working
UUCI'I:IUE g —

00000 FPeesina=el UNIVERSIDAD CARLOS 11l DE MADRID papers

B
L

UC3M Working Papers Departamento de Estadistica
Statistics and Econometrics Universidad Carlos III de Madrid
16-09 Calle Madrid, 126
2 taft i
ISSN 2387-0303 8903 Getafe (Spain)

Fax (34) 91 624-98-48
Julio 2016

Monitoring variance by EWMA charts with time varying
smoothing parameter

Willy Ugaz®*, Andrés M. Alonso® and Ismael Sanchez®

Abstract

Memory charts like EWMA-S? or CUSUM-S? can be designed to be optimal to detect a
specific shift in the process variance. However, this feature could be a serious
inconvenience since, for instance, if the charts are designed to detect small shift, then,
they can be inefficient to detect moderate or large shifts. In the literature, several
alternatives have been proposed to overcome this limitation, like the use of control
charts with variable parameters or adaptive control charts. This paper proposes new
adaptive EWMA control charts for the dispersion (AEWMA-S?) based on a time-
varying smoothing parameter that takes into account the potential misadjustment in the
process variance. The obtained control charts can be interpreted as a combination of
EWMA control charts designed to be efficient for different shift values. Markov chain
procedures are established to analyse and design the proposed charts. Comparisons with
other adaptive and traditional control charts show the advantages of the proposals.

Keywords:

Adaptive control charts, Average Run Length, EWMA, CUSUM, Statistical Process Control.

* Department of Statistics, Universidad Carlos III de Madrid.
“*Corresponding autor.

Acknowledgements: financial support from the Spanish Ministry of Education and
Science, research project ECO2012-38442.



Monitoring variance by EWMA charts with time varying smoothing

parameter

Willy Ugaz, Andrés M. Alonso and Ismael Sénchez*
Universidad Carlos III de Madrid

July 20, 2016

Abstract

Memory charts like EWMA-S2 or CUSUM-S? can be designed to be optimal to detect a specific
shift in the process variance. However, this feature could be a serious inconvenience since, for
instance, if the charts are designed to detect small shift, then, they can be inefficient to detect
moderate or large shifts. In the literature, several alternatives have been proposed to overcome
this limitation, like the use of control charts with variable parameters or adaptive control charts.
This paper proposes new adaptive EWMA control charts for the dispersion (AEWMA-S?) based
on a time-varying smoothing parameter that takes into account the potential misadjustment in the
process variance. The obtained control charts can be interpreted as a combination of EWMA control
charts designed to be efficient for different shift values. Markov chain procedures are established to
analyze and design the proposed charts. Comparisons with other adaptive and traditional control
charts show the advantages of the proposals.

Keywords: Adaptive control charts, Average Run Length, EWMA, CUSUM, Statistical

Process Control.

*Address: Willy Ugaz, Andrés M. Alonso and Ismael Sénchez, Department of Statistic; Universidad Carlos III de
Madrid; Avd. de la Universidad 30, 28911, Leganés, Madrid (Spain). email: wugaz@est-econ.uc3m.es, amalonso@est-

econ.uc3m.es and ismael@est-econ.uc3m.es.



1 Introduction

The use of control charts as a process monitoring tool has become increasingly popular in the field of
statistical process control (SPC). Shewhart control charts (Shewhart, 1931) can be used for monitoring
the mean or the variability of the process. In many practical applications, it is even more important
to control shifts in the process variability rather than the mean, since an increase of the variability
process causes an increased number of defective products while a decrease of process variability implies
an improvement of process capability (Acosta-Mejia et al., 1999). Besides, it is meaningless to claim
a shift of the process mean unless it is sure that the process variability is in control.

Shewhart control charts such as the range R or the unbiased sample variance S? control charts can
be used for monitoring the variability of rational subgroups sampled of the process. However, as in
the case of monitoring the process mean, these procedures are not very sensitive to small shifts.

In order to increase the sensitivity to small shifts, the literature has proposed some alternative
procedures that use statistics with memory, usually called memory control charts or time-weighted
control charts. It is known that the most popular memory control charts are the CUSUM and the
EWMA charts, which have been recognized as potentially powerful tools in quality control. One of
the first CUSUM control charts for monitoring variability was introduced by Page (1963) and then
studied, among others, by Bagshaw and Johnson (1975), Hawkins (1981), Box and Ramirez (1991),
Chang and Gan (1995), Castagliola et al. (2009) and Nazir et al. (2015).

Furthermore, Wortham and Ring (1971), Sweet (1986) and Ng and Case (1989) investigated the
properties of EWMA control charts for monitoring the process variability but they were not able to
introduce formal design strategies for the problem. Box, Hunter and Hunter (1978), among others,
introduced the use of the logarithm of the sample variances since it is more approximately normally
distributed than the sample variance by itself. Crowder and Hamilton (1992) proposed an EWMA
control chart for monitoring the variability based on the logarithmic transformation of the sample
variance, log (52), due to its simplicity and efficiency. Castagliola (2005) proposed a bilateral EWMA
control chart for monitoring the variability using a logarithmic transformation of three parameters
(type of original Johnson (1949) transformations) to improve normality.

As an extension of the Crowder and Hamilton (1992) proposal, Shu and Jiang (2008) presented
an EWMA control chart for monitoring the variability (NEWMA), which truncates the negative
normalized observations to zero in the statistical traditional EWMA. Maravelakis and Castagliola
(2009) propose a modified EWMA control chart for monitoring the standard deviation when the
parameters are estimated. Castagliola et al. (2010) presented an EWMA control chart that improves

the 2005 version. This chart uses the Johnson transformation of four parameters to attain normality.



Other interesting researches that study CUSUM and EWMA control charts for the process vari-
ability can be found in Tuprah and Ncube (1987), MacGregor and Harris (1993), Gan (1995), Lowry
et al. (1995), Acosta-Mejia (1998), Amin et al. (1999), Chao-Wen and Reynolds (1999), Acosta-Mejia
et al. (1999), Huwang et al. (2010), Abbasi (2010), Abbasi and Miller (2013) and Haq et al. (2014),
among others.

Also, with the aim of improving the performance, Interval Sampling Variable (VSI) and Sample Size
Variable (VSS) EWMA control charts for the process variability have been proposed by Castagliola
et al. (2006, 2008). Other contributions can be seen in Chengular et al. (1989) and Reynolds and
Stoumbos (2001).

Analogously to the control of the process mean, adaptive CUSUM and EWMA control charts for
monitoring the variability process can be proposed based on time-varying versions of the parameters
that control the memory of the charts; that is £ in CUSUM charts and A in EWMA charts. By
adapting the memory, we can make charts sensitive to both small and large shifts. The intuition
behind these adaptive charts is to use a measure of the potential presence of a shift. Accordingly,
the value of the parameter is increased when it is suspected that the process could be out of control
due to a large shift. Conversely, if the data show strong evidence of being in control or with a small
shift, the parameters tend to be smaller, easing the detection of potential small shifts. This kind of
adaptation scheme is the one we pursue in this paper.

Shu et al. (2010) proposed an adaptive CUSUM control chart for monitoring shifts in the process
variability (ACUSUM-S?). This chart is an extension of the ACUSUM control chart for monitoring
the process mean initially proposed by Sparks (2000). This ACUSUM-S? chart dynamically adjusts
its reference value according to a current estimate of the process variance and does not require precise
information about the magnitude of shift.

Capizzi and Masarotto (2003) developed an AEWMA control chart for monitoring the process mean
based on weighting recent observations using an score function of the current error e; = x; — y¢—1,
where x; is the last observation of the process and y;_; is the previous value of the monitoring statistic.
In particular, if e; is small, the value of A tends to be small, like in conventional EWMA chart, since
the process seems to be in control. However, if e; is large the value of A\ tends to be large, since the
risk of being out of control is higher.

Shu (2008), considering the statistic of Crowder and Hamilton (1992), proposed an adaptive
EWMA control chart for monitoring the process variability. This chart is based on the latest ob-
servations dynamically weighted according to an appropriate function of the current prediction error.

It is actually an extension of Capizzi and Masarotto (2003) for monitoring the process mean.



Additionally, some new AEWMA control charts for monitoring the process mean are proposed by
Ugaz et al. (2016). These charts use specific statistics that quantify the evidence of a shift from data,
that is, statistics based on the distance from observations z; to the process mean f or based on the
prediction error, e;, or just based on the level of y;_1. Subsequently, the statistics are translated to
time varying smoothing factor A;. Those AEWMA control charts are competitive with respect to the
proposal of Capizzi and Masarotto (2003).

In this paper, considering the proposals of Ugaz et al. (2016), some alternative AEWMA-S? control
charts are proposed. To that aim, several measures of the potential shift of the process variance are
suggested. For each measure of potential shift, alternative methods to translate such measure into
a time varying smoothing factor are discussed. Procedures to compute the ARL of the proposed
AEWMA-S? based on Markov chain approximations are obtained, which allow us to get the optimal
designs. A numerical comparison of these alternative approaches and the main alternatives in the
literature is presented.

The rest of the article is organized as follows. In Section 2, the notion of the adaptive EWMA-S?
control chart is introduced. In Section 3, AEWMA-S? control charts with time varying \; based on
the last observation are proposed. In Section 4, AEWMA-S? control charts with time varying \; based
on the level of the control statistics are proposed. Section 5, shows the results of several comparisons
between alternative control charts and the proposed AEWMA-S? control charts. Finally, in Section

6, some concluding remarks are given.

2 Adaptive EWMA-S? control chart

Assume that observations X;;, t =1,2,--- and ¢ =1,2,--- ,n are independent and identically distri-
buted following a normal distribution N (,u, O'%). Furthermore, we are mainly interested in detecting
increases in the process variance, i. e., 07 = 03, t < t* and o? > 03, t > t* and 7, = 0¢/0g. Let S? be
the variance of the t—th rational subgroup of size n defined by S7 = (1/(n — 1)) 31, (X¢; — Yt)z,
where X ; is the ¢—th observation of the t—th rational subgroup and X, is the t—th subgroup mean.
Crowder and Hamilton (1992) suggested the EWMA chart for monitoring increases in the process

variance with the statistic,

yr = max [0, AM; + (1 = M) ye-1], 9o =0, (1)

where M; =1In (5’,52 / 0(2)), which is more approximately normal distributed (Shu and Jiang, 2008). The

mean and variance of the transformed variable M; are approximated by,
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respectively. It is important to note that U?\/It only depends on n, it is because of that M; can be
monitored as X; in the EWMA chart for monitoring the process mean. This EWMA-S? control chart
signals when,

Yg > h‘7 (4)

where h is a threshold that determines the ARLy.

To design the EWMA-S? control chart for the variance process (EWMA-S?), the parameter values
of A and h for some rational subgroup of size n must be selected. A and h, which are defined in (1)
and (4) can be chosen in such a way that the chart is optimal for detecting a prespecified shift in
the variance process for a given in control average run length (ARLg). The influence of the design
parameters in the performance of the EWMA-S? has been studied by Box, Hunter and Hunter (1978),
Crowder and Hamilton (1992), Castagliola (2005), Shu and Jiang (2008), Castagliola et al. (2010),
Huwang et al. (2010), Abbasi (2010) among others.

The ARL of this AEWMA-S? is a function of the shift, 7 = 01 /0¢ (00 is the standard deviation of
the in control process and o7 is the standard deviation of process when it is out of control), A, h and
n. It can be written as ARL=ARL(A, h|7,n). Then, by solving the following optimization problem,
the optimal values of A and h that minimize the ARL(A, h|7,n) can be obtained:

rf\lihn (ARL (A, h|T,n))
subject to:

ARL (\, k|7 = 1,n) = ARL,

where, depending on the EWMA-S? proposals, the ARL (), h|T # 1,n) can be approximated by a
discrete Markov chain procedure.

Whereas an optimal EWMA-S? chart would need a different value of X for each 7, the same value
of A can be a reasonable option for some range of shifts. However, there is not a single value of A
that can provide optimal or nearly optimal EWMA charts for both small and large values of 7. To
illustrate this fact, we have calculated the optimal design for each shift 7, for ARLg = 200 and n = 5,
using the proposal of Crowder and Hamilton (1992) with the transformation M;. The optimal A is
denoted as \* and the minimum ARL is denoted as ARL*. Figure 1-a shows the comparison between
the optimal design for ARL* and the range of designs with ARL < 1.1 x ARL* That is, we find the
optimal design for each shift as well as those designs that are nearly optimal in the sense that their

ARL in each shift is not larger than a 10% of the minimum one.



Table 1 and Figure (1-b) shows the range [A1, A2] of A for which the value of ARL varies in the
range [ARL*,1.1 x ARL*]. For example, if A = 0.15, it possible to get acceptable values of ARL (with
a difference lower than 10% of ARL*) for small shifts from 7 ~ 1.1 to 1.5. If A\ = 0.7, it is possible
to get acceptable values of ARL for 7 > 1.4. Table 1 shows that, for instance, if 7 = 1.3 then it is
possible to get an ARL € [10.52,11.57] for a A € [0.005,0.5703]. When the shift is small, for instance,
7 € (1,1.4], it can be seen that the differences between the ARL* and 1.1 x ARL* are notable and
therefore the variation of A has large influence in the ARL. Conversely, for 7 > 1.5, the influence of

Ain ARL is small.
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Figure 1: (a) Comparison between the ARL* (—+—) and ARL* + 10% x ARL* (—). (b) A* behavior
(—+—), and a range of variation defined by Ay (——) and Ay (——).

As a conclusion, if we want an EWMA-S? with a good performance for all shifts, we need to use
a time varying A, that is A = A¢. The above results suggest that A\; must depend on the shift. But, in
real situations, the shift is unknown and we need to find measures of the evidence of shift based on the
data. Those measures will be translated to an appropriate value \;. If data suggest that the process

dispersion could be shifting, the value of \; would increase to allow g; to be closer to the new variance.



T A* ARL* | 1.1 *x ARL* A1, A2]
1.1 | 0.005 41.98 46.18 [0.005,0.187]
1.2 | 0.042 | 18.09 19.90 [0.005, 0.356]
1.3 | 0.157 10.52 11.57 [0.005, 0.570]
140321 | 7.08 7.78 [0.030, 0.717]
1.5 | 0.449 5.18 5.70 [0.098,0.819]
1.6 | 0.529 4.04 4.45 [0.173,0.905]
1.7 | 0.593 3.31 3.64 [0.239, 0.986]
1.8 | 0.648 2.80 3.08 [0.289,1.000]
1.9 | 0.696 2.44 2.69 [0.326,1.000]
2.0 | 0.739 2.17 2.39 [0.354,1.000]
2.1 | 0.778 1.97 2.17 [0.374,1.000]
2.2 | 0.814 | 1.81 1.99 [0.389, 1.000]
2.3 | 0.848 1.68 1.85 [0.400, 1.000]
2.4 | 0.879 1.58 1.74 [0.407,1.000]
25 | 0909 | 1.50 1.65 [0.410, 1.000]
26| 0937 | 1.43 1.57 [0.411, 1.000]
2.7 1 0.963 1.37 1.51 [0.409, 1.000]
2.8 | 0.988 1.32 1.46 [0.405,1.000]
2.9 | 1.000 1.28 1.41 [0.399, 1.000]
3.0 | 1.000 1.25 1.38 [0.392, 1.000]

Table 1: Minimum ARL for each shift 7 and the corresponding \ .

This situation would facilitate to trigger the alarm. In the other hand, if data show low evidence of
being shifting, a lower value would be fixed to the parameter A\; This situation would facilitate the
detection of a possible small shift.

In this regard, Capizzi and Masarotto (2003) propose an adaptive EWMA control chart (AEWMA)
based on the behavior of data for monitoring the process mean. Later, and following the work of
Crowder and Hamilton (1992) and Capizzi and Masarotto (2003), Shu (2008) presents an adaptive
EWMA control chart for monitoring increases in the process variance (AEWMA-S?) which considers

the following statistic
Yt = max [07 Yt—1 + ¢ (et)] ) Yo = 07 (5>

where, e, = My — y;—1, My is defined in (1) and ¢ (e;) is a score function based on Huber function
(Huber, 1981),
e+ (1—-XN)y ife<—y
¢ (e) = e if le] <7y (6)
e—(1—-=XN)y ife>~n
where, v is an additional parameter of the chart. Indeed, a signal of upward shift is issued when

y¢ > h, where h is a threshold that determines the ARLg. A similar procedure could be followed if we



are interested in monitoring decreases in the process variance.
In this article we will analyze alternative strategies to get AEWMA-S? control charts using time-
varying smoothing parameters, based on Ugaz et al. (2015), for monitoring increases in the process

variance using the statistic,
yr = max [0, \eMy + (1 — M) ye—1],  yo =0, (7)

where, M, is the transformed variable by Crowder and Hamilton (1992). The alarm is triggered as
soon as y; > h, where h is a threshold that determines the ARLy. We propose four different statistics
for quantifying the evidence of a shift from data; we analyze several transformations that translate
those statistics into a value for \;. The calculation of the ARL of the proposed adaptive control charts
is approximated by Markov chain approach (Brook and Evans, 1972 and Lucas and Saccucci, 1990).
Then, this ARL approximation is used to get optimal parameters for a given ARLg. This Markov
chain representation is used to optimize the parameters such that minimum ARL is attained for a

given ARLy.

3 AEWMA charts with )\; based on the last ),

In this section, we present several proposals for measuring the evidence of the shift in the process
variance based on the last transformed variable M;. The first proposal, denoted as AEWMA1-S2,
is based on the standardized distance from M; to the target p;s9. The second proposal, denoted as
AEWMAZ2-S2, is based on the standardized distance from M; to the last value of the monitoring
statistics, ys—1. And finally, the third proposal is a combination of the previous proposals and it is
denoted by AEWMA3-S2. Then, the smoothing parameter ); is obtained by using a transformation

of those three distances.

3.1 The AEWMA1-S? chart

This adaptive control chart uses the following statistic
My = pago )2
= (M) .
oM
as a measure of the evidence of the shift. Notice that T3, is the standardized distance from the last
transformed variable M; to the target u;;o and it tends to be larger in presence of a shift in the
process variance. The terms p,;0 and ojs are obtained by the expressions (2) and (3) when 7 = 1.

Given y;_1, the value of M; is a random variable and it is approximately normal distributed (Shu and



Jiang, 2008). Therefore, If the process is in control, it holds that 77, follows approximately a central

chi-square distribution of one degree of freedom, x?. The cumulative distribution function is given by,
Fuy=P(xI<Tu). (9)

Although Fy,; is a natural choice for \; since Fi; € [0,1] and it is an increasing function on 77y,
Sanchez (2006) has shown that the variability of Fij; can be very large, provoking a large variance of
the monitoring statistics y;. Then, some efficient transformation that translate Fj; into a smoothing

parameter \; are required. In Ugaz et al. (2016), the following transformations have been explored:
e Linear bounded transformation
)‘%) = Amin + ()\max - )\min) Fyy, (10)

where Amin and Apax are parameters that are optimized to attain the lowest ARL for a given

ARLy, and computed with a procedure described in subsection 3.4.

e Power transformation

2
)\gt) = Amin + ()\max - )\min) Ffp (11)
where a is another parameter to be optimized together with Apin and Apax-

e Threshold transformation

)‘g’) = )\min + ()\max - )\min) qit,
0 it Fj; < po,
qut = Fe — (12)
fi PO otherwise,
1—po

where the threshold pg is a constant to be optimized together with a, Apin, and Apax.

It could be noticed that Ay = Amin when FY, is smaller than prespecified threshold, py (an per-
centile). Consequently, we will maintain a low smoothing factor unless the evidence of shift is large. If
F1; > po, we maintain a similar transformation as in (11) in such a way that the whole transformation
is continuous. Moreover, the power transformation is a particular case of the threshold transformation
when pg = 0 and the linear bounded transformation is a particular case of the power transformation
when a = 1. Figure 2 shows two examples of how the value M; is translated into a smoothing factor
A¢, With Ay = )\ﬁ) in (12) for a particular AEWMA1-S? design. Without loss of generality, in this

Figure 2 and Figures 3, 4 and 5, we are assuming that X; ~ N (0, 1)),
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Figure 2: (a) Behavior of ¢; in terms of M;. (b) Behavior of A\; parameter in terms of behavior M;.
It is considered a particular parameters set (PS), PS1: Apin = 0.1, Apax = 0.25, a = 1, po = 0.9, and
h = 0.3031.

3.2 The AEWMAZ2-S? chart

This adaptive control chart uses the following statistic
Ty — (M‘y> (13)
oM
as a measure of the evidence of the shift. Notice that To; is difference between the current M; and
the value of the AEWMA statistic in the previous time, 3;_1.and it tends to be larger in presence of
a shift in the process variance. This statistic holds that

My — pu fago = V-1 fago = Ye-1 )
T2t_< Mo, Fo —) _<Zt+M° ‘) , (14)
oM oM oM

where Z; is approximately a standard normal random variable (see Shu and Jiang, 2008). Given
Yi—1, 15 could be approximated by a non-central chi-square distribution of one degree of freedom,
x3(7,), with noncentrality parameter v, = (j1370 — ¥t—1) /o a- As mentioned in Ugaz et al. (2016), the
noncentrality parameter, 7,, can be neglected for practical purposes. Thus, for the sake of simplicity,

the transformation of 7T5; into a smoothing parameter will be done by,

>\2t = )\min + ()\max - )\min) q2t,
0 if th < po,
qQt = G4, — (15)
b otherwise,
1 —po

Gy = PO} <Tw),

where the parameters Amin, Amax, Po, and a, are optimized to minimize the ARL when the process is

out of control, for a given ARLg using the procedure shown in subsection 3.4. Figure 3 illustrates how
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Aoy varies as a function of My, with two particular parameter sets. Since the statistics T5; depend on

yt—1 two curves with different values of 3;_1 are displayed.

04 @ 04 ©
035 | | §§:1 ;:? 0.35 |
03| — 03}
0.25 | 025 |
< 02} <02
0.15 | 015 |
01} 01}
0.05 | 005 |
0 0

Figure 3: (a) Behavior of \; parameter in terms of M; with y;_; = 0 and y;_1 = 1 for AEWMA2-S?
design with PS2: Apin = 0.05, Apax = 0.25, a = 1, pg = 0.9, h = 0.1503. (b) Behavior of \; parameter
in terms of behavior M; with y,_1 = 0 and y,—1 = 1 for AEWMAZ2-S? design with PS3: Amin = 0.1,
Amax = 0.35, a =1, pg = 0.9 and h = 0.2572.

3.3 The AEWMAS3-S? chart

This chart is a combination of the AEWMA1-S2 and AEWMA2-S2 charts in the sense that we consider
the statistic T or T, which is more pessimistic with respect to the evidence of misadjustment, that is
Ty = max (T, To). Consequently, the AEWMAS3-S? chart uses the following time-varying smoothing

parameter,

g = max(AP Ag), (16)

which corresponds to use the statistic T5; in the transformation (15). Figure 4 illustrates how As;
varies as a function of My, with two particular parameter sets. Notice that the same parameter set is
used for both smoothing factors, )\g) and Ag;. Since the statistics T3; also depend on 141, two curves

with different values of y;_1 are displayed.

3.4 Computation of the ARL by using a Markov chain approach

This section shows a procedure to compute the ARL of the AEWMA1-S%2, AEWMA2-S?, and AEWMAS3-
S? charts using a Markov chain approach. Following the idea of Brook and Evans (1972), Lucas and
Saccucci (1990), Capizzi and Masarotto (2003) or Shu (2008), we can approximate the value of ARL

by discretizing the infinite-state transition probability matrix of the continuous-state Markov chain

11
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Figure 4: (a) Behavior of \; parameter in terms of M; with y;_; = 0 and y;_; = 1 for an AEWMA3-S?
design with PS4: Apin = 0.1, Apax = 0.25, a = 1, po = 0.9, h = 0.3023. (b) Behavior of \; parameter
in terms of behavior M; with 3,1 = 0 and y,_; = 1 for an AEMWA3-S? design with PS5: Ayin = 0.15,
Amax = 0.3, a =1, po = 0.9 and h = 0.3855.

defined by (7). For convenience, we rewrite the control statistics of the AEWMA-S? as,
Yy = max [0, y,—1 + (M — ye—1) M) - (17)

The procedure consists in dividing the interval [0, ] in an odd number m of subintervals €,
j=1,2,..., m. These subintervals have width w = (2h) / (2m — 1), except the first subinterval whose
width is w/2. Each subinterval €;, that represents the j—th state, has as midpoint v; = (j — 1)w
The control statistic y; is considered to be in the transient state or subinterval €};, at time t, if
vj —w/2 <y < vj+w/2. Furthermore, y; falls in an absorbing state when it exceeds a threshold
h or 0. Let P (j,k) be the transition probability of y; of going from state j to state k. Then, for
i=1,2,3,..., mand k # 1,

P(j, k) =Pr(y € Q | yr—1 € Q) (18)
=Pr(vy —w/2 <y <vp+w/2 | y_1 = vj)
=Pr((k—Dw—-w/2<vj+ (M —vj) < (k—1)w+w/2)
=Pr((k—Dw-w/2— (G- D<M —v) M < (k- Dwtw/2- (1)
= Pr((k—j — 1/2)w < (M; —vj) A < (k— j + 1/2)w). (19)

Let denote a; = (k—j — 1/2)w and ag = (k — j + 1/2) w. Then,

P(j,k) =Prlexp (a1) < exp [A\¢ (M; — v;)] < exp (a2)]
exXp (AtMt)

oxp (\v;) < exp (az)| - (20)

= Pr |exp(a1) <

12



Note that when k =1,

P(.1) = Pr [ 2200 < o )]
Replacing M; = In (S?/03) in (20),
exp [A¢In (S? /02
P(j,k) = Pr [exp (ar) < 22X : (A(Sg 0] < exp <a2>]
2 152\ M
=Pr [exp (a1) < % < exp (ag)] . (21)

The expression (S7/ o%))‘t /exp (Mv;) in (21) does not have a trivial distribution since A; depends
on (S7/08) by (12), (15) or (16). Therefore, an approximation to the distribution is proposed. In this
regard, it is known that S7/o2 ~ T ((n—1)/2,20%/ [(n — 1) 0}]). Let og be the standard deviation

of the random variable S? /03, then, it is known that,

o5 = (1tn - 1) /2 [20%/ [0 - 1 3])*) . (22)

Based on (22), a suitable probability interval for S2/02 is defined, for example, (0,705], since
probability of falling above 7og is very close to zero. The mentioned interval is discretized in m
subintervals ¥;, ¢ = 1,2, 3, ..., m. Similarly to the previous discretization, the width of the subintervals
is defined by ¢ = Tog/ (2m — 1) and the midpoint of i—th subinterval ¥; is denoted by wu;. If S?/02 €
W; then u; — /2 < S?/02 < u; + ¢/2. In each of these subintervals, we approximate S?/03 to the
value u;. The approximate values for S?/ 0% can be used to assign an approximate value to M; and A¢

in each subinterval as,

2 2

Inu; — p Inwu; — v,

~ MO _ ~ 7 7 _ ~ _

Tlt ~ < = C; Or TQt ~ — = C; Or T3t ~ max (Tlt, T2t) = C;
oM oM

ri =P (Xl < cl)
0 it 7 <po,
%=y ri—Dpo
1—po

)\i - Amin + ()\max - )\min) qi-

otherwise,

In consequence, if we want to approximate the values of P (j,k) in (18), we can condition on each

subinterval ¥; and apply the total probability formula as,

2,2\ M
P(j,k) = Pr lexp (a1) < (Ei;/()\fq)}j) < exp (@2)]

52
= ZPr [exp ap) ( i/ ) <exp(az) | S7/of € ;| Pr[S?/og € U]

~ exp (Mwj)

A
~ ZPr [exp ap) )™ <exp(az)| Pr[S?/of € ¥,]. (23)

~ exp (\vj)
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Notice that since u; is a constant in each subinterval, the first probability at the right hand side
of (23) is easy to compute, since it is just 1 or 0. The second one is also easy to compute, since we
have that S7/02 ~T ((n—1) /2,20%/ [(n — 1) 63]). Finally, let Ry, be a submatrix that contains
the probabilities P (j, k) of going from the transient state j to the state k, pin; is an initial probability
vector of the states, I is the m x m identity matrix, and 1 is a m x 1 vector of ones. Then, the

probability function of RL and hence the ARL in zero-state, are given by,
PMRL:rD:pw(Rmﬂ—Rﬁ1,
and
ARL = p;m' (I - R)_l 1, (24>

respectively. Lucas and Saccucci (1990) or Shu (2008) suggest for calculating the ARL in steady-state,
using cyclic probability vector steady-state, pss, which is obtained by solving pss = P/ pss, subject to

1'pss = 1, where Py is the ergodic transition probability matrix defined by,

R (I-R)1
100...0 0

P, =

Hence, the steady-state ARL is obtained by,
ARL=q I-R)™'1, (25)

where, q is a vector of length m obtained from pss by deleting the entry corresponding to the absorbing
state and normalizing so that the probabilities sum to 1.
Finally, for a given ARLg value and a rational subgroup of size n, the following optimization

nonlinear problem with decision variables: Amin, Amax, @, Po, and h, should be solved by,

min f(ARL (7(3))),i=1,2,... k.

Amin,Amax,@,P0,h

subject to: , (26)
ARL (1 = 1, Amin, Amax, @, Po, h) = ARLg

where f (-) : R¥ — R, can be i ARL (7 (¢)), the norm ||ARL (7 (i))||5, or some other convenient func-
tion, which is defined by the SZ:iltable optimality criteria. In this work, we are using the Euclidean dis-
tance between the vectors [ARL (7 (1)), ARL (7 (2)),...,ARL (7 (k))] and [ARL* (7 (1)) ,ARL* (7 (2)),..., ARL* (T
where ARL* (i) is the corresponding ARL* shown in Table 1. That function is simple and has a good
performance. Hence, the ARL (7 (¢) , Amin, Amax, @, Po, h) is approximated by using the Markov Chain

approach assuming X; ~ N (pg, 7202).
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AEWMA1-S2-1 | AEWMA2-S2-1 | AEWMA3-S2-1 || AEWMA1-S2-2 | AEWMAZ2-S2-2 | AEWMA3-S2-2
Amin 0.0632 0.0277 0.0769 0.4455 0.5949 0.0256
Amax 0.1115 0.0787 0.1399 0.7063 1.0000 0.6876
a 2.3458 4.0097 8.5720 6.6610 0.2746 2.2590
Po 0.3584 0.0278 0.5060 0.1463 0.9747 0.4016
h 0.2225 0.1188 0.2062 0.8834 0.8866 0.8146

Table 2: Optimal parameters of the AEWMA-S? control chart designs in zero-state, ARLo = 200 and n = 5.

AEWMA1-S2-1 | AEWMAZ2-S2-1 | AEWMA3-S2-1 || AEWMA1-S2-2 | AEWMA2-S2.2 | AEWMA3-S2-2
Amin 0.0181 0.0145 0.0385 0.1737 0.2042 0.2000
Amax 0.2249 0.7524 0.2510 0.3625 0.2921 0.3111
a 7.5594 7.2188 7.8067 5.6608 0.1474 9.7789
Po 0.8866 0.7570 0.8832 0.5923 0.9579 0.1138
h 0.0546 0.0445 0.1085 0.4226 0.4401 0.4579

Table 3: Optimal parameters of the AEWMA-S? control chart designs in steady-state, ARLo = 200 and n = 5.

Six alternative designs have been considered in zero-state process control, for an ARLy = 200, a
rational subgroup of size n = 5 and A defined by (12), (15) or (16). The first three use the following
optimality criteria: minimizing the ARL at range of shifts [1.1,2], these designs are denoted by
AEWMA1-S%2-1, AEWMA2-S2-1 and AEWMA3-S2-1. The others three use the optimality criteria:
minimizing the ARL at range of shifts [1.6, 3] and these are denoted by AEWMA1-S2-2, AEWMA2-
S?-2 and AEWMA3-S2-2.

Table 2 shows the optimal parameter values of the AEWMA-S? charts for the zero-state case.
Similarly, Table 3 shows the optimal parameter values, in the steady-state case. In this paper, for
simplicity, and without loss of generality, the ARL values are computed assuming that p, = 0 and
o = 1. Tables 4 and 5 show the ARL profiles for zero-state and steady-state, respectively, based on

the optimal parameters.

4 Adaptive EWMA based on the value of the control statistics

In this AEWMA-S? chart, denoted as AEWMA4-S?, ); is based on the value of v;_1. It uses the
following statistic

D, = ytfl) _ ‘yt71’7

H h

which is the ratio between ;1 and the control limit H = h. The closer y;_1 is to the control limit,
the closer Dy to 1 is. Then, using (12) with Fi; = D; or (15) with Go; = Dy, the misadjustment can
be translated into a time-varying smoothing parameter A;. It should be noticed that statistic D; does

not depend on My, which makes easer the ARL calculation. Figure 5 shows the behavior of \; versus
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7 | AEWMA1-S2-1 | AEWMA2-S2-1 | AEWMA3-S2-1 || AEWMA1-S2-2 | AEWMAZ2-S2-2 | AEWMAZ3-S2-2
1.1 41.79 41.99 42.63 55.71 55.64 53.43
1.2 17.19 17.20 17.41 22.59 22.60 21.46
1.3 10.04 9.91 10.00 11.89 11.91 11.42
1.4 7.01 6.82 6.87 7.46 7.47 7.28
1.5 5.40 5.18 5.22 5.28 5.28 5.21
1.6 4.43 4.18 4.22 4.05 4.05 4.03
1.7 3.78 3.52 3.55 3.28 3.28 3.28
2.0 2.71 2.43 2.45 2.16 2.16 2.16
2.5 1.95 1.70 1.71 1.51 1.51 1.51
3.0 1.58 1.39 1.40 1.27 1.27 1.27
Table 4: The ARL values in zero-state with ARLo = 200 and n = 5.

7 | AEWMA1-S2-1 | AEWMA2-S2-1 | AEWMA3-S2-1 || AEWMA1-S2-2 | AEWMAZ2-S2-2 | AEWMA3-S2-2
1.1 37.33 37.33 38.32 46.06 45.11 44.99
1.2 14.38 14.43 14.67 17.30 17.03 16.95
1.3 8.10 8.14 8.16 9.03 8.92 8.88
1.4 5.60 5.63 5.58 5.81 5.74 5.72
1.5 4.34 4.36 4.29 4.25 4.21 4.20
1.6 3.59 3.61 3.54 3.38 3.35 3.34
1.7 3.10 3.12 3.05 2.84 2.82 2.81
2.0 2.30 2.31 2.25 2.01 2.02 2.01
2.5 1.70 1.71 1.68 1.49 1.52 1.52
3 1.41 1.41 1.40 1.28 1.30 1.30

Table 5: The ARL values in steady-state with ARLo = 200 and n = 5.
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D, for two AEWMAA4-S? designs (D-1 and D-2). When the process is out of control, \; tends to take

the highest possible value.

(a) (b)
0.4 : : : 0.4 :
D-1 D-2
0.35 | ] 035 |
03 ] 03}
025 | 025 |
< <
02} ] 02}
0.15 | ] 0.15
0.1 | ] 0.1}
0.05 : : : 0.05 : : :
0 0.2 0.4 0.6 0 0.2 0.4 0.6
y(t-1) y(t-1)

Figure 5: (a) Behavior of \; parameter in terms of y;_; for an AEWMA4-S? control chart design D-1
with PS6: Apin = 0.1, Apax = 0.25, a =5, po = 0.1, h = 0.23912. (b) Behavior of A; parameter in terms
of behavior y;_; for an AEMWA4-S? control chart design D-2 with PS7: Apin = 0.15, Apax = 0.35, a = 5,
po = 0.1 and h = 0.327.

4.1 Computation of the ARL of the AEWMAA4-S? using a Markov chain approach

In this AEWMA-S? chart, \; does not depend on M;. The computation of the ARL follows the
traditional procedure proposed by Brook and Evans (1972) and Lucas and Saccucci (1990). The

transition probability defined in (19) can be reexpressed as follows

P(j,k) = Privy—v;j—w/2< (My—vj) N <vip—vj+w/2

_ pr Vi — Vi —w/2 v <M< v — Vi +w/2 —,
At At
= Prlexp (b)) <exp (M) < exp (b2)]
— Prexp (br) < S2/03 < exp (b)) 1)

where, by = (v, — vj —w/2) /ANt —vj, ba = (v — vj +w/2) /A —v;. The probability (27) is computed
using that S7/o3 ~ T ((n—1)/2,20%/ [(n — 1) 03]). The ARL is calculated in zero-state or steady-
state by (24) and (25), respectively. Finally, solving the nonlinear optimization problem (26), the
optimal values of the parameters can be obtained.

For a zero-state process control and ARLy = 200, rational subgroup of size n = 5 and using

(12) with Fi; = Dy, two designs are obtained. The first one uses the following optimality criteria:
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ARLo = 200, zero-state ARLo = 200, steady-state
AEWMA4-S2-1 | AEWMA4-S2.2 || AEWMA4-S2-1 | AEWMA4-S2-2

Amin 0.0886 0.6197 0.0821 0.2719

Amax 0.5863 0.6697 0.1121 0.6444

a 9.4988 3.8766 5.1453 6.1695

Do 0.9983 0.2326 0.2222 0.9949

h 0.2182 0.8966 0.2059 0.5043

Table 6: Optimal parameters of the AEWMA-S? control chart designs.

ARLg = 200, zero-state ARLg = 200, steady-state
T | AEWMA4-S2.1 | AEWMA4-S2-2 || AEWMA4-S2-1 | AEWMAA4-S2-2
1.1 43.96 55.09 41.25 46.34
1.2 18.19 22.40 15.67 17.67
1.3 10.60 11.84 8.52 9.25
1.4 7.41 7.46 5.71 5.93
1.5 5.74 5.29 4.33 4.33
1.6 4.74 4.07 3.54 3.44
1.7 4.08 3.31 3.04 2.89
2 3.00 2.19 2.27 2.08
2.5 2.25 1.54 1.78 1.59
3 1.87 1.29 1.56 1.38

Table 7: The ARL values with n = 5.

minimizing the ARL at range of shifts [1.1,2], this design is denoted by AEWMA4-S2-1 control chart
design. The other one uses the optimality criteria: minimizing the ARL at range of shifts [1.6, 3] and
this is denoted by AEWMA4-S2-2 control chart design. The optimal values of parameters are shown
in Table 6. The ARL profiles are shown in the Table 7.

5 Comparisons

In this section, the four proposed AEWMA-S? control charts are compared. Besides, they are compared
to other control charts such as Shewhart-S? control chart, the EWMA-S? control charts, the EWMA-
S? of Castagliola et al (2010) called here EWMA-S2-CT and the adaptive EWMA control charts for
the variance of Shu (2008) called here AEWMA-S2-SH. Unless otherwise stated, all the comparisons
consider: zero-state ARL, ARLy = 200 and n = 5.

Table 8 shows that the performance of the four proposed AEWMA-S? charts are similar for small
and medium shifts in approximately the range [1.1,1.4]. The AEWMA1-S2-1 design shows a slightly
better performance than the others. In the interval 1.4 < 7 < 3, the first three AEWMA-S? designs

show similar performance, being again the first one slightly better than the others. The AEWMA4-S2-1
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design loses efficiency for medium and large shifts.

On the other hand, Table 8 shows that also the four AEWMA-S? designs have similar performance
for small and medium shifts in the variance process, approximately 1.1 < 7 < 1.5. The AEWMA3-S2-2
design is slightly better than the others for very small and medium shifts, 7 € [1.1,1.6]. In the interval
7 € [1.7, 3], the first three AEWMA-S? designs show similar performance. The AEWMA4-S2-2 design
loses efficiency for medium and large shifts.

In Table 8 , we can compare the first four AEWMA-S? designs and a Shewhart-S? control chart
with the same rational subgroup size, n = 5 (S-1 design). It can be seen that Shewhart control chart
is not competitive for small and medium shifts. Also, we can compare the second four AEWMA-S?
charts and the same Shewhart-S? design (S-1). In this case, S-1 is still less competitive than four
AEWMA-S? designs.

Besides, we can compare the ARL values of the first four AEWMA-S? designs and two alternative
EWMA-S? designs. These EWMA-S? charts are designed to get minimum ARL values at shifts 7 = 1.1
(E-1) and 7 = 1.5 (E-2). In this case, it can be seen that the four proposed AEWMA-S? designs and
only E-1 have a similar performance for small shifts, E-1 is only competitive in 7 = 1.1. E-2 is
not competitive for small and medium shifts. For large shifts, approximately 7 > 1.5, the first three
AEWMA-S? designs are competitive with E-2 but E-1 is not competitive. Definitely, the four proposed
AEWMA-S? control charts show good performance through the whole shifts range. Additionally, we
can compare the ARL values of the second four AEWMA-S? charts and the EWMA-S? with designs
that were got for minimum ARL values at shifts 7 = 2 (E-3) and 7 = 3 (E-4). In this case, it can be
seen that the four proposed AEWMA-S? designs have good performance for every possible shifts, E-3
and E-4 are only competitive for 7 > 2.5.

Moreover, Table 8 allows us to compare the ARL values of the first four AEWMA-S? designs with
two alternative EWMA-S2-CT charts. These EWMA-S2-CT charts are designed to get minimum ARL
values at shifts 7 = 1.1 (CT-1) and 7 = 1.5 (CT-2). This comparison shows that the four proposed
AEWMA-S? control charts are more competitive than CT-1 and CT-2 for approximately 7 < 1.5.
Only CT-2 is competitive in 7 > 1.6. Furthermore, we can compare the ARL values of the second
four AEWMA-S? charts and the EWMA-S2-CT charts for two design, with minimum ARL values at
shifts 7 = 2 (CT-3) and 7 = 3 (CT-4). In this case, it can be seen that the four proposed AEWMA-S?
control charts have a competitive performance for all shift, CT-3 and CT-4 are only competitive for
T > 2.5.

Our final comparison is between the proposed AEWMA-S? control charts and the AEWMA-S?

control charts of Shu (2008). In this regard, Table 8 allows us to compare the first four proposed
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Figure 6: (a) ARL comparisons between four AEWMA-S? designs proposed, AEWMA-S2-(1-1, 2-1,
3-1 and 4-1) and AEWMA-S2-SH-1. (b) ARL comparisons between four AEWMA-S? designs proposed,
AEWMA-S2-(1-2, 2-2, 3-2 and 4-2) and AEWMA-S2-SH-2. For ARLy = 200 and n = 5.

AEWMA-S? control charts (designs optimized for 7 € [1.1,2] as in Shu, 2008) with the AEWMA-
S2-SH-1 (design optimized for 7 € [1.1,2] as in Shu, 2008) based on the Huber score function. This
design is labelled as SH-1. The first three proposed AEWMA-S? are better than SH-1 for small and
medium shifts, approximately for 7 € [1.1,1.6]. Then, for large shifts, these designs are similar, being
AEWMAA4-S2-1 less competitive.

Finally, in table 8 we can compare the second four proposed AEWMA-S? control charts (designs
optimized for 7 € [1.6,3] as it was mentioned in the previous section) with the AEWMA-S2-SH-2
(design optimized for 7 € [1.4, 2] as it was mentioned in Shu, 2008) based on the Huber score function.
This design is labelled as SH-2. In general, again, it can be seen that the ARL of the four proposed
AEWMA-S? designs and SH-2 are similar in almost all range of shifts. The four AEWMA-S? proposed
take advantage of SH-2 for small and medium shifts, approximately for 7 € [1.1,1.5]. Then, for large
shifts, the five designs are similar. Therefore, it can be concluded that the proposed AEWMA-S?
control chart are more competitive than the AEWMA-S2-SH in terms of ARL particularly for small

and medium shifts. Figure 6 shows the final comparisons.

6 Conclusions

We have presented four adaptive EWMA control charts for monitoring the variance of a variable that

represents a quality characteristic in a particular process. These control charts work with a time
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T

1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.0 2.5 3.0

1-S2-1  41.79 17.19 10.04 7.01 540 4.43 3.78 271 1.95 1.58
2-S2.1 4199 17.20 9.91 6.82 5.18 4.18 3,52 243 1.70 1.39
3-S2-1 42,63 1741 10.00 6.87 522 4.22 355 245 1.71 1.40
4-S%2-1 43.96 18.19 10.60 7.41 5.74 474 4.08 3.00 225 1.87
1-S2-2  55.71 2259 11.89 7.46 528 4.05 3.28 216 1.51 1.27
2-S2-2  55.64 22.60 11.91 7.47 528 4.05 3.28 2.16 1.51 1.27
3-S2.2 5343 21.46 11.42 7.28 521 4.03 3.28 2.16 1.51 1.27
4-S%2.2  55.09 2240 11.84 7.46 5.29 4.07 331 219 1.54 1.29

S-1 95.15 42.39 21.58 12.61 8.24 586 4.46 2.55 1.61 1.30

E-1 4198 18.19 11.13 8.06 6.40 537 4.67 3.48 2.64 226

E-2 51.41 20.64 11.07 7.14 518 4.06 335 229 1.62 1.34

E-3 58.11 24.00 12.64 7.87 550 4.17 3.36 2.17 151 1.27

E-4 65.03 28.27 15.04 9.25 6.32 4.67 3.66 2.24 150 1.25
CT-1 46.33 20.64 13.17 9.73 7.76 6.48 558 3.96 267 2.03
CT-2 5898 2247 11.66 739 530 4.13 339 228 1.60 1.33
CT-3 60.70 2491 12,99 8.02 557 420 336 216 149 1.26
CT-4 65.02 28.27 15.04 9.25 6.32 4.67 3.66 224 150 1.25

SH-1 4437 1820 1048 7.17 539 429 355 235 1.59 1.30
SH-2 56.41 2263 11.81 7.40 5.23 4.01 326 214 1.49 1.25

Table 8: The ARL values in zero-state with ARLy = 200 and n = 5. We are considered: AEWMA1-S2-1
(1-8%-1), AEWMA2-S%-1 (2-S2-1), AEWMAS3-S%-1 (3-S%-1), AEWMA4-32-1 (4-S%-1), AEWMA1-S2-2 (1-S2-2),
AEWMA2-S2-2 (2-S2-2), AEWMA3-5%-2 (3-S2-2), AEWMA4-S2-2 (4-S%-2), Shewhart-S? (S-1), EWMA-S%-1 (E-
1), EWMA-S2-2 (E-2), EWMA-S2-3 (E-3), EWMA-S2-4 (E-4), EWMA-S2-CT1 (CT-1), EWMA-S?-CT2 (CT-2),
EWMA-S%-CT3 (CT-3), EWMA-S%.-CT4 (CT-4), AEWMA-S%.-SH-1 (SH-1) and AEWMA-S?-SH-2 (SH-2).
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varying smoothing parameter. The proposed AEWMA-S? control charts are very easy to understand
and to implement in the practice. We should have in mind that the size shift depends on the nature of
the monitored process. Since in actual operation, smaller shifts are more frequent than larger shifts,
we have shown that these proposed charts have a good performance for small and medium shifts and
even for large shifts. Therefore, the proposed charts can be competitive with respect to the alternative

charts of the literature on a wide range of shifts.

6.0.1 Acknowledgements

The financial support received from the Spanish MEC, under grant ECO02012-38442 is gratefully

acknowledge.

22



References

[1]

[10]

[11]

[12]

Abbasi, S. A. (2010). On sensitivity of EWMA control chart for monitoring process dispersion.
In Proceedings of the World Congress on Engineering, 3, 2027-2032.

Abbasi, S. A. and Miller, A. (2013). MDEWMA chart: an efficient and robust alternative to

monitor process dispersion. Journal of Statistical Computation and Simulation, 83(2), 247-268.

Acosta-Mejia, C. A. (1998). Monitoring reduction in variability with the range. IIE transactions,
30(6), 515-523.

Acosta-Mejia, C. A., Pignatiello, J. J. and Rao, B. V. (1999). A comparison of control charting

procedures for monitoring process dispersion. IIE transactions, 31(6), 569-579.

Amin, R. W., Wolff, H., Besenfelder, W. and Baxley Jr, R. (1999). EWMA control charts for the
smallest and largest observations. Journal of Quality Technology, 31(2), 189-201.

Bagshaw, M. and Johnson, R. A. (1975). The effect of serial correlation on the performance of
CUSUM tests II. Technometrics, 17(1), 73-80.

Box, G. E., Hunter, W. G. and Hunter, J. S. (1978). Statistics for experimenters. John Wiley &
Sons, New York, NY.

Box, G. E. P. and Ramirez, J. G (1991a). Sequential Methods in Statistical Process Monito-
ring. Report No. 65, Center for Quality and Productivity Improvement, University of Wisconsin-

Madison, Madison, WI.

Box, G, E. P. and Ramirez, J. G. (1991b). Sequential Methods in Statistical Process Monito-
ring. Report No. 66, Center for Quality and Productivity Improvement, University of Wisconsin-

Madison, Madison, WI.

Box, G. E. P. and Ramirez, J. G. (1991c). Sequential Methods in Statistical Process Monito-
ring. Report No. 67, Center for Quality and Productivity Improvement, University of Wisconsin-

Madison, Madison, WI.

Brook D. and Evans D. A. (1972). An approach to the probability distribution of CUSUM run
length. Biometrika, 59(3), 539-549.

Capizzi G. and Masarotto G. (2003). An adaptive exponentially weighted moving average control
chart. Technometrics, 45(3), 199-207.

23



[13]

[14]

[19]

[20]

[21]

[22]

[25]

Castagliola, P. (2005). A New S2-EWMA Control Chart for Monitoring the Process Variance.
Quality and Reliability Engineering International, 21(8), 781-794.

Castagliola, P., Celano, G., Fichera, S. and Giuffrida, F. (2006). A variable sampling interval
S2-EWMA control chart for monitoring the process variance. International Journal of Technology

Management, 37(1-2), 125-146.

Castagliola, P., Celano, G., Fichera, S. and Nunnari, V. (2008). A variable sample size S>-EWMA
control chart for monitoring the process variance. International Journal of Reliability, Quality and

Safety Engineering, 15(3), 181-201.

Castagliola, P., Celano, G. and Fichera, S. (2009). A new CUSUM-S? control chart for monitoring

the process variance. Journal of Quality in Maintenance Engineering, 15(4), 344-357.

Castagliola, P., Celano, G. and Fichera, S. (2010). A Johnson’s type transformation EWMA-S?
control chart. International Journal of Quality Engineering and Technology, 1(3), 253-275.

Chang, T. C. and Gan, F. F. (1995). Cumulative sum control chart for monitoring process vari-

ance. Journal of Quality Technology. 27(2), 109-119.

Chao-Wen, L. and Reynolds Jr, M. R. (1999). Control charts for monitoring the mean and variance
of autocorrelated process. Journal of Quality Technology, 31(3), 259-274.

Chengular, I., Arnolds, J. and Reynolds, Jr., M.R. (1989). Variable sampling intervals for multipa-
rameter Shewhart charts. Communications in Statistics: Theory and Methods, 18(5),.1769-1792.

Crowder, S. V.and Hamilton, M. D. (1992). An EWMA for monitoring a process standard devi-
ation. Journal of Quality Technology, 24(1), 12-21.

Gan, F. F. (1995). Joint monitoring of process mean and variance using exponentially weighted

moving average control charts. Technometrics, 37(4), 446-453.

Haq, A., Brown, J. and Moltchanova, E. (2014). New exponentially weighted moving average
control charts for monitoring process mean and process dispersion. Quality and Reliability Engi-

neering International.

Hawkins, D. M. (1981). A CUSUM for a scale parameter. Journal of Quality Technology, 13(4),
228-231.

Huber P. J. (1981). Robust statistics. New York: Wiley.

24



[26]

[32]

[33]

Huwang, L., Huang, C. J. and Wang, Y. H. T. (2010). New EWMA control charts for monitoring
process dispersion. Computational Statistics & Data Analysis, 54(10), 2328-2342.

Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Bio-
metrika, 36(1-2), 149-176.

Lowry, C. A., Champ, C. W. and Woodall, W. H. (1995). The performance of control charts for
monitoring process variation. Communications in Statistics-Simulation and Computation, 24(2),

409-437.

Lucas J. M. and Saccucci M. S. (1990). Exponentially weighted moving average control schemes:

Properties and Enhancements (with discussion), Technometrics, 32(1), pp. 1-29.

MacGregor, J. F. and Harris, T. J. (1993). The exponentially weighted moving variance. Journal
of Quality Technology, 25(2), 106-118.

Maravelakis, P. E. and Castagliola, P. (2009). An EWMA chart for monitoring the process stan-
dard deviation when parameters are estimated. Computational Statistics & Data Analysis, 53(7),

2653-2664.

Nazir, H. Z., Riaz, M. and Does, R. J. (2015). Robust CUSUM control charting for process

dispersion. Quality and Reliability Engineering International, 31(3), 369-379.

Ng, C. H. and Case, K. E. (1989). Development and evaluation of control charts using exponen-

tially weighted moving averages. Journal of Quality Technology, 21(4), 242-250.

Page, E. S. (1963). Controlling the standard deviation by CUSUMS and warning lines. Techno-
metrics, 5(3), 307-315.

Reynolds Jr., M. R. and Stoumbos, Z. (2001). Monitoring the process mean and variance using
individual observations and variable sampling intervals. Journal of Quality Technology, 33(2),

181-205.

Sénchez, 1. (2006). Recursive estimation of dynamic models using Cook’s distance, with applica-

tion to wind energy forecast. Technometrics, 48(1), 61-73.

Shewhart W. A. (1931). Economic control of quality of manufactured product. D. Van Nostrand
Company, Inc, The United States of America, 182.

Shu, L. (2008). An adaptive exponentially weighted moving average control chart for monitoring

process variances. Journal of Statistical Computation and Simulation, 78(4), 367-384.

25



[39]

[40]

[41]

[42]

[43]

[44]

Shu, L. and Jiang, W. (2008). A new EWMA chart for monitoring process dispersion. Journal of
Quality Technology, 40(3), 319-331.

Shu, L., Yeung, H. F. and Jiang, W. (2010). An adaptive CUSUM procedure for signaling process

variance changes of unknown sizes. Journal of Quality Technology, 42(1), 69.

Sparks, R. S. (2000). CUSUM Charts for Signaling Varying Location Shifts. Journal of Quality
Technology 32(2), 157-171.

Sweet, A. L. (1986). Control charts using coupled exponentially weighted moving averages. IIE
Transactions, 18(1), 26-33.

Tuprah, K. and Ncube, M. (1987). A comparison of dispersion quality control charts. Sequential
Analysis, 6(2), 155-163.

Ugaz, W., Sdnchez, I. and Alonso, A. M. (2016). Adaptive EWMA Control Charts with a Time

Varying Smoothing Parameter. Preprint.

Wortham, A. W. and Ringer, L. J. (1971). Control via exponential smoothing. The Logistics
Review, 7(32), 33-40.

Yashchin, E. (1995). Estimating the current mean of a process subject to abrupt changes. Tech-
nometrics, 37(3), 311-323.

26



