%.  

5.5. Granger component through time 

Following this evidence on the resemblance of our networks to the star-like structure, the danger 

of diversifying among industry and international markets is prominent when a shock occurs. In 

these cases, we ought to observe a higher variance transcending from the Granger component of 

the risk. To assess the economic importance of Granger component, we analyze the percentage 

of Granger component of portfolio volatility through time. In each year, we diversify among all 

assets available in the industry network and form a diversified portfolio. Next, we estimate the 

Granger network and compute the percentage of whole portfolio volatility coming from the 

Granger network. We do the same analysis in the international market. Figure 10 presents the 

results. 

 
(a) 

 
(b) 

Figure 10. Percentage of the Granger network to the whole portfolio volatility for a naive diversification 

strategy through time for (a) Industry portfolios and (b) International market 

 

We observe that the periods where the shocks occur to the central nodes, the granger component 

of portfolio variance increases. For the industrial portfolios, during the 2007-2008 financial crisis, 

where shocks strike the financial industry, the Granger component of portfolio variance increases 

up to 24% of the total variance. Moreover, with regard to international market, during the 2007-

2008 financial crisis, the Granger component of portfolio variance increases up to 10%. This 
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value is high knowing how low it is in the last periods. Moreover, high values of Granger 

component is also evident with regard to 1987 U.S. stock market and 2000 Dot-com crashes. 

5.6. Portfolio Diversification Based on Granger  Network 

 

In this subsection, we aim to increase diversification benefits by using the information in the 

Granger network. The centrality ranking of assets in the Granger network shows their power for 

propagating shocks through the portfolio. In particular, high-central assets are extremely prone 

to spread shocks through the portfolio while low-central assets have a lower propensity to 

propagate shocks and decrease diversification benefits. Following this argument, we consider two 

strategies: Lowest-centrality, where we invest in the lowest central assets, and Highest-centrality, 

where we invest in the highest central assets. We expect the Lowest-centrality strategy to result 

in higher diversification benefits or in other words, lower portfolio volatility for any number of 

assets in the portfolio. 

In order to make sure the performance of Lowest-centrality strategy is not simply attributed to 

investing in low beta assets or assets with lowest average correlation, we consider another 

strategy in which we invest in assets with the lowest average correlation, called Lowest-

correlation. Subsequently, if this strategy performs poorly compared to Lowest- centrality 

strategy, it shows the additional information our Granger network provides in order to improve 

diversification benefits. 

We proceed to our in-sample and out-of-sample analysis. We consider two daily datasets: SP100 

with daily excess returns (split and divided adjusted) for the 100 most capitalized stocks in the 

S&P 500 index between 10/1/2002 and 12/31/2012 and FTSE100 with 100 stocks in FTSE 250 

index between 2/27/2006 and 10/25/2013. These two datasets are considered for two reasons. 

First, these datasets are closer to real-world diversification decisions taken by investors. Second, 

they give us access to a large number of stocks, 100 stocks in each dataset to be precise and 

thereby make our analysis more tractable. 

We proceed by presenting our in-sample results. In the first step, we compute the Granger 

network for all observations in the daily datasets, SP100 and FTSE100. We then calculate the 

Katz-Bonacich centrality of the stocks and rank them according to their centrality level. Next, we 

divide the 100 stocks of each dataset to two sets of 40 stocks according to their centrality level 

and label them, high-central and low-central. Subsequently, we do a simulation study by 

randomly selecting a specific number of stocks from the low- and high- central sets and compute 

the risk of diversifying among these stocks. We also consider all of the stocks in the dataset and 
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compute the risk of diversifying among a specific number of randomly selected stocks. 

Additionally, we consider a control set of 40 stocks with lowest average correlations and compute 

the portfolio variance of naively investing in a randomly selected set of stocks. The results are 

presented in the Figure 11.30  

 

 
 
 
 
 

 

Figure. 11. Portfolio diversification convergence for diversification strategies up to 40 stocks in the portfolio (a) in 
SP100 dataset with daily excess returns (split and divided adjusted) for the 100 most capitalized stocks in the SP500 
index between 10/1/2002 and 12/31/2012 (b) FTSE100 dataset with 100 stocks in FTSE250 index between 2/27/2006 
to 10/25/2013. Naive Diversification implies the average performance of diversification strategy by diversifying 
naively among randomly selected stocks in the full dataset of 100 stocks. Lowest Centrality and Highest Centrality 
illustrate naive diversification among 40 randomly chosen highest and lowest central stocks, respectively. Lowest 
Correlation refers to naive diversification between stocks with lowest average correlation in the datasets. 

 
We can clearly observe that investing in low-central assets results in lower portfolio variance on 

average. Moreover, diversification among high-central stocks gains higher portfolio variance 

than naively diversifying among all the available stocks. This is consistent with our findings in 

which low central stocks are less prone to shocks. Additionally, we also notice that Lowest-

centrality strategy performs better than a strategy based on diversifying among stocks with the 

lowest average correlation, Lowest-correlation strategy. This shows that using information in 

Granger network for diversification purposes is different from simply employing information in 

stock beta values or their correlation to other stocks in the market. 

Moreover, we also consider an out-of-sample analysis. In order to compare the out-of-sample 

                                                           
30 The results for 20 and 60 stocks are presented in the Appendix K. 
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performance of these strategies, we employ the “rolling window” approach provided in DeMiguel 

et al.(2014). Assuming a total 𝑇 periods of stock's returns, we set an 𝑀-period estimation window. 

Next, we consider a sample of 𝑀-period returns (1000 first daily returns in daily datasets), and 

we calculate the Granger network and compute the Katz-Bonacich centrality of the stocks. 

According to the centrality values, we categorize stocks into two sets of high and low central sets 

with 20, 40 and 60 stocks in each. Next, we hold the constructed portfolios for the next 𝑇 −  𝑀 

periods and calculate the out-of-sample returns. This process is repeated using the computed 

centrality measures from the first estimation window and finally, we would have (𝑇 −  𝑀) 

vectors of portfolio's returns for each strategy. We consider 𝑀 to be equal to 1000 and hold the 

portfolios for 200 days in both datasets. 

We compare the strategies performance using variance of returns and present the results in Table 

3. We consider Naive Diversification strategy as the basis for computing the statistical 

significance between the portfolio variances among strategies following the procedure in Ledoit 

and Wolf (2011). The p-values are computed based on studentized circular block bootstrap with 

block size equal to 5 and the number of bootstrap samples equal to 5000. For portfolio variance 

comparison, stationary bootstrap is employed from (Politis and Romano, 1994).31  

We observe that the out-of-sample variance for lowest-centrality strategy is lower than highest-

centrality for both datasets with different number of stocks. Moreover, lowest- centrality has 

better performance in decreasing out-of-sample portfolio risk compared to diversification among 

all of stocks. For example, lowest-centrality strategy results in annualized portfolio volatility of 

0.00087 when diversifying among the 20 lowest central stocks, which is significantly lower than 

the 0.0111 of Naive-diversification strategy. 

Additionally, our results show that this better performance from diversifying on lowest- central 

stocks is not related to simply diversifying among stocks with the lowest betas (lowest average 

correlation). In both datasets and across any portfolio size, portfolio volatility for lowest-

centrality strategy is lower than lowest-correlation strategy, which implies gain in performance 

coming from using information from Granger network. In addition, we also compute the Sharpe 

ratios for the considered strategies, and did not find any statistically significant difference 

between the Sharpe ratios of these strategies (The results are presented in Appendix L). In total, 

we conclude that taking into account the structural impact from Granger network, we are able to 

decrease portfolio risk level. 

                                                           
31 The corresponding Sharpe ratios are presented in Appendix L. 
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Table 3.  Annualized out-of-sample portfolio variance 
Naive Diversification is naively diversifying among all the 100 stocks in both datasets. Lowest-correlation is 
diversifying among stocks with lowest average correlations. In Lowest-centrality and Highest-centrality strategies, 
we compute the cen- trality ranking of stocks from Granger network estimated using the first 1000 daily returns and 
diversify naively on the lowest and highest central stocks. We hold the portfolios for 200 days. Naive Diversification 
is taken as the benchmark strategy for computing the p-values (following the procedure inLedoit and Wolf(2011)).  
*** denotes significance at 1%, **  at 5% and * at 10%. 

  SP100   FTSE100  

Naive-diversification  0.0111   0.0323  

Number  of Stocks 20 40 60 20 40 60 

Lowest-correlation 0.0096 0.0107 0.0110 0.0319 0.0316 0.0315 
 (0.1399) (0.5375) (0.7752) (0.8511) (0.4805) (0.3846) 

Lowest-centrality 0.0087 0.0098 0.0106 0.0248 0.0277 0.0273 
 (0.004)*** (0.011)** (0.049)** (0.001)*** (0.001)*** (0.004)*** 

Highest-centrality 0.0144 0.0130 0.0127 0.0381 0.0423 0.0367 
 (0.003)*** (0.005)*** (0.007)*** (0.004)*** (0.001)*** (0.001)*** 

 
 
 
6. Implication 

We provide insights on how the topology structure of lead-lag relationships among returns 

influences the portfolio variance and moreover, on how shocks impact the portfolio return in short 

and long-terms in different network topologies. Our findings have several implications. First, 

portfolio managers are able to build portfolios considering not only the variance-covariance 

matrix but also the Granger network structure. In this way, they can increase the diversification 

benefits in their portfolios by making sure the underlying Granger network structure does not 

resemble a star network structure. Second, portfolio managers can build up portfolios that are less 

prone to sudden shocks on to the assets by not including highly central assets in their portfolios. 

Third, since we consider a general notion of portfolios in our analysis; therefore, we can consider 

portfolios to be representing a general stock exchange index taking into account all of the stocks 

in the stock exchange in our portfolio. In this regard, we can analyze the impact of Granger 

network structure on this market portfolio. Furthermore, our calculations on the relation between 

network structure and portfolio variance can be extended to quantify the relationship between 

expected shortfall and network structure.  We can compute the expected shortfall for the market 

assuming the market to be a portfolio of stocks. Expected shortfall has been considered as a 

measure of systemic risk (Acharya et al., 2010). Expected shortfall of the market is computed as 
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the expected loss in the index conditional on this loss being greater than 𝐶 (where 𝐶 represents 

an 𝛼 level of portfolio return distribution). Subsequently, since the portfolio return follows a 

normal distribution, the expected shortfall for the portfolio would be as follows: 

𝐸𝑆𝑡
𝑅𝑃(𝛼) =

𝜑(Φ−1(𝛼))

1 − 𝛼
× (
𝜎𝑢
2

𝑛
+
𝜎𝑢
2

𝑛
𝑑̅2(1 + 𝐶𝑉𝑑

2)) (32) 

Where 𝜑(𝑥) is the density of standard normal distribution. Accordingly, we clearly observe that 

there is a direct relationship between expected shortfall of the index and threatening-degree 

centrality distribution. Thereby, fat tail centrality distribution leads to higher expected shortfall 

of the market index. In this regard, we clearly observe how a star network structure would be 

threatening to the market stability and thereby, we can clearly observe the notion of systemic risk 

transmitted by Granger network. A market that resembles a star-like structure caries higher 

systemic risk than a full network or an individual network structure (This is in concordance with 

Allen and Gale (2000) and Freixas et al. (2000)).    

7. Conclusion and Future Research 

This paper investigates the influence of lead-lag relationships among returns on portfolio risk 

from a network perspective. In the first step, we construct a network encompassing all the lead-

lag information among returns, termed as Granger network. Next, we consider two types of 

investor, a myopic investor who cares about tomorrows' return and a long-term investor who 

invest for the long-run. For these two investors, we analyze the influence of Granger network 

structures on their portfolio risk. 

Starting with myopic investor, we decompose her portfolio variance into contemporaneous and 

Granger components. The first results show that assets' threatening degree centrality in the 

Granger network are the main players in attributing the influence of shocks on portfolio return 

and variance of a myopic investor. In particular, the higher is the threatening degree centrality of 

an asset, the more would her portfolio return react to shocks to that asset. Moreover, a heavy-

tailed threatening-degree centrality distribution translates into higher portfolio variance for the 

myopic investor. Furthermore, we continue to analyze the diversification benefits in various 

stylized network structures. We find star-like network structures depleting diversification benefits 

and causing slow portfolio variance decay. Moreover, for the case of long-term investor, we find 

Katz-Bonacich centrality to be the main player explaining the influence of Granger network on 

portfolio variance. Our results show that the fat-tail centrality distribution is a threat to 

diversification benefits. 
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In the empirical part, we show that the Granger network among U.S. industries and also among 

international stock markets resemble a star network structure. Moreover, the Granger component 

comes to threaten the portfolio performance in the crisis periods where shocks are more prone to 

occur. 

One main implication of this paper is providing investors with tools to construct well- diversified 

portfolios robust to shocks propagation and contagion issues in crisis periods. This study provides 

a new research avenue in several directions. First, the mathematical framework in this paper can 

be extended to account for asset pricing models. The size- and value-effect that is not captured 

by CAPM, can be attributed to the cross-dependencies among returns. Second, future research 

can also follow the path of Barberis(2000) to ac- count for estimation risk in Granger effect via 

the VAR specification. Third, we can extend our model to analyze the influence of Granger 

network on the other portfolio strategies such as mean-variance strategy. 
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Appendices 

A. Convergance of serial-dependence matrix B under stationarity condition 

In order to demonstrate how rapidly the powers of matrix 𝐵 converge to zero, we consider the 

industrial portfolios and international markets and calculate the Granger weighted matrix, B, using 

Adaptive Lasso. Next, we compute the sum of mean absolute impact of stocks that is 

∑ [
∑ |𝐵𝑖𝑗|
𝑛
𝑗=1

𝑛
]𝑛

𝑖=1 . This value shows the average absolute impact of each stock on other stocks in the 

Granger network. The results for the three datasets are presented in the following figure.  

 

 
(a) Industral portfolios 

 
(b) International market 

 

Figure A1. Summation of average absolute impact of stocks in different powers of granger weighted 
network 𝑩 
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B. Influence of underlying motifs in Granger network on portfolio variance 

Figure 2 demonstrates the full list of network motifs (specific patterns of interactions) underlying 

Granger network that fundamentally determines portfolio risk. Next, we discuss the cases in details.  

In case (a), an asset is affecting itself.   

This contributes to portfolio variance with the following expression: (𝑤𝑖)
2𝐵𝑖𝑖

2𝜎𝑖
2 where 𝜎𝑖

2 is the 

variance of stock 𝑖. In case (b) in figure C2, two different stocks affect two separate stocks contributing 

to the portfolio variances as follows:  

𝑤𝑘𝑤𝑙𝐵𝑘𝑖𝐵𝑙𝑗𝜎𝑖𝑗 + (𝑤𝑘)
2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖

2 + (𝑤𝑙)
2𝐵𝑙𝑗𝐵𝑙𝑗𝜎𝑗

2 (B1) 

Intuitively, the weights invested in stocks with in-going links and also the covariance between out-

going stocks and their individual variance are the determinant of influence on portfolio variance. In 

case (c), stock 𝑖 is affecting both stocks 𝑙 and 𝑘. The impact of this interaction on portfolios variance 

is: 

𝑤𝑘𝑤𝑙𝐵𝑘𝑖𝐵𝑙𝑖𝜎𝑖
2 + (𝑤𝑘)

2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑙)

2𝐵𝑙𝑖𝐵𝑙𝑖𝜎𝑖
2                 

(B2) 

Under this pattern of connectivity, the variance of the initiator stock plays the important role. This is 

straightforward as we can see that any perturbation in the prices of both stocks 𝑘 and 𝑙 comes from 

changes in return of the stock that is threatening them. In case (d), both stocks are impacting each 

other. The influence of this dynamic structure is: 

𝑤𝑖𝑤𝑘𝐵𝑘𝑖𝐵𝑖𝑘𝜎𝑖𝑘 + (𝑤𝑘)
2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖

2 + (𝑤𝑖)
2𝐵𝑖𝑘𝐵𝑖𝑘𝜎𝑘

2 (B3) 

The individual variance of both stocks and also their covariance is determinant in quantifying the 

portfolio variance.  

In case (e), two stocks 𝑖 and 𝑗 are affecting one stock 𝑘. The notion signifying this interaction in 

portfolio’s variance is as follows:  

(𝑤𝑘)
2𝐵𝑘𝑖𝐵𝑘𝑗𝜎𝑖𝑗 + (𝑤𝑘)

2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑘)

2𝐵𝑘𝑗𝐵𝑘𝑗𝜎𝑗
2                 (B4) 

The weight allocated to stock k and also the variance and covariance of out-going stocks are the 

major players in this motif. Finally, in case (f), the underlying portfolio variance impact would be: 

                   (𝑤𝑘)
2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖

2 + (𝑤𝑗)
2𝐵𝑗𝑘𝐵𝑗𝑘𝜎𝑘

2 (B5) 
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³ 

 

C. Correlation between centrality ranking for VAR model with and without Cholesky 

decomposition 

 
Table C.1. Pearson and Kendall-rank correlation between asset centralities.  
This table report the Pearson and Kendall-rank correlation between centralities assuming matrices 𝐵 and 𝐵∗. Matrix 
𝐵 is computed from direct estimation of equation (1).  To compute matrix 𝐵∗, we  decompose the contemporaneous 
covariance via Cholesky decomposition as 𝛴𝑢  = 𝑃 𝑃′ and consider a new error term 𝑤𝑡  =  𝑃−1𝑢𝑡. Thereby, we 
have 𝐵∗ = 𝐵𝑃. 

 

Industry International 
 

 Pearson Kendall Pearson Kendall 
Threatening-degree  centrality 0.8758 0.6701 0.9351 0.8545 

Katz-Bonacich centrality 0.8694 0.6652 0.9502 0.8182 
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D. Centrality attributes for myopic and long-term investors 

 

Table D1. Threatening-degree centrality for different network structures 
Network 𝑩 𝒅 

Disconnected 

 

(

𝑏 0

0 𝑏

… 0

… 0
⋮ ⋮

0 0

⋱ ⋮

… 𝑏

) 

 

 

 

[𝑏, 𝑏, … , 𝑏]′ 

Star 

 

(

𝑏 0

𝑏 0

… 0

… 0
⋮ ⋮

𝑏 0

⋱ ⋮

… 0

) 

 

 

 

[𝑛𝑏, 0, … , 0]′ 

Inverse Star 

 

 

(

𝑏 𝑏

0 0

… 𝑏

… 0
⋮ ⋮

0 0

⋱ ⋮

… 0

) 

 

 

 

[𝑏, 𝑏, … , 𝑏]′ 

Circle 

 

 

(

0 0

𝑏 0

… 𝑏

… 0
⋮ ⋮

0 0

⋱ ⋮

𝑏 0

) 

 

 

 

[𝑏, 𝑏, … , 𝑏]′ 
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Table D2. Myopic portfolio variance in terms of the size of the portfolio 

Network 𝒅̅ 𝑪𝑽𝒅 𝝈𝒑(𝒎)
𝟐  

Disconnected 
 
𝑏 
 

0 𝜎𝑢
2

𝑛
(1 + 𝑏2) 

Star 
 
𝑏 
 

√𝑛 𝜎𝑢
2(
1

𝑛
+
𝑏2

𝑛
+ 𝑏2) 

Inverse Star 
 
𝑏 
 

0 𝜎𝑢
2

𝑛
(1 + 𝑏2) 

Circle 
 
𝑏 
 

0 𝜎𝑢
2

𝑛
(1 + 𝑏2) 
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Table D3. Katz-Bonacich centrality for different network structures 

Network 𝑩 𝑳 𝒗 

Star 

 

(

𝑏 0
𝑏 0

… 0
… 0

⋮ ⋮
𝑏 0

⋱ ⋮
… 0

) 

 

 

(

 
 

1

1 − 𝑏

𝑏

1 − 𝑏
0 1

…
𝑏

1 − 𝑏
… ⋮

⋮ ⋮

0 0

⋱ 0

… 1 )

 
 

 

 

 
 

[
1 + (𝑛 + 1)𝑏

𝑏
, 1, … , 1]

′

 

Inverse Star 

 
 

(

𝑏 𝑏
0 0

… 𝑏
… 0

⋮ ⋮
0 0

⋱ ⋮
… 0

) 

 

 

(

 
 
 
 

1

1 − 𝑏
0

𝑏

1 − 𝑏
1

… 0

… 0

⋮ ⋮
𝑏

1 − 𝑏
0

⋱ ⋮

… 1)

 
 
 
 

 

 

 
 

[
1

1 − 𝑏
,
1

1 − 𝑏
,… ,

1

1 − 𝑏
]
′

 

Circle 

 
 

(

0 0
𝑏 0

… 𝑏
… 0

⋮ ⋮
0 0

⋱ ⋮
𝑏 0

) 

 

 

(

 
 
 
 
 

1

1 − 𝑏𝑛
𝑏

1 − 𝑏𝑛

𝑏𝑛−1

1 − 𝑏𝑛
1

1 − 𝑏𝑛

…
𝑏𝑛−1

1 − 𝑏𝑛

…
𝑏𝑛−2

1 − 𝑏𝑛

⋮ ⋮

𝑏

1 − 𝑏𝑛
𝑏2

1 − 𝑏𝑛

⋱ ⋮

…
1

1 − 𝑏𝑛)

 
 
 
 
 

 

 

 
 

[
∑ 𝑏𝑖−1𝑛
𝑖=1

1 − 𝑏𝑛
,
∑ 𝑏𝑖−1𝑛
𝑖=1

1 − 𝑏𝑛
, … ,

∑ 𝑏𝑖−1𝑛
𝑖=1

1 − 𝑏𝑛
]

′

 

Disconnected 

 
 

(

𝑏 0
0 𝑏

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝑏

) 

 

 

(

 
 
 
 

1

1 − 𝑏
0

0
1

1 − 𝑏

… 0

… 0

⋮ ⋮

0 0

⋱ ⋮

…
1

1 − 𝑏)

 
 
 
 

 

 

 
 

[
1

1 − 𝑏
,
1

1 − 𝑏
,… ,

1

1 − 𝑏
]
′

 

 

 

 

 

 

 

 



53                                                                                                                          Chapter 2: Network Origins of   

                                                                                                                                                                                    Portfolio Risk 

  

 

Table D4. Long-term portfolio variance in terms of the size of the portfolio 

Network 𝒗̅ 𝑪𝑽𝒗 𝝈𝒑(𝑳𝑻)
𝟐  

Star 
 
1

1 − 𝑏
 

 
𝑏√𝑛 − 1 𝜎𝑢

2

𝑛

(1 + 𝑏2(𝑛 − 1))

(1 − 𝑏)2
 

Inverse Star 
 
1

1 − 𝑏
 

 
0 𝜎𝑢

2

𝑛

1

(1 − 𝑏)2
 

Circle 

 
∑ 𝑏𝑖−1𝑛
𝑖=1

1 − 𝑏𝑛
 

 
0 𝜎𝑢

2

𝑛
(
∑ 𝑏𝑖−1𝑛
𝑖=1

1 − 𝑏𝑛
)

2

 

Disconnected 
 
1

1 − 𝑏
 

 
0 𝜎𝑢

2

𝑛

1

(1 − 𝑏)2
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E. Portfolio variance convergence with 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.01,0.6} 
 

 

 

Figure. E.1. Portfolio variance for no-dynamic, disconnected and star network structures for 𝜌 ∈ {−0.04, 
0.04} and b ∈ {0.01, 0.6} 
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F. Portfolio variance elasticity with 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.01,0.6} 
 

 

 

Figure. F.1. Portfolio diversification elasticity for disconnected and star network structures for 𝜌 
∈ {−0.04, 0.04} and b ∈ {0.01, 0.6} 
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G. Adaptive Lasso estimation procedure 

We estimate each row of Granger network, B, via adaptive Lasso. Consider the following 

expression: 

𝑟𝑖,𝑡 =∑𝑏𝑖,𝑗𝑟𝑗,𝑡−1

𝑁

𝑗=1

+ 𝑢𝑖,𝑡 

Where 𝑟𝑖,𝑡 is standardize return by sample mean and standard deviation. Let 𝑏𝑖 =

[𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁] account for row i of matrix B, adaptive Lasso estimate is as follows: 

𝑏̂𝑖
∗ = 𝑎𝑟𝑔min ∥ 𝑟𝑖,𝑡 −∑𝑏𝑖,𝑗𝑟𝑗,𝑡−1

𝑁

𝑗=1

∥2+ 𝜆𝑖∑𝑤̂𝑖,𝑗|𝑏𝑖,𝑗|

𝑁

𝑗=1

 

Where 𝜆𝑖 is the regularization parameter and 𝑤̂𝑖𝑗 is the weight corresponding to coefficient|𝑏𝑖,𝑗|. 

The additional of this weighting mechanism makes adoptive Lasso conforming to Oracle 

properties. We estimate these weights via Ridge regression and following Zou (2006), we use the 

weighting function: 

𝑤̂𝑖𝑗 = |𝑏̂𝑖,𝑗|
−𝛾𝑖 

Where 𝛾𝑖 > 0.  The 𝑏̂𝑖,𝑗 are estimated via ridge regression to make sure in the estimation 

mechanism penalize less the important coefficients verified from ridge regression. Both values of 

𝜆𝑖 and 𝛾𝑖 are estimated via two-dimensional cross-validation. 
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H. The VAR estimation of industrial portfolios and international markets 

Table H1. Adaptive Lasso estimates of industry portfolios  
Regression results for monthly excess returns of industry portfolios from Kenneth French’s Data Library from 
1980:12 to 2012:14. Adaptive Lasso with penalties adjusted to Ridge regression coefficient estimates is used to 
estimate the following: 

𝑟𝑖,𝑡+1 = 𝑎𝑖 +∑𝑏𝑖𝑗𝑟𝑗,𝑡

30

𝑗=1

+ 𝑢𝑖,𝑡+1 

Where we normalize the returns before estimation and afterwards, adjust the coefficients to the standard deviation of 
returns. The following table represent matrix 𝐵, where element in row 𝑖 and column 𝑗 is the element of the matrix 𝐵. 
* point to statistical significance via bootstrapped 90% confidence intervals.  

 Food Beer Smoke Games Books Hshld Clths Hlth Chems Txtls 
Food 0 0 0 0 0 0 0 0 0 0 
Beer 0.013* 0 0 0 0 0 0.027 0 0 0 

Smoke 0 0 0 0 0 0 0 0 0 0.006 
Games 0 0 -0.025 0 0.037* 0 0 0 0 0 
Books 0 0 0 0 0 0 0 0 0 0 
Hshld 0 0 0 0 0 0 0 0 0 0 
Clths 0 0 0 0 0 0 0 0 0 0 
Hlth 0 0 0 0 0 0 0.037 0 0 0 

Chems 0 0 0 0 0 0 0 0 0 0 
Txtls 0 0 0 0 0 0 0.009* 0 0 0 
Cnstr 0 0 0 0 0 0 0 0 0 0 
Steel 0 0 -0.015 0 0 0 0 0 0 0 

FabPr 0 0 0 0 0 0 0 0 0 0 
ElcEq 0 0 0 0 0 0 0 0 0 0 
Autos 0 0 0 0 0 0 0 0 0 0 
Carry 0 0 0 0 0 0 0 0 0 0 
Mines 0 0 0 0 0 0 0 0 0 0 
Coal 0 0 0 0 0 0 0 0 0 0 
Oil 0 0 0 0 0 0 0 0 0 0 
Util 0 0 0 0 0 0 0 0 0 0 

Telcm 0 0 0 0 0 0 0 0 0 0 
Servs 0 0 0 0 0 0 0 0 0 0 
BusEq 0 0 -0.081* 0 0 0 0 0.071* 0 0 
Paper 0 0 0 0 0 0 0 0 0 0 
Trans 0 0 0 0 0 0 0 0 0 0 
Whlsl -0.014* 0 -0.078 0 0 0 0 0 0 0.002* 
Rtail 0 0 0 0 0 0 0 0 0 0 
Meals 0 0 -0.003 0 0 0 0.112* 0 0 0 

Fin 0 0 0 0 0 0 0 0 0 0 
Other 0 0 -0.023 0 0 0 0.058 0 0 0 
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Table 2 (Continued) 
 Cnstr Steel FabPr ElcEq Autos Carry Mines Coal  Oil   Util  Telcm 
Food 0 0 0 0 0 0 0 -0.080* 0 0.008* 0 
Beer 0 0 0 0 0 0 0 -0.066* 0 0 0 

Smoke 0 0 0 0 0 0.073* 0 -0.050 0 0.105* -0.011 
Games 0 0 0 0 0.027 0 0 0 0 0 0 
Books 0 0 0 0 0 0 0 0 0 0 0 
Hshld 0 0 0 0 0 0 0 -0.088* 0 0 0 
Clths 0 0 0 0 0 0 0 0 0 0 0 
Hlth 0 0.000 0 0 0 0 -0.013* -0.081* 0 0.059* 0 

Chems 0 0 0 0 0 0 0 0 0 0 0 
Txtls 0 0 0 0 0.056* -0.008 0 -0.075* -0.050* 0 0 
Cnstr 0 0 0 0 0 0 0 -0.035* 0 0 0 
Steel 0 0 0 0 0 0 0 0 0 0 0 

FabPr 0 0 0 0 0 0 0 0 0 0.051 0 
ElcEq 0 0 0 0 0 0 0 0 0 0 0 
Autos 0 0 0 0.031* 0 0 0 0 0 0 0 
Carry 0 0 0 0 0.021 0 0 -0.040* 0 0 0 
Mines 0 0 0 0 0.045* 0 0 0 0 0 0 
Coal 0 0 0 0 0 0 0 0 0 0 0 
Oil 0 0 0 0 0 0 0 0 0 0 0 
Util 0 0 0 0 0 0 0 0 0 0 0 

Telcm 0 0 0 0 0 0 0 0 0 0 0 
Servs 0 0 0 0 0 0 0 0 0 0 0 

BusEq 0 0 0 0 0 0 0 0 0 0.031* 0 
Paper 0 0 0 0 0 0 0 -0.025 0 0 0 
Trans 0 0 0 0 0 0 0 0 0 0 0 
Whlsl 0 0 0 0 0.004 0 0 -0.011* -0.086* 0.113* 0 
Rtail 0 0 0 0 0 0 0 0 0 0 0 
Meals 0 0 0 0 0.002 0 0 -0.101* -0.106* 0.059 0 

Fin 0 0 0 0 0 0 0 0 0 0 0 
Other 0 0 0 0 0 0 0 0 0 0 0 
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      Table 2 (Continued) 
 Servs BusEq Paper Trans Whlsl Rtail Meals Fin   Other 𝑹𝟐 

Food 0 0 0 0 0 0 0 0 0.024 4.66% 
Beer 0 0 0 0 0 0 0.028* 0 0 4.46% 

Smoke -0.085* 0 0 0.041 0 0 0 0 0 3.50% 
Games 0 0 0 0 0 0 0 0.076* 0 1.80% 
Books 0 0 0 0 0 0.093* 0 0.001* 0 1.39% 
Hshld 0 0 0 0 0 0 0 0.014* 0 3.11% 
Clths 0 0 0 0 0 0.099* 0 0 0 2.00% 
Hlth 0 0 0 0 0 0 0 0 0 3.58% 

Chems 0.005 0 0 0 0 0 0 0 0 1.67% 
Txtls 0 0 0 0 0 0.109* 0 0.129* 0 1.91% 
Cnstr 0 0 0 0 0 0.075 0 0.068* 0 1.40% 
Steel 0 0 0 0 0 0 0 0.094* 0 0.43% 

FabPr 0 0 0 0 0 0 0 0 0 0.95% 
ElcEq 0 0 0 0 0 0 0 0 0 2.24% 
Autos 0 0.018* 0 0 0 0.099* 0 0.003* 0 0.95% 
Carry 0 0.047 0 0.058* 0 0 0 0.039 0 2.46% 
Mines 0 0 0 0 0 0 0 0 0 0.28% 
Coal 0 0 0 0 0 0 0 0 0 0.38% 
Oil 0 0 0 0 0 0 0 0 0 1.64% 
Util 0 0 0 0 0 0 0 0 0 2.65% 

Telcm 0 0 0 0 0 0 0 0 0 1.78% 
Servs 0 0 0 0 0 0 0 0 0 1.67% 

BusEq 0 0 0 0 0 0 0 0.005* 0 1.00% 
Paper 0 0 0 0 0 0.041* 0 0.022* 0 2.06% 
Trans 0 0 0 0 0 0.054 0 0.005* 0 2.05% 
Whlsl 0 0.025* 0 0 0 0.053 0 0.026* 0.085* 2.26% 
Rtail 0 0 0 0 0 0 0 0 0 2.65% 
Meals 0.037* 0.014 0 0 0 0.038 0 0.023* 0 3.24% 

Fin 0 0 0 0 0 0 0 0 0 1.93% 
Other 0 0 0 0.015* 0 0 0 0.027* 0 0.70% 
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Table H2. Adaptive Lasso estimate of VAR model for international market 
This table reports the Adaptive Lasso estimates of coefficients in the following regressions for monthly excess returns 
of 11 industrialized countries in the international market from 1980:12 to 2012:14. Adaptive Lasso with penalties 
adjusted to Ridge regression coefficient estimates is used to estimate the following: 

𝑟𝑖,𝑡+1 = 𝑎𝑖 +∑𝑏𝑖𝑗𝑟𝑗,𝑡

11

𝑗=1

+ 𝑢𝑖,𝑡+1 

Where we normalize the returns before estimation and afterwards, adjust the coefficients to the standard deviation of 
returns. The following table represent matrix 𝐵, where element in row 𝑖 and column 𝑗 is the element of the matrix 𝐵. 
* point to statistical significance via bootstrapped 90% confidence intervals.  

 AUS CAN FRA DEU ITA JPN NLD SWE CHE GBR USA 𝑹𝟐 
AUS 0 0 0 0.023* 0.026* 0.010* 0 0 0 0 0.067* 2.67% 
CAN 0 0 0 0 0 0 0 0 0 0 0.052* 1.91% 
FRA 0 0 0 0 0 0 0 0 0.030* 0 0 1.42% 
DEU 0 0 0 0 0 0.004* 0 0.068* 0.027* 0 0.057* 3.94% 

ITA -0.016* 0 0.099* 0.009 0 0 
-

0.188 
0 0.139* 0.058* 0.021* 4.74% 

JPN 0 0.031* 0.040* 0 0 0.028* 0 0 0 0.012* 0 2.52% 

NLD 0 0 0 0 0 0.040* 
-

0.130 
0.094* 0.117* 0 0.123* 8.03% 

SWE 0 0 0 0 0.021 0 0 0 0 0 0.106* 4.86% 
CHE 0 0 0 0 0 0 0 0.142* 0 0 0.066* 7.12% 

GBR 0 0 0 0 0 0.026* 
-

0.013 
0.067* 0 -0.008 0.119* 4.30% 

USA 0 0 0 0 0 0 0 0.073* 0 0 0 3.02% 
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I. Centrality values for industry and international Datasets 
  
Table I.1. Centrality values for Industry dataset 
Monthly excess returns of industry portfolios are downloaded from Kenneth French's Data Library from 1980:12 to 
2012:14. The Granger networks, 𝐵, are computed via adaptive Lasso estimation of a VAR model. Threatening-degree 
centrality is the summation of columns in the Granger network adjacency matrix, computed as follows: 𝑑𝑗 =
 ∑ 𝐵𝑖𝑗
𝑁
𝑖=1 ; Moreover, Katz-Bonacich centrality captures the long-run influence 𝑡 of assets. Mathematically, it is 

computed as follows: 𝝂𝑗  = 𝟏 (𝑰 −  𝑩)−1𝒆𝒋 where 𝝂𝑗 is the Katz-Bonacich centrality of asset 𝑗, 𝒆𝒋  is the 𝑟𝑡ℎ  unit 
vector and 𝟏 is an 𝑛-dimensional vector of  ones. 

Industry Threatening-degree  centrality Katz-Bonacich Centrality 
Food -0.001 0.999 
Beer 0.000 1.000 

Smoke -0.225 0.764 
Games 0.000 1.000 
Books 0.037 1.037 
Hshld 0.000 1.000 
Clths 0.243 1.255 
Hlth 0.071 1.079 

Chems 0.000 1.000 
Txtls 0.008 1.007 
Cnstr 0.000 1.000 
Steel 0.000 1.000 
FabPr 0.000 1.000 
ElcEq 0.031 1.036 
Autos 0.155 1.156 
Carry 0.065 1.048 
Mines -0.013 0.986 
Coal -0.652 0.348 
Oil -0.242 0.755 
Util 0.426 1.411 

Telcm -0.011 0.992 
Servs -0.043 0.978 
BusEq 0.104 1.109 
Paper 0.000 1.000 
Trans 0.114 1.109 
Whlsl 0.000 1.000 
Rtail 0.661 1.713 

Meals 0.028 1.028 
Fin 0.532 1.540 

Other 0.109 1.109 
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Table I.2. Centrality values in International dataset 
We consider monthly excess returns of 11 industrialized countries in the international market from 1980:12 to 
2012:14. The Granger networks, 𝐵, are computed via adaptive Lasso estimation of a VAR model. Threatening-
degree centrality is the summation of columns in the Granger network adjacency matrix, computed as follows: 𝑑𝑗 =
 ∑ 𝐵𝑖𝑗
𝑁
𝑖=1 ; Moreover, Katz-Bonacich centrality captures the long-run influence 𝑡 of assets. Mathematically, it is 

computed as follows: 𝝂𝑗  = 𝟏 (𝑰 −  𝑩)−1𝒆𝒋 where 𝝂𝑗 is the Katz-Bonacich centrality of asset 𝑗, 𝒆𝒋  is the 𝑟𝑡ℎ  unit 
vector and 𝟏 is an 𝑛-dimensional vector of  ones. 

Country Threatening-degree  centrality Katz-Bonacich Centrality 
AUS -0.016 0.983 
CAN 0.031 1.034 
FRA 0.139 1.149 
DEU 0.032 1.032 
ITA 0.047 1.057 
JPN 0.108 1.096 
NLD -0.431 0.602 
SWE 0.444 1.500 
CHE 0.313 1.280 
GBR 0.062 1.066 
USA 0.611 1.645 
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J. Correlation between threatening-degree centrality and Katz-Bonacich centrality 

 
 

 

 
(a) Industry portfolios 

 
(b) International market 

 
(c) SP100 

 
(d) FTSE100 

 

Figure. J.1. Scatter plot of threatening-degree and Katz-Bonacich centralities 
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K. In-sample results for portfolio variance convergence 
 
 

 
Figure. K.1. Portfolio diversification convergence for diversification strategies up to 20 stocks in the portfolio (a) 

In SP100 dataset with daily excess returns (split and divided adjusted) for the 100 most capitalized stocks in the 

SP500 index between 10/1/2002 and 12/31/2012 (b) FTSE100 dataset with 100 stocks in FTSE250 index between 

2/27/2006 to 10/25/2013. Nave Diversification implies the average performance of diversification strategy by 

diversifying naively among randomly selected stocks in the full dataset of 100 stocks. Lowest Centrality and 

Highest Centrality illustrate nave diversification among 20 randomly chosen highest and lowest central stocks, 

respectively. Lowest Correlation refer to nave diversification between stocks with lowest average correlation in the 

datasets. 
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Figure. K.2. Portfolio diversification convergence for diversification strategies up to 60 stocks in the portfolio (a) 

In SP100 dataset with daily excess returns (split and divided adjusted) for the 100 most capitalized stocks in the 

SP500 index between 10/1/2002 and 12/31/2012 (b) FTSE100 dataset with 100 stocks in FTSE250 index between 

2/27/2006 to 10/25/2013. Nave Diversification implies the average performance of diversification strategy by 

diversifying naively among randomly selected stocks in the full dataset of 100 stocks. Lowest Centrality and 

Highest Centrality illustrate nave diversification among 60 randomly chosen highest and lowest central stocks, 

respectively. Lowest Correlation refer to nave diversification between stocks with lowest average correlation in the 

datasets. 
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L. Out-of-sample performance evaluation 

 

Table L.1. Annualized out-of-sample Sharpe ratios 
Naive Diversification is naively diversifying among all the 100 stocks in both datasets. Lowest-correlation is 

diversifying among stocks with lowest average correlations. In Lowest-centrality and Highest-centrality strategies, 

we compute the centrality ranking of stocks from Granger network estimated using the first 1000 daily returns and 

diversify naively on the lowest and highest central stocks. We hold the portfolios for 200 days. Naive Diversification 

is taken as the benchmark strategy for computing the p-values ( following the procedure inLedoit and Wolf(2008)). 

*** denotes significance at 1%, ** at 5% and * at 10%. 

  SP100   FTSE100  

Naive Diversification  0.0111   0.0323  

Number  of Stocks 20 40 60 20 40 60 

Lowest-Correlation 1.6857 2.1890 2.0278 0.7871 0.6599 0.8737 
 (0.505) (0.7508) (0.8704) (0.9402) (0.3887) (0.6279) 

Lowest-Centrality 1.3850 1.8763 2.1029 0.1575 0.5036 0.6779 
 (0.2425) (0.4718) (0.794) (0.0664) (0.1462) (0.3621) 

Highest-Centrality 2.0019 1.9169 2.1165 1.0019 0.9579 0.9787 
 (0.8771) (0.5349) (0.701) (0.4252) (0.4186) (0.1927) 



 
         
 

 Chapter 3: Hedging Network Structures and 
Portfolio Diversification 

 

1. Introduction 

Under a diversification strategy (understood as reducing portfolio variance by simply 

adding more assets in a portfolio), a high number of stocks are included in the portfolio 

to minimize risk; however, the optimum number of stocks needed in the portfolio to 

achieve the maximum benefits of diversification is not explicitly specified. Mao (1970) 

provides a theoretical analysis regarding the number of stocks required to gain the greatest 

level of diversification and, in accord with Evans and Archer (1968), concludes that not 

a large number of stocks are needed for diversification. Several studies recommend a 

much larger number of stocks: for example, Bird and Tippett (1986) argue that the 

relationship provided by Evans and Archer (1968) is biased and that the number of stocks 

should be more than 10 to achieve the maximum benefits of diversification. Elton and 

Gruber (1977) derive an analytical expression for the relationship between portfolio size 

and risk, which also includes the risk associated with the probability that the return on the 

portfolio held will differ from the return in the market, and they demonstrate that a well-

diversified portfolio needs more than 10 assets. In this regard, Bloomfield et al. (1977) 

propose including 20 stocks, while Statman (1987) proposes having at least 30 

stocks. More recently, Statman (2004) finds that the optimal level of diversification, as 

measured based on the rules of mean–variance portfolio theory, exceeds 300 stocks, 

whereas Domian et al. (2007) suggests including more than 100 stocks to achieve the 

greatest benefits of diversification.32  

However, Desmoulins-Lebeault and Kharoubi-Rakotomalala (2012) show that in non-

Gaussian return distributions, increasing the portfolio size cannot reduce monotonically 

large risk and that a lower number of assets can improve diversification in a bear market. 

Although the number of stocks required to obtain a perfectly diversified portfolio seems 

to be high, some studies (Kelly, 1995; Bertaut, 1998; and Goetzmann and Kumar, 2008 

                                                           
32 From a different perspective, some authors, such as Moreno and Rodríguez (2013), demonstrate that the 
portfolios of equity mutual funds are not perfectly diversified despite the huge number of stocks that mutual 
funds hold (more than 100 in many cases). Other authors, such as Bello (2007), have found similar results.  
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among others) highlight that household investors usually hold equity portfolios that 

contain a very limited number of different assets. They find that the number of stocks 

held by households in the American market is between 5 and 10, depending on several 

factors, such as education. Therefore, in this paper, we focus on a wide range of portfolios 

regarding the number of stocks, from 2 to 60, in order to contribute to the different studies 

noted here. 

 
This paper contributes to the literature by investigating diversification from a new 

perspective.33 We introduce the notion of a hedging network, where each stock resides as 

a node and each link specifies the hedging relations among the stocks, and we find that 

the optimum number of stocks in a diversified portfolio is driven by the specific structure 

of the hedging network. Moreover, we propose using the Katz centrality measure to rank 

stocks based on their favorability in order to determine whether they should be included 

in a diversified portfolio. The tools provided in this paper are very useful instruments for 

determining the structure of hedging relations in a portfolio network and building a well-

diversified portfolio.  

Network theory has been employed in finance to analyze the interconnectedness among 

entities in capital markets.34 For example, Peltonen et al. (2014) and Brunnermeier et al. 

(2013) analyze the network structure of counterparties’ bilateral notional exposure in the 

CDS market; Boss (2004), Cont and Moussa (2010), Georg (2013), and Rogers and 

Veraart (2013) investigate the network of claims and liabilities in the interbank market; 

and Raffestin (2014) provides a theoretical model where investors compose a network of 

asset holdings with home bias and studies several issues regarding the systemic risk. In 

addition, Pozzi et al. (2013) study the network structure of a stock returns correlation 

matrix. In this paper, for the first time in the literature, we present a new type of network, 

called a hedging network, which is built on hedging relations (representing the correlation 

between stocks after the influence of the other stocks in the opportunity set of stocks is 

                                                           
33 In recent years, some authors have started to call for a change in classical portfolio theory, as new models 
and theories should be considered. For example, You and Daigler (2010) examine international 
diversification and show that conclusions concerning diversification based solely on constant correlations 
across markets can be misleading.  
34 See Newman (2010) for a more extensive description of networks. 
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eliminated). Accordingly, a primary benefit of employing a hedging network from a 

network of returns correlations is that only the relationships between stocks are captured 

via the hedging relations. In other words, if two stocks can hedge for each other, the 

impact of other stocks on their relation is offset, whereas if two stocks are correlated with 

each other, their correlation may arise because both stocks are correlated with another 

stock.  

We can distinguish two parts of this paper: a theoretical part presented first and an 

empirical part presented at the end. In the theoretical part, we start by analyzing certain 

hedging network structures, such as full, individual and star networks, and we compare 

these network structures by examining how the portfolio variance decreases as we add 

more stocks in the portfolio (called the variance decay rate) when we consider a 

minimum-variance strategy. To analyze the change in the level of variance as we increase 

the number of stocks in the portfolio, we consider a special case in which all the 

unhedgeable components and hedging relations are assumed to be constant and equal. For 

the hedging relations, we consider two possible values in order to capture a low and high 

intensity connection and then analyze the effect on the variance when we consider 

negative and positive hedging relations. We find that the level (high or low) and sign of 

the hedging relation affects the portfolio variance and the potential benefits of 

diversification. When there is a low intensity of hedging relations among the stocks, the 

portfolio variance is clearly similar for all the different structures; thus, the type of 

network is not relevant in such a case. However, if there is a high intensity of hedging 

relations (positive or negative), we find significant differences in the portfolio variance 

decay rate among the different network structures, where the full network is the best 

network structure if the value of hedging relations is negative and the intensity is 

sufficiently high. Thus, having negative and higher intensity hedging relations among the 

stocks in an investment opportunity set is most beneficial for portfolio managers (or any 

investors worried about risk) to maximize the benefits of diversification.  

In the empirical part, we analyze the network structure of several datasets, and based on 

the conclusions from the previous theoretical section, we propose using the Katz 

centrality measure to rank stocks in a hedging network based on their contribution to the 

benefits of diversification. This centrality measure takes into account both the hedgeable 

and unhedgeable components of the stocks in the hedging network. We then demonstrate 
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in both an in-sample and out-of-sample analysis the convenience of using this measure to 

select stocks to maximize the benefits of diversification, and based on this centrality 

measure, we show that diversifying in a particular subset of stocks in-sample, we achieve 

a lower portfolio risk. Moreover, the most interesting result is found in the out-of-sample 

analysis, where we provide empirical evidence that our centrality measure shows superior 

performance (in terms of risk) in selecting stocks with the greatest diversification effect. 

This strategy yields better performance than both naïve diversification (holding an 

equally weighted portfolio among all stocks in the investment opportunity set) and a 

portfolio strategy based on classical portfolio theory using a covariance matrix (holding 

stocks with the lowest average correlation coefficient in an effort to maximize the effects 

of diversification).  

To our knowledge, this is the first time in the literature hedging networks have been 

investigated with regard to diversification rule. Moreover, we also try to explain the 

notion of diversification from a network perspective, which provides us with a new way 

of characterizing diversification strategies. Regarding the optimum number of stocks to 

include in a portfolio to gain the greatest benefits of diversification, we conclude that the 

optimal number varies depending on the hedging network structure (and the number and 

quantity of negative hedging relations) of the investment opportunity set. Moreover, 

based on the centrality measure we present in this paper, we can achieve a very well-

diversified portfolio by investing in only a small portion of stocks in the hedging network, 

which shows better performance in both the in-sample and out-of-sample analyses. 

The rest of the paper is organized as follows. In Section 2, we define a hedging network 

and present several types of network structures. Section 3 presents a theoretical analysis 

of the weights allocation for the minimum-variance portfolio in the case of several 

hedging network structures. In addition, we compare the different networks with respect 

to the portfolio variance decay rate when we increase the number of stocks. In Section 4, 

we propose a centrality measure to rank stocks based on their favorability for inclusion 

in a diversified portfolio and analyze the empirical results with several datasets. Finally, 

in Section 5, we conclude.  
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2. Hedging Network 

A network is defined as a pair of sets 𝜑 = {𝑉, 𝐸}, where 𝑉 corresponds to the set of nodes 

and 𝐸 represents the set of links connecting pairs of nodes. We use n to denote the number 

of nodes, and if a link exists from node i to node j, (𝑖, 𝑗) ∈ 𝐸. A network is represented 

by an adjacency matrix, 𝐴𝑛×𝑛 = [𝐴𝑖𝑗]𝑛×𝑛, which summarizes the information in set 𝐸 by 

setting 𝐴𝑖𝑗 ≠ 0 when there a relationship exists between the nodes i and j.  

Depending on the structure of the adjacency matrix, we can differentiate different types 

of networks. Most of the networks identified in physics can be represented by a binary 

matrix, 𝐴𝑖𝑗 ∈ {0,1}, where 𝐴𝑖𝑗 = 1 if i and j are connected and 0 otherwise. In this case, 

the network 𝜑 is said to be an unweighted network. However, many networks have edges 

with different weights of connection when 𝐴𝑖𝑗 ∈ ℝ, so a network is called a weighted 

network if it is represented by an adjacency matrix with entries that are not simply zero 

or one. Finally, the network is undirected if all nodes are bidirectional, i.e., the adjacency 

matrix is symmetric, 𝐴 = 𝐴𝑇. 

Suppose that we aim to hedge stock i with all of the other available stocks in the market. 

Stevens (1998) shows that the inverse covariance matrix provides us the optimal hedging 

relations among the stocks. The i-th hedge portfolio consists of taking a long position in 

the i-th stock and a short position in the other stocks that track the i-th stock return. 

Each portfolio can be estimated from the following “hedge regression”: 35 

𝑟𝑖,𝑡 = 𝛼𝑖 + ∑ 𝛽𝑖𝑘𝑟𝑘,𝑡
𝑁
𝑘=1,𝑘≠𝑖 + 𝜀𝑖,𝑡                                         (1) 

where 𝑟𝑖,𝑡 is the return of stock i at time t. 𝛽𝑖𝑘, called the hedging relation, refers to the 

contribution of stock k in hedging stock i beyond the contribution of all other stocks. 𝜀𝑖,𝑡 

is the part of 𝑟𝑖,𝑡 that is not being hedged by other stocks. The variance of 𝜀𝑖,𝑡, denoted by 

𝜐𝑖, is a measure of the risk of the unhedgeable component and hereinafter is called the 

unhedgeable component of 𝑟𝑖,𝑡. 

The information on the hedging relations and unhedgeable component in Equation (1) is 

summarized by the inverse covariance matrix. Denoting the inverse covariance matrix by 

                                                           
35 For more details about hedging regressions and unhedgeable components, see Gotoh et al. (2013). 
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𝚿 = 𝚺−1 = [𝜓𝑖𝑗]𝑛×𝑛, Stevens (1998) proposes the following relation between 𝚿 and the 

hedge regression in Equation (1): 

𝜓𝑖𝑗 = {
−
𝛽𝑖𝑗

𝜐𝑖
       𝑖𝑓 𝑖 ≠ 𝑗

1

𝜐𝑖
              𝑖𝑓 𝑖 = 𝑗

                                               (2) 

Subsequently, we can subtract the hedging network from the inverse covariance matrix 

𝜓𝑖𝑗 given a measure of marginal hedgeability between the stocks i and j. Therefore, the 

hedging network is defined as follows: 

Definition. The stock hedging network is defined by 𝛷𝑊 = {𝑁, 𝑬} with adjacency 

matrix 𝜷, where 𝑁 is the set of stocks and 𝑬 = {(𝑖, 𝑗) ∈ 𝑁𝑥𝑁: 𝛽𝑖𝑗 ≠ 0} denotes the set of 

links connecting each stock. The intensity of an edge between node i and j is equal to 𝛽𝑖𝑗, 

and the self-edge of node i in the network is equal to 𝜐𝑖.   

Therefore, a weighted link exists between stock i and stock j as long as 𝛽𝑖𝑗 differs from 

zero. We define an unweighted network 𝛷𝑈 when the adjacency matrix is binary, 𝛽𝑖𝑗 ∈

{0,1}. Within these two families of networks, we can differentiate particular structures:  

 Full network structure 

We define a full network as network in which all the nodes are connected to each other 

as presented in Figure 1.  

 

Figure 1. Full hedging network structure 
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 Individual network  

We consider a network be to an individual network if no hedging relations exist between 

the stocks. Such a network structure is presented in Figure 2.   

 

Figure 2. Individual network 

 Star network 

In a star network, there is high asymmetry in the hedging relations in the network. Figure 

3 presents a star network structure, where a central stock is connected to all of the other 

stocks and no hedging relations exist among 𝑁 − 1 stocks.  

 

Figure 3. Star network structure 

 

In the next section, we investigate how the minimum risk can be obtained for various 

hedging network structures and examine the role of hedging relations and unhedgeable 

components in determining the portfolio risk. This is the first study to consider the 

implication of hedging network structures on portfolio risk.  

3. Minimum Risk in Hedging Networks 

The primary goal of diversification is to reduce risk. However, a minimum-variance 

strategy is designed to minimize risk by employing an optimization framework. Since we 

aim to examine the role of hedging network structures in determining the benefits of 

diversification, we start by examining how the greatest benefits of diversification can be 

achieved by constructing a minimum-risk portfolio under specific hedging network 
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structures. In this regard, we consider the particular hedging network structures defined 

in section 2 and investigate how the minimum-variance (minv) strategy assigns value to 

stocks in these structures in order to obtain the greatest benefits of diversification. Finally, 

the findings in this section lead us to propose a centrality measure in the hedging network 

in order to verify most beneficial stocks for constructing a well-diversified portfolio.  

In this section, we have two goals: First, we wish to analyze how the value of components 

(𝛽, 𝑣) in several network structures (full, star or individual) affects the determination of 

the minimum-variance portfolio. To simplify the analysis, we assume that every hedging 

component and unhedgeable component is constant and equal, and we distinguish two 

different values of hedging relations (high and low). Second, we examine the variance 

decay rate (representing how the portfolio variance decreases as we add more stocks to 

the portfolio) under these specific network structures, which allows us to determine 

whether the effect of adding more stocks to a portfolio (popularly known as a 

diversification strategy) differs depending of the specific hedging network and to identify 

the most beneficial network structure for investors.  

Next, we briefly summarize the mathematics behind the Markowitz (1952) framework 

and a minimum-variance strategy, as we heavily rely on them. Let us assume 𝑛 risky 

assets with a vector of expected returns denoted as μ and a covariance matrix denoted as 

𝛴. Consider the problem of finding the vector of optimal weights, 𝑤, that minimizes the 

variance of such a portfolio subjected to wT𝟏 = 1, where 𝟏, in bold, corresponds to a 

vector whose components equal one. This strategy is commonly known as a minimum-

variance strategy (minv). Formally: 

𝑀𝑖𝑛 𝜎𝑝
2 = 𝑤𝑇𝛴𝑤 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑤𝑇𝟏 = 1 

The solution of this optimization problem is known to be given by: 

𝑤𝑚𝑖𝑛𝑣 =
𝛴−1𝟏

𝟏𝑻𝛴−1𝟏
                                                           (3) 
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In the next section, we use Equation (3) and the general hedging network definition in 

Equation (2) to study the composition of the minimum-variance portfolio under different 

network structures. Considering that 𝚿 = 𝚺−1, we can express Equation (3) as: 

𝑤𝑚𝑖𝑛𝑣 =
𝚿𝟏

𝟏′𝚿𝟏
                       (4) 

3.1. Full network structure 

First, we analyze the portfolio variance for a full network in which all stocks are assumed 

to hedge each other, as presented in Figure 1. Based on the optimal weights of minimum 

variance (wminv) in Equation (4), we can compute the minimum-variance portfolio for this 

hedging network structure as follows: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 = 𝑤′Σ𝑤 =

1

𝟏′𝚿𝟏
=

1

∑
1

𝜐𝑖

𝑁
𝑖=1 − ∑ ∑

𝛽𝑖,𝑗

𝜐𝑖

𝑁
𝑗=1

𝑁
𝑖=1,𝑖≠𝑗

                       (5) 

If the hedging relations are taken into account, the denominator in Equation (5) is the 

summation of all the elements in the inverse covariance matrix 𝚿. Therefore, the lowest 

variance of the portfolio is realized when the denominator is highest and, accordingly, 

when the unhedgeable component is low and the sum of all hedging relations is high and 

negative. Analyzing this issue more deeply, we observe that a higher negative hedging 

coefficient would increase the size of the denominator in Equation (5) and consequently 

lead to a lower level of variance. This observation may be logical, as we know that stocks 

with reverse return behavior are suitable for a well-diversified portfolio.36 Regarding 

positive hedging, we expect an increase in portfolio variance for stocks with a higher 

positive 𝛽𝑖,𝑗. Hence, a network in which all assets negatively hedge each other (𝛽𝑖,𝑗 < 0) 

will have lower variance than a network in which all hedging relations are positive, when 

the level of unhedgeable component remains constant. Additionally, a smaller value for 

the unhedgeable component (𝜐𝑖) decreases the portfolio variance. Such a result is 

expected, as a lower unhedgeable component (𝜐𝑖) translates into lower unexplained asset 

                                                           
36 Although a negative hedging relation (β) could be related to a negative correlation coefficient in classical 
portfolio theory, we must understand they are not exactly the same. As we will demonstrate in the final 
empirical section, investing in both types of stocks (negative hedging and negative correlation) is not 
exactly the same. 
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performance; accordingly, this unexplained performance cannot be restrained by 

investing in other stocks.  

From classical portfolio theory, we know that the variance will decrease as we increase 

the number of stocks in the portfolio. As Equation (5) shows, increasing the number of 

stocks would result in a greater number of 1
𝜐𝑖

 arguments and, accordingly, a lower level 

of variance. Another important factor explaining whether diversification pays off is the 

value of the hedging relations coefficient, 𝛽𝑖,𝑗. With negative hedging, increasing the 

number of stocks would lead to a lower level of portfolio variance, but in the case of 

positive hedging, increasing the number of stocks may increase the portfolio variance. To 

explain this phenomenon in detail and without a lack of generality, we consider a special 

case in which the unhedgeable component and hedging relations are assumed to be 

constant for every stock (𝜐𝑖 = 𝜐; 𝛽𝑖,𝑗 = 𝛽∗). In this case, Equation (5) is transformed as 

follows: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 =

𝜐

𝑁−𝑁×(𝑁−1)×𝛽∗
               (6) 

To be able to study the effect of adding more stocks to a portfolio, we must consider two 

different cases: first, when the value of hedging relations is negative (𝛽 = −𝛽∗ with 𝛽∗ >

0) and, second, when the value of hedging relations is positive (𝛽 = 𝛽∗ with 𝛽∗ > 0). In 

the first case, when the hedging relations are negative, we observe from Equation (6) that 

the portfolio variance decreases as the number of stocks in the portfolio increases. 

However, if 𝛽∗ is positive, the portfolio variance decay rate will differ depending on the 

value of 𝛽∗. For sufficiency low values of 𝛽∗,37 the portfolio variance decreases as we 

increase the number of stocks, even though the variance decay rate is lower than that 

when the hedging relations are negative. However, when these coefficients (𝛽∗) are not 

small, our diversification strategy would not work, and instead, we could increase the 

portfolio variance as we increase the number of stocks in the portfolio. Such a case would 

be like investing in a time bomb.  

                                                           
37 In the positive hedging case, the constraint β∗ < 1

N−1
  should be held constant to maintain positive 

portfolio variance. 
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To explain this argument and compare positive and negative hedging relations with 

respect to the portfolio variance decay rate, we provide a numerical experiment. We 

consider a case in which the unhedgeable component (𝜐) is assumed to be equal to 0.01 

and the absolute hedging relations (𝛽∗) take two different values: 0.008 (we could think 

that is a low intensity) and 0.04 (denoting high intensity). The results are shown in Figure 

4. In both cases, negative hedging results in a higher portfolio variance decay rate and, 

more important, a lower level of variance. For positive hedging in the case of high 

intensity, having more than 13 stocks in the portfolio results in an increase in the portfolio 

variance. This finding demonstrates the importance of having knowledge about the 

hedging network structure and composition (𝛽, υ) before investment decisions are made, 

given that adding more stocks could have a negative effect.  

 

 
(a) 

 
(b) 

Figure 4. This figure shows the variance for portfolios of different size (from 2 to 20 
stocks) in a full network structure where υ = 0.01. Figure (a) shows the results for low 
intensity hedging relations (β∗ = 0.08), and Figure (b) shows the results for high 
intensity hedging relations (β∗ = 0.04). 

 

Notably, in a full network structure, a high level of negative or positive hedging relations 

cannot be achieved. However, a higher intensity of hedging relations is beneficial for 

negative hedging in a full network since it always results in lower portfolio risk. To 

analyze the impact of the intensity of hedging relations on the portfolio variance, we next 

study, in a numerical example, the sensitivity of the portfolio variance to changes in the 

intensity of hedging relations (𝛽∗) and the value of the unhedgeable component (𝜐). The 
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results regarding changes in the portfolio variance for positive and negative hedging with 

a portfolio of 20 stocks in a full network structure are presented in Figure 5.  

 
(a) 

 
(b) 

Figure 5: Portfolio variance for a portfolio of 20 stocks in a full network structure with respect to 
(a) changes in the intensity of hedging relations (𝛽) with a constant unhedgeable component, 𝜐 =
0.01, and (b) changes in the unhedgeable component (𝜐) with a constant intensity of hedging 
relations, 𝛽∗ = 0.04. 

 

From Figure 5, we observe that as we increase 𝛽∗or 𝜐, the difference in the portfolio 

variance between negative and positive hedging relations in a full network structure 

increases. Higher intensity of hedging relations is beneficial for negative hedging in a full 

network since it always results in lower portfolio risk. However, we observe an 

exponential increase in the portfolio variance in the case of positive hedging as we 

increase 𝛽∗. From Figure 5b, we observe that a higher value of the unhedgeable 

component generally increases the portfolio variance for both positive and negative 

hedging relations. Moreover, we find that while the portfolio risk increases for higher 

values of the unhedgeable component in the case of negative hedging, the increase is 

much lower in such a case than in the case of positive hedging.  

Therefore, in sum, we can conclude that in the case of a full network structure, portfolio 

managers aiming to minimize the portfolio risk should overweigh stocks with negative 

and higher intensity hedging relations and a lower unhedgeable component and avoid 

holding stocks with high intensity and positive hedging relations. 

 

3.2. Individual network  
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In the next step, we consider an individual network where no hedging relations exist 

between the stocks. Such a network structure is presented in Figure 2. In this case, the 

weight allocation for the minv strategy is expressed as follows: 

𝑤𝑖
𝑚𝑖𝑛𝑣 =

1

∑
1

𝜐𝑗

𝑁
𝑗=1

×
1

𝜐𝑖
 

The minv strategy allocates to each stock a weight equal to the reverse of their individual 

variance, which is in accord with the aim of minimizing the portfolio variance. Hence, 

stocks with lower variance will be allocated a higher portion of the wealth. The portfolio 

variance is expressed as follows: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 =

1

∑
1

𝜐𝑖

𝑁
𝑖=1

 

The lower the unhedgeable component of each stock is, the lower the portfolio variance 

is. To explain the behavior of a diversification strategy as we increase the number of 

stocks, we consider a simplified case where the unhedgeable component of each stock is 

equal for every stock, 𝜐. In this case, we would have: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 =

𝜐

𝑁
 

Accordingly, as we increase the number of stocks, the portfolio variance converges 

toward zero, and the convergence rate is slower in an individual network than in a full 

network where all the stocks negatively hedge each other. However, the portfolio variance 

decay rate is higher in an individual network than in a full network where all stocks show 

positive hedging. 

3.3. Star network 

A star network represents a network in which there is high asymmetry in the hedging 

relations. One stock is connected to all the other stocks, and no hedging relations exist 

among 𝑁 − 1 stocks (see Figure 3). Under this network structure, the minv strategy 

assigns weights to the stocks as follows: 
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𝑤1
𝑚𝑖𝑛𝑣 =

1

𝜐1
× (1 −∑𝛽1𝑗

𝑁

𝑗=2

) 

𝑤𝑖
𝑚𝑖𝑛𝑣 =

1

𝜐𝑖
−
𝛽1𝑖
𝜐1
,   𝑖 = 1, 2, 3, … ,𝑁 

Accordingly, there is asymmetry in allocating weights between the stock in the center of 

the network (𝑤1𝑚𝑖𝑛𝑣) and among the stocks in the peripheries of the network (𝑤𝑖𝑚𝑖𝑛𝑣). The 

portfolio variance of the portfolio of a star network is expressed as follows: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 =

1

∑
1

𝜐𝑖

𝑁
𝑖=1 − ∑

𝛽1𝑗

𝜐1

𝑁
𝑗=2

       

Under this network structure, if all the hedging relations in the star network are negative, 

the portfolio variance is lower than in the case where the relationships are positive. 

Moreover, the unhedgeable component of the stock in the center of the network (𝜐1) is an 

important determinant of the portfolio variance. This unhedgeable component on the 

portfolio variance can increase or decrease the variance depending on the direction of the 

hedging relations. If the hedging relations are negative, (𝛽1𝑗 < 0), a decrease in the 

unhedgeable component of the stock in the center of the network decreases the level of 

portfolio variance, as occurs in a full network or individual network structure. However, 

if 𝛽1𝑗 > 0, a lower 𝜐1 will increase the portfolio variance. This result is interesting in the 

sense that the influence of positive hedging relations is eliminated when a stock with a 

high unhedgeable component is in the center of the network. 

Next, to analyze the level of variance as we increase the number of stocks in the portfolio, 

we again consider a special case in which all the hedging relations and the unhedgeable 

component are assumed to be constant and equal. In this regard, the portfolio variance is 

expressed as follows: 

𝑉𝑎𝑟𝑝
𝑚𝑖𝑛𝑣 =

𝜐

𝑁 − (𝑁 − 1) × 𝛽
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As with the full network, we consider two independent cases: first, with negative hedging 

(𝛽 = −𝛽∗ with 𝛽∗ > 0) and, second, with positive hedging38 (𝛽 = 𝛽∗ with 𝛽∗ > 0). In 

the case of negative hedging, the portfolio variance decay rate is higher than in the case 

of positive hedging, with large values of 𝛽∗. Interestingly, with a low number of stocks 

with high intensity negative hedging relations, we can achieve the same level of portfolio 

variance than with a high number of stocks with positive hedging relations. This result 

clearly demonstrates the importance of the information underlying the hedging network 

for portfolio managers.  

To analyze the difference in the decline in portfolio variance between negative and 

positive hedging as the size of the portfolio increases, we conduct a numerical experiment, 

the results of which are presented in Figure 6. Assuming that the value of 𝜐 is 0.01 and 

that β∗ represents a low level of intensity (0.008) or high level of intensity (0.1), we 

analyze the portfolio variance when the number of stocks changes from 1 to 20. From 

Figure 6a, we can conclude the portfolio variance for the case of negative hedging is 

clearly similar to the case in which stocks positively hedge each other when there are a 

low number of connections of low intensity. However, the difference between the case of 

negative and positive hedging relation is much greater when we increase the level of 

intensity (Figure 6b). This result indicates that the direction of hedging relations may be 

relevant for a star network only when the intensity of hedging relations is sufficiently 

large. 

 

 

                                                           
38 Moreover, for the case of positive hedging, the value of β∗ should be lower than N

N−1
 for the portfolio 

variance to be positive. 
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(a) 

 
(b) 

Figure 6. Portfolio variance as number of stocks in the star network structure increases 
where υ = 0.01 and β∗ = 0.008 (Figure (a)) and β∗ = 0.1 (Figure (b)) 

 

Next, we investigate the sensitivity of the portfolio variance to the values of 𝛽∗ and 𝜐 by 

using a numerical simulation; the results are presented in Figure 7. From Figure 7a, we 

can confirm the conclusions made above, since we observe that the portfolio variance 

increases for star network with positive hedging relations and decreases for a network 

with negative hedging relations as we increase the value of 𝛽∗. We also observe from 

Figure 7b that the impact of increasing the unhedgeable component is smaller than the 

effect observed in 7b when beta is increased under a positive hedging case. Nevertheless, 

the effect of the unhedgeable component of the central stock is lower if the hedging 

relations are negative. 
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(a) 

 
(b) 

Figure 7: Portfolio variance for a portfolio of 20 stocks in a star network structure with respect to 

(a) changes in the intensity of hedging relations (𝛽) with a constant unhedgeable component, 𝜐 =

0.01, and (b) changes in the unhedgeable component (𝜐) with a constant 𝛽∗ = 0.1. 

 

3.4. Comparison of the portfolio variance decay rate in different network structures  

In the previous section, we exhaustively analyzed the benefits of diversification for each 

network structure depending on the sign of the hedging relations and the value of the 

unhedgeable component; however, the analysis was performed independently for each 

network structure, making comparisons among the structures difficult. This section aims 

to compare the benefits of diversification depending on the type of network (full, star or 

individual network) from two different perspectives: i) that of a portfolio manager using 

optimal weights from a minimum-variance strategy (which is the approach followed in 

the previous section) and ii) that of a portfolio manager using a naïve diversification 

strategy based on an equally-weighted portfolio among every stocks in the investment 

opportunity set (wj=1/n). The latter will allow us to know whether the differences in 

portfolio variance found in the previous section also hold under naïve diversification or 

whether they appear only under a minimum-variance strategy. Moreover, we analyze the 

portfolio variance for both positive and negative hedging relations and for both high and 

low intensity of hedging relations. 

Next, in Figure 8, we show the portfolio variance for each network structure in the case 

of negative (Panel A) and positive (Panel B) hedging relations, with a constant 

unhedgeable component (𝜐) equal to 0.01. Figure 8, Panel A presents the case for negative 
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hedging relations with a low intensity of 0.08 (left figure) and a high intensity of 0.1 (right 

figure). In Panel B, we show the case of positive hedging relations with a high and low 

intensity of hedging relations (ranging from 0.008 to 0.04). We present the portfolio 

variance decay rate for a portfolio holding from 2 to 20 stocks to determine the weights 

under a minimum-variance portfolio strategy.  
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Panel A: Negative Hedging Relations 

 
(a) Low Intensity 

 
(b) High Intensity  

Panel B: Positive Hedging Relations 

 
(a) Low Intensity 

 
(b) High Intensity 

Figure 8. Portfolio variance of portfolios with “n” stocks (where “n” changes from 2 to 20) for 

negative (Panel A) and positive (Panel B) hedging relations. For each panel, a high (left graph) value 

of 𝛽∗and a low (right graph) value of 𝛽∗ is presented. The value of the unhedgeable component 

remains equal and constant for every stock (𝜐 = 0. 01). The weights for each portfolio in the figure 

are computed from a minimum-variance strategy analyzed in the previous section.  

 
From the above figure, we can conclude that if the intensity of hedging relations (positive 

or negative) is sufficiently low, there are no significant differences between the hedging 

network structures. However, if the intensity of hedging relations is high, we can observe 

relevant differences in the benefits of portfolio diversification for an optimal portfolio 

based on minimizing the variance. The most novel and interesting results may be that 

there is no network structure that dominates the others; however, the benefits of 

diversification depend on the sign of the hedging relations, which should investors and 



86                                                                           Chapter 3: Hedging Network Structures  

 and Portfolio Diversification  

 

  

portfolio managers should account for to achieve maximum diversification. If 𝛽  has a 

high and negative value (Panel A, right figure), the full network structure outperforms the 

rest in terms of variance, given that the variance decay rate is higher and the portfolio has 

low variance despite the number of stocks. However, if 𝛽  is positive and sufficiently 

high (Panel B, right figure), the full network structure shows the lowest diversification 

(the lowest variance decay rate), and if the number of stocks in the portfolio is increased 

up to a limit (up to 14 stocks in our experiments), the portfolio variance can even increase 

as we add more stocks to our portfolio.  

Next, we analyze how the network structure affects the portfolio variance in the case of a 

naïve strategy based on an equally weighted portfolio instead of a portfolio in which the 

weights are determined in a minv strategy. As with the minv strategy, in a first step, we 

consider the case in which all stocks are negatively hedging each other. We then simulate 

the inverse covariance matrix by assuming that the unhedgeable component is equal to 

0.01 and that all the other inverse covariance matrix entities can take two different values 

(high and low intensity). We consider a number of stocks in the portfolio ranging from 2 

to 20 and apply a naïve portfolio strategy to different simulated structures. The results are 

presented in Figure 9, which shows the results for the case in which every hedging 

relations is either negative (Panel A) or positive (Panel B). For each panel, we analyze 

the case of high (right figure) and low (left graph) intensity, with values of 0.008 and 0.01 

in Panel A and values of 0.008 and 0.04 in Panel B.  

As shown in Figure 9, differences in the portfolio variance between the networks can be 

observed when there are high intensity connections between the stocks; in this case, the 

full and star networks lead to lower portfolio variance, and as we increase the number of 

stocks, the portfolio variance for these networks decays faster.  
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Panel A: Negative Hedging Relations 

 
(a) Low Intensity 

 
(b) High Intensity 

Panel B: Positive Hedging Relations 

 
(a) Low Intensity 

 
(b) High Intensity 

Figure 9. Portfolio variance of portfolios with “n” stocks (“n” changes from 2 to 20) for 

negative (Panel A) and positive (Panel B) hedging relations. For each panel, a high (left 

graph) value of 𝛽∗and a low (right graph) value of 𝛽∗ is presented. The value of the 

unhedgeable component is equal and constant for every stock (𝜐 = 0. 01). The weights for 

each portfolio in the figure are computed from a naïve equally weighted strategy.  

 

We observe that the findings are consistent with those from the minv strategy, although 

the differences in portfolio variance among the different network structures are slight 

more pronounced. Moreover, we find that the full network structure achieves the greatest 

benefits of diversification if the hedging relations are negative and sufficiently high and 

that the full network shows higher portfolio variance if the hedging relations are positive 

and high, as adding more stocks to the portfolio will increase the portfolio variance.  
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4. Benefits of Diversification and Centrality Measure  

In the previous section, we analyze several types of networks from a theoretical 

perspective and show that both the hedging relations and unhedgeable component are 

important for achieving the greatest portfolio diversification. In general, for most of the 

networks structures, we find that higher diversification is achieved when there are higher 

negative hedging relations and a lower unhedgeable component. However, the problem 

with applying this strategy (i.e., selecting the stocks with negative hedging) in the real 

world arises from the fact that when we estimate a hedging network for a set of stocks, 

we obtain positive and negative hedging relations for each stock. In contrast in the 

previous theoretical sections, for simplicity, we assumed that every hedging relation for 

a stock is identical (𝛽𝑖|𝑗 = 𝛽); however, in the real world, this does not happen, and we 

need a measure that summarize this information. Therefore, in this section, we identify a 

measure that accounts for both variables (𝛽, 𝜐) and allow us to select the most suitable 

stocks to be held in a portfolio in order to increase diversification. We evaluate the 

convenience of using this measure to achieve a well-diversified portfolio first in an in-

sample analysis and second in an out-of-sample experiment. 

We use a popular measure in the network literature, the Katz centrality measure39 (Katz, 

1953), to capture information on hedging relations and the unhedgeable component into 

a single value and then to classify (rank) stocks according to their centrality value. This 

measure is presented as follows: 

𝑥𝑖 = (𝐼 − 𝛼𝜷)
−1𝒗                                                         (7) 

where 𝜷 is the hedging network adjacency matrix and 𝒗 is the unhedgeable component 

vector. Katz centrality differs from the ordinary eigenvector centrality in the important 

respect that it has a free parameter 𝛼, which governs the balance between the hedging 

relations (𝜷) and the unhedgeable component. Low values of 𝛼 indicate that the 

unhedgeable components has more importance, whereas higher values of 𝛼 indicate that 

the hedging relations matrix has more relevance. We define parameter 𝛼 as being between 

0 and 1. 

                                                           
39 For more details about centrality measures, see Newman (2010). 
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Basically, this measure of centrality gives a lower centrality value to both stocks with 

higher negative hedging relations with the rest of the stocks in the dataset and stocks with 

a lower unhedgeable component. According to the general conclusions we obtained in 

the previous sections, these stocks (i.e., those with the lowest centrality value) are the 

ones with the greatest diversification effects.40 Using this centrality measure, we can rank 

stocks based on the benefits of diversification they bring to our diversified portfolio, or 

in other words, this centrality measure provides a rankings of the benefits of 

diversification for the stocks.  

4.1. Empirical evidence: Estimating a hedging network 

In the empirical section, we employ several dataset to provide sufficient robustness for 

our results. First, we use a monthly dataset (called NYSE100), which includes 100 

randomly selected stocks from the New York Stock Exchange (NYSE) for the time period 

between January 1990 and December 2012. Second, we use another two datasets with a 

daily frequency: (1) SP100 includes 100 stocks that integrate the S&P500 index for 2103 

and that have data available for the whole time period from January 2002 to September 

2010 and (2) the last dataset includes 100 stocks from the FTSE 250 index with data 

available for the selected sample. The datasets are described in detail in Table 1.  

 

  

                                                           
40 In Appendix A, we also analyze other centrality measures (such as degree centrality and the eigenvector 
centrality measure), but they are not able to identify the stocks with the greatest benefits of diversification. 
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Table 1. Datasets description  
Dataset Description Source Dates Abbreviation Observations 

Monthly returns for 100 

randomly selected stocks 

from NYSE 

CRSP From 1/1/1990 to 
12/31/2012 

NYSE100 276 

Daily returns for the 100 

stocks integrating the 

S&P500 

Datastream From 1/1/2002 to 
1/09/2010 

SP100 2000 

Daily returns of 100 stocks 

integrating the FTSE 250 

Datastream From 1/3/2006 to 
1/11/2013 

FTSE100 2000 

 

In the previous theoretical section, we showed that knowing the type of network structure 

could be relevant for investors to achieve the maximum diversification. When using real 

data, it is not as easy as in theory to exactly identify the type of network we have; however, 

there are certain procedures that can help. As this is the first paper in the literature on 

hedging networks, we next present the results from estimating a hedging network for the 

NYSE100 and analyze each of its components (hedging relations, unhedgeable 

components, and structure) in detail. 

In Figure 10, we show the hedging network for the 100 stocks in the NYSE100 dataset 

using the 276 observations in the sample. In this figure, the hedging relations are 

represented by lines, and the unhedgeable component is represented by nodes or circles, 

where positive (negative) hedging relations are indicated in blue (red). Note that only 

examining the presentation of the network does not allow us to correctly identify the type 

of network we have, as the connections are represented by lines in the figure, but the 

intensities (𝛽𝑖,𝑗) are not represented. Thus, an initial conclusion from the presentation of 

the network could be that it is a full network, as every stock seems to be connected with 

each other. However, some of the connections may have very low values that could be 

nonsignificant, which would completely change how the network is classified. Next, we 

analyze two different methodologies to study the network structure. In addition, we can 

extract two separate networks, one with positive hedging relations and another with 

negative hedging relations. This is presented in Figure 11. 
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Figure 10: This figure presents a hedging network estimated for the 100 stocks 

in the NYSE100 dataset. The nodes are stocks, and the lines are hedging 

relations. The blue lines are positive hedging relations, and the red lines are 

negative hedging relations. Moreover, the size and darkness of the nodes are 

related to the value of the unhedgeable component. The higher and darker is 

the node, the higher the value of the unhedgeable component is. 
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(a) Only positive hedging relations (b) Only negative hedging relations 

Figure 11: This figure presents a hedging network estimated for the 100 stocks in the NYSE100 dataset, 

when the positive and negative hedging relations are extracted separately. In Figure (a), we show only the 

positive hedging relations, and in Figure (b), we show only the negative hedging relations.  

To shed some light on the structure of the network, we consider the Freeman 

centralization measure (Freeman, 1979), which measures how close a network is to star-

like network structure. This author introduces the idea of network centralization, which 

can be measure by Cx: 

𝐶𝑥 =
∑ [𝐶𝑥(𝑝

∗) − 𝐶𝑥(𝑝𝑖)]
𝑛
𝑖=1

max∑ [𝐶𝑥(𝑝∗) − 𝐶𝑥(𝑝𝑖)]
𝑛
𝑖=1

  

 

Where 𝐶𝑥(𝑝𝑖) is the centrality of node i and 𝐶𝑥(𝑝∗) is the largest centrality in the network. 

Therefore, in the above definition, we are dividing (a) the sum of the differences in 

centrality between the highest central node in the actual network and all other nodes from 

(b) the theoretically largest possible sum of centrality differences in a specific network. 

We compute this theoretical value while assuming that our network resembles a star 

network. According to Freeman, 0 < 𝐶𝑥 < 1, where the value is equal to 0 if every node 

is equally important and equal to 1 if and only if one point (p*) completely dominates the 

network with respect to centrality (the underlying network is a star network with a unique 

central node). Logically, when applying this measure to the empirical data, we usually 
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obtain a value that is not at the extremes (0 or 1), as networks usually have several (more 

than one) nodes that dominate the network and not every nodes bears the same relevance. 

The results for the three datasets are presented in Table 2.  

Table 2: Values of the Freeman centralization 
measure for the entire sample for the different 

dataset 
 

Positive Hedging Negative Hedging 
NYSE 0.14 0.17 
SP100 0.20 0.24 

FTSE100 0.17 0.19 
 
 
The values in Table 2 clearly indicate that the corresponding networks are not a full 

network where every node has identical importance, as the value is not equal to 0. In 

addition, we the networks do not have a unique central node that dominates the whole 

network (as the value is not equal to 1).41 Thus, we can conclude that our hedging network 

has some characteristics of a star network structure, where some particular stocks play 

the role of dominating nodes (as is very common in financial markets, there are central 

stocks and peripheral ones with a lower relevance), and of a full network, as many of the 

nodes seems to be linked and Cx is close to zero. Nonetheless, exactly identifying the 

type of network structure we have is not a critical issue for us, as we know that the 

diversification works approximately in the same way in both star and full networks (the 

portfolio variance decreases when the held stocks have more negative hedging relations 

and a lower unhedgeable component). We must remember that the goal of this section is 

to provide a measure (centrality measure) that allows investors to choose the stocks to be 

included in their portfolios in order to achieve maximum diversification. In the next 

section, we evaluate the performance of this strategy (holding an equally weighted 

                                                           
41 We also analyze the distribution of the degree centrality in the networks to determine the network 
structure under the basic idea that if a network is more prone to exhibit a star-like structure, we would 
expect some nodes to hedge a large portion of other nodes, thereby leading to a fat-tail network structure. 
Moreover, if the network is close to a full network structure, the distribution should be close to uniformly 
distributed. On the other hand, an individual network structure would lead to a very low number of hedging 
relations, thereby moving the entire degree distribution to the left. The results are not showed here to save 
space, but in general, we observe heavy-tail characteristics; thus, these networks do not show an individual 
or full network structure, but both networks bear resemblance to a star network structure, which is in 
accordance with the previous evidence from the Freeman analysis. 
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portfolio with the lowest value for the Katz centrality measure) in both an in-sample and 

out-of-sample analysis.  

 
In Table 3, we present the descriptive statistics for the hedging relations and unhedgeable 

component obtained for the networks estimated with the three datasets. We provide the 

mean value, standard deviation, 5th percentile, median value and 95th percentile. Based on 

the three dataset values, we observe that the hedging relations are between -0.1720 and 

0.1981 in 90% of the cases, with the mean value ranging between 0.005 and 0.010. From 

the previous theoretical section, for the parameter beta, we use a value of 0.1 for high 

intensity and a value of 0.008 for low intensity, which are reasonable values according to 

this table. Regarding the unhedgeable component (𝜐), the mean ranges from 0.0002 to 

0.0050, and 90% of the values range between 0.000 and 0.0142 (representing 0.0101 and 

0.1730, respectively, in annualized terms). In addition, the specific values considered in 

the simulations of Section 2 (0.01) are also realistic.  

 

Table 3. Summary statistics for 𝛽𝑖,𝑗 and 𝑣𝑖,𝑗 in the hedging networks estimated in each 
dataset 

 Mean Std 5% Med 95% 

 NYSE100 

𝛽𝑖,𝑗 0.0100 0.1200 -0.1720 0.0060 0.1981 

𝑣𝑖,𝑗 0.0050 0.0050 0.0012 0.0030 0.0142 

𝑣𝑖,𝑗 

(annualized) 0.0620 0.0180 0.0080 0.0400 0.1730 

 SP100 

𝛽𝑖,𝑗 0.0050 0.0436 -0.0551 0.0024 0.0696 

𝑣𝑖,𝑗  0.0002 0.0002 0.0001 0.0001 0.0004 

𝑣𝑖,𝑗  (annualized) 0.0475 0.0000 0.0154 0.0361 0.1111 

 FTSE100 

𝛽𝑖,𝑗 0.0098 0.0550 -0.0665 0.0050 0.0968 

𝑣𝑖,𝑗  0.0003 0.0002 0.0000 0.0002 0.0007 

𝑣𝑖,𝑗  (annualized) 0.0650 0.0000 0.0101 0.0547 0.1862 

 

4.2. Empirical results: In-sample and out-of-sample analysis 



95                                                                           Chapter 3: Hedging Network Structures  

 and Portfolio Diversification  

 

  

In this section, we evaluate the performance of a strategy based on the Katz centrality 

measure (which is supposed to take into account the findings from the theoretical section: 

higher negative hedging relations, lower positive hedging relations or lower unhedgeable 

components will reduce the portfolio variance). We conduct an in-sample analysis first 

and an out-of-sample analysis using a rolling-widows procedure second. In addition, we 

compare the results against some other strategies in order to be able to evaluate the 

benefits of diversification of this new strategy.  

 

We consider a 1/N naïve strategy (called Naïve Diversification in the figures) with an 

equally weighted portfolio for each number of stocks. In this case, the results in the figures 

show the average variance from considering a random sampling of 1000 equally weighted 

portfolios selected from the 100 stocks in each dataset. This is the simplest strategy of 

diversification analyzed in papers such as Statman (1987) or Domian et al. (2007) to 

determine, for example, the number of stocks that should held in a well-diversified 

portfolio. Moreover, we also consider a strategy based on holding the stocks with the 

lowest average correlation coefficients (called Lowest Correlation), where for each 

number of stocks, N, we rank the 100 stocks in the dataset according to the average 

correlation coefficient and create an equally weighted portfolio that includes N stocks 

with the lowest values. We introduce this strategy to be able to compare our strategy 

based on the Katz centrality measure for different hedging networks against a strategy 

under classical portfolio theory based on returns correlations, which recommends 

investing in stocks with the lowest correlation to achieve the maximum benefits of 

diversification.42 A strategy based on choosing N stocks with the lowest unhedgeable 

component is also analyzed (called Lowest Unhedgeable). Finally, we also include two 

strategies based on the Katz centrality measure, Lowest Centrality and Highest Centrality, 

which rank the 100 stocks in the dataset by their centrality values (defined in Equation 6) 

and construct an equally weighted portfolio with the N stocks with the lowest and highest 

centrality values, respectively, for a portfolio with N stocks. Although we are interested 

in the strategy that takes the stocks with the lowest centrality, we also introduce the 

                                                           
42 At the same time, this comparison will allow us to demonstrate that negative hedging and negative 
correlation are not identical concepts. Specifically, we will be able to demonstrate that a portfolio holding 
the stocks with the lowest average correlation coefficient differs from a portfolio holding the stocks with 
the lowest centrality values.  
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strategy with the highest centrality because the stocks with the highest centrality values 

should be the ones with the worst diversification if our hypothesis is correct. Finding such 

a result also allows us to be sure about the benefits of diversification when we choose 

stocks with lowest centrality.  

In Figures 12 and 13, we present the results from the in-sample analysis for the three 

datasets, where the alpha value of the Katz centrality measure equals 0.8 and 0.4, 

respectively. Remember that parameter 𝛼 governs the balance between the hedging 

relations (𝜷) and the unhedgeable component in the Katz centrality measure (where the 

relevance of hedging relations matrix decreases as the value of 𝛼 decreases). As alpha 

approaches zero, the Lowest Centrality strategy should become more similar to the 

Lowest Unhedgeable strategy, since the weight of hedging relations in the former strategy 

is almost zero. 

 

In general, from Figures 12 and 13, we observe that the Lowest Centrality strategy (red 

line) yields the greatest benefits of diversification regardless of the number of stocks and 

market analyzed here. This portfolio strategy performs particularly well in the SP100 

dataset, and it performs slightly better than the Lowest Unhedgeable strategy in the rest 

of the markets (NYSE100 and FTSE100). As noted previously, a strategy based on 

holding the stocks with the highest centrality values should perform the worst in terms of 

diversification. This result thus confirms that the Katz centrality measure classifies stocks 

properly according to benefits of diversification. We also observe that a portfolio based 

on holding the stocks with the lowest average correlation coefficients performs better than 

a naïve portfolio based on taking a random sampling of N stocks, but it does not 

outperform the Lowest Centrality and Lowest Unhedgeable strategies based on network 

theory. The Lowest Correlation strategy nevertheless performs almost as well as the 

Lowest Centrality and Lowest Unhedgeable strategies if the number of stocks is 

sufficiently high. For example, in both the NYSE100 and FTSE 100 datasets, the portfolio 

must include almost 30 stocks to show equivalent performance; however, in the SP100 

dataset, the Lowest Correlation strategy never achieves the level of variance of the Lowest 

Centrality strategy regardless of the number of stocks. If we compare the results in Figure 

12 (alpha of 0.8) with those in Figure 13 (alpha of 0.4), we can draw the same conclusions, 

but the performance of the Lowest Unhedgeable strategy is much closer to that of the 
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Lowest Centrality strategy because we underweight the hedging relations in the centrality 

measure.43 Next, we analyze whether these conclusions hold in an out-of-sample analysis, 

and therefore, whether they can be used by investors to achieve the maximum benefits of 

diversification in financial markets. 

 

  
  

(a) NYSE100  (b) SP100 
  

 
 

 (c) FTSE100 
 

Figure 12: This figure shows the portfolio variance, from an in-sample analysis, for a set of 

portfolio strategies with from 2 to 40 stocks for different datasets. The alpha parameter for 

the Katz centrality measure equals 0.8 

 

 

                                                           
43 We also repeat the analysis with a value of alpha of 0.9, and the results are very similar. We do not 
present these results to save space. 
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 (a) NYSE100 (b) SP100 
  

 
 

 (c) FTSE100 
Figure 13: This figure shows the portfolio variance, from an in-sample analysis, for a set of portfolio 

strategies with from 2 to 40 stocks for different datasets. The alpha parameter for the Katz centrality 

measure equals 0.4 

In this subsection, we examine the out-of-sample performance of a portfolio with a 

specific number of stocks (20, 40 and 60) according to the previously proposed strategies 

(e.g., in the case of 20 stocks, the Lowest Centrality strategy estimates the hedging 

network and selects 20 stocks of the 100 in the dataset with the lowest centrality values). 

In the first step, we explain the rolling-window approach that is employed and the 

methodology that is used to estimate the hedging network in order to address estimation 

error problems. Next, we present the results of the out-of-sample analysis.  
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To compare the performance of these strategies in the out-of-sample analysis, we employ 

the “rolling-window” approach provided in DeMiguel et al. (2009). Assuming that there 

are, in total, T periods of a stock’s returns, we set an M-period estimation window (120 

for the NYSE monthly dataset and 1000 for the other daily datasets), and we estimate the 

hedging networks (and the correlation coefficients) and identify the stocks with highest 

and lowest centralities. We maintain the same portfolio (an equally weighted portfolio 

among the selected stocks) for the next H observations and compute the out-of-sample 

returns. After these H observations, we reestimate the networks structure and recompute 

the correlations among the stocks in order to add the new information into the market. 

We then reestimate the network by including these new H observations and removing the 

earliest H observations in the M-period sample. In the baseline case, we set H to 12 for 

the monthly dataset and 20 for the daily datasets; thus, we reestimate and rebalance the 

portfolios once a year for the monthly dataset and every month for the daily datasets. We 

also present the results from using a shorter time horizon, where H equals 6 for the 

monthly dataset and 5 for the daily datasets, to show the robustness of our conclusions.44 

Note that in the out-of-sample analysis, we may face an estimation error problem, and in 

the estimation of the inverse covariance matrix, there may be a multicollinearity problem, 

particularly if the number of stocks is higher than the number of observations (e.g., in our 

analysis with monthly observations, the estimation window is only 120 observations). 

Moreover, estimation of an inverse covariance matrix may be subject to high estimation 

error (Kan and Zhou, 2007). In this regard, several approaches have been proposed in the 

literature to tackle this problem. Friedman et al. (2008), for example, propose a Graphical 

Lasso algorithm in which they use a block-coordinate descent method. However, this 

approach has the drawback that it does not clearly specify the stopping criterion for the 

Lasso iterations, which affects its convergence capability. In a more recent paper, Hsieh 

et al. (2011) offer a solution to this problem by proposing a highly convergent algorithm, 

called the Quadratic Approximation method (QUIC, QUadratic Inverse Covariance), and 

demonstrate that this algorithm outperforms the Graphical Lasso algorithm. In the QUIC 

algorithm, the multicollinearity problem is resolved by penalizing the 𝑙1 norm of the 

                                                           
44 In addition of the figures presented in the paper, we also study the out-of-sample results for other 
windows and rebalancing sizes, and the results are identical. We do not present the results to save space, 
but they are available upon request.  
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estimation parameters. Therefore, this algorithm can yield a sparse inverse covariance 

matrix where elements that are highly significant are selected.45 

The QUIC algorithm is used in our out-of-sample analysis to estimate the hedging 

network. In QUIC algorithm, we should specify the regularization parameter for 

Graphical Lasso approximations. However, in specifying the regularization parameter, 

we face a tradeoff. In one case, we can have a dense hedging network that contains the 

true hedging network with a high probability, whereas in the other case, we may want as 

sparse a network as possible to focus on only the highly significant elements—or the bone 

structure of the network. For the following analysis, we set the sparsity of the hedging 

network to approximately 30% to make sure that we have the true hedging network 

structure with a high probability and to ensure that we do not face high estimation error.46  

In Table 4, we present the out-of-sample results measured by the annualized variance. 

Each row represents a different portfolio strategy previously described in the in-sample 

analysis, and we present the results for portfolios of different sizes, which include from 

20 to 60 stocks. In the case of the Diversification Strategy, the results are the same for 

each portfolio size across the datasets (e.g., 0.0309 for NYSE100), since this strategy 

shows the variance of a portfolio holding the totality of stocks in each dataset. The aim 

of using this strategy was to be able to compare the results with those from a naïve strategy 

similar to the one used by DeMiguel et al. (2009) in order to confirm if naïve 

diversification is really better than any other strategy as these authors found. In 

parentheses and italics, we show the p-values47 for the differences between each strategy 

and the naïve Diversification Strategy, which is considered the benchmark. For each 

column, we indicate the lowest variance in bold.  

 

 

                                                           
45 A more technical and detailed description of the QUIC algorithm is provided in Appendix B. 
46 We also compute the results for other levels of sparsity (10% and 40%), and the conclusions are identical: 
the Lowest Centrality strategy provides the lowest variance for each portfolio. We do not present these 
results in the text in order to save space, but they are available upon request. 
47 To observe whether the differences in variance are statistically significant, we follow the approach 
proposed by Ledoit and Wolf (2011). The p-values are computed based on the studentized circular block 
bootstrap (Politis and Romano 1994) with a block size of 5 and 5000 bootstrap samples. 



101                                                                           Chapter 3: Hedging Network Structures  

 and Portfolio Diversification  

 

  

 

Table 4: Portfolio variance in the out-of-sample analysis with M=120 and H=12 for the 

monthly dataset and M=1000 and H=20 for the daily datasets 

 NYSE100 SP100 FTSE100 

  20 40 60 20 40 60 20 40 60 
Diversification 

Strategy 0.0309 0.0309 0.0309 0.0872 0.0872 0.0872 0.0265 0.0265 0.0265 

Lowest 
Correlation 

 

0.0236 0.0235 0.0241 0.0628 0.0644 0.0754 0.0242 0.0243 0.0265 
(0.054) (0.003) (0.002) (0.001) (0.001) (0.001) (0.007) (0.001) (0.912) 

Lowest 
Unhedgeable  

0.0169 0.0186 0.0220 0.0560 0.0682 0.0786 0.0190 0.0196 0.0195 
(0.001) (0.003) (0.003) (0.001) (0.003) (0.001) (0.000) (0.001) (0.001) 

Lowest 
Centrality 

 

0.0111 0.0149 0.0194 0.0432 0.0560 0.0668 0.0158 0.0173 0.0188 
(0.000) (0.000) (0.011) (0.000) (0.002) (0.001) (0.005) (0.000) (0.001) 

Highest 
Centrality 

 

0.0797 0.0628 0.0499 0.1563 0.1335 0.1178 0.0611 0.0439 0.0357 
(0.001) (0.002) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) 

 
 
From Table 4, we can conclude that the strategy based on holding the stocks with the 

lowest centrality performs the best in terms of measuring the risk based on the variance. 

We observe that for all datasets and portfolio sizes, this strategy yields the lowest 

variance, and difference from the variance of the naïve Diversification Strategy is 

significant. We also observe that the lower the number of stocks held in the portfolio is, 

the lower the variance is. This is a very relevant result for investors, as they would not 

need a large portfolio and could save in transaction costs. For example, in the case of the 

monthly dataset (NYSE100), the variance with only 20 stocks is approximately 40% 

lower than the variance of a larger portfolio with 60 stocks. In addition, we observe that 

the Highest Centrality strategy shows the worst performance in terms of diversification, 

confirming that our Katz centrality measure works properly as the stocks with highest 

centrality should offer the lowest benefits of diversification. We also observe that the 

Lowest Correlation and the Lowest Unhedgeable strategies generally perform better than 

the naïve Diversification strategy but not better than the Lowest Centrality strategy.  

In Table 5, we repeat the analysis using a different rebalancing window size, where H 

equals 6 for the monthly dataset and 5 for the daily datasets, and the results are identical. 

We again observe that the Lowest Centrality strategy yields the lowest variance for each 

dataset and portfolio size (20, 40 and 60), and the level of variance is significantly 
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different from that of the Diversification Strategy with a 99% level of confidence. We 

repeat the out-of-sample analysis by reestimating the hedging network and correlations 

every month or day (H=1) and conclusions are identical.48 

Table 5: Portfolio variance in the out-of-sample analysis with M=120 and H=6 for the 
monthly dataset and M=1000 and H=5 for the daily datasets 

 NYSE100 SP100 FTSE100 

  20 40 60 20 40 60 20 40 60 
Diversification 

Strategy 0.0309 0.0309 0.0309 0.0872 0.0872 0.0872 0.0265 0.0265 0.0265 

Lowest 
Correlation 

 

0.0227 0.0228 0.0240 0.0612 0.0630 0.0750 0.0241 0.0242 0.0264 
(0.063) (0.006) (0.005) (0.001) (0.001) (0.001) (0.003) (0.001) (0.847) 

Lowest 
Unhedgeable  

0.0160 0.0186 0.0225 0.0556 0.0674 0.0773 0.0191 0.0195 0.0195 
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Lowest 
Centrality 

 

0.0106 0.0147 0.0191 0.0428 0.0555 0.0663 0.0161 0.0174 0.0188 
(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Highest 
Centrality 

 

0.0809 0.0634 0.0501 0.1599 0.1344 0.1184 0.0613 0.0439 0.0357 
(0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.002) (0.001) (0.000) 

 
 

5. Conclusion and Future Research 

This paper investigates diversification from a hedging network perspective. By 

considering various stylized hedging network structures, i.e., individual, full and star 

networks, we investigate how a minimum-variance strategy assigns value among stocks 

to achieve the greatest benefits of diversification. The results provide insights regarding 

the optimal approach to diversification in a hedging network in order to gain the lowest 

portfolio risk.  

In addition, we theoretically evaluate the change in the portfolio variance decay rate as 

we increase the number of stocks, and we find that full network structure performs the 

best when the hedging relations are negative. However, when the hedging relations are 

positive, the full network structure performs poorly, and the portfolio variance could even 

increase if the number of stocks held in the portfolio is sufficiently high. By contrast, the 

star network structure is found to perform reasonably well in both cases.  

                                                           
48 We do not present these results to save space, but they are available upon request. 
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In the empirical part of the paper, we first employ a centrality measure for the hedging 

network that captures stocks’ propensity to perform well in terms of risk. Based on a 

ranking of stocks according to the centrality measure, we can obtain a subset of stocks 

that offers the greatest benefits of diversification. In evaluating the performance in an in-

sample and out-of-sample analysis, we find these portfolios constructed with this 

centrality measure are superior portfolios in terms of diversification. In evaluating the 

performance in an in-sample and out-of-sample analysis, we find portfolios constructed 

with this centrality measure are superior portfolios in which all the available stocks in the 

opportunity set of stocks are diversified. The findings in this paper suggest that the 

hedging network structure should be verified before a diversification strategy is 

implemented in order to obtain the greatest benefits of diversification by simply investing 

in a small portion of stocks that are well-placed in the network. 
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Appendices 

A. Other centrality measures 

In this paper, we use a popular centrality measure in the network literature, the Katz 

centrality measure; however, other centrality measures have been proposed (see Newman, 

2010). For instance, we could also use centrality measures that partially capture the 

information in hedging network, such as the degree centrality or the eigenvector centrality 

measures.  

The degree centrality is computed as follows: 

𝑑𝑖 =∑𝛽𝑖|𝑗

𝑁

𝑗=1

 

This centrality measure performs the same as the average correlation measure.  

Second, we analyze the eigenvector centrality measure, which is defined as follows for a 

node 𝑖: 

𝑐𝑖 = 𝜅1
−1∑𝛽𝑖|𝑗𝑐𝑗

𝑗

        

The centrality of node 𝑖 is defined as the weighted sum of the centralities of the adjoining 

nodes. In this regard, node 𝑖 is highly central if it is connected to numerous nodes or to 

another highly central node. In matrix terms, it is defined as follows: 

 

𝜷𝒄 = 𝜅1𝒄 

where the vector 𝒄 corresponds to the eigenvector of the highest eigenvalue (𝜅1) of 

adjacency matrix (𝜷),as discussed in Newman (2010). Using this centrality measure, we 

can place greater importance on the benefits of hedging relations. In this case, the in-

sample performance comparison is presented in the following figure, where we can 

observe that neglecting the importance of unhedgeable components would result in lower 

performance for the Lowest Centrality strategy. 

 



105                                                                           Chapter 3: Hedging Network Structures  

 and Portfolio Diversification  

 

  

 

Figure: This figure shows the portfolio variance for a set of portfolio 

strategies with from 2 to 40 stocks. This figure presents the results of an in-

sample analysis for the NYSE100 dataset. The Lowest and Highest Centrality 

strategies are based on holding the stocks with the lowest and highest values 

for the eigenvector centrality measure, respectively. 
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B. QUIC estimation procedure 

In this appendix, we explain in detail the QUIC estimation procedure. Assuming 𝚿 as the 

inverse covariance matrix for 𝑁 stocks in the dataset, we estimate this matrix by solving 

the following constrained quasi-maximum likelihood estimation problem: 

min −
𝚿

𝑇

2
ln det𝚿 +

𝑇

2
𝑡𝑟𝑎𝑐𝑒(𝑺̂𝚿) + λ∑ ∑ |𝜓𝑖𝑗|

𝑁
𝑗=1

𝑁
𝑖=1;𝑖≠𝑗  (A1) 

where 𝑇 is the number of observations in the sample and 𝑺̂ is the sample covariance 

matrix. The parameter λ is the regulation parameter.  

Hsieh et al. (2011) rewrite the objective function in Equation (A1) in two terms:  

𝑔(𝑥) =
𝑇

2
ln det𝚿 +

𝑇

2
𝑡𝑟𝑎𝑐𝑒(𝑺̂𝚿) and ℎ(𝑥) = λ∑ ∑ |𝜓𝑖𝑗|

𝑁
𝑗=1

𝑁
𝑖=1;𝑖≠𝑗  

The first function, 𝑔(𝑥), is twice differentiable and strictly convex, and the second 

function, ℎ(𝑥), is convex but not differentiable. These two functions provide a second-

order approximation for 𝑔(𝑥) as follows: 

𝑔̅𝑥(∆) =  𝑡𝑟𝑎𝑐𝑒((𝑺̂ −𝐖)∆) +
1

2
𝑡𝑟𝑎𝑐𝑒(𝑾∆𝑾∆) − log(det(𝚿)) + 𝑡𝑟𝑎𝑐𝑒(𝑺̂𝚿) 

where 𝑾 = 𝚿−𝟏. 

Thus, the Newton direction is written as follows: 

𝐷𝑡 = min
∆
𝑔̅𝑥(∆) + ℎ(𝑥 + ∆) 

This Newton direction is used to compute iterative estimates of 𝚿 in order to solve the 

optimization problem in A1.  

 

 

 



 

  

                        Chapter 4: A Network Approach to 
Portfolio Selection 

 

1. Introduction  

In his seminal paper, Markowitz (1952) laid the foundation of modern portfolio theory. 

In this static framework, investors optimally allocate their wealth across a set of assets 

considering only the first and second moment of the returns’ distribution. Despite the 

profound changes derived from this publication, the out-of-sample performance of 

Markowitz’s prescriptions is not as promising as expected. The poor performance of 

Markowitz’s rule stems from the large estimation errors on the vector of expected returns 

(Merton, 1980) and on the covariance matrices (Jobson and Korkie, 1980) leading to the 

well-documented error-maximizing property discussed by Michaud and Michaud (2008). 

The magnitude of this problem is evident when we acknowledge the modest 

improvements achieved by those models specifically designed to tackle the estimation 

risk (DeMiguel et al., 2009). Moreover, the evidence indicates that the simple yet 

effective equally-weighted portfolio rule has not been consistently out-performed by 

more sophisticated alternatives (Bloomfield et al., 1977; DeMiguel et al., 2009; Jorion, 

1991). 

Recently, researchers from different fields have characterized financial markets as 

networks in which securities correspond to the nodes and the links relate to the correlation 

of returns (Barigozzi and Brownlees, 2014; Billio et al., 2012; Bonanno et al., 2004; 

Diebold and Yilmaz, 2014; Hautsch et al., 2015; Mantegna, 1999; Onnela et al., 2003; 

Peralta, 2015; Tse et al., 2010; Vandewalle et al., 2001; Zareei, 2015). In spite of the 

novel and interesting insights obtained from these network-related papers, most of their 

results are fundamentally descriptive and lack concrete applications in portfolio selection 

process. We contribute to this line of research by investigating the extent to which the 

underlying structure of this financial market network can be used as an effective tool in 

enhancing the portfolio selection process. 
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Our theoretical results establish a bridge between Markowitz’s framework and the 

network theory. On the one hand, we show a negative relationship between optimal  

portfolio weights and the centrality of assets in the financial market network. The 

intuition is straightforward: those securities that are strongly embedded in a correlation-

based network greatly affect the market and their inclusion in a portfolio undermines the 

benefit of diversification resulting in larger variances. We refer to the centrality of stocks 

as their systemic dimension. On the other hand, each security is also characterized by an 

individual dimension such as Sharpe ratio or volatility depending on the specific portfolio 

formation objective. Next, we theoretically show a positive relationship between the 

assets’ individual performances and their optimal portfolio weights. In a nutshell, optimal 

weights from the Markowitz framework can be interpreted as an optimal trade-off 

between the securities’ systemic and individual dimensions in which the former is 

intimately related to the notion of network centrality. 

From a descriptive perspective and relying on US data, we present evidence indicating 

that financial stocks are the most central nodes in the financial market network in 

accordance with Peralta (2015) and  Tse et al., (2010). Additionally, we document a 

positive association between the centrality of a security and its corresponding beta from 

CAPM pointing out the large, although not perfect, correlation between this network 

indicator and the standard measure of systematic risk. In order to identify the salient 

financial and market features affecting securities’ centrality, we estimate several 

specifications of a quarterly-based panel regression model upon a set of 200 highly 

capitalized stocks in the S&P500 index from Oct-2002 to Dec-2012. Our results present 

some empirical evidence indicating that highly central stocks correspond to firms that are 

older, cheaper, higher capitalized and financially riskier. 

Finally, by means of in-sample and out-of-sample analysis, we investigate the extent to 

which the structure of the financial market network can be used to enhance the portfolio 

selection process. In order to check the robustness of our results and to avoid data mining 

bias, four datasets are considered, accounting for different time periods and markets. We 

propose a network-based investment rule, termed as 𝜌-dependent strategy, and report its 

performance against well-known benchmarks. The evidence shows that our network-

based strategy provides significant larger out-of-sample Sharpe ratios compared to the 
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ones obtained by implementing the 1/𝑁 rule or Markowitz-based models. Moreover, 

these enhanced out-of-sample performances are not explained by large exposures to the 

standard risk factors given the reported positive and statistically significant Carhart 

alphas. Finally, it is worth mentioning that our results are robust to different portfolio 

settings and transaction cost. We argue that our network-based investment policy captures 

the logic behind Markowitz’s rule while making more efficient use of fundamental 

information, resulting in a substantial reduction of wealth misallocation. 

The contribution of the paper is twofold. On the one hand, this paper sheds light on the 

connection between the modern theory of portfolios and the emerging literature on 

financial networks. On the other hand, our network-based investment strategy attempts to 

simplify the portfolio selection process by targeting a group of stocks within a certain 

range of network centrality. As far as we are aware, Pozzi et al. (2013) is the only paper 

that attempts to take advantage of the topology of the financial market network for 

investment purposes. They argue in favor of an unconditional allocation of wealth 

towards the outskirts of the structure. We depart from their results by proposing the 𝜌-

dependent strategy which is contingent on the correlation between the systemic and 

individual dimensions of the assets comprising the financial market network. Moreover, 

and in contrast to their synthetic centrality index, we show that our measure of centrality 

is strongly rooted in the principles of portfolio theory. 

The remainder of the paper is organized as follows. Section 2 presents the notion of 

assets’ centrality in the financial network and its connection to Markowitz framework. 

Section 3 describes the datasets used in the empirical applications. Section 4 provides a 

detailed statistical description of stocks in accordance to their centrality. Section 5 

addresses the interaction between assets’ centrality and optimal portfolio weights by 

relying on an in-sample analysis. Section 6 presents the 𝜌-dependent strategy and 

compares its out-of-sample performance to various conventional portfolio strategies. 

Finally, section 7 concludes and outlines future research lines. 

2. A Bridge Between Optimal Portfolio Weights and Network Centrality 

The notion of centrality, intimately related to the social network analysis, aims to quantify 

the influence/importance of certain nodes in a given network. As discussed in Freeman 

(1978), there are several measurements in the literature each corresponding to the specific 
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definition of centrality. The so-called eigenvector centrality, firstly proposed by Bonacich 

(1972), has become standard in network analysis. This section formally defines this 

measure and determines its relationship with optimal portfolio weights. 

2.1. Defining network centrality 

We denote by 𝐺 = {𝑁, 𝜔}, a network composed by a set of nodes 𝑁 = {1,2, … , 𝑛} and a 

set of links, 𝜔, connecting pairs of nodes. If there is a link between nodes 𝑖 and 𝑗, we 

indicate it as (𝑖, 𝑗) ∈ 𝜔. A convenient rearrangement of the network information is 

provided by the 𝑛 × 𝑛 adjacency matrix 𝛺 = [𝛺𝑖𝑗] whose element 𝛺ij ≠ 0 whenever 

(𝑖, 𝑗) ∈ 𝜔. The network 𝐺 is said to be undirected if no-causal relationships are attached 

to the links implying that 𝛺 = 𝛺T since (𝑖, 𝑗) ∈ 𝜔 ⟺ (𝑗, 𝑖) ∈ 𝜔. When 𝛺𝑖𝑗 entails a 

causal association from node 𝑗 to node 𝑖, the network 𝐺 is said to be directed. In this case, 

it is likely that 𝛺 ≠ 𝛺𝑇 since (𝑖, 𝑗) ∈ 𝜔 does not necessarily imply (𝑗, 𝑖) ∈ 𝜔. For 

unweighted networks, 𝛺𝑖𝑗 ∈ {0,1} and therefore only on/off relationships exist. On the 

contrary, when 𝛺𝑖𝑗 ∈ ℝ, the links track the intensity of the interactions between nodes 

giving rise to weighted networks. The reader is referred to Jackson (2010) for a 

comprehensive treatment of the network literature. 

According to Bonacich (1987, 1972), the eigenvector centrality of node 𝑖, denoted by 𝑣𝑖, 

is defined as the proportional sum of its neighbors’ centrality.49 (Newman, 2004) extends 

this notion to weighted networks for which 𝑣𝑖 is proportional to the weighted sum of the 

centralities of neighbors of node 𝑖 with 𝛺𝑖𝑗 as the corresponding weighting factors. It is 

computed as follows. 

                                                            𝑣𝑖 ≡ 𝜆−1∑ 𝛺𝑖𝑗𝑗 𝑣𝑗                                               (1) 

Note that node 𝑖 becomes highly central (large  𝑣𝑖) by being connected either to many 

other nodes or to just few highly central ones. By restating equation (1) in matrix terms, 

we obtain λ𝑣 = 𝛺𝑣 indicating that the centrality vector 𝑣 is given by the eigenvector of 

𝛺 corresponding to the largest eigenvalue, 𝜆.50 More formally: 

                                                           
49 The terms eigenvector centrality and centrality are used interchangeably throughout this study. 
50 In principle, each eigenvector of 𝛺 is a solution to equation (1). However, the centrality vector 
corresponding to the largest component in the network is given by the eigenvector corresponding to the 
largest eigenvalue (Bonacich, 1972). 
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Definition 1: Consider the undirected and weighted network G = {N, 𝛺}, with N as the 

set of nodes and 𝛺 as the adjacency matrix. The eigenvector centrality of node 𝑖 in 𝐺 

denoted by  𝑣𝑖 is proportional to the 𝑖-th component of the eigenvector of 𝛺 corresponding 

to the largest eigenvalue λ1. 

2.2. Key results from the modern portfolio theory 

The mathematical principles of modern portfolio theory were established in (Markowitz, 

1952). Given that our theoretical results strongly rely on this framework, this section 

briefly reviews two of its fundamental results: the minimum-variance and the mean-

variance investment rules. 

Let us assume 𝑛 risky securities with expected returns vector, 𝜇, and covariance matrix, 

𝛴 = [𝜎𝑖𝑖]. Consider the problem of finding the vector of optimal portfolio weights, 𝑤, 

that minimizes the portfolio variance subject to 𝑤𝑇𝟏 = 1 where 𝟏 (in bold) corresponds 

to a column vector whose components are equal to one. This strategy is commonly known 

as minimum-variance or minv for short. Formally the problem is stated as: 

min
𝑤
𝜎𝑝
2 = 𝑤𝑇𝛴𝑤    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑤𝑇𝟏 = 1 (2) 

 

The solution of equation (2) is given by: 

                                                            𝑤𝑚𝑖𝑛𝑣∗ =
1

𝟏𝑻𝛴−1𝟏
𝛴−1𝟏                                         (3) 

Denoting by 𝛺 the correlation matrix of returns, and by 𝛥 the diagonal matrix whose ith-

main diagonal element is 𝜎𝑖 = √𝜎𝑖𝑖, the relationship between 𝛺 and 𝛴 can be written as 

𝛴 = 𝛥𝛺𝛥. Then, equation (3) is restated in terms of the correlation matrix as follows. 

                                                               𝑤̂𝑚𝑖𝑛𝑣∗ = 𝜑𝑚𝑖𝑛𝑣𝛺
−1𝜖                                        (4) 

where 𝑤̂𝑖,𝑚𝑖𝑛𝑣∗ = 𝑤𝑖,𝑚𝑖𝑛𝑣
∗ ∗ 𝜎𝑖, 𝜑𝑚𝑖𝑛𝑣 =

1

𝟏𝑻𝛴−1𝟏
 and 𝜖𝑖 = 1/𝜎𝑖. 

The introduction of a risk-free security whose return is given by 𝑟𝑓 allows us to account 

for the mean-variance investment rules. We denote the excess return of security 𝑖 by 

𝑟𝑖
𝑒 ≡ 𝑟𝑖 − 𝑟𝑓 and the vector of expected excess returns by 𝜇𝑒. The problem of finding the 
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optimal portfolio weights that minimize the portfolio variance for a given level of the 

portfolio expected excess return 𝑅𝑒 is established as follows: 

min
𝑤
𝜎𝑝
2 = 𝑤𝑇𝛴𝑤  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑇𝜇𝑒 = 𝑅𝑒 (5) 

The strategy implied by equation (5) is commonly known in the financial literature as the 

mean-variance strategy or mv for short. Since an investor’s wealth might be partially 

allocated to the risk-free security and short sales of the risk-free security are allowed, the 

restriction 𝑤𝑇𝟏 = 1 is not included in equation (5).51 The optimum mean-variance 

portfolio weights vector is computed as follows: 

                                                               𝑤𝑚𝑣∗ =
𝑅𝑒

𝜇𝑒𝑻𝛴−1𝜇𝑒
𝛴−1𝜇𝑒                                   (6) 

Following the same reasoning as before, equation (6) is written in terms of the correlation 

matrix as follows: 

                                                                 𝑤̂𝑚𝑣∗ = 𝜑𝑚𝑣𝛺
−1𝜇̂𝑒                                        (7) 

where 𝑤̂𝑖,𝑚𝑣∗ = 𝑤𝑖,𝑚𝑣
∗ ∗ 𝜎𝑖, 𝜑𝑚𝑣 =

𝑅𝑒

𝜇𝑒𝑻𝛴−1𝜇𝑒
 and 𝜇̂𝑖𝑒 = 𝜇𝑖𝑒/𝜎𝑖. 

2.3 The relationship between optimal portfolio weights and asset centralities 

By interpreting the correlation matrix of returns as the adjacency matrix of a given 

network, an overlapping region between portfolio theory and network theory is 

established. More formally: 

Definition 2: Consider 𝑁 to be a set of securities in a given asset opportunity set and 𝛺 

the corresponding returns’ correlation matrix. The undirected and weighted financial 

market network is 𝐹𝑀𝑁 = {𝑁,𝛺}, with 𝑁 as the set of nodes and 𝛺 as the adjacency 

matrix. 

Throughout the study, we set the main diagonal of 𝛺 to zero in order to discard 

meaningless self-loops in a given financial market network. Since the eigenvectors’ 

structures and the ordering of eigenvalues are the same after performing this operation, 

our statements in terms of eigenvector centrality remain valid (see appendix A). 

                                                           
51 Nevertheless, when the tangency portfolio is considered, 𝑤𝑇𝟏 = 1 must hold. 
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Proposition 1 and Corollary 1 establish the negative relationship between security 𝑖’s 

optimal portfolio weight and its centrality in the respective financial market networks for 

both the minv and mv strategies. The reader is referred to appendix A for a detailed proof. 

Proposition 1: Consider a financial market network 𝐹𝑀𝑁 = {𝑁,𝛺} where {𝑣1, … 𝑣𝑛} and 

{𝜆1, … 𝜆𝑛} account for the sets of eigenvectors and eigenvalues (in descending order) of 

𝛺, respectively. The optimal portfolio weights in the equations (4) and (7) can be written 

as: 

                                              𝑤̂𝑚𝑖𝑛𝑣∗ = 𝜑𝑚𝑖𝑛𝑣𝜖 + 𝜑𝑚𝑖𝑛𝑣 (
1

𝜆1
− 1) 𝜖𝑀𝑣1 + 𝛤𝑚𝑖𝑛𝑣                         

(8) 

                                             𝑤̂𝑚𝑣∗ = 𝜑𝑚𝑣𝜇̂
𝑒 +𝜑𝑚𝑣 (

1

𝜆1
− 1) 𝜇̂𝑀

𝑒 𝑣1 + 𝛤𝑚𝑣                                   

(9) 

where 𝜖𝑀 = (𝑣1𝑇𝜖) , 𝛤𝑚𝑖𝑛𝑣 = 𝜑𝑚𝑖𝑛𝑣 [∑ (
1

𝜆𝑘
− 1)𝑛

𝑘=2 𝑣𝑘𝑣𝑘
𝑇] 𝜖, 𝜇̂𝑀𝑒 = 𝑣1𝑇𝜇̂𝑒 and 𝛤𝑚𝑣 =

𝜑𝑚𝑣 [∑ (
1

𝜆𝑘
− 1)𝑛

𝑘=2 𝑣𝑘𝑣𝑘
𝑇] 𝜇̂𝑒. 

Note that 𝜖𝑀 and 𝜇̂𝑀𝑒  in equations (8) and (9) account for weighted averages of the inverted 

standard deviations of returns and Sharpe ratios, respectively, with weighting factors 

given by the elements of 𝑣1. From a principal component perspective, we interpret them 

as the corresponding variables at market level. Moreover, since the empirical evidence 

indicates that only eigenvector elements corresponding to the largest eigenvalue have 

informational content (Green and Hollifield, 1992; Laloux et al., 1999; Trzcinka, 1986), 

we focus on 𝑣1 and 𝜆1 by defining 𝛤𝑚𝑖𝑛𝑣 and 𝛤𝑚𝑣 in terms of 𝑣𝑗  and 𝜆𝑗 for 𝑗 > 1. 

The first term in equations (8) and (9) considers simple investment rules that only take 

into account the performance of securities as if they were in isolation. Therefore, lower 

(higher) standard deviations of returns (Sharpe ratios) are consistent with higher optimal 

portfolio weights. We call this the individual dimension of securities. The second term in 

the same expressions quantifies the extent to which optimal weights deviate from the 

previously mentioned rule due to the centrality of securities. We call this the systemic 

dimension of securities. Corollary 1 states that, under plausible conditions, there is a 

negative relationship between optimal portfolio weights and network centralities. 
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Corollary 1: Assuming that 𝜆1 > 1 and 𝜖𝑀, 𝜇̂𝑀𝑒 ∈ ℝ+. Then, 𝜕𝑤̂𝑟,𝑖
∗

𝜕𝑣1,𝑖
< 0 for  𝑟 =

𝑚𝑖𝑛𝑣,𝑚𝑣. 

Based on Rayleigh’s inequality (Van Mieghem, 2011), the assumption 𝜆1 > 1 in 

Corollary 1 requires a positive mean correlation of returns, which is not a strong condition 

in practical terms.52 It is worth mentioning that centrality does not necessarily rank assets 

in the same way as the mean correlation (mean of the row or columns in 𝛺) does. It is 

straightforward to show that for a correlation matrix with equal off-diagonal entries, each 

security is given the same amount of centrality and mean correlation (the leading 

eigenvector is 1
√𝑛
𝟏). However, this association breaks as the dispersion in the distribution 

of 𝛺𝑖𝑗 increases.53 

Our theoretical results are consistent with Pozzi et al. (2013) in establishing that optimal 

portfolio strategies should overweight low-central securities and underweight high-

central ones. Therefore, optimal investors attempt to benefit from diversification by 

avoiding the allocation of wealth towards assets that are central in the correlation-based 

network. However, we depart from Pozzi et al. (2013) in two respects. First, our measure 

of centrality is derived from the investor’s optimization problem, and thus is intimately 

associated with Markowitz’s framework. Secondly, the individual performance of 

securities is overlooked in their study, leading to an incomplete analysis and potentially 

impairing the benefits of a network-based portfolio strategy. 

3. Dataset Description and Stock Market Network Estimation  

In order to avoid data mining bias and to test the robustness of our results, four datasets 

are considered throughout the empirical sections accounting for different markets and 

time periods. Unless otherwise stated, split-and-divided-adjusted returns and traded 

volumes are obtained from CRSP while quarterly financial data comes from 

COMPUSTAT. The dataset d-S&P contains daily returns for 200 highly capitalized 

                                                           
52 Rayleigh’s inequality states a classical lower bound for the largest eigenvalues as follows 𝜆1 ≥

𝑢′𝛺𝑢

𝑢′𝑢
 for 

𝑢 ∈ ℝ𝑛. If 𝑢 = 𝟏 then 𝜆1 ≥ 1 +
∑ ∑ 𝛺𝑖𝑗𝑗𝑖

𝑛
= 1 + (𝑛 − 1)𝛺̅𝑖𝑗 where 𝛺̅𝑖𝑗 is the mean correlation of off-

diagonal elements of 𝛺. 
53 In a non-reported simulated exercise, a positive correlation between centrality and mean correlation is 
observed for a mild dispersion in the distribution of 𝛺𝑖𝑗 . 
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constituents of the S&P-500 index at the end of year 2012 showing non-negative total 

equity in the period Oct-2002 to Dec-2012. The dataset m-NYSE considers monthly 

returns for the 200 firms that remain listed in NYSE normalized for capitalization and 

cheap stocks in the period Jan-64 to Dec-06. 54 The dataset d-FTSE accounts for daily 

stock returns of the 200 most capitalized constituents of FTSE-250 index during the 

period Feb-06 to Oct-13. For this particular sample, we rely on Datastream as the data 

provider. A large dataset named d-NYSE is mainly used for simulation purposes and it 

considers daily returns for 947 firms listed in NYSE (adjusted for capitalization and cheap 

stocks explain as in m-NYSE) in the period Jan-2004 to Jul-2007. Finally, the risk-free 

rates required to compute excess returns for the US and UK markets are gathered from 

Kenneth French's website and from Gregory et al. (2013), respectively. 

The large estimation error of the sample correlation matrix is well-documented (Jobson 

and Korkie, 1980). Therefore, we implement the shrinkage estimator the correlation 

matrix 𝛺̂ upon excess returns as in Ledoit and Wolf (2004) to estimate the adjacency 

matrix of the corresponding financial market network.  

4. Fundamental Drivers of Stock Centrality: Descriptive Analysis 

Given the fundamental role assigned to the notion of centrality in this study, this section 

provides a set of descriptive results found in the d-S&P dataset. Table 1 reports the sample 

size, market capitalization and traded volume in 2012 (measured in millions of dollars) 

and the total and mean centrality by economic sectors (classified by firms’ SIC codes). 

Although the manufacturing sector is the largest in terms of capitalization (48%) and 

traded volume (43%), financial firms are the most central nodes in the stock market 

network in accordance with reported evidence (Barigozzi and Brownlees, 2014; Peralta, 

2015; Tse et al., 2010). 

We also notice that the dispersion of the risk-adjusted returns’ distribution is not constant 

across the network. The left panel of figure 1 plots the Sharpe ratio’s boxplots 

conditioning on the low, middle and high terciles of the centrality distribution. Despite 

no significant difference in means, the Sharpe ratio’s distribution shrinks as larger 

centralities are considered. Moreover, table B.1, included in Appendix B to preserve 

                                                           
54 The stocks are chosen to have capitalization more than 20th percentile of market capitalization and 
prices higher than $5 (Penny stocks with prices lower than $5 are discarded). 
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space, reports significantly greater mean volatility as we move from the bottom tercile 

(2.05%) to the middle (2.09%) and top tercile (2.24%) of the centrality distribution 

demonstrating larger risks among high-central securities. The relationship between the 𝛽-

CAPM and the centrality of each security in the sample is plotted in right panel of figure 

1.55 This graph shows an upward-sloping relationship that, although not perfect, indicates 

that central assets tend to correspond to high systematic risk securities. 

Table 1. Market capitalization, traded volume, and centrality by economic sectors 
This table reports the total and mean firms’ centrality by economic sectors in the d-S&P500 dataset. Market 

capitalization and traded volume are in millions of dollars and correspond to the end of year 2012. The column 

Firms gives the number of companies in each economic sector. The columns denoted by % present the 

percentages with respect to the total of each of the preceding variables. 

Economic Sector Firms % Market 
Cap. % Traded 

Vol. % 
Centrality 

Total Mean 
Finance, Insurance, And R. Estate 37 19% 2,254,158 20% 70,788 19% 2.74 0.0741 

Mining 17 9% 656,688 6% 26,178 7% 1.23 0.0722 
Transp., Comm., Elect, Gas, Sanit. S. 27 14% 1,145,092 10% 36,988 10% 1.88 0.0696 

Manufacturing 87 44% 5,338,584 48% 156,881 43% 6.01 0.0691 
Retail Trade 12 6% 745,486 7% 27,130 7% 0.82 0.0682 

Services 13 7% 829,671 7% 37,314 10% 0.89 0.0682 
Wholesale Trade 5 3% 142,423 1% 6,011 2% 0.33 0.0656 

Construction 2 1% 44,905 0% 3,073 1% 0.13 0.0646 
Total 200  11,157,008  364,364    

 

 

                                                           
55 The index S&P 500 is used as the market index for the estimation of the corresponding 𝛽 from CAPM. 
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Figure 1. Sharpe ratio distributions for the high, middle and low terciles of securities’ centrality (left panel). 

Relationship between the securities’ centrality and the 𝛽 from CAPM (right panel). Both panels consider the d-

S&P dataset. 

In order to identify the key financial and market drivers of stocks’ centralities, we estimate 

an unbalanced quarterly-based panel regression largely inspired by Campbell et al. (2008) 

for the selection of relevant regressors. The study of Green and Hollifield (1992) rejects 

at a very high level of confidence the hypothesis that the first eigenvector of the 

covariance matrix is a constant vector. Our empirical exercise attempts to provide an 

economic content to their result. As before, the dataset used is d-S&P dataset comprising 

7,931 firms-quarter data points. 

The dependent variable is the centrality of a security (firm) 𝑖 in quarter 𝑡.56 The financial 

explanatory variables are 𝑅𝑂𝐴𝑖𝑡, 𝐿𝑒𝑣𝑖𝑡 and 𝐿𝑖𝑞𝑖𝑡 accounting for the ratio of net income, 

total liability and cash and short term assets to total assets, respectively. As market 

explanatory variables, we include 𝑙𝑛(𝑀𝑉𝑖𝑡) and 𝑙𝑛 (𝑃𝑖𝑡), denoting the logarithms of the 

market capitalization on a common-shares basis and the stocks’ market price at the end 

of quarter 𝑡, respectively. In addition, 𝑙𝑛 (𝑇𝑉𝑖𝑡), 𝑅𝑒𝑡𝑖𝑡 and 𝑆𝑡𝑑𝑖𝑡, referring to the logarithm 

of total trades, the excess return and the daily standard deviation of returns during quarter 

𝑡, are additional market explanatory variables. The variable 𝑀/𝐵𝑖𝑡 denotes the Market-

to-Book ratio on a common-shares basis at the end of quarter 𝑡 and is incorporated in the 

regressions as well. Finally, the logarithm of firms’ age indicated as 𝑙𝑛(𝐴𝑔𝑒𝑖𝑡) comprises 

the last independent variable of the model. It is computed by counting the number of 

quarters elapsed since the appearance of the first market price in CRSP until period 𝑡 as 

in Fama and French (2004). To control for the effects of outliers, 1% winsorizing is 

implemented on regressors except for the case of 𝑙𝑛(𝐴𝑔𝑒𝑖𝑡). Table 2 reports summary 

statistics. 

Table 2. Descriptive statistics for the quarterly panel regression variables included in the d-

S&P dataset 
 The description of the variables is as follows: ROA is net income/total assets at the end of period t, Lev is total 

liability/total assets at the end of period t, Liq is cash and short term assets over the total assets at the end of 

period t, ln(MV) is the logarithm of market capitalization on a common-share basis at the end of period t, 

ln(TV) is the logarithm of total trades during period t, Ret is the excess return during period t, ln(P) is the 

logarithm of stocks’ prices at the end of period t, Std is the return variance during period t, M/B is the market-

to-book ratio on a common-share basis at the end of period t and ln(Age) is the logarithm of the firms’ age 

                                                           
56 Only the data corresponding to quarter 𝑡 is considered for computing the centralities. Additionally, we 
rescaled centrality by multiplying it by 100 for exposition purposes. 
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computed as in Fama and French (2004) and corresponding to the end of period t. The descriptive statistics 

are reported after 1% winsorising except for ln(Age). 

Variables Mean Std Percentiles Skew Kurtosis 
Min 5% 50% 95% Max 

Independent          
 Financial                   
  ROA 1.70% 1.70% -5.00% -0.10% 1.50% 4.70% 7.50% 0.10 2.70 
  Lev 59.00% 19.50% 12.20% 23.20% 59.60% 90.80% 94.50% -0.20 -0.40 
  Liq 12.10% 13.40% 0.20% 0.70% 6.90% 41.20% 67.00% 1.90 3.70 
            
 Market                   
  ln(MV) 16.98 1.02 14.20 15.34 16.88 18.91 19.42 0.10 0.20 
  ln(TV) 12.47 1.04 9.95 10.83 12.41 14.28 15.21 0.20 0.10 

  Ret 2.60% 13.60% 
-

35.10% 
-

20.50% 2.80% 25.00% 45.10% 0.10 1.00 
  ln(P) 3.69 0.58 2.23 2.72 3.70 4.58 5.54 0.10 0.60 
  Std 1.80% 1.10% 0.70% 0.80% 1.50% 3.90% 6.80% 2.40 6.90 
  M/B 3.32 2.50 0.59 0.95 2.57 8.50 14.71 2.11 5.42 
  ln(Age) 4.84 0.77 1.79 3.43 4.96 5.81 5.86 -0.66 -0.12 
            
Dependent                   
  Centrality 7.01 0.93 4.01 5.27 7.11 8.41 8.95 -0.69 0.86 

 

Table 3 presents OLS estimations for various specifications of the panel regression 

described above. Model I includes dummy variables by quarter and economic sector (first 

2 digits of SIC codes) and considers only robust-heteroskedastic standard errors (White, 

1980). To tackle the bias induced by autocorrelation and heteroskedasticity in the error 

term, two-way clustering correction by Cameron et al. (2011) is included in model II. As 

suggested by Petersen (2009), we also report estimations of model III that considers 

economic sector dummy variables while clustering the error term by quarters. 

Table 3. OLS estimations of three specifications of the quarterly panel regression model  
Each specification depends on the particular standard error correction method. t-statistics are in parentheses and 

the statistical significance is as follows: * at 5% level, ** at 1% and *** at 0.1% level. Model I combines 

economic sector and quarterly dummies with robust-heteroscedastic standard errors (White, 1980). Model II 

considers two-way clustered standard errors (Cameron et al., 2011). Model III includes economic sector 

dummies while clustering standard errors by quarters. The regressions are implemented upon the d-S&P 

dataset. 

 Models 
 I II III 

ROA -1.128 -0.746 -1.062 
 (-1.44) (-0.41) (-1.03) 

Lev 0.111 0.484 0.111 
 (1.31) (2.30)* (1.29) 

Liq -0.481 0.200 -0.582 
 (-4.36)*** (0.49) (-4.13)*** 
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M/B -0.00523 -0.0412 -0.00865 
 (-0.90) (-3.25)** (-1.15) 

ln(MV) 0.239 0.201 0.216 
 (8.96)*** (2.23)* (8.32)*** 

ln(TV) -0.230 -0.150 -0.186 
 (-7.88)*** (-1.62) (-6.10)*** 

Ret 0.401 0.215 0.196 
 (4.23)*** (1.15) (1.16) 

ln(P) -0.239 -0.0106 -0.168 
 (-6.40)*** (-0.11) (-4.02)*** 

Std -5.029 5.074 2.399 
 (-2.50)* (1.22) (0.97) 

ln(Age) 0.104 0.0574 0.124 
 (5.53)*** (1.23) (6.78)*** 

N 7931 7931 7931 
𝑅2 0.174 0.055 0.165 

Dummies Econ. Sectors and 
Quarter - Econ. Sectors 

Std. errors' correction Robust Heteroscedastic 
Clustering by 

Econ. Sectors and 
Quarters 

Clustering by 
Quarters 

 

Starting with the analysis of financial explanatory variables, table 3 indicates that 𝑅𝑂𝐴’s 

coefficient is negative in each specification, however, it is not significant at the 

conventional levels. The variable 𝐿𝑒𝑣 stays positive across models and shows a 

statistically significant coefficient in Model II comparable to 𝑀/𝐵 but with the opposite 

sign. Finally, the coefficient for variable 𝐿𝑖𝑞 is negative and strongly significant in models 

I and III. In summary, there is some evidence indicating that highly central stocks are 

associated with leveraged firms showing less liquid asset positions and low Market-to-

Book ratios, suggesting that firms’ centrality conveys information on the financial risk 

profile of the sampled firms. 

Among market explanatory variables, 𝑙𝑛(𝑀𝑉) shows positive and strongly significant 

coefficients across specifications evidencing a size effect. The variables 𝑙𝑛 (𝑇𝑉) and 

𝑙𝑛 (𝑃) present a negative impact on centrality for each specification and remain significant 

for models I and II. Therefore, low-traded and cheaper securities tend to be highly central 

in the financial market network. The variable 𝑅𝑒𝑡 is positive for each model but 

statistically significant only for the first model. In the case of 𝑆𝑡𝑑, since it is marginally 

significant only for model I and changes its sign across specifications, we disregard its 
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effects. Finally, 𝑙𝑛(𝐴𝑔𝑒) shows positive coefficients that are strongly significant for 

models I and III.57 

In a nutshell, our empirical results identify central stocks with greater capitalization, 

lower price and older firms with riskier financial profiles in terms of leverage, liquid asset 

positions and Market-to-Book ratios. We argue that the findings in Green and Hollifield 

(1992), indicating the importance of the first principal component of the covariance 

matrix, can be explained in terms of the financial and market informational content 

embedded in assets’ centralities. 

In an additional analysis reported in Appendix F to save space, we elaborate on the 

relationships between stocks’ centrality and their stability. Specifically, we associate the 

concept of a stock’s stability to the tendency to remain listed in the market without any 

change in its relative centrality status across time. We find that among the stocks that 

remain listed in the market, there is a strong tendency to show the same level of centrality 

through time. Additionally, we investigate the consequences of the period size used in the 

estimation of the correlation-based network on the ordering of securities provided by 

centrality. Our results show the large correlations between the rankings of centralities for 

different lengths of sample periods indicating the robustness of this ordering. 

 

5. Stock Centrality and Optimal Portfolio Weights: In-sample Evaluation 

The interaction between the individual and the systemic dimensions of stocks is 

empirically investigated in this section. The dataset used is d-S&P and the results reported 

below come from both a cross-sectional and a time series in-sample analysis. 

5.1. Cross-sectional approach 

The detailed pattern of co-movements across stocks is properly captured by 𝛺̂. This 

matrix conveys an excessive amount of information and leads to a fully connected stock 

market network that is difficult to analyze.58 The Minimum Spanning Trees (MST), first 

                                                           
57 We are grateful to the anonymous referee for suggesting the inclusion of 𝑙𝑛(𝐴𝑔𝑒) in the analysis. 
58 A fully connected network refers to a network structure in which each node is connected with the rest. 
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introduced in the financial markets by Mantegna (1999), allows us to filter out this 

adjacency matrix with the aim of uncovering the market skeleton.59 This technique has 

been widely applied to several country-specific stock markets including the US (Bonanno 

et al., 2004; Onnela et al., 2003), Korean (Jung et al., 2006), Greek (Garas and Argyrakis, 

2007) and Chinese (Huang et al., 2009) markets among others. 

 

Figure 2. MST stock market network for the d-S&P dataset. The size of nodes corresponds to the optimal 

weights for the minimum-variance strategy (see equation 3) and the intensity of the colour accounts for the 

corresponding security‘s centrality. 

 

Figure 2 plots the MST financial market network for our data where nodes are scaled to 

the optimal portfolio weights for the minv strategy (see equation (3)) while the colors 

account for the respective security’s centrality (darker colors imply greater centrality).60 

Note that investor’s wealth is allocated toward lighter nodes (low-central securities) in 

accordance with Corollary 1. See Appendix C for the full list of stocks with their 

respective centrality. 

The relation between the individual and systemic dimensions of assets is illustrated in 

figure 3. The horizontal and vertical axes of this plot account for the securities’ centralities 

                                                           
59 MST connects the 𝑛 stocks in a tree-like network by considering the highest 𝑛 − 1 paired correlations 
of returns as links to the extent that no loops are created. 
60 Short sales are allowed in the computation of optimal weights for both minv and mv strategies. 
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and the corresponding standard deviations of returns, respectively. Each security is 

represented by a bubble whose size and color are given by the optimal portfolio weight 

in the minv rule. Note that most of the investor’s wealth is assigned toward stocks located 

in the bottom-left corner of the graph, thus overweighting low-central-&-low-volatile 

securities. 

 

 

Figure 3. Relationship between standard deviation of returns (Std) and stocks’ centrality. Stocks correspond 

to bubbles whose sizes and colours (colour bar) reflect their optimal portfolio weights in a minimum-variance 

(minv) weights specification. We use d-S&P dataset for this analysis.  

 

Figure 4 presents a scatter plot of Sharpe ratios and centralities for a portfolio applying 

mv strategy as the investment rule. The left and right panel sets the expected portfolio 

return, 𝑅𝑒, equal to 10% and 40% of the maximum possible portfolio return, respectively 

(see equation (6)). As expected, the optimal portfolio for low 𝑅𝑒 mainly comprises assets 

with middle-ranged Sharpe ratios while the investment set moves toward securities with 

higher Sharpe ratios for larger 𝑅𝑒. Note, however, that the mv strategy avoids the 

allocation of wealth towards high-central stocks, say stocks with 𝑣𝑖 > 0.08. 
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Figure 4. Relationship between Sharpe ratio and stock centrality. Stocks correspond to bubbles whose sizes 

and colours (colourbar) reflect their optimal portfolio weights in a mean-variance (mv) weights specification. 

The required expected portfolio return 𝑅𝑒in equation 6 is 10% (left panel) and 40% (right panel).of the 

maximum return in the dataset. We used the d-S&P dataset for this analysis. 

 

To further disentangle the roles of stock dimensions in the determination of optimal 

portfolio weights, we report in table 4 the results from the OLS estimations of regressions 

(10) and (11). Equation (10) considers the case of the minv strategy where stock 𝑖’s 

portfolio weight in a minimum-variance specification, 𝑤𝑖,𝑚𝑖𝑛𝑣∗ , depends linearly on its 

centrality, 𝑣𝑖, and on its standard deviation of returns, 𝜎𝑖. Similarly, equation (11) 

specifies a linear relationship between stock 𝑖’s portfolio weight in a mean-variance 

specification, 𝑤𝑖,𝑚𝑣∗ , with the corresponding stock centrality, 𝑣𝑖, and Sharpe Ratio, 𝑆𝑅𝑖.61 

Therefore, the coefficients 𝛽1 and 𝛽2 stands for the effects of the systemic and individual 

dimensions of stocks upon optimal portfolio weights. 

                                            𝑤𝑖,𝑚𝑖𝑛𝑣∗ = 𝛽0 + 𝛽1𝑣𝑖 + 𝛽2𝜎𝑖 + 𝜀𝑖                                      (10) 

                                            𝑤𝑖,𝑚𝑣∗ = 𝛽0 + 𝛽1𝑣𝑖 + 𝛽2𝑆𝑅𝑖 + 𝜀𝑖                                      (11) 

Table 4. Optimal portfolio weights as a function of the individual and systemic stock’s 

dimensions considering a cross-sectional approach 

𝑣𝑖 is the centrality of stock 𝑖. 𝜎𝑖 is the standard deviation of stock 𝑖. 𝑆𝑅𝑖 is the Sharpe ratio of stock 𝑖. 𝑁 is the 

number of observations (stocks) in the cross-sectional regressions. The regression 𝑅2 is adjusted for degrees 

of freedom. Each row of the table reports OLS estimations of equations (10) and (11), respectively, where t-

                                                           
61 In equation 11, optimal weights are obtained assuming 𝑅𝑒 equals 40% of the maximum possible return. 
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statistics are in parentheses and the statistical significance is as follows: * at 5% level, ** at 1% and *** at 0.1% 

level. 

 𝒗𝒊 𝝈𝒊 𝑺𝑹𝒊 𝑵 𝑹𝟐 

𝒘𝒊,𝒎𝒊𝒏𝒗
∗  -0.740 -1.755  200 0.231 

 (-4.05)*** (-6.38)***  

𝒘𝒊,𝒎𝒗
∗  -0.778  0.761 200 0.179 
 (-3.64)***  (4.77)*** 

 

The coefficients reported in table 4 are strongly statistically significant and provide 

support to Proposition 1 and Corollary 1. The coefficient 𝛽1 is negative for both 

regressions indicating that highly central stocks tend to be underweighted regardless of 

the specific investment objective. The coefficient 𝛽2 is negative for the minv rule and 

positive for the mv case indicating the tendency to optimally allocate wealth towards low-

standard deviation and high-Sharpe ratio securities, respectively. 

5.2. Time series approach 

Contrary to the static description provided by the cross-sectional analysis, this subsection 

takes a dynamic perspective on the portfolio selection by implementing a time series 

approach. The entire dataset is divided into 2,522 60-day-long rolling windows 

considering 1-day displacement steps. The vectors of stock centrality, 𝑣𝑡 and portfolio 

weights for the minv and mv rules, 𝑤𝑚𝑖𝑛𝑣,𝑡∗  and 𝑤𝑚𝑣,𝑡∗ , are computed for each rolling 

window and indexed by the time subscript 𝑡. 

We introduce the mean stock centrality 𝑣̅𝑡 and the weighted stock centrality 𝑣̿𝑟,𝑡 as 

follows: 

                                                       𝑣̅𝑡 =
1

𝑛
∑ 𝑣𝑖𝑡
𝑛
𝑖=1                                                        (12) 

                                          𝑣̿𝑟,𝑡 = ∑ 𝑤𝑟,𝑖𝑡
∗  𝑣𝑖𝑡  𝑓𝑜𝑟 𝑟 = 𝑚𝑖𝑛𝑣, 𝑚𝑣

𝑛
𝑖=1                           (13)                  

By construction, the expression 𝑣̿𝑟,𝑡 = 𝑣̅𝑡for 𝑟 = 𝑚𝑖𝑛𝑣, 𝑚𝑣 is satisfied when 𝑤𝑟,𝑖𝑡∗ =

1/𝑛. In accordance with Corollary 1, it would be expected that 𝑣̿𝑟,𝑡 < 𝑣̅𝑡 most of the time 

indicating a bias toward low-central stocks. 
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Figure 5. Mean centrality 𝑣̅𝑡 and weighted centrality 𝑣̿𝑟,𝑡 through time. We consider the minv strategy (left 

panel) and the mv strategy (right panel) for the d-S&P dataset. We divide the dataset into 2,522 of 60-days long 

rolling windows with 1-day displacement steps. The weight allocations of minv and mv strategies and the 

centrality rankings of stocks are computed for each rolling window. The mean centrality 𝑣̅𝑡 is the average of 

centralities among stocks in each 60-days window and the weighted centrality, 𝑣̿𝑟,𝑡, is computed by weighting 

each stock’s centrality by their corresponding weights in mv and minv strategies.  

 

Figure 5 plots the time series of 𝑣̅𝑡 and 𝑣̿𝑟,𝑡 presenting the pattern just described. Note, 

however, that 𝑣̿𝑟,𝑡 shows values closer to, or even surpassing, 𝑣̅𝑡 for some periods. The 

dynamic of the correlation between the individual and the systemic dimensions of stocks 

explains this time-dependent behavior of 𝑣̿𝑟,𝑡. Let us denote by 𝜋𝑡 the cross sectional 

correlation between 𝑣𝑖𝑡 and 𝜎𝑖𝑡 and by 𝜌𝑡 the cross-sectional correlation between 𝑣𝑖𝑡 and 

𝑆𝑅𝑖𝑡, both at period 𝑡. When 𝜋𝑡 > 0, the lowest standard deviation stocks tend to coincide 

with the weakly systemic ones, and as a consequence, overweighting these securities is 

certainly the optimal choice under the minv rule. For 𝜋𝑡 < 0, a trade-off arises since low-

central stocks also correspond to high-volatility securities. In this case, an optimal 

portfolios rule should balance these two confronting forces by adapting the investment 

set to include more central stocks. Considering the mv strategy, for 𝜌𝑡 < 0, the assets with 

highest Sharpe ratios show the lowest centrality, and therefore, this leads to investing in 

non-systemic securities as the optimal portfolio choice. When 𝜌𝑡 > 0, a trade-off between 

assets’ dimensions takes place and an optimal wealth allocation should increase portfolio 

weights towards central securities. Figure 6 plots the time series of 𝜌𝑡 and 𝜋𝑡 and the 

corresponding 120-days moving averages evidencing the sign-switching nature of these 

two variables. 
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Figure 6. Time series of the cross-sectional correlations between the individual and the systemic dimensions 

of stocks.  

This figure presents the correlation between stocks’ centralities and Sharpe ratios, 𝜌𝑡 = 𝑐𝑜𝑟𝑟(𝑣𝑖𝑡 ,  𝑆𝑅𝑖𝑡) (left 

panel) and stocks’ centralities and standard deviation 𝜋𝑡 = 𝑐𝑜𝑟𝑟(𝑣𝑖𝑡 , 𝜎𝑖𝑡) (right panel) for the d-S&P dataset. 

We also include the corresponding 120-day moving averages of 𝜌𝑡 and  𝜋𝑡 in each panel. 

 

Further insights on the security selection process are gained by estimating the regressions 

(14) and (15) accounting for the time series versions of expressions (10) and (11). In (14), 

the optimally weighted centrality 𝑣̿𝑚𝑖𝑛𝑣,𝑡 for the minv strategy in period 𝑡 is explained by 

the mean centrality, 𝑣̅𝑡, the coefficient of variation of the centrality distribution, (𝜎𝑣,𝑡
𝑣̅𝑡
), 

and 𝜋𝑡. Similarly, equation (15) considers the mv strategy and therefore, the dependent 

variable is 𝑣̿𝑚𝑣,𝑡 while 𝜌𝑡 replaces 𝜋𝑡 as explanatory variable. 

                             𝑣̿𝑚𝑖𝑛𝑣,𝑡 = 𝛽0 + 𝛽1𝑣̅𝑡 + 𝛽2 (
𝜎𝑣,𝑡

𝑣̅𝑡
) + 𝛽3𝜋𝑡 + 𝜀𝑡                                  (14) 

                              𝑣̿𝑚𝑣,𝑡 = 𝛽0 + 𝛽1𝑣̅𝑡 + 𝛽2 (
𝜎𝑣,𝑡

𝑣̅𝑡
) + 𝛽3𝜌𝑡 + 𝜀𝑡                                    (15) 

Table 5 reports OLS estimations of (14) and (15) noting that all of the coefficients are 

strongly statistically significant. The coefficient 𝛽1 is negative for both regressions 

indicating that higher 𝑣̅𝑡 results in an overweighting of low-systemic assets as a mean to 

avoid the undesirable consequences of high-central securities in the portfolio. The 

negative signs of 𝛽2 are interpreted as the benefits derived from a wider centrality 

distribution that allows an increased presence of assets with lower centrality scores in the 

portfolio after controlling for 𝑣̅𝑡. The coefficient 𝛽3 is negative for the minv rule (see 
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equation (14)). In this case therefore, larger values of 𝜋, indicating no trade-off between 

assets’ dimensions, are consistent with optimal wealth allocations away from central 

securities. In contrast, the coefficient 𝛽3 shows a positive sign for the mv rule (see 

equation (15)) explained by the trade-off between assets’ dimensions arising for large 𝜌. 

As a consequence the increments of 𝜌 rise 𝑣̿𝑚𝑣 by moving the investment set toward 

central nodes. 

Table 5. Optimal portfolio weights as a function of the individual and systemic stock 

dimensions taking a time series approach  

We consider a 60-day rolling window estimation procedure for each variable. Each 𝑡 denotes a 60-day rolling 

window. 𝑣̅𝑡 is the mean centralities at each 𝑡. (
𝜎𝑣,𝑡

𝑣̅𝑡
) is the coefficient of variation of the centrality distribution 

at 𝑡. 𝜋𝑡 is the correlation between centralities, 𝑣𝑖𝑡  and standard deviations, 𝜎𝑖𝑡 at 𝑡. 𝜌𝑡 is the cross-sectional 

correlation between centralities, 𝑣𝑖𝑡 , and Sharpe ratios, 𝑆𝑅𝑖𝑡 , at 𝑡. 𝑁 is the number of observations (stocks) in 

the cross-sectional regressions. The regression 𝑅2 is adjusted for degrees of freedom. Each row of the table 

reports OLS estimation of equations (14) and (15). t-statistics are in parentheses and the statistical significance is 

denoted as follows: * at 5% level, ** at 1% and *** at 0.1% level. 

 
𝒗̅𝒕 

𝝈𝒗,𝒕
𝒗̅𝒕

 𝝅𝒕 𝝆𝒕 𝑵 𝑹𝟐 

𝒗̿𝒎𝒊𝒏𝒗,𝒕 -3.324 -0.0707 -0.00613  2522 0.573 

 (-19.04)*** (-33.80)*** (-26.34)***    

𝒗̿𝒎𝒗,𝒕 -2.661 -0.0720  0.00627 2522 0.457 

 (-10.83)*** (-24.50)***  (17.79)***   
 

6. Stock Centrality and Optimal Portfolio Weights: Out-of-sample Evaluation 

In DeMiguel et al. (2009), naïve strategy, commonly termed as 1/𝑁62, is shown not to be 

consistently outperformed by Markowitz-based rules or their extensions designed to deal 

with the estimation error problem. This better out-of-sample performance of 1/𝑁 strategy 

relative to Markowitz’s rule is also investigated and supported by Jobson and Korkie 

(1980), Michaud (2008) and Duchin and Levy (2009). Moreover, DeMiguel et al. (2009, 

p. 1936) report that among those models designed to tackle the estimation error problem, 

the constrained Markowitz rules might be considered as second-best alternatives to naïve 

diversification. Accordingly, naïve strategy and constrained Markowitz rules portray two 

reasonable benchmarks for out-of-sample portfolio evaluations. 

                                                           
62 Naïve strategy assigns a fraction 1/𝑁 of wealth to each asset out of the 𝑁 available assets. 
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Based on the insights obtained mainly from sections 2 and 5, we here propose a network-

based investment strategy, termed as 𝜌-dependent strategy, that targets groups of assets 

in accordance with their centrality rankings. We proceed to define this strategy in detail 

and evaluate its out-of-sample performance against the benchmarks.  

6.1. The out-of-sample evaluation 

The out-of-sample returns are computed as follows. For a 𝑇-period-long dataset, we 

implement several portfolio strategies (specified below) upon a set of 𝑀-period-long 

rolling windows indexed by the subscript 𝑡. We buy-and-hold the portfolios for 𝐻 periods 

and the resulting out-of-sample return is recorded. The rolling window in period 𝑡 is 

created by simultaneously adding the next 𝐻 data points and discarding the 𝐻 earliest 

ones from the previous rolling window in order to preserve its length. This process is 

repeated several times until the end of the dataset is reached thus accounting for 

⌊(T − M)/H⌋ rebalancing periods, vectors of portfolio’s weights and out-of-sample 

returns for each portfolio strategy. 

We introduce our network based investment policy, the so-called 𝜌-dependent strategy, 

as follows. The process estimates the correlation matrix 𝛺̂t, the vector of securities’ 

centrality, 𝑣𝑡 and the correlation between the systemic and individual dimensions of 

stocks, 𝜌𝑡, upon the rolling window corresponding to period 𝑡. Assuming a threshold 

parameter 𝜌̃, for a sufficiently large 𝜌, say 𝜌 > 𝜌̃, we naively invest in the 20 stocks with 

the highest centrality. Conversely, for a sufficiently low 𝜌, say 𝜌 < 𝜌̃, we naively invest 

in the 20 stocks with the lowest centrality. This strategy is designed to benefit from 

investing in low systemic stocks to the extent that the most central ones do not show 

significant individual performances, thus replicating Markowitz’s logic to some extent. 

In accordance with the previous literature (DeMiguel et al., 2009), the 1/𝑁 rule applied 

upon the entire investment opportunity set is a convenient benchmark with which to 

evaluate the performance of our network-based strategy. To ensure that the performance 

of 𝜌-dependent strategy does not happen by chance, we also includes the reverse 𝜌–

dependent strategy that naively invests in the 20 lowest central stocks when 𝜌 > 𝜌̃ and in 

the 20 highest central ones when 𝜌 < 𝜌̃. Moreover, two Markowitz-related rules, the 

mean-variance and minimum-variance strategies with short-selling constraints are 
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incorporated in the analysis as well. Finally, we consider three more investment rules as 

“control strategies” that naively invest in the 20 stocks with the Highest Sharpe Ratio, the 

Highest Centrality and the Lowest Centrality63. 

The investment policies are compared using three out-of-sample performance measures: 

i) Sharpe ratio, ii) variance of return and iii) turnover. This latter measure averages the 

amount and size of the rebalancing operations as follows 

                     𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1

𝑇−𝑀−1
∑ ∑ |𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡+|

𝑁
𝑗=1

𝑇−1
𝑡=𝑀                                     (16) 

where 𝑤𝑗,𝑡+1 is the weight of security 𝑗 at the beginning of period 𝑡 + 1 and 𝑤𝑗,𝑡+  is the 

weight of that security just before the rebalancing occurring between the end of period 𝑡 

and the beginning of period 𝑡 + 1.64 

We statistically test the difference in out-of-sample portfolios’ Sharpe ratios and 

variances between each of the investment rules against the 1/𝑁 strategy following Ledoit 

and Wolf (2008) and Ledoit and Wolf (2011). More specifically, we implement a 

studentized circular block bootstrap with block size equal to 5 and bootstrap samples 

equal to 5.000 to compute the respective p-values.65 

6.2. Determining the threshold parameter 𝜌̃ 

Before the application of our network-based strategies, the value of 𝜌̃ needs to be 

specified. In order to do that, we rely on an extensive simulation procedure using 

artificially created subsamples where 𝜌 spans a broad range of values. Specifically, we 

generate 120 datasets by randomly selecting 150 stocks from the d-NYSE dataset (see 

section 3) with 𝜌 ranging from -0.20 to 0.45. Then, we compute the out-of-sample Sharpe 

ratio where 𝑀 and 𝐻 are set to be equal to 500 days and 20 days, respectively. 

Panels a, b and c from figure 7 plot the out-of-sample Sharpe ratios from three particular 

datasets with 𝜌 equal to 0.45, -0.20 and 0.0, arising from a progressive percentage 

                                                           
63 The decision to construct portfolios made up of 20 assets is based on Desmoulins-Lebeault and Kharoubi-
Rakotomalala (2012) which highlights the fact that most diversification benefits are gained by investing in 
such a number of stocks. 
64 Note that in the expression (16), rebalancing is assumed in each investment period as if 𝐻 = 1. 
However, with 𝐻 > 1, we only consider the rebalancing periods in our turnover calculation. 
65 For the particular case of the variance, a stationary bootstrap is employed as in Politis and Romano 
(1994). 
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removal of stocks from the upper and lower tails of the centrality distribution (with 5% 

increments). Panel c from figure 7 (when 𝜌 = 0) presents a scenario in which an intensive 

removal of high central stocks leads to better out-of-sample performance in terms of 

Sharpe ratio. This result is expected since highly individual performing stocks are 

randomly disseminated in the stock market network. Panel (b) from figure 7 (when 𝜌 =

−0.20) shows us the convenience of selecting among low-central stocks as the target 

region to invest. This is due to the absence of trade-off between the systemic and 

individual dimension of stocks. The opposite case is observed in panel (a) of figure 7 

(when 𝜌 = 0.45). In this case, the best performance is achieved by investing in high 

central stocks with an intense removal of securities from the left tail of the centrality 

distribution. This is explained given that the positive effect of the individual dimension 

of stocks over-compensates the negative effect of their systemic dimension. 

 

 

 

 

 
(a)                                                                                    (b) 
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(c) 

Figure 7. Out-of-sample Sharpe ratios resulting from progressive percentage removal of stocks from the lower 

tail and upper tail of the centrality distribution. Three specific randomly generated samples from d-NYSE 

dataset are considered with 𝜌 values: (a) 𝜌 = 0.4550, (b) 𝜌 =-0.2010, (c) 𝜌 =0.000. The out-of-sample Sharpe 

ratios are computed with 𝑀 = 500 and 𝐻 = 20. 

 

In the next step, we investigate the break point of 𝜌 that characterizes the region of the 

market network that is susceptible to being discarded from the investment opportunity 

set. Let us define the high central stock investment region as the set of securities arising 

from the deletion of 25% to 45% of assets from the left tail of the centrality distribution 

(starting from the lowest central security) and no more than 20% from its right tail 

(starting from the highest central security). In a symmetric fashion, let us define the low 

central stock investment region as the set of stocks comprising the deletion of 25% to 

45% of stock from the right tail of the centrality distribution and no more than 20% of its 

left tail. Then, from all of the 120 artificially-constructed data sets, we identify the 

investment region that generates the highest out-of-sample Sharpe ratio. The 

identification rule simply averages out the out-of-sample Sharpe ratios generated in each 

of the two investment regions and then selects the one with the highest average 

performance. Figure 8 plots the distribution of 𝜌 conditional on the investment region that 

leads to the largest Sharpe ratio. In accordance with figure 8, low values of 𝜌 are more 

consistent with high Sharpe ratio emerging from the low central investment region. In 

contrast, for large values of 𝜌, it is the high central stock investment region that generates 

the largest risk-adjusted returns. 
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With the aim of setting the value of 𝜌̃, note that such a threshold must be high enough to 

be worthwhile to move the optimal investment region from the low central securities 

towards more central ones.66 Taking figure 8 into account, we consider 0.2 as a reasonable 

value for 𝜌̃ since it roughly coincides with the 75% percentile of 𝜌 from the low central 

stock investment region and the 25% percentile of 𝜌 from the high central stock investing 

region. We acknowledge that the determination of 𝜌̃ is the weakest point in our procedure 

since it implies ad-hoc rules. Other methodologies might be investigated in this regard 

and we leave them as future research lines. 

 

 

 

 

 

 

Figure 8. Distribution of 𝜌 conditioning on the investment region generating the highest out-of-sample Sharpe 

ratio. 120 artificially-created datasets from d-NYSE dataset is considered. High Central refers to the investment 

region comprised of the set of stocks arising from the deletion of 25% to 45% of assets from the left tail of the 

centrality distribution and no more than 20% from its right tail. Low Central refers to the investment region with 

the set of stocks comprising the deletion of 25% to 45% of stocks from the right tail of the centrality 

distribution and no more than 20% of its left tail. The out-of-sample Sharpe ratios are computed with 𝑀 =

500 and 𝐻 = 20. 

                                                           
66 The tendency is to invest in low-central stocks unless high-central ones show good individual 
performances. 
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6.3. Out-of-sample performance 

The annualized out-of-sample performance measures originated from the two daily 

datasets d-S&P and d-FTSE and the monthly dataset m-NYSE are reported in table 6. 

Since the average 𝜌s from these datasets are lower than 𝜌̃ = 0.20, the performance of the 

𝜌-dependent strategy is indistinguishable from an unconditional lowest-central 

investment rule. Therefore, we also include an additional sample (d-NYSE150) obtained 

by a random selection of 150 stocks from d-NYSE presenting an average 𝜌 equal to 0.23. 

The setup for the out-of-sample evaluation assumes 𝑀=1000 and 𝐻=20 for the daily 

datasets and 𝑀=192 and 𝐻=12 for the monthly dataset.67 

Table 6 shows the noticeable outperformance of the 𝜌–dependent strategy for the daily 

datasets. The Sharpe ratio from the 1/𝑁 naïve strategy reaches 0.471 and 1.153 for d-

S&P and d-FTSE, respectively. The same measures rise to 0.724 and 2.584 when the 𝜌–

dependent strategy is in place, showing a statistically significant difference with respect 

to the benchmark. Similar good performances are observed in terms of portfolio variance, 

presenting a statistically significant reduction from 0.066 to 0.051 and from 0.025 to 

0.014, for d-S&P and d-FTSE. Considering the m-NYSE dataset, the 𝜌–dependent results 

are worse in terms of Sharpe ratio and variance in comparison to the benchmark but not 

to a statistically significant extent as indicated by the p-values. The benefit derived from 

the switching nature of 𝜌–dependent rules is explored by means of the d-NYSE150 

dataset. In this case, a higher and statistically different Sharpe ratio (2.083) is obtained by 

following the proposed investment strategy in comparison to the naïve (1.241) and 

lowest-central (1.942) rules. 

Table 6 also shows that 𝜌–dependent strategy implies distinctive and enhanced 

investment dynamics when it is compared to the unconditional strategies. In general 

terms, the Highest Sharpe Ratio, Highest Central Stocks and Lowest Central Stocks 

strategies present poorer outcomes in a portfolio’s Sharpe Ratio in all of the datasets. In 

order to discard the possibility that our results were driven by chance, table 6 also reports 

the results for the reverse 𝜌–dependent strategy. In this case, none of the out-of-sample 

                                                           
67 Due to data limitation, 𝑀=500 for the d-NYSE dataset. 
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portfolio’s Sharpe ratios show better results when compared either with the benchmark 

or with the 𝜌–dependent strategy. Moreover, in the d-NYSE150 dataset, we observe that 

the 𝜌–dependent rule significantly outperforms other strategies. Since the mean value of 

𝜌 in this dataset surpasses the threshold 0.2, the 𝜌–dependent strategy can exploit the 

benefit of moving the investment set from high-central to low-central nodes and vice 

versa. 

 

 

 

 

 

 

 

 

Table 6. Out-of-sample Performance of Portfolio Strategies 
We report the out-of-sample Sharpe ratio, variance and turnover for portfolio strategies. The benchmark 
strategy is denoted as “All stocks”, that is naïve strategies applied to all of the stocks in the dataset. Following 

the 𝜌-dependent strategy, when 𝜌 is higher than 0.2, we diversify among highest central stocks and otherwise, 

diversify among the lowest central stocks. The Reverse 𝜌-dependent approach takes an opposite investment 

decision to the 𝜌-dependent strategy. The Highest Sharpe Ratio strategy refers to diversifying naively among 
stocks with the highest level of Sharpe ratios. In Lowest Central and Highest Central strategies, we diversifying 
among lowest and highest central stocks, respectively. The minv-cc and mv-cc strategies refer to minimum-variance 
and mean-variance strategies with short-selling constraints. We considered 20 stocks for our portfolios. The p-
values are computed following the procedure in Ledoit and Wolf (2008) and Ledoit and Wolf (2011) based on 
a studentized circular block bootstrap with block size equal to 5 and number of bootstrap samples equal to 
5000. 

Panel A d-S&P (Avg ρ: -0.0556) d-FTSE (Avg ρ: -0.1853) 
 Sharpe Ratio Variance Turnover Sharpe Ratio Variance Turnover 

All Stocks 0.471 0.066 0.141 1.153 0.025 0.138 
ρ-dependent 0.724 0.051 0.149 2.523 0.014 0.164 

 (0.0125) (0.0010)  (0.0033) (0.0009)  
Reverse ρ-dependent 0.315 0.110 0.126 0.549 0.026 0.061 

 (0.1523) (0.0009)  (0.0100) (0.014)  
Highest Sharpe Ratio 0.438 0.038 0.141 1.201 0.018 0.138 

 (0.8239) (0.0009)  (0.8007) (0.0009)  
Highest Central 0.315 0.110 0.126 0.549 0.026 0.061 

 (0.1523) (0.0009)  (0.0100) (0.014)  
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in the literature and also shows the convenience of implementing the network-based 

portfolio strategy.68 

Unfortunately, the major shortcoming of our proposed rule is that it tends to raise the 

number of rebalancing operations, a phenomenon captured by the increased portfolio 

turnover compared to the 1/𝑁 benchmark. The severity of this issue is further 

investigated in section 6.5 below. Two additional comments are worth mentioning. First, 

the relatively extreme and negative value of 𝜌 (-0.1853 on average) for the d-FTSE 

dataset might explain the strikingly good results obtained in the UK market where no 

trade-off between the individual dimension and systemic dimension exists. Secondly, it 

should be mentioned that the prescription from Pozzi et al. (2013) in favor of 

unconditional allocation of wealth only towards the periphery of the stock market network 

shows clearly inferior results relative to the 𝜌–dependent rule when 𝜌 assumes large 

values as in the d-NYSE150 dataset. Nevertheless, in the cases where 𝜌 is relatively low, 

as in the d-S&P and d-FTSE datasets, our results are in line with theirs. 

6.4. Carhart alpha for the 𝜌–dependent strategy 

The large risk-adjusted returns of the 𝜌–dependent strategy might result from large 

exposures to systematic risk factors. We investigate this hypothesis by estimating 

Carhart’s alpha from the four risk factor models (Carhart, 1997; Fama and French, 1996, 

1993) as in equation (17). 

            𝑅𝑡
𝜌
− 𝑟𝑡

𝑓
= 𝛼 + 𝛽

𝑀𝐾𝑇
(𝑅𝑡

𝑀 − 𝑟𝑡
𝑓
) + 𝛽

𝐻𝑀𝐿
𝐻𝑀𝐿𝑡 + 𝛽𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑀𝑂𝑀𝑀𝑂𝑀𝑡 + 𝜀𝑡                   (17) 

where 𝑅𝑡
𝜌
− 𝑟𝑡

𝑓 is the excess out-of-sample return from the 𝜌–dependent strategy, 𝑅𝑡𝑀 −

𝑟𝑡
𝑓 is the market risk premium, 𝐻𝑀𝐿𝑡 is the difference between the returns of high and 

low book-to-market portfolios, 𝑆𝑀𝐵𝑡 is the difference between the returns of small-cap 

and large-cap portfolios and 𝑀𝑂𝑀𝑡 is the momentum factor. The parameter 𝛼 measures 

the abnormal risk-adjusted return capturing the excess return above what would be 

expected based solely on the portfolio’s risk profile. The time series of the four risk 

factors are gathered from Ken French’s website for the US market and from (Gregory et 

                                                           
68 We also evaluate the performance of mean-variance and minimum-variance strategies without the short-
selling constraints. However, our main conclusions remain unchanged. These results are available upon 
request. 
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al., 2013) for the UK case. We correct the standard errors in the estimation of equation 

(17) for heteroskedasticity and serial correlation in 𝜀𝑡 following Newey and West (1987). 

Table 7 reports the estimated Carhart’s alpha for three portfolio sizes (10, 20 and 50) and 

two holdings periods (1 and 20 days for the daily datasets and 1 and 12 months for the 

monthly dataset) across the US and UK samples. The reader is referred to Appendix D 

for a detailed results of the estimation of equation 17 without winsorizing. However, to 

account for outliers, table 7 reports results after 5% data winsorizing, noting that 

qualitative similar results are obtained either without winsorizing or by winsorizing at 

10% (see table E.1 and E.2 in Appendix E). The estimations show positive and 

statistically significant alphas for each of the portfolio configurations. The weakest results 

stem from the monthly dataset where the reduced estimation window might undermine 

the statistical significance.  

 

 

 

 

 

 

 

Table 7. Annualized risk-adjusted returns for 𝜌-dependent strategy with 5% winsorisation 
We report annualised risk-adjusted returns for different settings of 𝜌-dependent strategy on the four Carhart 
(1997) factors, MKT, HML, SMB, MOM with 5% winsorisation. The estimation window is considered to be 
1000 days (192 months) for daily (monthly) datasets. The t-statistics are reported in parentheses. ** and * 
indicate significance at 1% and 5% levels, respectively.  

Portfolio Setting Alpha (5% winsorizing) 
Stocks Holding Period d-S&P d-FTSE m-NYSE 

10 

1d/1m 14.75 35.97 5.1 
 (3.37)** (6.37)** (2.26)* 

20d/12m 17.19 36.01 4.49 
 (3.97)** (6.21)** (1.98)* 

20 
1d/1m 10.57 33.65 4.42 

 (3.02)** (6.65)** (2.31)* 
20d/12m 11.97 32.84 4.37 
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 (3.45)** (6.52)** (2.36)* 

50 

1d/1m 10.52 28.07 5.45 
 (3.63)** (5.17)** (3.23)** 

20d/12m 10.08 28.08 5.82 
 (3.50)** (5.18)** (3.40)** 

 
 
 

 

 

To sum up, the 𝜌-dependent rule is able to provide enhanced risk-adjusted returns that are 

not explained by exposure to traditional risk factors. Interestingly, the evidence also 

indicates a negative relationship between portfolio sizes and alphas for each of the 

considered holding periods and across datasets. For instance, considering the d-S&P 

dataset and a 20-day holding period, the Carhart’s alphas of portfolios made of 10, 20 and 

50 stocks are 17.19, 11.97 and 10.08, respectively. To confirm this regularity, however, 

further analyses are required. 

 

(a)  

 

(b)  
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(c)  

Figure 9. Cumulative return for the ρ–dependent strategy for (a) d-S&P, (b) d-FTSE, (c) m-NYSE datasets in 

comparison to the naïve strategy for 20 days and 12 month holding periods in daily and monthly datasets, 

respectively. 

 

Finally, figure 9 plots the cumulative out-of-sample returns of the 𝜌–dependent strategy 

for different portfolio configurations. For the d-S&P dataset plotted in panel (a), we 

observe that investing in 10 stocks results in the largest payoffs while the 1/𝑁 rule 

produces the poorest performance. The same observation applies for the d-FTSE dataset 

captured in panel (b) from the same figure. The case of the m-NYSE dataset presented in 

panel (c) is different; the time series of cumulative returns of the naïve strategy 

outperforms the 𝜌–dependent strategy for portfolios made of 10 and 20 stocks while for 

a portfolio size equal to 50 they both tend to behave similarly. 

 

6.5 Transaction cost 

Since our 𝜌–dependent strategy is a dynamic strategy that requires rebalancing 

operations, it is important to investigate the impact of transaction costs. Following the 

approach provided in Han et al. (2013), we compute the breakeven transaction cost 

(BETC) that sets the average returns of the 𝜌–dependent strategy equal to zero. Denoting 

by 𝑅𝑡 the out-of-sample return of the 𝜌–dependent strategy in period 𝑡, the breakeven 

transaction cost (BETC) is computed as follows: 

                                            𝐵𝐸𝑇𝐶 = ∑ 𝑅𝑡
𝑇
𝑡=𝑀+1

𝑇−𝑀
× 𝐻                                                      (18) 
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As stated in Balduzzi and Lynch (1999), reasonable lower and upper bounds for the 

transition cost are 1 bp and 50 bps, respectively. Thus, obtaining a BETC higher than 50 

bps means that a disproportionally abnormal transaction cost is required to wipe out the 

returns of the 𝜌–dependent strategy. 

The results for BETC are reported in table 8 considering the d-S&P, d-FTSE and m-

NYSE datasets and different portfolio settings (size and holding period). In general terms, 

we observe that for short holding periods, BETC assumes low values for any investment 

configuration. For instance, in a setting of a 1 day holding period and 10 stocks from the 

FTSE dataset, a transaction cost of only 13.79 bps is needed to wipe out the benefit of 𝜌–

dependent strategy. However, for longer holding periods, our calculations indicate large 

values of BETC which supports the outperformance of the 𝜌–dependent strategy after 

controlling for transaction cost. For example, considering again the FTSE dataset, a 

portfolio size of 10 and a holding period of 20 days, a transaction cost of more than 264.56 

bps is needed to wipe out the returns of the proposed strategy.  

It should be noted that in this analysis, it is assumed that the investor faces a flat-

transaction fee every time he/she wants to rebalance the portfolio regardless the size of 

the rebalancing operation. Appendix G provides a detailed analysis in a context in which 

the investor pays in proportion to the changes in portfolio’s weights. The results reported 

in this appendix provide further support to the application of our proposed network-based 

investment rule. 

 

 

Table 8. BETC for 𝜌–dependent strategy 
We report the BETC for the 𝜌–dependent strategy in various strategy settings across the three datasets of d-
S&P, d-FTSE and m-NYSE. The results are reported in basis points (bps).  

Portfolio Setting BETC 
Stocks Holding Period d-S&P d-FTSE m-NYSE 

10 1d/1m 6.98 13.79 85.69 
20d/12m 156.74 264.56 937.18 

20 1d/1m 5.42 12.12 79.69 
20d/12m 130.1 236.59 982.12 

50 1d/1m 5.04 9.67 85.5 
20d/12m 102.06 191.76 1040.94 
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7. Conclusion and Future Research Lines 

In this study, a stock market is conceived as a network where securities correspond to 

nodes while the paired returns’ correlations account for the links. The paper establishes a 

bridge between Markowitz’s framework and network theory by stating the tendency to 

overweight low-central stocks in order to build efficient portfolios. Therefore, optimal 

portfolio weights of highly influential securities in a correlation-based network are biased 

downward after controlling for their individual performance measured by either Sharpe 

ratios or the volatility of returns (depending on the specific portfolio’s goal). 

From a more descriptive point of view, we find that financial firms are the most central 

nodes in the market network and that both financial and market variables are major 

determinants of a stock’s centrality. More precisely, we provide some evidence indicating 

that highly central securities correspond to large-capitalized, cheap and old firms 

presenting weak financial profiles. 

We also investigate the extent to which network-based investment strategies might 

improve portfolio performance by means of in-sample and out-of-sample analysis. We 

propose the so-called 𝜌–dependent strategy and test its performances against the 

extremely simple yet effective 1/𝑁 naïve rule and two Markowitz-related policies. Our 

out-of-sample results show that the 𝜌–dependent strategy tends to present significant 

higher portfolio Sharpe ratios and lower portfolio variance relative to these well-known 

benchmarks. Additionally, this enhanced performance is not explained by large exposures 

to traditional risk factors as indicated by the reported positive and statistically significant 

Carhart’s alphas. More importantly, our results are robust to several portfolio 

configurations, time periods and markets even after accounting for transaction costs. 

There are several future research lines that could provide novel insights from the 

interaction between network theory and portfolio selection. However, it seems 

particularly appealing to extend the approach by considering stock markets as directed 

and weighted networks. This framework may contribute to improve our understanding on 

the shock-transmission mechanisms across stocks and disentangling the differential role 

played by specific securities as an absorber or booster of initial impulses. 
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Appendices 

A. Proof of Proposition 1 

Let us consider two symmetric square 𝑛 × 𝑛 matrices 𝛺0 and 𝛺1 = 𝛺0 + 𝑎 ∗ 𝐼 where 𝑎 ∈

ℝ and 𝐼 is the identity matrix with their corresponding sets of eigenvectors and 

eigenvalues denoted by {𝑣1s, … , 𝑣𝑛s} and {𝜆1s , … , 𝜆𝑛s } for 𝑠 = 1,0. By definition of 

eigenvectors 𝜆𝑘𝑠𝑣𝑘𝑠 = 𝛺𝑠𝑣𝑘𝑠, it follows that 𝜆𝑘1𝑣𝑘1 = 𝛺1𝑣𝑘1 = (𝛺0 + 𝑎 ∗ 𝐼) 𝑣𝑘1. After some 

simple algebraic manipulations (𝜆𝑘1 − 𝑎)𝑣𝑘1 = 𝛺0𝑣𝑘1 that allows us to conclude that 𝑣𝑘1 =

𝑣𝑘
0 and 𝜆𝑘1 = 𝜆𝑘0 + 𝑎. Therefore, as a preliminary result, we show that the eigenvectors of 

𝛺0 and 𝛺1are exactly equal and the corresponding associated eigenvalues are related as 

follows: 𝜆𝑘1 = 𝜆𝑘0 + 𝑎 for 𝑘 = 1…𝑛. 

The proof of Proposition 1 is stated only for the case of the mean-variance strategy given 

that the minimum-variance rule follows exactly the same steps. We assume that the 

correlation matrix 𝛺 is a 𝑛 × 𝑛 diagonalizable symmetric matrix with a set of eigenvectors 

given by {𝑣1, … 𝑣𝑛} and a set of eigenvalues given by {𝜆1, … 𝜆𝑛}, both sets arranged in 

descendent order. Then, 𝛺 = 𝑃𝛬𝑃𝑇, where 𝑃 is an 𝑛 × 𝑛 orthogonal matrix whose 

columns are 𝑣1, … 𝑣𝑛. Let us denote by 𝛬 = 𝑑𝑖𝑎𝑔(𝜆𝑖) a diagonal matrix whose ith-main 

diagonal element is 𝜆𝑖. Thus the inverse of 𝛺 could be written as  

𝛺−1 = 𝑃𝛬−1𝑃𝑇 = 𝑃 ∗ 𝑑𝑖𝑎𝑔(1/𝜆𝑖) ∗ 𝑃
𝑇 A.1 

𝛺−1 =∑(
1

𝜆𝑘
𝑣𝑘𝑣𝑘

𝑇)

𝑘

=
1

𝜆1
𝑣1𝑣1

𝑇 +
1

𝜆2
𝑣2𝑣2

𝑇 +⋯+
1

𝜆𝑛
𝑣𝑛𝑣𝑛

𝑇 A.2 

From equation (7) in section 2.2, we have 𝑤̂∗ = 𝜑𝛺−1𝜇̂𝑒. By adding and subtracting 𝜑𝜇̂𝑒 

from this expression we get 

𝑤̂∗ = 𝜑𝜇̂𝑒 + 𝜑[𝛺−1 − 𝐼]𝜇̂𝑒 A.3 

Using the preliminary results above-mentioned in this appendix, we know that the matrix 

𝛺−1 − 𝐼 has the same eigenvectors with eigenvalues equal to 1
𝜆𝑘
− 1 for 𝑘 = 1…𝑛. 

Therefore, A.3 is stated as follows: 

𝑤̂∗ = 𝜑𝜇̂𝑒 + 𝜑 [∑(
1

𝜆𝑘
− 1)

𝑘

𝑣𝑘𝑣𝑘
𝑇] 𝜇̂𝑒 A.4 
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Given that eigenvector centralities refer to the elements of the eigenvector corresponding 

to the largest eigenvalue, we define 𝛤 = 𝜑 [∑ (
1

𝜆𝑘
− 1)𝑛

𝑘=2 𝑣𝑘𝑣𝑘
𝑇] 𝜇̂𝑒. Then, A.4 is stated 

as  

𝑤̂∗ = 𝜑𝜇̂𝑒 + 𝜑 (
1

𝜆1
− 1)𝑣1𝑣1

𝑇𝜇̂𝑒 + 𝛤 A.5 

𝑤̂∗ = 𝜑𝜇̂𝑒 +𝜑 (
1

𝜆1
− 1) (𝑣1

𝑇𝜇̂𝑒)𝑣1 + 𝛤 A.6 

𝑤̂∗ = 𝜑𝜇̂𝑒 + 𝜑 (
1

𝜆1
− 1) 𝜇̂𝑀

𝑒 𝑣1 + 𝛤 A.7 
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B. Descriptive Statistics of Stock Performance in terms of Centrality 

 

Table B.1. Sharpe ratios, excess returns and standard deviations of returns for the stocks 

included in the d-S&P dataset conditioning on their centralities  
The stocks are categorised in terms of the low, middle and high terciles of the centrality distribution. 

  Mean Std Percentiles Skew Kurtosis 
Sharpe Ratio Min 5% 50% 95% Max 

 Low 3.31% 1.57% -0.22% 1.23% 3.03% 6.16% 7.92% 0.51 0.13 
 Middle 2.82% 1.13% -0.07% 0.88% 2.85% 4.35% 5.86% -0.02 -0.06 
 High 2.88% 0.92% 1.03% 1.36% 2.86% 4.04% 5.33% 0.00 -0.66 
Excess Return                   
 Low 0.07% 0.05% -0.01% 0.02% 0.06% 0.18% 0.22% 1.20 0.84 
 Middle 0.06% 0.03% 0.00% 0.02% 0.06% 0.12% 0.13% 0.58 -0.08 
 High 0.06% 0.02% 0.02% 0.03% 0.06% 0.09% 0.16% 0.85 2.59 

Std                   
 Low 2.05% 0.70% 1.09% 1.20% 1.95% 3.21% 4.84% 1.30 2.53 
 Middle 2.09% 0.63% 1.09% 1.15% 2.03% 3.24% 3.82% 0.58 -0.23 
 High 2.24% 0.50% 1.43% 1.49% 2.23% 3.17% 3.76% 0.60 0.23 
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C. Securities’ description by their Centrality in the d-S&P dataset 
Table C.1. Sharpe ratio, CAPM Beta, Market capitalization and Centrality ranking for each stock in the d-
S&P dataset 

Ticker Name Economic Sector Sharpe 
Ratio 

CAPM 
Beta 

Market 
Cap. Centrality 

BEN FRANKLIN RESOURCES INC 
Finance, Insurance, And Real 

Estate 0.554 1.493 26588.88 0.0892 
TRO

W PRICE (T. ROWE) GROUP 
Finance, Insurance, And Real 

Estate 0.605 1.628 16593.66 0.0886 
DD DU PONT (E I) DE NEMOURS Manufacturing 0.290 1.115 41936.60 0.0880 
PPG PPG INDUSTRIES INC Manufacturing 0.568 1.109 20755.92 0.0872 

L LOEWS CORP Manufacturing 0.451 1.240 16038.30 0.0868 
EMR EMERSON ELECTRIC CO Manufacturing 0.475 1.130 35205.53 0.0866 

UTX 
UNITED TECHNOLOGIES 

CORP Manufacturing 0.547 0.976 75165.85 0.0860 
PCAR PACCAR INC Manufacturing 0.614 1.432 15959.13 0.0856 
ITW ILLINOIS TOOL WORKS Manufacturing 0.415 1.033 28182.33 0.0854 
PX PRAXAIR INC Manufacturing 0.648 1.048 32520.54 0.0843 

AXP AMERICAN EXPRESS CO 
Finance, Insurance, And Real 

Estate 0.373 1.488 64492.56 0.0842 

APD 
AIR PRODUCTS & 
CHEMICALS INC Manufacturing 0.403 1.051 17508.17 0.0839 

HON 
HONEYWELL 

INTERNATIONAL INC Mining 0.530 1.098 49720.61 0.0837 
ETN EATON CORP PLC Manufacturing 0.565 1.149 18307.42 0.0831 
DIS DISNEY (WALT) CO Services 0.527 1.101 94569.29 0.0826 

CVX CHEVRON CORP Manufacturing 0.605 0.998 211649.54 0.0826 
DHR DANAHER CORP Manufacturing 0.593 0.923 38721.26 0.0823 
WY WEYERHAEUSER CO Manufacturing 0.355 1.262 15041.49 0.0822 
CAT CATERPILLAR INC Manufacturing 0.638 1.232 58598.03 0.0821 
XOM EXXON MOBIL CORP Manufacturing 0.530 0.937 394610.88 0.0816 
MMM 3M CO Manufacturing 0.370 0.836 64245.78 0.0816 

IR INGERSOLL-RAND PLC Manufacturing 0.452 1.320 14512.69 0.0814 

UPS 
UNITED PARCEL SERVICE 

INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.217 0.797 140381.93 0.0808 

BK 
BANK OF NEW YORK 

MELLON CORP 
Finance, Insurance, And Real 

Estate 0.207 1.575 30033.20 0.0807 
GE GENERAL ELECTRIC CO Manufacturing 0.163 1.152 220107.37 0.0805 

VNO VORNADO REALTY TRUST Retail Trade 0.443 1.425 14906.33 0.0804 

JPM JPMORGAN CHASE & CO 
Finance, Insurance, And Real 

Estate 0.433 1.609 167063.15 0.0804 

PRU PRUDENTIAL FINANCIAL INC 
Finance, Insurance, And Real 

Estate 0.385 1.847 24746.29 0.0796 

SCHW SCHWAB (CHARLES) CORP 
Finance, Insurance, And Real 

Estate 0.323 1.505 18308.84 0.0795 
ECL ECOLAB INC Manufacturing 0.599 0.845 21060.08 0.0794 

MET METLIFE INC 
Finance, Insurance, And Real 

Estate 0.316 1.690 35003.59 0.0790 
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Continue Table C.1. 
 

SPG 
SIMON PROPERTY GROUP 

INC 
Finance, Insurance, And Real 

Estate 0.607 1.445 48904.96 0.0790 

GS 
GOLDMAN SACHS GROUP 

INC 
Finance, Insurance, And Real 

Estate 0.343 1.426 62006.90 0.0789 

PLD PROLOGIS INC 
Finance, Insurance, And Real 

Estate 0.352 1.707 16818.13 0.0787 

MS MORGAN STANLEY 
Finance, Insurance, And Real 

Estate 0.214 2.093 151051.07 0.0787 

PSA PUBLIC STORAGE 
Finance, Insurance, And Real 

Estate 0.628 1.246 49470.50 0.0787 
DOW DOW CHEMICAL Manufacturing 0.286 1.296 38770.45 0.0787 

FDX FEDEX CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.308 1.041 30527.15 0.0786 

ALL ALLSTATE CORP 
Finance, Insurance, And Real 

Estate 0.243 1.193 19402.11 0.0785 
COP CONOCOPHILLIPS Mining 0.574 1.055 70393.77 0.0784 
DE DEERE & CO Manufacturing 0.548 1.229 33464.03 0.0781 

CBS CBS CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.272 1.480 48475.70 0.0781 
JCI JOHNSON CONTROLS INC Manufacturing 0.422 1.226 37478.21 0.0780 

MHFI MCGRAW HILL FINANCIAL Manufacturing 0.361 1.142 15181.86 0.0780 

CSX CSX CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.595 1.162 20349.09 0.0778 

CCL CARNIVAL CORP/PLC (USA) 
Transp., Comm., Elect., Gas, 

Sant. S 0.300 1.204 30038.82 0.0775 

OXY 
OCCIDENTAL PETROLEUM 

CORP Mining 0.639 1.257 62068.18 0.0774 
MRO MARATHON OIL CORP Mining 0.597 1.284 21645.96 0.0773 

CB CHUBB CORP 
Finance, Insurance, And Real 

Estate 0.512 0.981 39459.22 0.0773 
IP INTL PAPER CO Manufacturing 0.278 1.345 17473.82 0.0771 

OKE ONEOK INC Mining 0.724 0.943 17493.21 0.0770 
UNP UNION PACIFIC CORP Mining 0.629 1.002 59230.57 0.0769 

HCP HCP INC 
Finance, Insurance, And Real 

Estate 0.491 1.330 19417.90 0.0766 

ADP 
AUTOMATIC DATA 

PROCESSING Services 0.393 0.794 27234.43 0.0766 
BBT BB&T CORP Manufacturing 0.209 1.358 20363.64 0.0764 

IBM 
INTL BUSINESS MACHINES 

CORP Manufacturing 0.606 0.795 216438.64 0.0764 

AFL AFLAC INC 
Finance, Insurance, And Real 

Estate 0.348 1.441 24898.61 0.0762 

BLK BLACKROCK INC 
Finance, Insurance, And Real 

Estate 0.604 1.260 35561.77 0.0761 

NSC NORFOLK SOUTHERN CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.507 1.082 19544.10 0.0761 
HD HOME DEPOT INC Retail Trade 0.449 1.000 100112.32 0.0761 

EQR EQUITY RESIDENTIAL 
Finance, Insurance, And Real 

Estate 0.477 1.385 17152.58 0.0761 
SLB SCHLUMBERGER LTD Mining 0.508 1.261 91998.73 0.0756 
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Continue Table C.1. 

COF 
CAPITAL ONE FINANCIAL 

CORP 
Finance, Insurance, And Real 

Estate 0.345 1.792 33674.64 0.0754 
MSFT MICROSOFT CORP Services 0.245 0.948 256956.00 0.0753 

USB U S BANCORP 
Finance, Insurance, And Real 

Estate 0.373 1.274 60049.63 0.0750 

STT STATE STREET CORP 
Finance, Insurance, And Real 

Estate 0.302 1.646 22039.55 0.0749 
PCP PRECISION CASTPARTS CORP Manufacturing 0.927 1.139 27770.42 0.0749 
NBL NOBLE ENERGY INC Mining 0.619 1.249 18211.46 0.0749 

DTE DTE ENERGY CO 
Transp., Comm., Elect., Gas, 

Sant. S 0.434 0.678 20665.97 0.0745 

NI NISOURCE INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.410 0.760 15411.73 0.0745 

WFC WELLS FARGO & CO 
Finance, Insurance, And Real 

Estate 0.325 1.553 180799.38 0.0744 
INTC INTEL CORP Manufacturing 0.298 1.119 102728.84 0.0744 

HCN HEALTH CARE REIT INC 
Finance, Insurance, And Real 

Estate 0.567 0.971 15907.19 0.0741 
M MACY'S INC Retail Trade 0.431 1.419 15626.20 0.0738 

APA APACHE CORP Mining 0.427 1.178 30714.85 0.0738 

SRE SEMPRA ENERGY 
Transp., Comm., Elect., Gas, 

Sant. S 0.690 0.761 17167.48 0.0737 

ACE ACE LTD 
Finance, Insurance, And Real 

Estate 0.473 1.058 27110.84 0.0736 

BAC BANK OF AMERICA CORP 
Finance, Insurance, And Real 

Estate 0.134 1.855 125124.05 0.0734 
LOW LOWE'S COMPANIES INC Wholesale Trade 0.307 1.037 42887.37 0.0734 
TWX TIME WARNER INC Services 0.344 1.076 45438.50 0.0733 
CSCO CISCO SYSTEMS INC Manufacturing 0.312 1.118 85858.85 0.0732 

TMO 
THERMO FISHER SCIENTIFIC 

INC Manufacturing 0.556 0.911 22974.50 0.0729 
TYC TYCO INTERNATIONAL LTD Manufacturing 0.456 0.999 25866.88 0.0728 
HAL HALLIBURTON CO Mining 0.590 1.323 32192.32 0.0725 

APC 
ANADARKO PETROLEUM 

CORP Mining 0.470 1.289 37132.70 0.0725 
COH COACH INC Manufacturing 0.683 1.306 16804.75 0.0724 

NOV 
NATIONAL OILWELL VARCO 

INC Manufacturing 0.609 1.541 29177.17 0.0723 
GD GENERAL DYNAMICS CORP Manufacturing 0.348 0.795 24457.15 0.0723 

ORCL ORACLE CORP Services 0.555 1.061 159407.81 0.0722 
BHI BAKER HUGHES INC Mining 0.274 1.275 17932.14 0.0722 

T AT&T INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.468 0.819 192384.94 0.0722 
NKE NIKE INC  -CL B Manufacturing 0.671 0.885 110200.60 0.0720 

WM WASTE MANAGEMENT INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.321 0.753 15650.87 0.0714 

PNC 
PNC FINANCIAL SVCS GROUP 

INC 
Finance, Insurance, And Real 

Estate 0.325 1.378 30845.99 0.0713 

D DOMINION RESOURCES INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.554 0.630 29764.79 0.0712 
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Continue Table C.1. 

FCX 
FREEPORT-MCMORAN 

COP&GOLD Mining 0.592 1.608 32455.80 0.0711 

EXC EXELON CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.297 0.785 25406.38 0.0711 

NEE NEXTERA ENERGY INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.591 0.697 29281.61 0.0709 
PG PROCTER & GAMBLE CO Manufacturing 0.366 0.547 167831.49 0.0709 
RL RALPH LAUREN CORP Manufacturing 0.664 1.154 15356.42 0.0709 

DVN DEVON ENERGY CORP Mining 0.364 1.135 21076.20 0.0708 
TGT TARGET CORP Retail Trade 0.359 0.994 39538.35 0.0708 
HES HESS CORP Manufacturing 0.395 1.322 18088.32 0.0707 
VFC VF CORP Manufacturing 0.652 0.908 16597.19 0.0705 

C CITIGROUP INC Retail Trade -0.012 1.901 116010.54 0.0703 
ADBE ADOBE SYSTEMS INC Services 0.499 1.171 17122.67 0.0703 

VZ 
VERIZON COMMUNICATIONS 

INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.484 0.749 123492.58 0.0701 

STI SUNTRUST BANKS INC 
Finance, Insurance, And Real 

Estate 0.133 1.604 15275.57 0.0699 
SBUX STARBUCKS CORP Retail Trade 0.599 1.048 38529.45 0.0697 

PEG 
PUBLIC SERVICE ENTRP GRP 

INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.483 0.780 15480.32 0.0696 
PFE PFIZER INC Manufacturing 0.155 0.771 184648.21 0.0694 
VLO VALERO ENERGY CORP Manufacturing 0.577 1.309 18884.29 0.0693 
JNJ JOHNSON & JOHNSON Manufacturing 0.293 0.530 193655.32 0.0692 
LLY LILLY (ELI) & CO Manufacturing 0.164 0.737 54636.25 0.0690 

EIX EDISON INTERNATIONAL 
Transp., Comm., Elect., Gas, 

Sant. S 0.720 0.778 14723.39 0.0689 

ED CONSOLIDATED EDISON INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.469 0.496 32532.20 0.0689 
EOG EOG RESOURCES INC Mining 0.633 1.187 32715.95 0.0688 

CTSH 
COGNIZANT TECH 

SOLUTIONS Services 0.806 1.243 22160.25 0.0682 
QCO

M QUALCOMM INC Manufacturing 0.584 1.050 106948.64 0.0680 

MMC MARSH & MCLENNAN COS 
Finance, Insurance, And Real 

Estate 0.129 0.885 18743.96 0.0679 
TJX TJX COMPANIES INC Retail Trade 0.669 0.847 32947.65 0.0678 

PPL PPL CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.446 0.688 16633.17 0.0677 
NOC NORTHROP GRUMMAN CORP Manufacturing 0.233 0.697 33207.73 0.0675 
AGN ALLERGAN INC Manufacturing 0.519 0.803 27553.94 0.0675 
SYY SYSCO CORP Wholesale Trade 0.205 0.673 17447.53 0.0672 

FE FIRSTENERGY CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.358 0.717 17464.69 0.0672 
KMB KIMBERLY-CLARK CORP Manufacturing 0.415 0.513 33121.87 0.0666 
COST COSTCO WHOLESALE CORP Wholesale Trade 0.549 0.751 42401.49 0.0665 

KO COCA-COLA CO Manufacturing 0.357 0.562 162617.50 0.0664 
MSI MOTOROLA SOLUTIONS INC Manufacturing 0.292 1.212 31236.48 0.0663 
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Continue Table C.1. 
 

EBAY EBAY INC Services 0.492 1.095 65991.02 0.0662 
TXN TEXAS INSTRUMENTS INC Manufacturing 0.368 1.050 34621.60 0.0659 
WMB WILLIAMS COS INC Construction 0.825 1.339 20527.98 0.0659 
SHW SHERWIN-WILLIAMS CO Manufacturing 0.791 0.812 15859.92 0.0658 

AEP 
AMERICAN ELECTRIC POWER 

CO 
Transp., Comm., Elect., Gas, 

Sant. S 0.400 0.718 41418.02 0.0657 
HPQ HEWLETT-PACKARD CO Manufacturing 0.219 1.010 27242.95 0.0656 
SYK STRYKER CORP Manufacturing 0.334 0.758 20842.62 0.0653 
GPS GAP INC Retail Trade 0.459 1.000 15686.40 0.0647 
RIG TRANSOCEAN LTD Mining 0.363 1.161 16051.65 0.0645 

ADM 
ARCHER-DANIELS-MIDLAND 

CO Manufacturing 0.398 0.958 19483.20 0.0643 

SO SOUTHERN CO 
Transp., Comm., Elect., Gas, 

Sant. S 0.476 0.475 37420.48 0.0641 
MON MONSANTO CO Manufacturing 0.845 1.010 46367.59 0.0635 
EMC EMC CORP/MA Manufacturing 0.585 1.069 53298.37 0.0634 
CTL CENTURYLINK INC Construction 0.428 0.729 24377.39 0.0633 
PEP PEPSICO INC Manufacturing 0.451 0.516 106134.93 0.0632 

WMT WAL-MART STORES INC Retail Trade 0.261 0.574 234892.09 0.0631 
INTU INTUIT INC Services 0.407 0.868 17076.96 0.0627 
BMY BRISTOL-MYERS SQUIBB CO Manufacturing 0.372 0.671 53773.50 0.0627 
WAG WALGREEN CO Retail Trade 0.187 0.724 30698.70 0.0625 

DUK DUKE ENERGY CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.534 0.610 89830.40 0.0624 
ACN ACCENTURE PLC Services 0.625 0.837 39386.24 0.0623 
MDT MEDTRONIC INC Manufacturing 0.108 0.659 47146.80 0.0622 
BRK.

B BERKSHIRE HATHAWAY 
Finance, Insurance, And Real 

Estate 0.296 0.607 666986.40 0.0620 

PCG PG&E CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.686 0.625 17251.56 0.0618 

CI CIGNA CORP 
Finance, Insurance, And Real 

Estate 0.378 1.109 15319.54 0.0617 

EL 
LAUDER (ESTEE) COS INC -CL 

A Manufacturing 0.585 0.811 42074.07 0.0616 
LMT LOCKHEED MARTIN CORP Manufacturing 0.298 0.636 29863.84 0.0614 

K KELLOGG CO Manufacturing 0.431 0.475 19994.30 0.0614 
BF.B BROWN-FORMAN  -CL B Manufacturing 0.682 0.599 30119.15 0.0613 
MCD MCDONALD'S CORP Retail Trade 0.839 0.608 88562.84 0.0612 

CL COLGATE-PALMOLIVE CO Manufacturing 0.451 0.516 49393.26 0.0611 
SYMC SYMANTEC CORP Services 0.355 0.997 17009.18 0.0611 
GLW CORNING INC Manufacturing 0.639 1.272 18652.36 0.0609 
MRK MERCK & CO Manufacturing 0.214 0.769 124637.90 0.0609 

ESRX 
EXPRESS SCRIPTS HOLDING 

CO Services 0.716 0.880 43718.39 0.0607 

CAH CARDINAL HEALTH INC Wholesale Trade 0.101 0.735 14532.00 

 
0.0606 
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AET AETNA INC 
Finance, Insurance, And Real 

Estate 0.580 0.961 15490.70 0.0605 
MCK MCKESSON CORP Wholesale Trade 0.527 0.757 25154.68 0.0604 

CCI CROWN CASTLE INTL CORP 
Transp., Comm., Elect., Gas, 

Sant. S 0.980 1.077 42308.98 0.0602 

MDLZ 
MONDELEZ INTERNATIONAL 

INC Manufacturing 0.210 0.533 45232.57 0.0600 
CVS CVS CAREMARK CORP Manufacturing 0.579 0.725 60244.10 0.0600 

AON AON PLC 
Finance, Insurance, And Real 

Estate 0.490 0.740 17721.07 0.0599 
AAPL APPLE INC Manufacturing 1.252 1.019 625254.73 0.0598 
BRCM BROADCOM CORP  -CL A Manufacturing 0.524 1.285 37460.88 0.0595 

UNH UNITEDHEALTH GROUP INC 
Finance, Insurance, And Real 

Estate 0.391 0.894 54890.88 0.0591 
BDX BECTON DICKINSON & CO Manufacturing 0.568 0.545 15677.04 0.0590 
WFM WHOLE FOODS MARKET INC Retail Trade 0.533 1.020 17975.56 0.0584 
AMG

N AMGEN INC Manufacturing 0.345 0.686 66210.21 0.0582 
ABT ABBOTT LABORATORIES Manufacturing 0.413 0.530 103533.75 0.0579 

WLP WELLPOINT INC 
Finance, Insurance, And Real 

Estate 0.313 0.785 19129.61 0.0579 

STZ 
CONSTELLATION BRANDS  -

CL A Manufacturing 0.450 0.771 16242.10 0.0577 
HSY HERSHEY CO Manufacturing 0.528 0.513 32237.28 0.0568 

CELG CELGENE CORP Manufacturing 0.884 0.938 33269.00 0.0563 

AMT AMERICAN TOWER CORP 
Transp., Comm., Elect., Gas, 

Sant. S 1.038 1.035 30549.00 0.0556 
GIS GENERAL MILLS INC Manufacturing 0.489 0.403 30333.64 0.0548 

YHOO YAHOO INC Services 0.493 1.025 23600.70 0.0547 
GILD GILEAD SCIENCES INC Manufacturing 0.746 0.794 55670.17 0.0546 

AIG 
AMERICAN INTERNATIONAL 

GROUP 
Finance, Insurance, And Real 

Estate -0.035 1.825 52113.24 0.0542 
MO ALTRIA GROUP INC Manufacturing 0.813 0.532 63670.15 0.0540 

TAP 
MOLSON COORS BREWING 

CO Manufacturing 0.301 0.581 15507.10 0.0536 

BAX 
BAXTER INTERNATIONAL 

INC Manufacturing 0.443 0.578 36570.27 0.0533 
BIIB BIOGEN IDEC INC Manufacturing 0.480 0.845 34630.70 0.0517 
ISRG INTUITIVE SURGICAL INC Manufacturing 0.860 1.118 19516.72 0.0517 
RAI REYNOLDS AMERICAN INC Manufacturing 0.864 0.528 23157.22 0.0502 

PCLN PRICELINE.COM INC 
Transp., Comm., Elect., Gas, 

Sant. S 0.990 1.161 30936.37 0.0491 

ALXN 
ALEXION 

PHARMACEUTICALS INC Manufacturing 0.958 0.883 18207.68 0.0489 

REGN 
REGENERON 

PHARMACEUTICALS Manufacturing 0.690 1.214 16508.26 0.0468 
NEM NEWMONT MINING CORP Mining 0.309 0.611 45653.85 0.0392 
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D. Regressions of returns from 𝝆-dependent strategy on the four risk factors, 
MKT, HML, SMB, MOM without winsorizing. 
 

Table D.1. OLS estimation of Annualized Carhart’s Alpha from the four factor model in 

equation (17) 

We consider the d-S&P, and d-FTSE, m-NYSE datasets and without winsorising. t-statistics are in parentheses 

and the statistical significance is as follows: * at 5% level, ** at 1% and *** at 0.1% level. Standard errors are 

corrected following Newey and West (1987). Portfolios of size 10, 20 and 50 are considered with a holding 

period of one (1d) and twenty (20d) for the daily datasets and one (1m) and twelve (12m) months for the 

monthly dataset. 

Dataset Obs. 
Portfolio Setting 

𝜶 
 

𝜷𝑴𝑲𝑻 
 

𝜷𝑯𝑴𝑳 
 

𝜷𝑺𝑴𝑩 
 

𝜷𝑴𝑶𝑴 
 

Stocks Holding 
Period 

SP500 1580 

10 
1d/1m 12.87 0.87 -0.15 0.06 0.18 

(2.74)*** (53.93)*** (-3.32)*** (1.49) (0.76) 

20d/12m 15.06 0.9 -0.17 0.01 0.04 
(3.20)*** (38.60)*** (-3.34)*** (0.16) (1.72)* 

20 
1d/1m 3.5 0.89 -0.19 -0.07 0.03 

(2.60)*** (54.95)*** (-5.28)*** (-2.47)** (2.02)** 

20d/12m 11.79 0.9 -0.21 -0.1 0.03 
(3.33)*** (33.82)*** (-4.39)*** (-2.39)** -1.61 

50 
1d/1m 8.14 0.92 -0.14 -0.14 0.05 

(3.44)*** (61.96)*** (-5.06)*** (-5.93)*** (3.95)*** 

20d/12m 8.27 0.93 -0.17 -0.17 0.04 
(3.47)*** (47.79)*** (-5.60)*** (-5.60)*** (3.57) 

FTSE 1000 

10 
1d/1m 35.45 -0.01 0.19 -0.02 0.01 

(5.37)*** (-0.39) (0.30) (-0.39) (0.14) 

20d/12m 34.03 -0.01 0.03 -0.03 0.02 
(5.07)*** (-0.07) (0.51) (-0.54) (0.55) 

20 
1d/1m 31.27 -0.2 0.04 0.01 0.03 

(5.13)*** (-0.61) (0.73) (0.18) (0.85) 

20d/12m 30.49 -0.02 0.03 0.01 0.03 
(5.02)*** (-0.59) (0.57) (0.11) (0.86) 

50 
1d/1m 24.77 -0.02 0.02 0.03 0.06 

(3.77)*** (-0.54) (0.32) (0.6) (1.37) 

20d/12m 24.59 -0.02 0.02 0.03 0.05 
(3.73)*** (-0.54) (0.36) (0.59) (1.35) 

NYSE 324 

10 
1d/1m 0.88 0.91 0.32 0.36 -0.07 

(0.38) (17.16)*** (4.64)*** (4.31)*** (-0.38) 

20d/12m 1.4 0.89 0.41 0.32 -0.1 
(0.62) (17.55)*** (4.81)*** (4.37)*** (-1.64) 

20 
1d/1m 1.69 0.95 0.41 0.29 -0.14 

(0.93) (23.08)*** (5.79)*** (4.91) (-2.64)*** 

20d/12m 1.11 0.93 0.38 0.27 -0.14 
(0.63) (21.60)*** (5.63)*** (4.78)*** (-2.99)*** 

50 
1d/1m 2.01 0.91 0.38 0.23 -0.13 

(1.40) (26.68)*** (5.59)*** (3.93)*** (-2.77)*** 

20d/12m 2.25 0.89 0.38 0.24 -0.12 
(1.59) (26.04)*** (5.85)*** (3.97)*** (-2.64)*** 
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E. Annualized risk-adjusted returns for 𝝆-dependent strategy with 0% and 10% 
winsorization 
 

Table E.1. Annualized risk-adjusted returns for different settings of 𝜌-dependent strategy 
without winsorisation 
We report annualized risk-adjusted returns for different settings of the 𝜌-dependent strategy on the four Carhart 
(1997) factors, MKT, HML, SMB, MOM. The estimation window is considered to be 1000 days (192 months) 
for daily (monthly) datasets. The t-statistics are reported in the parentheses. ** and * indicate significance at 1% 
and 5% levels, respectively. 

Portfolio Setting Alpha (no winsorising) 
Stocks Holding Period d-S&P d-FTSE m-NYSE 

10 
1d/1m 12.87 35.45 0.88 

(2.74)** (5.37)** (0.38) 

20d/12m 15.06 34.03 1.40 
(3.20)** (5.07)** (0.62) 

20 
1d/1m 3.50 31.27 1.69 

(2.60)** (5.13)** (0.93) 

20d/12m 
11.79 30.49 1.11 

(3.33)** (5.02)** (0.63) 

50 
1d/1m 8.14 24.77 2.01 

(3.44)** (3.77)** (1.4) 

20d/12m 8.27 24.59 2.25 
(3.47)** (3.73)** (1.59) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153                                                                           Chapter 4: A Network Approach  

  to Portfolio Selection 

  

Table E2. Annualized risk-adjusted returns for 𝜌-dependent Strategy with 10% 
winsorisation  
We report annualized risk-adjusted returns for various settings of ρ-dependent strategy on the four Carhart 
(1997) factors, MKT, HML, SMB, MOM with 10% winsorisation. The estimation window is considered to be 
1000 days (192 months) for daily (monthly) datasets. The t-statistics are reported in the parentheses. ** and * 
indicate significance at 1% and 5% levels, respectively.  

Portfolio Setting Alpha (10% windsorizing) 
Stocks Holding Period d-S&P d-FTSE m-NYSE 

10 
1d/1m 14.81 35.14 5.16 

(3.82)** (7.06)** (2.48)* 

20d/12m 17.85 34.75 5.30 
(4.57)** (6.88)** (2.55)* 

20 
1d/1m 13.83 34.47 9.98 

(4.24)** (7.77)** (4.29)** 

20d/12m 15.72 33.70 5.91 
(4.86)** (7.60)** (3.39)** 

50 
1d/1m 12.68 29.51 5.78 

(4.51)** (6.19)** (3.70)** 

20d/12m 13.14 29.74 6.45 
(4.70)** (6.70)** (4.03)** 
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F. The Relationship between Stock Centrality and Stability 

We associate the concept of stock stability with the tendency of a particular asset to 

remain listed in the market through time without any change in its relative centrality 

status. This appendix analyzes the stability of stocks listed in NYSE from two different 

perspectives. First, we present results regarding the switching nature of assets in 

accordance to their different centrality in the stock market network. Second, we 

investigate whether the period size chosen to compute the correlation matrix influence 

the ranking of centralities.  

We employ an m-NYSE dataset that accounts for all of the NYSE stocks with monthly 

pricing records in the period starting from April-1968 until April-2012. Thus, we include 

a full list of companies that have ever existed at some point in this period. We analyze the 

change in the nature of stocks in terms of centrality by relying on a moving window 

approach. We specify a 30-year moving window and divide it into two sub-periods, each 

of 15 years. We use the first and the second period to give an initial and final 

categorization of stocks in accordance with their centrality. Three exclusive and 

collectively exhaustive groups of stocks are created: high, medium and low central stocks 

in accordance to the top, middle and bottom terciles of the centrality distribution. Next, 

we construct a switching matrix accounting for the distribution of stocks belonging to a 

particular range of centrality in the initial period, in terms of their centrality in the final 

period. Since a one-year displacement step is under consideration, 15 individual 

switching matrices were computed. Figure F1 reports the results for each of those 

iterations69. 

 

 

 

                                                           
69 The sum of vertical height for each line does not sum to one since the proportion of the delisted firms 
is not included in the graph. 
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Figure F.1: Change in centrality of securities from an initial tercile of centrality to a final tercile of centrality 
across 15 iterations in m-NYSE dataset. We specify a 30-year moving window and divide it into two sub-
periods, each of 15 years. We use the first and the second period to have an initial and final categorization of 
stocks securities in accordance with their centrality. Three exclusive and collectively exhaustive groups of stocks 
are created: high, medium and low central stocks in accordance to the top, middle and bottom terciles of the 
centrality distribution. 

 

In the left-panel of Figure F1, it is obvious that most of low central stocks tend to change 

their nature to medium central or stay low central. Additionally, we can see that just a 

small proportion of low central stocks change to become highly central. The middle-panel 

of Figure F1 depicts the changing nature of medium central stocks. As it can be inferred, 

medium central stocks mostly stay in the middle range of centrality and lower percentages 

of them tend to change towards the low or high centrality bucket. Finally, the right-panel 

of Figure F1 presents the result of the experiment when stocks were initially classified as 

highly central assets. We can observe that high central stocks tend to stay central across 

the iterations and only lower percentage of them tend to become low or medium central. 

As a summary, Figure F2 presents the average of the percentage of switching in centrality 

over the 15 interactions. In a nutshell, we find that among the stocks that remain listed, 

there is a tendency to occupy the same position into the stock market network through 

time providing a sort of stability to the structure. 
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Figure F.2: Average percentage of centrality switching for low, medium and high central securities. A 30-year 
moving window is specified in m-NYSE dataset and it is divided into two sub-periods, each of 15 years. We 
use the first and the second period to give an initial and final categorization of securities in accordance to their 
centrality. Three exclusive and collectively exhaustive groups of assets are created: high, medium and low central 
stocks, in accordance with the top, middle and bottom terciles of the centrality distribution. 

 

In the second analysis, we investigate the relationship between the ranking of centrality 

and the size of the period chosen to compute the correlation matrix. We consider the d-

S&P dataset for this analysis because several lengths of period can be investigated with a 

daily frequency. 

We split the d-S&P data into several yearly subsamples made of 250 daily returns and 

compute the centrality rankings for each of these subsamples. In the next step, we further 

divide the yearly subsamples into shorter datasets accounting for one month (25 daily 

returns), two month (50 returns) and so on up to the yearly subsamples. Afterward, the 

mean correlations between the ranking of centralities obtained from these shorter datasets 

with the initial yearly subsamples are computed and reported in figure F.3. Clearly, the 

correlation between these centrality rankings is high (on average 0.8) indicating that the 

ordering it provides is considerably robust to the period size used to estimate the 

correlation matrix. 
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Figure F.3: Average correlation of centrality rankings in the d-S&P500 dataset between yearly subsamples (250 
returns) and a set of lower-size subsamples starting with length equal to 25 days and subsequent increments of 
25 days up to 250 days (one year). 
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G. Turnover-driven Transaction Cost 

The analysis in section 6.5 assumes that investor faces a fixed transaction cost without 

accounting for the magnitude of changes in portfolio weights. However, investors may 

incur proportional costs that severely undermine the performance of their strategy. In 

order to take this point into account, we compute another version of the breakeven 

transaction cost (BETC) by solving the next expression: 

∑ [(1 + 𝑅𝑡)(1 − 𝐵𝐸𝑇𝐶
∗ × ∑ |𝑤𝑗,𝑡+1

s − 𝑤𝑗,𝑡+|
𝑁
𝑗=1 ) − 1] =𝑇−1

𝑡=𝑀 0                                 (G.1) 

Therefore, the value of 𝐵𝐸𝑇𝐶∗represents the corresponding proportional of transaction 

cost that is required in order to eliminate portfolio return. The results are presented in 

table G.1 where low values of 𝐵𝐸𝑇𝐶∗ are displayed. Nevertheless, considering the low 

proportional transaction cost that investors face in the current state of the financial 

markets, we conclude that the 𝜌–dependent strategy remains profitable even from this 

perspective. 

Table G.1. 𝐵𝐸𝑇𝐶∗ for 𝜌–dependent strategy  
We report the 𝐵𝐸𝑇𝐶∗ for 𝜌–dependent strategy in various strategy settings across the three datasets of d-S&P, 
d-FTSE and m-NYSE. The results are reported in basis points. 

Portfolio Setting BETC 
Stocks Holding Period d-S&P d-FTSE m-NYSE 

10 20d/12m 13 20 12 
20 20d/12m 12 19 14 
50 20d/12m 11 18 13 

 

Since the corresponding 𝐵𝐸𝑇𝐶∗s for one day/month holding period are extremely low, 

table G.1 does not report their values. In these cases, even a small proportional transaction 

cost might eliminate any benefit which in turn raises the concern derived from the 

application of the 𝜌–dependent strategy in a highly frequent rebalancing framework. 
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