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Abstract

Forecasting mortality rates has become a key task for all who are concerned with payments for
non-active people, such as Social Security or life insurance firms managers. The non-ending process
of reduction in the mortality rates is forcing to continuously improve the models used to project these
variables. Traditionally, actuaries have selected just one model, supposing that this model were able
to generate the observed data. Most times the results have driven to a set of questionable decisions
linked to those projections. This way to act does not consider the model uncertainty when selecting
a specific one. This drawback can be reduced through model assembling. This technique is based
on using the results of a set of models in order to get better results. In this paper we introduce two
approaches to ensemble models: a classical one, based on the Akaike information criterion (AIC), and
a Bayesian model averaging method. The data are referred to a Spanish male population and they
have been obtained from the Human Mortality Database. We have used four of the most widespread
models to forecast mortality rates (Lee-Carter, Renshaw-Haberman, Cairns-Blake-Dowd and its
generalization for including cohort effects) together with their respective Bayesian specifications.
The results suggest that using assembling models techniques gets more accurate predictions than
those with the individual models.

Keywords: AIC model averaging, Bayesian model averaging, bootstrap, Cairns-Blake-Dowd model, Lee-
Carter model, longevity risk, model uncertainty, projected life tables, Renshaw-Haberman model.

AMS subject classification: 62P05, 62F15.

1 Introduction and background

The increase of the human lifetime has been one of the most relevant improvements reached during the
last century. This process has been specially intense after the end of II World War in developed countries
and nobody knows if it has ended or not. So, the ability to predict the right mortality rates has become
to be overriding for all the activities linked with third age people, such as social and medical services or
payments for retirement (public pensions or private annuities). From this point of view, although the
reduction of mortality rates can be considered as an improvement for the mankind, it is also true that it
opens the door to a lot of financial troubles for states and private insurance firms due to the unbalance
between expected inflows and outflows. Lower mortality rates suppose more years to live and so, more
money to spend in retirement pensions and social and medical services. This is the reason to look for
models able to give more accurate mortality projections.

Focusing in the insurance business, mortality reduction affects to the annuities because the promised
payments depends on the amounts paid (called premiums) by the insured people. Premiums amount
depends on the age of the customer and the expected number of years receiving the annuities. They
are calculated using probabilities included in a life table. In a situation where the mortality rates for
each age do not change across years, the premiums received by the insurer should be enough to cover
the expected payments and the administrative expenses in the future. The firms would obtain a profit
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and they would guarantee their solvency. However, the diminishing mortality rates make that incomes
cannot cover the future expected expenses. The results are worst financial results and even bankruptcy.
The potential losses that the annuities business can suffer derived to greater payments linked to the
enlargement of human life is called longevity risk.

Considering the nature of this risk, the strategy of increasing the portfolio size became wrong because
the reduction of mortality affects to all contracts included in the portfolio. There are two possible ways
to reduce the impact of longevity risk. The first one is close to financial activity and it supposes the
development of financial assets linked to human longevity that can protect insurance firms from losses
generated by wrong calibration of life tables (see Cox et al. (2010), Blake et al. (2006) and Lin and
Cox (2005)). The second one is linked to the development of statistical methodologies for elaborating
life table able to estimate the future reductions in the mortality rates (see Lee and Carter (1992), Cairns
et al. (2006) and Renshaw and Haberman (2006)). This paper focuses on the last proposal, and it tries
to introduce appropriate methodologies in order to obtain robust life tables accounting for improvements
in mortality.

In the recent literature, mortality has been modelled as a stochastic process. Lee-Carter model
(Lee and Carter (1992)) is probably the most widespread approach. The authors proposed a model for
describing the change in mortality as a function of a latent factor evolving throughout time. On the other
hand, some authors have argued that the Lee-Carter age-period model does not always fit accurately
empirical data (see Renshaw and Haberman (2003)), and they extended the methodology introducing
age-period-cohort effects. Accordingly, Renshaw and Haberman (2006) presented an extension of the
Lee-Carter model by adding a term about cohort effects. The CBD model (see Cairns et al. (2006)) is
another widespread alternative to the Lee-Carter model, that includes a two-latent factor model, where
age is included in the model as an independent variable. Its main assumption is that the effects linked to
age and period are respectively different and they both affect the future death rate. Further developments
of this model can be found in Cairns et al. (2009b) and in Dowd et al. (2010), that introduce cohort
effects and quadratic terms that fit particular US data. From a semi-parametric approach, models that
use smoothing techniques have been proposed in Currie et al. (2004), who applied B-splines and P-splines
for fitting mortality surfaces, as well as age-period-cohort models also based on splines (see Currie et al.
(2006)).

There are several papers with reviews and comparatives of various stochastic mortality models (see
Haberman and Renshaw (2011), Booth and Tickle (2008), Cairns et al. (2009b)), Cairns et al. (2011).
Recently, Fung et al. (2016) conducted a study aiming to reinterpret the former models as a general
state-space model, as well as developing a novel class of Bayesian state-space models, accounting for
heteroscedasticity and stochastic volatility to the period effect.

In this paper, we consider several models as well, but the target is to reduce the uncertainty linked
to any specific model, concept that is frequently forgotten in statistical practice (Hoeting et al. (1998)).
The consequences to choose just a model is that researchers work as if data were generated by the selected
model, leading to inferences and decisions based on it, without considering the uncertainty linked to the
selection of the proper model.

Lutz et al. (1998), Lutz et al. (2004) and Lutz et al. (2008) proposed some expert-based probabilistic
projections. Nevertheless, the method is not based on available data, but on a set of experts opinions and
their capacity to specify probabilistic bounds, which are not necessary accurate (Alho (2005)). Bayesian
models are based on historical information or in skilled opinions to improve the quality of the estimations.
As examples, Girosi and King (2008), Czado et al. (2005), Li et al. (2014), Pedroza (2006) and Gerland
et al. (2014) show relevant applications o this methodology. In particular, Pedroza (2006) proposed a
Bayesian approach to Lee-Carter model assuming the uncertainty in the age parameters, as well as in
the mortality index, and Dellaportas et al. (2011) used a Bayesian version of the Heligman and Pollard
(1980) model to predict mortality rates.

Bearing in mind the difference between classical and Bayesian approaches, there are also two main
approaches for model assembling. First, a model averaging method based on the Akaike information cri-
terion (AIC) (see Buckland et al. (1997)), consisting on a classical or frequentist methodology. Secondly,
a Bayesian Model Averaging (BMA) technique proposed by Hoeting et al. (1998). Both approaches have
been widely used for model uncertainty in many areas up today. The first one has been used in ecology
(see Cade (2015)), medicine (see Schorning et al. (2016)) or finance (see Liu and Kuo (2016)). Whereas
the BMA approach has also been applied in econometrical time series (see Kleijn (2016)), energy stud-
ies (see Culka (2016)) or management of health (see Pannullo et al. (2016)). But, to the best of our
knowledge, none of the former approaches have been used in the actuarial field.

The structure of this paper is as follows. Section 2 presents the main mortality projection models.
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Section 3 introduces the model assembling approaches, those based on Akaike weights and the Bayesian
model averaging. Section 4 shows the application of these assembling techniques to mortality projection
models. Finally, Section 5 summarizes the main conclusions and final remarks.

2 Main mortality projection models

There is fairly consensus regarding what are the main mortality projection models in the actuarial
literature, and these models are commonly ordered and labelled from M1 to M8. Some of them are
specified by means of the central death rate, while others are specified in terms of the logit of the death
probability: Table 1 summarizes their main specifications.

By convention (see Cairns et al. (2009b)), the following notation is used in all models: the sets of

parameters β
(i)
x , κt, κ

(i)
t and γt−x reflect age, periods and cohort effects, respectively. In M4, Bayi,j(x; t)

are B-Splines basis functions and θi,j are weights associated to each basis function. In M7 and M8, x
and σ̂2 are respectively the average and estimated variance of age in the data set. Finally, in M8, xc is
a centrality parameter.

Table 1: Main mortality projection models

Model Specification

LC or M1 log [mx(t)] = β
(1)
x + β

(2)
x κt

RH or M2 log [mx(t)] = β
(1)
x + β

(2)
x κt + β

(3)
x γt−x

M3 log [mx(t)] = β
(1)
x + κt + γt−x

M4 log [mx(t)] = Σi,jθi,jB
ay
i,j(x; t)

CBD or M5 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x− x)

M6 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x− x) + γt−x

M7 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x− x) + κ

(3)
t ((x− x)2 − σ̂2

x) + γt−x

M8 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x− x) + γt−x(xc − x)

M1 was introduced by Lee and Carter (1992) and M2 is a generalization of M1 including cohort
effects, proposed by Renshaw and Haberman (2006). M3 is a particular case of M2 proposed by Currie

(2006) with β
(2)
x = β

(3)
x = 1, and they used P-splines in order to estimate the parameters and to introduce

smoothness. Currie, Durban, and Eilers (2004) put forward M4 by using B-Splines and P-Splines to fit
the mortality surface, with smoothing of the θij coefficients of the age and cohort measures. M5 was
proposed by Cairns, Blake, and Dowd (2006), and M6 is a generalization of M5 including cohort effects.
On the other hand, M7 is a generalization of M6, which adds a quadratic term into the age effect in order
to include some possible curvature in the logit [qx(t)] of some US analysed data. Finally, M8 is another
generalization of M5, justified by the possibility that the cohort effect may be a decreasing function of
age, instead of being constant.

In what follows, we present the following models in detail: LC, RH, CBD and M6, which we will
consider in the model averaging methods that we show. The reason for selecting these four models, lies
on the fact that LC is the most extended mortality predictive model, while CBD is the most widespread
alternative to LC model. On the other hand, RH and M6 are their respective specifications accounting
for cohort effects. Regarding M3 and M4, the innovation is related to using B-Splines and P-Splines
to ensure smoothness, and therefore it follows a different approach. These techniques are adequate for
fitting mortality, but they are not well suited for forecasting aims.

Lee-Carter model (LC )

Lee and Carter (1992) proposed a model to forecast the mortality as a function of a time-varying index.
This paper was the origin for further developments in the estimation of future mortality (see for a review
Booth et al. (2006)) such as e.g. Lee (2000), Booth et al. (2002), Li and Lee (2005), Czado, Delwarde,
and Denuit (2005), Li et al. (2014) and Pedroza (2006), among others.

Let mx(t) denote the central death rate for age x in year t, the LC specification is as follows

log [mx(t)] = β(1)
x + β(2)

x κt + εxt, (1)
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where terms β
(1)
x describe the pattern of the average mortality at each age x, κt is a time series that

models changes in the level of mortality over time, and terms β
(2)
x describe deviations from this average

pattern when κt varies. Finally, the error term εxt models the random deviations with 0 mean and
constant variance σ2

ε .
Usually, the LC model assumes that κt is a random walk with drift

κt = κt−1 + θ1 + ω
(1)
t ,

where θ1 is the drift parameter that models linear trends and ω
(1)
t is another error term.

In order to avoid problems of identifiability of (1), Lee and Carter (1992) proposed two additional

constraints on parameters β
(2)
x and κt, such as

∑
x β

(2)
x = 1 and

∑
t κt = 0. Under this set of constraints,

β
(1)
x is the average of the log-central death rate for age x over time, whereas β

(2)
x is the percent change

of the natural logarithm of the central death rate at a given age, due to changes in the mortality index
in a certain year.

Renshaw-Haberman model (RH )

Renshaw and Haberman (2006) proposed an extension of the Lee-Carter model by adding an extra
parameter that accounts for the cohort effects. This model is established nowadays as a reference in
stochastic models with cohort effects.

The model specification is

log [mx(t)] = β(1)
x + β(2)

x κt + β(3)
x γt−x + εx.t,

where β
(1)
x parameters have the same meaning as in Lee-Carter model, κt is a time series accounting for

the period effect, and the added term γt−x is a time series that accounts for the cohort effect. The RH
model assumes that κt and γt can be modelled respectively as two random walks with drifts,

κt = κt−1 + θ1 + ω
(2)
t ,

γt = γt−1 + θ2 + ω
(3)
t .

As in Lee-Carter model, it is necessary to impose some constraints on the parameters in order to estimate
them (see e.g. Cairns, Blake, Dowd, Coughlan, Epstein, Ong, and Balevich (2009a)):

∑
t κt = 0,∑

x β
(2)
x = 1,

∑
t γt−x = 0 and

∑
x β

(3)
x = 1.

Cairns-Blake-Dowd model (CBD)

The most popular alternative in the demographical literature to Lee-Carter model is the CBD specifica-
tion proposed by Cairns et al. (2006).

Let us denote qx(t) as the death probability at age x and time t; then based on the empirical fact
that log [qx(t)/ [(1− qx(t))] is approximately a linear function of x for fixed t (except for young ages),

log

[
qx(t)

1− qx(t)

]
= κ

(1)
t + κ

(2)
t (x− x),

where x is the average calendar age and the components of vector (κ
(1)
t , κ

(2
t )′ are modelled as univariate

time series. Accordingly, {
κ
(1)
t = κ

(1)
t−1 + θ1 + ω

(1)
t ,

κ
(2)
t = κ

(2)
t−1 + θ2 + ω

(2)
t ,

where θ1 and θ2 are drift parameters and (ω
(1)
t , ω

(2)
t )′ are independent normal variables with 0 mean.

The CBD model specification does not have any identifiability problem as in the case of the Lee-Carter
model and therefore no constraints are imposed.

In the CBD model, unlike the Lee-Carter one, age is treated as an explanatory variable and it is

included linearly in the model on a logit scale. The intercept κ
(1)
t−1 and the slope κ

(2)
t−1 are modelled as a

bivariate time series.
The CBD model includes two time factors κ

(1)
t−1 and κ

(2)
t−1 that affect to different ages. This is a

substantial difference with the Lee-Carter model, where only a time series induces correlation between
death rates at different ages in two consecutive years. According to Pitacco et al. (2009), there is
empirical evidence that suggests that changes in the death rates are highly correlated.
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Cairns-Blake-Dowd model accounting for cohort effects (M6)

Cairns et al. (2009b) proposed an extension of the original CBD model accounting for cohort effects. Its
specification is

log

[
qx(t)

1− qx(t)

]
= κ

(1)
t + κ

(2)
t (x− x) + γt−x{

κ
(1)
t = κ

(1)
t−1 + θ1 + ω

(1)
t ,

κ
(2)
t = κ

(2)
t−1 + θ2 + ω

(2)
t ,

γt = γt−1 + θ3 + ω
(3)
t ,

where γt−x is the latent times series that includes the cohort effect as in the RH model.

3 Model assembling

Researchers usually choose the best model among a set of candidates according to some information
criteria, discarding the remaining models. This practice, known as model selection, in fact ignores model
uncertainty and the corresponding uncertainty associated with the projection is underestimated and it
leads to over–confident inferences.

A proposal to overcome this problem is to average models according to some assembling criteria.
Thus, the final model is a mixed one that takes the whole set of candidates models into consideration.
Specifically, a weight is assigned to each model that determines the contribution of each of them to the
assembling model.

Model assembling solves the problem of having to select a best model among a set of candidates, and
the associated loss of information that implies the discard of other possible models, and often it obtains
better predictions and more accurate inferences.

3.1 Method based on Akaike weights

The Akaike Information Criterion (AIC) (Akaike 1974) is a classical measure that compares the quality
of different models given a set of data. It considers the likelihood of a model and the corresponding
number of parameters, in such a way there is a trade–off between the goodness of fit and the complexity
of a model, following the principle of parsimony. In general, AIC provides a very popular tool for model
selection (see Burnham and Anderson (2003)) .

On the other hand, in the case of small sample sizes, a corrected version of the AIC can be defined

AICc = AIC +
2k(k + 1)

n− k − 1
.

As the sample size n increases faster than the number of parameters k, the bias–adjustment term becomes
smaller and it is even negligible for large sample sizes.

In order to compute the weights for each model, the first step is the identification of the best one
which has the lowest AICc. Then, it is computed the difference between the AICc of each model i and
the lowest one

δi = AICc (i) −AICc (best).

It can be shown that the likelihood of a model given some data, is proportional to e
1
2 δi (see Burnham

and Anderson (2003)). This expression is known as the relative likelihood of the model given data. An
alternative approach is to work with rescaled values (see Burnham and Anderson (2003))

δi =
AICi −AICbest

AICbest
.

Finally, after rescaling the relative likelihoods, the AIC weights for each model i are obtained as

wi =
e

1
2 δi∑M

j=1 e
1
2 δj

,

where M is the number of the proposed models. Thus, wi is the relative weight that model i has in
relation with the best one, given both data and the the proposed models.
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3.2 Bayesian model averaging

Bayesian model averaging makes inferences based on a weighted average over the model space. In this
way, the model uncertainty is also included in both predictions and parameter estimates (see for a basic
introduction Hoeting et al. (1999) and Hoeting (2002)).

Let M = (M1, . . . ,MK) be the set of models under consideration. If ∆ is the quantity of interest,
such as future observations or a vector of parameters, then the posterior distribution of ∆ given data Z
is

P (∆|Z) =
K∑
k=1

P (∆|Z,Mk)P (Mk|Z).

This is an average of the posterior predictive distribution for ∆ under each of the included models,
weighted by the corresponding posterior model probability. The posterior probability for model Mk is
given by

P (Mk|Z) ∝ P (Z|Mk)P (Mk)

where

P (Z|Mk) =

∫
· · ·
∫
P (Z|θk,Mk)P (θk|Mk)dθk

is the integrated likelihood of model Mk, θk is the vector of parameters of model Mk, P (θk|Mk) is the
prior density of the parameters under model Mk, P (Z|θk,Mk) is the likelihood, and P (Mk) is the prior
probability that Mk is the true model. All probabilities are assumed to be conditional on M, the set of
all models taken into consideration.

From a practical point of view, the posterior probability for each model Mk can be computed by
a MCMC approach (see Chib (1995)) and the predictions of each model are weighted by the poste-
rior probability in order to obtain the ensemble ones. In this work, the MCMC algorithm has been
programmed using Jags ((Plummer et al. 2003)); one of its advantages is that it constructs the full
conditional distributions and it carries out the Gibbs sampling from the model specifications.

4 Model assembling in mortality projection

In this section we apply the model averaging techniques by using four of the most relevant and popular
mortality parametric predictive models. Notice that it is the first time that model averaging is applied to
this kind of predictive models, to the best of our knowledge. Specifically, we apply the model averaging
based on Akaike weights and the Bayesian model averaging (BMA) methodologies on some Spanish
mortality data located in the Human Mortality Database (see www.mortality.org). We have focused
on male gender data, a timespan between single calendar years 1960 and 2009, and a range between 60
and 100 years old.

4.1 Classical Approach: AIC-based assembling

First, we have estimated the models LC, RH, CBD and M6 with a training sample, including data
from years 1960 to 1999, and then we have obtained predictions for the period of years 2000 until 2009.
We have fitted the four models using the packages demography (Hyndman et al. (2014)) and StMoMo

(Villegas et al. (2015)) from the R project (R Core Team (2015)). In table 2, the corresponding AIC
values and weights are shown.

Table 2: AIC values and model weights

Model AICc δi wi
LC 1318.552 0.02612246 0.2567122
RH 1497.384 0.16529290 0.2394562

CBD 1284.986 0.00000000 0.2600872
M6 1451.768 0.12979312 0.2437444

In order to validate the predictive performance of the assembled model, we have computed forecasts
of the central death rates for the period 2000 to 2009, and we have compared them with the real observed
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rates. The assembled projected central death rates were computed as

m̂x(t) =
∑
i

wim̂
(i)
x (t),

where m̂
(i)
x (t) is the estimated central death rate for age x in year t under model i.

By the other hand, the variance of predictions

var(m̂x(t)) =
∑
i

w2
i var(m̂

(i)
x (t)) +

∑
i6=j

wiwjcov(m̂(i)
x (t)), m̂(j)

x (t)),

is not easy to compute, since it includes the covariances of projected central death rates obtained with
different models.

As an alternative technique to calculate confidence intervals, we can resort to a resampling based
approach in order to obtain approximate confidence intervals for the projected central death rates m̂x(t).

The resampling bootstrap technique was introduced by Efron (1979) as an alternative to the jack-
knife procedure (see Quenouille (1956)), and it is based on resampling with replacement from an original
sample of observations, in order to obtain approximate standard errors and confidence intervals. In
the demographical and actuarial fields there are many papers that use bootstrap techniques, such as
Koissi, Shapiro, and Högnäs (2006), who applied bootstrap methods for forecasting life expectancies
under Lee-Carter models, England and Verrall (1999) for prediction errors in claims reserving, Hoede-
makers, Beirlant, Goovaerts, and Dhaene (2003) for estimating confidence intervals for loss reserves and
Caswell (2001) who presents a description of resampling methods for confidence intervals related with
demographic estimates.

There are several methods for determining bootstrap confidence intervals. In this paper we use
bootstrap percentile intervals since they show good properties and they are straightforward to compute
without assuming any parametric model. In what follows, we introduce the basic ideas about the residual
bootstrap percentile interval applied to model assembling, in order to obtain confidence intervals for the
predicted central death rates.

The bootstrap procedure for the Spanish data can be shown in the next scheme:

Step 1 We have split the original data in two sets: a training and a validation samples. We have taken
calendar years t = 1960, . . . , 1999 as a training sample, and calendar years t = 2000, . . . , 2009 as a
validation sample.

Step 2: We have obtained the estimates of all parameters of each model by using the training sample.
Then, for each model, a matrix of residuals R is obtained.

Step 3: We have generated N (here we fix N = 1000) replicates R(n), n = 1, . . . , N , by sampling with
replacement the elements of matrix R. Then, we have added each matrix R(n) to the original
matrix of data, obtaining the corresponding N different bootstrap samples.

Step 4: We have computed m̂
(n)
x (t) =

∑
i wim̂

(i)(n)
x (t) for each age x = 60, . . . , 100, each calendar year

t = 2000, . . . , 2009 and n = 1, . . . , N bootstrap replicates.

Step 5: Finally, we have constructed prediction intervals for the central death rates by computing the
corresponding percentiles at a given confidence level. Accordingly, in regards to 95% prediction

intervals, we have taken the 2.5 and 97.5 percentiles of m̂
(n)
x (t) for each age x = 60, . . . , 100 and

each calendar year t = 2000, . . . , 2009.

In Appendix A, we show the 95% assembling bootstrap predictive intervals for the averaged central
death rates, and the corresponding actual values for ages x = 60, 70, 80, 90 and 100. Notice that the
assembled model yields narrow intervals, and the actual values of the central death rates lie within the
intervals bounds in the 90% of cases, which suggests an accurate and unbiased projection.

After having assessed the predictive ability of the Akaike weighted model, which yielded accurate
projections, we consider to project the mortality rate for a long period of time. Since life insurance firms
usually need long-run predictions for their survival products, we have projected the central death rates
of the male Spanish population according to the assembled model based on Akaike weights. Considering
data from 1960 to 2009, we have obtained predictions for the following 50 years, i.e., from 2010 until
2059. In table 3, the corresponding AIC values and weights are shown.
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Table 3: AIC values and model weights

Model AICc δi wi
LC 1566.115 0.000000000 0.2578872
RH 1764.097 0.126415923 0.2420911

CBD 1570.151 0.002576591 0.2575552
M6 1759.245 0.123317415 0.2424665

Appendix B shows the surface of both historic and projected central death rates m̂x(t), according
to the Akaike weights method. On the left hand side of the figure, the observed central death rates are
represented by the height of the surface for t = 1960, . . . , 2009, followed by the projected central death
rates for t = 2010, . . . , 2059.

By the other side, Appendix C shows the projected mortality profiles for ages 60, 70, 80, 90 and 100
years old for the next 50 years. Results suggest significant decreasing mortality rates.

4.2 Bayesian model averaging (BMA)

Alternatively to the classical analysis, we apply a Bayesian model averaging approach in the same Spanish
data that were analysed by means of the classical (frequentist) procedure.

We first consider the Bayesian specifications of the former models, LC, RH, CBD and M6. For the
sake of brevity we do not show the complete mathematical details. We may assume conjugate prior
distributions for all the parameters of the four models. Then, following the notations of Section 2,

β(1)
x ∼ N(0, σβ)

β(2)
x , β(3)

x ∼ Dirichlet(1, 1, . . . , 1)

κ1 ∼ N(0, σω)

κ
(1)
1 ∼ N(0, σω1

)

κ
(2)
1 ∼ N(0, σω2

)

γ1 ∼ N(0, σγ)

θ1, θ2, θ3 ∼ N(0, σθ)

σ2
ε , σ2

ω3
∼ InvGamma(α1, α2)

(ω
(1)
t , ω

(2)
t )′ ∼ N2((0, 0)′,Ω)

Ω ∼ Wishart(I2, 2)

We assume, in the Spanish data example, vaguely informative prior distributions. In this way we can

assume a Dirichlet distribution for β
(j)
x , for j = 1, 2, in such a way that the constraints

∑
x β

(j)
x = 1 are

imposed, and inverse-gamma distributions for variances, as they are conjugate distributions in normal
models. The values of standard deviations of the normal distributions are chosen to be large, and
therefore α1 and α2 will be fixed in order that the inverse-gamma distributions have mean equal to 1 and
large variances. In the case of CBD and M6 models, whose specifications include a bivariate latent series

(ω
(1)
t , ω

(2)
t )′, we consider a prior bivariate normal distribution with (0, 0)′ mean and, for the covariance

matrix, a Wishart distribution as prior distribution with the identity matrix I2 and 2 degrees of freedom
as parameters.

Regarding the model assembling, the prior distribution of the model weights is chosen to have a
discrete distribution with equal probability for each model, that is, P (Mi) = 1

4 , for i = 1, . . . , 4. The
MCMC algorithm has been programmed using Jags ((Plummer et al. 2003)) by means of the package
R2jags ((Su and Yajima 2015)) from the R project ((R Core Team 2012)).

In order to validate the predictive performance of the averaged model, we obtained forecasts for
the central death rates mx(t) for the period 2000 to 2009 and we compared them with the observed
rates. In Appendix D, 95% HPD of the central death rates and the corresponding actual values for ages
x = 60, 70, 80, 90 and 100 are shown. Notice that all the real values lie within the HPD intervals bounds,
which suggests a good fit.

Appendix E shows the surface of both historic and projected central death rates m̂x(t) according
to the Bayesian model averaging. On the left hand side of the figure, the observed central death rates
are represented by the height of the surface for t = 1960, . . . , 2009, followed by the projected central
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death rates for t = 2010, . . . , 2059. By the other side, Appendix F shows the values of the the projected
mortality profiles for ages 60, 70, 80, 90 and 100 years old for the next 50 years. As in the classical
approach, results with the Bayesian methodology suggest significant decreasing mortality rates.

4.3 Comparison between AIC-based assembling and Bayesian model aver-
aging (BMA)

Both AIC-based assembling and Bayesian model averaging (BMA) were able to project the central death
rates rates more accurately than what can be obtained, by applying each model independently on the
same data. Furthermore, both assembling methods show accurate predicted values for mortality rates
and they are close to their actual values, when analysing the test set of observations.

But the corresponding interpretation of the bootstrap confidence intervals an the HPD ones vary, as
the Bayesian intervals are based on a prior information that is included in the model. We have used in
the Spanish data example weekly informative distributions, although in other real analysis applications,
researchers may include any kind of expert-based information in the models.

Notice that, apart from their different theoretical interpretation, frequentist bootstrap intervals seem
to be a little narrower than the corresponding Bayesian HPD alternative ones (see in Appendices table
A and table D).

5 Conclusions and final remarks

In this paper we have introduced two model assembling methodologies in order to study model uncertainty
in mortality projection. The first methodology is based on a classical (frequentist) point of view, and
the other one is based on a Bayesian approach. We have applied them by including some of the most
extended and popular parametric mortality models. Although model assembly methodologies have been
applied to different areas, it is the first time that they are used in the actuarial field, to the extent of our
knowledge.

We have presented an example based on some Spanish male mortality data from calendar years 1960
until 2009. Then, we have considered first, a validation study by splitting the data set in two parts: one
for estimating parameters (from years 1960–1999) and the other one to test the procedures (from years
2000–2009). Regarding the validation study, both methods (classical and Bayesian) were able to rightly
predict the central death rates rates in all cases.

Thereupon, we have estimated the projected mortality rates for a long time period (until year 2059).
Remarkably, it is obtained a significant progressive decreasing mortality rates, in both classical (frequen-
tist) or a Bayesian approaches. This is quite relevant, as nowadays one of the most outstanding problems
for the insurance and pensions systems is related with wrong estimations of survival probabilities, based
on wrong calibration of life tables. New methodologies, like those shown in this work, can be directly
used in the management of private and public pension systems.

Future research will involve the implementation of these methodologies in other kind of models used
to forecast death rates, such as those based on splines and other semi-parametric models.
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Appendices

A 95% Bootstrap Akaike weighted prediction intervals and
actual values of central death rates

x=60 x=70 x=80
t 95% PI Actual 95% PI Actual 95% PI Actual

Lower B. Upper B. Value Lower B. Upper B. Value Lower B. Upper B. Value
2000 0,0108 0,0117 0,0107 0,0277 0,0303 0,0266 0,0767 0,0847 0,0775
2001 0,0105 0,0118 0,0105 0,0266 0,0312 0,0269 0,0724 0,0883 0,0716
2002 0,0102 0,012 0,0105 0,0252 0,0321 0,0253 0,0686 0,0928 0,0722
2003 0,0099 0,0123 0,0107 0,0241 0,0334 0,0255 0,0649 0,0974 0,0729
2004 0,0097 0,0126 0,01 0,0228 0,0345 0,024 0,0614 0,1025 0,0701
2005 0,0094 0,0128 0,0102 0,0215 0,036 0,0235 0,0578 0,1085 0,0734
2006 0,0091 0,0131 0,0102 0,0205 0,0375 0,0223 0,0544 0,1139 0,0643
2007 0,0089 0,0134 0,0098 0,0195 0,0392 0,0228 0,0514 0,1212 0,0661
2008 0,0087 0,0136 0,0099 0,0186 0,0409 0,0217 0,0482 0,128 0,0629
2009 0,0085 0,0139 0,009 0,0177 0,0427 0,0209 0,0452 0,1372 0,0617

x=90 x=100
t 95% PI Actual 95% PI Actual

Lower B. Upper B. Value Lower B. Upper B. Value
2000 0,2018 0,2285 0,2033 0,4626 0,5388 0,4597
2001 0,19 0,2435 0,2032 0,4305 0,5865 0,4576
2002 0,1782 0,2601 0,1974 0,4008 0,6377 0,4551
2003 0,1677 0,2788 0,2187 0,3746 0,7065 0,4818
2004 0,1573 0,2994 0,1982 0,3477 0,7778 0,4567
2005 0,1475 0,3223 0,2028 0,3233 0,8603 0,4662
2006 0,1365 0,3458 0,1896 0,2987 0,9553 0,4473
2007 0,1276 0,3764 0,1935 0,278 1 0,4503
2008 0,1194 0,4056 0,1924 0,2562 1 0,4516
2009 0,1107 0,4423 0,1837 0,2364 1 0,4414
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B Akaike weighted projected mortality surface
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C Akaike weighted projected mortality profiles for ages x =
60, 70, 80, 90 and 100

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
60 0,0088 0,0087 0,0087 0,0086 0,0085 0,0085 0,0084 0,0083 0,0082 0,0082
70 0,0213 0,0205 0,0198 0,0201 0,0197 0,0192 0,0194 0,0193 0,0191 0,0189
80 0,0606 0,0598 0,0578 0,0572 0,0556 0,0542 0,0534 0,0524 0,0515 0,0505
90 0,1803 0,1741 0,1722 0,1681 0,1653 0,1621 0,1570 0,1553 0,1507 0,1482

100 0,4465 0,4383 0,4318 0,4268 0,4188 0,4134 0,4057 0,3992 0,3950 0,3839
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

60 0,0081 0,0080 0,0080 0,0079 0,0078 0,0078 0,0077 0,0076 0,0076 0,0075
70 0,0187 0,0185 0,0182 0,0180 0,0178 0,0176 0,0174 0,0173 0,0171 0,0169
80 0,0499 0,0479 0,0463 0,0469 0,0459 0,0448 0,0453 0,0448 0,0444 0,0439
90 0,1439 0,1420 0,1376 0,1361 0,1324 0,1293 0,1275 0,1251 0,1230 0,1208

100 0,3842 0,3719 0,3684 0,3603 0,3549 0,3486 0,3385 0,3353 0,3258 0,3210
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

60 0,0074 0,0074 0,0073 0,0072 0,0072 0,0071 0,0070 0,0070 0,0069 0,0069
70 0,0167 0,0165 0,0163 0,0161 0,0160 0,0158 0,0156 0,0154 0,0153 0,0151
80 0,0434 0,0429 0,0424 0,0419 0,0414 0,0409 0,0404 0,0399 0,0395 0,0390
90 0,1194 0,1149 0,1110 0,1125 0,1103 0,1076 0,1088 0,1079 0,1068 0,1057

100 0,3124 0,3087 0,2995 0,2967 0,2892 0,2829 0,2792 0,2744 0,2702 0,2657
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

60 0,0068 0,0067 0,0067 0,0066 0,0066 0,0065 0,0065 0,0064 0,0063 0,0063
70 0,0149 0,0147 0,0146 0,0144 0,0143 0,0141 0,0139 0,0138 0,0136 0,0135
80 0,0385 0,0381 0,0376 0,0372 0,0368 0,0363 0,0359 0,0355 0,0351 0,0346
90 0,1045 0,1034 0,1023 0,1011 0,1000 0,0989 0,0978 0,0968 0,0957 0,0947

100 0,2629 0,2534 0,2454 0,2489 0,2442 0,2387 0,2414 0,2397 0,2376 0,2354
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

60 0,0062 0,0062 0,0061 0,0061 0,0060 0,0060 0,0059 0,0059 0,0058 0,0058
70 0,0133 0,0132 0,0130 0,0129 0,0127 0,0126 0,0125 0,0123 0,0122 0,0121
80 0,0342 0,0338 0,0334 0,0330 0,0327 0,0323 0,0319 0,0315 0,0312 0,0308
90 0,0936 0,0926 0,0916 0,0906 0,0896 0,0886 0,0876 0,0866 0,0857 0,0847

100 0,2332 0,2310 0,2288 0,2266 0,2244 0,2222 0,2201 0,2180 0,2159 0,2138
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D 95% HPD prediction intervals and actual values of central
death rates

x=60 x=70 x=80
t 95% PI Actual 95% PI Actual 95% PI Actual

Lower B. Upper B. Value Lower B. Upper B. Value Lower B. Upper B. Value
2000 0,0105 0,0126 0,0107 0,0253 0,0313 0,0266 0,0711 0,0887 0,0775
2001 0,0101 0,0128 0,0105 0,0239 0,0319 0,0269 0,0672 0,0897 0,0716
2002 0,0098 0,013 0,0105 0,0223 0,0319 0,0253 0,0644 0,0915 0,0722
2003 0,0096 0,0132 0,0107 0,0217 0,032 0,0255 0,062 0,0921 0,0729
2004 0,0093 0,0132 0,01 0,0202 0,0319 0,024 0,0595 0,0933 0,0701
2005 0,0091 0,0132 0,0102 0,0193 0,032 0,0235 0,0573 0,0932 0,0734
2006 0,0088 0,0134 0,0102 0,0184 0,0323 0,0223 0,0543 0,0939 0,0643
2007 0,0087 0,0134 0,0098 0,0178 0,0324 0,0228 0,053 0,0955 0,0661
2008 0,0085 0,0135 0,0099 0,017 0,0325 0,0217 0,0505 0,0937 0,0629
2009 0,0081 0,0137 0,009 0,0166 0,0328 0,0209 0,0482 0,095 0,0617

x=90 x=100
t 95% PI Actual 95% PI Actual

Lower B. Upper B. Value Lower B. Upper B. Value
2000 0,1955 0,2348 0,2033 0,4339 0,5153 0,4597
2001 0,189 0,2369 0,2032 0,4253 0,5117 0,4576
2002 0,1829 0,2384 0,1974 0,4098 0,5041 0,4551
2003 0,178 0,241 0,2187 0,4086 0,5153 0,4818
2004 0,1724 0,241 0,1982 0,3969 0,5143 0,4567
2005 0,1688 0,2454 0,2028 0,3914 0,5169 0,4662
2006 0,1632 0,2451 0,1896 0,3817 0,52 0,4473
2007 0,1609 0,2471 0,1935 0,3749 0,5184 0,4503
2008 0,1554 0,2483 0,1924 0,3668 0,52 0,4516
2009 0,1503 0,2498 0,1837 0,3602 0,5257 0,4414
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E BMA projected mortality surface
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F BMA projected mortality profiles for ages x = 60, 70, 80,
90 and 100

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
60 0,0115 0,0114 0,0113 0,0112 0,0111 0,0110 0,0110 0,0109 0,0108 0,0107
70 0,0279 0,0273 0,0264 0,0259 0,0249 0,0243 0,0238 0,0232 0,0229 0,0226
80 0,0797 0,0778 0,0770 0,0755 0,0743 0,0730 0,0712 0,0708 0,0690 0,0677
90 0,2159 0,2118 0,2089 0,2066 0,2043 0,2025 0,1999 0,1983 0,1959 0,1928

100 0,4733 0,4658 0,4566 0,4584 0,4552 0,4534 0,4498 0,4453 0,4440 0,4396
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

60 0,0106 0,0105 0,0104 0,0104 0,0103 0,0102 0,0101 0,0100 0,0099 0,0098
70 0,0223 0,0221 0,0218 0,0216 0,0213 0,0211 0,0209 0,0206 0,0204 0,0201
80 0,0663 0,0650 0,0633 0,0621 0,0601 0,0587 0,0576 0,0563 0,0553 0,0547
90 0,1922 0,1892 0,1875 0,1847 0,1825 0,1800 0,1769 0,1757 0,1726 0,1703

100 0,4365 0,4308 0,4266 0,4240 0,4202 0,4181 0,4135 0,4119 0,4090 0,4041
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

60 0,0098 0,0097 0,0096 0,0095 0,0094 0,0094 0,0093 0,0092 0,0091 0,0091
70 0,0199 0,0197 0,0194 0,0192 0,0190 0,0188 0,0186 0,0184 0,0182 0,0180
80 0,0540 0,0533 0,0526 0,0519 0,0514 0,0507 0,0501 0,0495 0,0489 0,0482
90 0,1680 0,1651 0,1615 0,1596 0,1560 0,1530 0,1511 0,1484 0,1468 0,1453

100 0,4054 0,3997 0,3973 0,3938 0,3906 0,3864 0,3814 0,3802 0,3749 0,3716
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

60 0,0090 0,0089 0,0089 0,0088 0,0087 0,0086 0,0086 0,0085 0,0084 0,0084
70 0,0178 0,0176 0,0175 0,0172 0,0170 0,0169 0,0167 0,0165 0,0163 0,0161
80 0,0477 0,0471 0,0465 0,0460 0,0454 0,0449 0,0443 0,0438 0,0433 0,0428
90 0,1441 0,1426 0,1413 0,1397 0,1385 0,1375 0,1360 0,1349 0,1336 0,1324

100 0,3675 0,3631 0,3577 0,3545 0,3482 0,3437 0,3403 0,3362 0,3342 0,3319
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

60 0,0083 0,0082 0,0082 0,0081 0,0080 0,0080 0,0079 0,0078 0,0078 0,0077
70 0,0160 0,0158 0,0156 0,0154 0,0153 0,0151 0,0150 0,0148 0,0146 0,0145
80 0,0423 0,0418 0,0413 0,0408 0,0402 0,0398 0,0394 0,0389 0,0384 0,0379
90 0,1312 0,1298 0,1287 0,1276 0,1263 0,1251 0,1239 0,1229 0,1218 0,1206

100 0,3299 0,3279 0,3263 0,3243 0,3224 0,3211 0,3192 0,3173 0,3154 0,3141
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