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Abstract

Memory charts like EWMA-S2 or CUSUM-S2 can be designed to be optimal to detect a speci�c

shift in the process variance. However, this feature could be a serious inconvenience since, for

instance, if the charts are designed to detect small shift, then, they can be ine¢ cient to detect

moderate or large shifts. In the literature, several alternatives have been proposed to overcome

this limitation, like the use of control charts with variable parameters or adaptive control charts.

This paper proposes new adaptive EWMA control charts for the dispersion (AEWMA-S2) based

on a time-varying smoothing parameter that takes into account the potential misadjustment in the

process variance. The obtained control charts can be interpreted as a combination of EWMA control

charts designed to be e¢ cient for di¤erent shift values. Markov chain procedures are established to

analyze and design the proposed charts. Comparisons with other adaptive and traditional control

charts show the advantages of the proposals.
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1 Introduction

The use of control charts as a process monitoring tool has become increasingly popular in the �eld of

statistical process control (SPC). Shewhart control charts (Shewhart, 1931) can be used for monitoring

the mean or the variability of the process. In many practical applications, it is even more important

to control shifts in the process variability rather than the mean, since an increase of the variability

process causes an increased number of defective products while a decrease of process variability implies

an improvement of process capability (Acosta-Mejia et al., 1999). Besides, it is meaningless to claim

a shift of the process mean unless it is sure that the process variability is in control.

Shewhart control charts such as the range R or the unbiased sample variance S2 control charts can

be used for monitoring the variability of rational subgroups sampled of the process. However, as in

the case of monitoring the process mean, these procedures are not very sensitive to small shifts.

In order to increase the sensitivity to small shifts, the literature has proposed some alternative

procedures that use statistics with memory, usually called memory control charts or time-weighted

control charts. It is known that the most popular memory control charts are the CUSUM and the

EWMA charts, which have been recognized as potentially powerful tools in quality control. One of

the �rst CUSUM control charts for monitoring variability was introduced by Page (1963) and then

studied, among others, by Bagshaw and Johnson (1975), Hawkins (1981), Box and Ramírez (1991),

Chang and Gan (1995), Castagliola et al. (2009) and Nazir et al. (2015).

Furthermore, Wortham and Ring (1971), Sweet (1986) and Ng and Case (1989) investigated the

properties of EWMA control charts for monitoring the process variability but they were not able to

introduce formal design strategies for the problem. Box, Hunter and Hunter (1978), among others,

introduced the use of the logarithm of the sample variances since it is more approximately normally

distributed than the sample variance by itself. Crowder and Hamilton (1992) proposed an EWMA

control chart for monitoring the variability based on the logarithmic transformation of the sample

variance, log
�
S2
�
, due to its simplicity and e¢ ciency. Castagliola (2005) proposed a bilateral EWMA

control chart for monitoring the variability using a logarithmic transformation of three parameters

(type of original Johnson (1949) transformations) to improve normality.

As an extension of the Crowder and Hamilton (1992) proposal, Shu and Jiang (2008) presented

an EWMA control chart for monitoring the variability (NEWMA), which truncates the negative

normalized observations to zero in the statistical traditional EWMA. Maravelakis and Castagliola

(2009) propose a modi�ed EWMA control chart for monitoring the standard deviation when the

parameters are estimated. Castagliola et al. (2010) presented an EWMA control chart that improves

the 2005 version. This chart uses the Johnson transformation of four parameters to attain normality.
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Other interesting researches that study CUSUM and EWMA control charts for the process vari-

ability can be found in Tuprah and Ncube (1987), MacGregor and Harris (1993), Gan (1995), Lowry

et al. (1995), Acosta-Mejia (1998), Amin et al. (1999), Chao-Wen and Reynolds (1999), Acosta-Mejía

et al. (1999), Huwang et al. (2010), Abbasi (2010), Abbasi and Miller (2013) and Haq et al. (2014),

among others.

Also, with the aim of improving the performance, Interval Sampling Variable (VSI) and Sample Size

Variable (VSS) EWMA control charts for the process variability have been proposed by Castagliola

et al. (2006, 2008). Other contributions can be seen in Chengular et al. (1989) and Reynolds and

Stoumbos (2001).

Analogously to the control of the process mean, adaptive CUSUM and EWMA control charts for

monitoring the variability process can be proposed based on time-varying versions of the parameters

that control the memory of the charts; that is k in CUSUM charts and � in EWMA charts. By

adapting the memory, we can make charts sensitive to both small and large shifts. The intuition

behind these adaptive charts is to use a measure of the potential presence of a shift. Accordingly,

the value of the parameter is increased when it is suspected that the process could be out of control

due to a large shift. Conversely, if the data show strong evidence of being in control or with a small

shift, the parameters tend to be smaller, easing the detection of potential small shifts. This kind of

adaptation scheme is the one we pursue in this paper.

Shu et al. (2010) proposed an adaptive CUSUM control chart for monitoring shifts in the process

variability (ACUSUM-S2). This chart is an extension of the ACUSUM control chart for monitoring

the process mean initially proposed by Sparks (2000). This ACUSUM-S2 chart dynamically adjusts

its reference value according to a current estimate of the process variance and does not require precise

information about the magnitude of shift.

Capizzi and Masarotto (2003) developed an AEWMA control chart for monitoring the process mean

based on weighting recent observations using an score function of the current error et = xt � yt�1,

where xt is the last observation of the process and yt�1 is the previous value of the monitoring statistic.

In particular, if et is small, the value of � tends to be small, like in conventional EWMA chart, since

the process seems to be in control. However, if et is large the value of � tends to be large, since the

risk of being out of control is higher.

Shu (2008), considering the statistic of Crowder and Hamilton (1992), proposed an adaptive

EWMA control chart for monitoring the process variability. This chart is based on the latest ob-

servations dynamically weighted according to an appropriate function of the current prediction error.

It is actually an extension of Capizzi and Masarotto (2003) for monitoring the process mean.
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Additionally, some new AEWMA control charts for monitoring the process mean are proposed by

Ugaz et al. (2016). These charts use speci�c statistics that quantify the evidence of a shift from data,

that is, statistics based on the distance from observations xt to the process mean �0 or based on the

prediction error, et, or just based on the level of yt�1. Subsequently, the statistics are translated to

time varying smoothing factor �t. Those AEWMA control charts are competitive with respect to the

proposal of Capizzi and Masarotto (2003).

In this paper, considering the proposals of Ugaz et al. (2016), some alternative AEWMA-S2 control

charts are proposed. To that aim, several measures of the potential shift of the process variance are

suggested. For each measure of potential shift, alternative methods to translate such measure into

a time varying smoothing factor are discussed. Procedures to compute the ARL of the proposed

AEWMA-S2 based on Markov chain approximations are obtained, which allow us to get the optimal

designs. A numerical comparison of these alternative approaches and the main alternatives in the

literature is presented.

The rest of the article is organized as follows. In Section 2, the notion of the adaptive EWMA-S2

control chart is introduced. In Section 3, AEWMA-S2 control charts with time varying �t based on

the last observation are proposed. In Section 4, AEWMA-S2 control charts with time varying �t based

on the level of the control statistics are proposed. Section 5, shows the results of several comparisons

between alternative control charts and the proposed AEWMA-S2 control charts. Finally, in Section

6, some concluding remarks are given.

2 Adaptive EWMA-S2 control chart

Assume that observations Xt;i, t = 1; 2; � � � and i = 1; 2; � � � ; n are independent and identically distri-

buted following a normal distribution N
�
�; �2t

�
. Furthermore, we are mainly interested in detecting

increases in the process variance, i. e., �2t = �
2
0; t < t

� and �2t > �
2
0; t � t� and � t = �t=�0. Let S2

t be

the variance of the t�th rational subgroup of size n de�ned by S2
t = (1= (n� 1))

Pn
i=1

�
Xt;i �Xt

�2
;

where Xt;i is the i�th observation of the t�th rational subgroup and Xt is the t�th subgroup mean.

Crowder and Hamilton (1992) suggested the EWMA chart for monitoring increases in the process

variance with the statistic,

yt = max [0; �Mt + (1� �) yt�1] ; y0 = 0; (1)

where Mt = ln
�
S2
t =�

2
0

�
, which is more approximately normal distributed (Shu and Jiang, 2008). The

mean and variance of the transformed variable Mt are approximated by,

�
Mt
= ln

�
�2t
�
� 1

n� 1 �
1

3 (n� 1)2
+

2

15 (n� 1)4
, (2)
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and

�2Mt
=

2

n� 1 +
2

(n� 1)2
+

4

3 (n� 1)3
� 16

15 (n� 1)5
; (3)

respectively. It is important to note that �2Mt
only depends on n, it is because of that Mt can be

monitored as Xt in the EWMA chart for monitoring the process mean. This EWMA-S2 control chart

signals when,

yt > h; (4)

where h is a threshold that determines the ARL0.

To design the EWMA-S2 control chart for the variance process (EWMA-S2), the parameter values

of � and h for some rational subgroup of size n must be selected. � and h, which are de�ned in (1)

and (4) can be chosen in such a way that the chart is optimal for detecting a prespeci�ed shift in

the variance process for a given in control average run length (ARL0). The in�uence of the design

parameters in the performance of the EWMA-S2 has been studied by Box, Hunter and Hunter (1978),

Crowder and Hamilton (1992), Castagliola (2005), Shu and Jiang (2008), Castagliola et al. (2010),

Huwang et al. (2010), Abbasi (2010) among others.

The ARL of this AEWMA-S2 is a function of the shift, � = �1=�0 (�0 is the standard deviation of

the in control process and �1 is the standard deviation of process when it is out of control), �, h and

n. It can be written as ARL=ARL(�; hj� ; n): Then, by solving the following optimization problem,

the optimal values of � and h that minimize the ARL(�; hj� ; n) can be obtained:

min
�;h

(ARL (�; hj� ; n))

subject to:

ARL (�; hj� = 1; n) = ARL0;

where, depending on the EWMA-S2 proposals, the ARL (�; hj� 6= 1; n) can be approximated by a

discrete Markov chain procedure.

Whereas an optimal EWMA-S2 chart would need a di¤erent value of � for each � , the same value

of � can be a reasonable option for some range of shifts. However, there is not a single value of �

that can provide optimal or nearly optimal EWMA charts for both small and large values of � . To

illustrate this fact, we have calculated the optimal design for each shift � , for ARL0 = 200 and n = 5,

using the proposal of Crowder and Hamilton (1992) with the transformation Mt. The optimal � is

denoted as �� and the minimum ARL is denoted as ARL�. Figure 1-a shows the comparison between

the optimal design for ARL� and the range of designs with ARL � 1:1 � ARL� That is, we �nd the

optimal design for each shift as well as those designs that are nearly optimal in the sense that their

ARL in each shift is not larger than a 10% of the minimum one.
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are interested in monitoring decreases in the process variance.

In this article we will analyze alternative strategies to get AEWMA-S2 control charts using time-

varying smoothing parameters, based on Ugaz et al. (2015), for monitoring increases in the process

variance using the statistic,

yt = max [0; �tMt + (1� �t) yt�1] ; y0 = 0; (7)

where, Mt is the transformed variable by Crowder and Hamilton (1992). The alarm is triggered as

soon as yt > h, where h is a threshold that determines the ARL0: We propose four di¤erent statistics

for quantifying the evidence of a shift from data; we analyze several transformations that translate

those statistics into a value for �t. The calculation of the ARL of the proposed adaptive control charts

is approximated by Markov chain approach (Brook and Evans, 1972 and Lucas and Saccucci, 1990).

Then, this ARL approximation is used to get optimal parameters for a given ARL0. This Markov

chain representation is used to optimize the parameters such that minimum ARL is attained for a

given ARL0.

3 AEWMA charts with �t based on the last Mt

In this section, we present several proposals for measuring the evidence of the shift in the process

variance based on the last transformed variable Mt. The �rst proposal, denoted as AEWMA1-S2,

is based on the standardized distance from Mt to the target �M0: The second proposal, denoted as

AEWMA2-S2, is based on the standardized distance from Mt to the last value of the monitoring

statistics, yt�1: And �nally, the third proposal is a combination of the previous proposals and it is

denoted by AEWMA3-S2. Then, the smoothing parameter �t is obtained by using a transformation

of those three distances.

3.1 The AEWMA1-S2 chart

This adaptive control chart uses the following statistic

T1t =

�
Mt � �M0

�M

�2

; (8)

as a measure of the evidence of the shift. Notice that T1t is the standardized distance from the last

transformed variable Mt to the target �M0 and it tends to be larger in presence of a shift in the

process variance. The terms �M0 and �M are obtained by the expressions (2) and (3) when � = 1.

Given yt�1; the value of Mt is a random variable and it is approximately normal distributed (Shu and
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Jiang, 2008). Therefore, If the process is in control, it holds that T1t follows approximately a central

chi-square distribution of one degree of freedom, �21. The cumulative distribution function is given by,

F1t = P
�
�21 � T1t

�
: (9)

Although F1t is a natural choice for �t since F1t 2 [0; 1] and it is an increasing function on T1t,

Sánchez (2006) has shown that the variability of F1t can be very large, provoking a large variance of

the monitoring statistics yt. Then, some e¢ cient transformation that translate F1t into a smoothing

parameter �t are required. In Ugaz et al. (2016), the following transformations have been explored:

� Linear bounded transformation

�
(1)
1t = �min + (�max � �min)F1t; (10)

where �min and �max are parameters that are optimized to attain the lowest ARL for a given

ARL0, and computed with a procedure described in subsection 3.4.

� Power transformation

�
(2)
1t = �min + (�max � �min)F

a
1t; (11)

where a is another parameter to be optimized together with �min and �max.

� Threshold transformation

�
(3)
1t = �min + (�max � �min) q1t;

q1t =

8><>:
0 if F a1t � p0;

F a1t � p0
1� p0

otherwise,
(12)

where the threshold p0 is a constant to be optimized together with a; �min; and �max.

It could be noticed that �t = �min when F a1t is smaller than prespeci�ed threshold, p0 (an per-

centile). Consequently, we will maintain a low smoothing factor unless the evidence of shift is large. If

F1t > p0; we maintain a similar transformation as in (11) in such a way that the whole transformation

is continuous. Moreover, the power transformation is a particular case of the threshold transformation

when p0 = 0 and the linear bounded transformation is a particular case of the power transformation

when a = 1. Figure 2 shows two examples of how the value Mt is translated into a smoothing factor

�t; with �t = �
(3)
1t in (12) for a particular AEWMA1-S2 design. Without loss of generality, in this

Figure 2 and Figures 3, 4 and 5, we are assuming that Xt � N (0; 1)),
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Note that when k = 1,

P (j; 1) = Pr

�
exp (�tMt)

exp (�tvj)
� exp (a2)

�
:

Replacing Mt = ln
�
S2
t =�

2
0

�
in (20),

P (j; k) = Pr

"
exp (a1) <

exp
�
�t ln

�
S2
t =�

2
0

��
exp (�tvj)

� exp (a2)
#

= Pr

"
exp (a1) <

�
S2
t =�

2
0

��t
exp (�tvj)

� exp (a2)
#
: (21)

The expression
�
S2
t =�

2
0

��t = exp (�tvj) in (21) does not have a trivial distribution since �t depends

on
�
S2
t =�

2
0

�
by (12), (15) or (16). Therefore, an approximation to the distribution is proposed. In this

regard, it is known that S2
t =�

2
0 � �

�
(n� 1) =2; 2�2=

�
(n� 1)�20

��
. Let �S be the standard deviation

of the random variable S2
t =�

2
0, then, it is known that,

�S =
�
[(n� 1) =2]

�
2�2=

�
(n� 1)�20

��2�1=2
: (22)

Based on (22), a suitable probability interval for S2
t =�

2
0 is de�ned, for example, (0; 7�S ], since

probability of falling above 7�S is very close to zero. The mentioned interval is discretized in m

subintervals 	i, i = 1; 2; 3; :::;m. Similarly to the previous discretization, the width of the subintervals

is de�ned by " = 7�S= (2m� 1) and the midpoint of i�th subinterval 	i is denoted by ui. If S2
t =�

2
0 2

	i then ui � "=2 < S2
t =�

2
0 � ui + "=2: In each of these subintervals, we approximate S2

t =�
2
0 to the

value ui: The approximate values for S2
t =�

2
0 can be used to assign an approximate value to Mt and �t

in each subinterval as,

T1t �
�
lnui � �M0

�M

�2

� ci or T2t �
�
lnui � vj
�M

�2

� ci or T3t � max (T1t; T2t) � ci

ri = P
�
�21 < ci

�
qi =

8><>:
0 if rai � p0;

rai � p0
1� p0

otherwise,

�i = �min + (�max � �min) qi:

In consequence, if we want to approximate the values of P (j; k) in (18), we can condition on each

subinterval 	i and apply the total probability formula as,

P (j; k) = Pr

"
exp (a1) �

�
S2
t =�

2
0

��t
exp (�tvj)

� exp (a2)
#

=

mX
i=1

Pr

"
exp (a1) �

�
S2
t =�

2
0

��t
exp (�tvj)

� exp (a2)
����� S2

t =�
2
0 2 	i

#
Pr
�
S2
t =�

2
0 2 	i

�
�

mX
i=1

Pr

"
exp (a1) �

(ui)
�i

exp (�ivj)
� exp (a2)

#
Pr
�
S2
t =�

2
0 2 	i

�
: (23)
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Notice that since ui is a constant in each subinterval, the �rst probability at the right hand side

of (23) is easy to compute, since it is just 1 or 0. The second one is also easy to compute, since we

have that S2
t =�

2
0 � �

�
(n� 1) =2; 2�2=

�
(n� 1)�20

��
. Finally, let Rm�m be a submatrix that contains

the probabilities P (j; k) of going from the transient state j to the state k, pini is an initial probability

vector of the states, I is the m � m identity matrix, and 1 is a m � 1 vector of ones. Then, the

probability function of RL and hence the ARL in zero-state, are given by,

Pr (RL = rl) = p0ini

�
Rrl�1 �Rt

�
1;

and

ARL = p0ini (I�R)
�1 1; (24)

respectively. Lucas and Saccucci (1990) or Shu (2008) suggest for calculating the ARL in steady-state,

using cyclic probability vector steady-state, pss, which is obtained by solving pss = P01pss, subject to

10pss = 1, where P1 is the ergodic transition probability matrix de�ned by,

P1 =

0@ R (I�R)1

1 0 0 : : : 0 0

1A :
Hence, the steady-state ARL is obtained by,

ARL = q0 (I�R)�1 1; (25)

where, q is a vector of lengthm obtained from pss by deleting the entry corresponding to the absorbing

state and normalizing so that the probabilities sum to 1.

Finally, for a given ARL0 value and a rational subgroup of size n, the following optimization

nonlinear problem with decision variables: �min; �max; a; p0; and h, should be solved by,

min
�min;�max;a;p0;h

f (ARL (�(i))) ; i = 1; 2; : : : ; k:

subject to:

ARL (� = 1; �min; �max; a; p0; h) = ARL0

; (26)

where f (�) : Rk ! R, can be
kP
i=1
ARL (� (i)), the norm kARL (� (i))k2, or some other convenient func-

tion, which is de�ned by the suitable optimality criteria. In this work, we are using the Euclidean dis-

tance between the vectors [ARL (� (1)) ; ARL (� (2)) ; : : : ; ARL (� (k))] and [ARL� (� (1)) ; ARL� (� (2)) ; : : : ; ARL� (� (k))],

where ARL� (i) is the corresponding ARL� shown in Table 1. That function is simple and has a good

performance. Hence, the ARL (� (i) ; �min; �max; a; p0; h) is approximated by using the Markov Chain

approach assuming Xt � N(�0; �2�2).
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AEWMA1-S2-1 AEWMA2-S2-1 AEWMA3-S2-1 AEWMA1-S2-2 AEWMA2-S2-2 AEWMA3-S2-2

�min 0.0632 0.0277 0.0769 0.4455 0.5949 0.0256

�max 0.1115 0.0787 0.1399 0.7063 1.0000 0.6876

a 2.3458 4.0097 8.5720 6.6610 0.2746 2.2590

p0 0.3584 0.0278 0.5060 0.1463 0.9747 0.4016

h 0.2225 0.1188 0.2062 0.8834 0.8866 0.8146

Table 2: Optimal parameters of the AEWMA-S2 control chart designs in zero-state, ARL0 = 200 and n = 5.

AEWMA1-S2-1 AEWMA2-S2-1 AEWMA3-S2-1 AEWMA1-S2-2 AEWMA2-S2-2 AEWMA3-S2-2

�min 0.0181 0.0145 0.0385 0.1737 0.2042 0.2000

�max 0.2249 0.7524 0.2510 0.3625 0.2921 0.3111

a 7.5594 7.2188 7.8067 5.6608 0.1474 9.7789

p0 0.8866 0.7570 0.8832 0.5923 0.9579 0.1138

h 0.0546 0.0445 0.1085 0.4226 0.4401 0.4579

Table 3: Optimal parameters of the AEWMA-S2 control chart designs in steady-state, ARL0 = 200 and n = 5.

Six alternative designs have been considered in zero-state process control, for an ARL0 = 200, a

rational subgroup of size n = 5 and � de�ned by (12), (15) or (16). The �rst three use the following

optimality criteria: minimizing the ARL at range of shifts [1:1; 2], these designs are denoted by

AEWMA1-S2-1, AEWMA2�S2-1 and AEWMA3-S2-1. The others three use the optimality criteria:

minimizing the ARL at range of shifts [1:6; 3] and these are denoted by AEWMA1-S2-2, AEWMA2-

S2-2 and AEWMA3-S2-2.

Table 2 shows the optimal parameter values of the AEWMA-S2 charts for the zero-state case.

Similarly, Table 3 shows the optimal parameter values, in the steady-state case. In this paper, for

simplicity, and without loss of generality, the ARL values are computed assuming that �0 = 0 and

� = 1. Tables 4 and 5 show the ARL pro�les for zero-state and steady-state, respectively, based on

the optimal parameters.

4 Adaptive EWMA based on the value of the control statistics

In this AEWMA-S2 chart, denoted as AEWMA4-S2, �t is based on the value of yt�1: It uses the

following statistic

Dt =
���yt�1
H

��� = ���yt�1
h

��� ;
which is the ratio between yt�1 and the control limit H = h. The closer yt�1 is to the control limit,

the closer Dt to 1 is. Then, using (12) with F1t = Dt or (15) with G2t = Dt, the misadjustment can

be translated into a time-varying smoothing parameter �t. It should be noticed that statistic Dt does

not depend on Mt, which makes easer the ARL calculation. Figure 5 shows the behavior of �t versus
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� AEWMA1-S2-1 AEWMA2-S2-1 AEWMA3-S2-1 AEWMA1-S2-2 AEWMA2-S2-2 AEWMA3-S2-2

1.1 41.79 41.99 42.63 55.71 55.64 53.43

1.2 17.19 17.20 17.41 22.59 22.60 21.46

1.3 10.04 9.91 10.00 11.89 11.91 11.42

1.4 7.01 6.82 6.87 7.46 7.47 7.28

1.5 5.40 5.18 5.22 5.28 5.28 5.21

1.6 4.43 4.18 4.22 4.05 4.05 4.03

1.7 3.78 3.52 3.55 3.28 3.28 3.28

2.0 2.71 2.43 2.45 2.16 2.16 2.16

2.5 1.95 1.70 1.71 1.51 1.51 1.51

3.0 1.58 1.39 1.40 1.27 1.27 1.27

Table 4: The ARL values in zero-state with ARL0 = 200 and n = 5.

� AEWMA1-S2-1 AEWMA2-S2-1 AEWMA3-S2-1 AEWMA1-S2-2 AEWMA2-S2-2 AEWMA3-S2-2

1.1 37.33 37.33 38.32 46.06 45.11 44.99

1.2 14.38 14.43 14.67 17.30 17.03 16.95

1.3 8.10 8.14 8.16 9.03 8.92 8.88

1.4 5.60 5.63 5.58 5.81 5.74 5.72

1.5 4.34 4.36 4.29 4.25 4.21 4.20

1.6 3.59 3.61 3.54 3.38 3.35 3.34

1.7 3.10 3.12 3.05 2.84 2.82 2.81

2.0 2.30 2.31 2.25 2.01 2.02 2.01

2.5 1.70 1.71 1.68 1.49 1.52 1.52

3 1.41 1.41 1.40 1.28 1.30 1.30

Table 5: The ARL values in steady-state with ARL0 = 200 and n = 5.
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ARL0 = 200; zero-state ARL0 = 200; steady-state

AEWMA4-S2-1 AEWMA4-S2-2 AEWMA4-S2-1 AEWMA4-S2-2

�min 0.0886 0.6197 0.0821 0.2719

�max 0.5863 0.6697 0.1121 0.6444

a 9.4988 3.8766 5.1453 6.1695

p0 0.9983 0.2326 0.2222 0.9949

h 0.2182 0.8966 0.2059 0.5043

Table 6: Optimal parameters of the AEWMA-S2 control chart designs.

ARL0 = 200; zero-state ARL0 = 200; steady-state

� AEWMA4-S2-1 AEWMA4-S2-2 AEWMA4-S2-1 AEWMA4-S2-2

1.1 43.96 55.09 41.25 46.34

1.2 18.19 22.40 15.67 17.67

1.3 10.60 11.84 8.52 9.25

1.4 7.41 7.46 5.71 5.93

1.5 5.74 5.29 4.33 4.33

1.6 4.74 4.07 3.54 3.44

1.7 4.08 3.31 3.04 2.89

2 3.00 2.19 2.27 2.08

2.5 2.25 1.54 1.78 1.59

3 1.87 1.29 1.56 1.38

Table 7: The ARL values with n = 5.

minimizing the ARL at range of shifts [1:1; 2], this design is denoted by AEWMA4-S2-1 control chart

design. The other one uses the optimality criteria: minimizing the ARL at range of shifts [1:6; 3] and

this is denoted by AEWMA4-S2-2 control chart design. The optimal values of parameters are shown

in Table 6. The ARL pro�les are shown in the Table 7.

5 Comparisons

In this section, the four proposed AEWMA-S2 control charts are compared. Besides, they are compared

to other control charts such as Shewhart-S2 control chart, the EWMA-S2 control charts, the EWMA-

S2 of Castagliola et al (2010) called here EWMA-S2-CT and the adaptive EWMA control charts for

the variance of Shu (2008) called here AEWMA-S2-SH. Unless otherwise stated, all the comparisons

consider: zero-state ARL, ARL0 = 200 and n = 5.

Table 8 shows that the performance of the four proposed AEWMA-S2 charts are similar for small

and medium shifts in approximately the range [1:1; 1:4]. The AEWMA1-S2-1 design shows a slightly

better performance than the others. In the interval 1:4 < � < 3, the �rst three AEWMA-S2 designs

show similar performance, being again the �rst one slightly better than the others. The AEWMA4-S2-1
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design loses e¢ ciency for medium and large shifts.

On the other hand, Table 8 shows that also the four AEWMA-S2 designs have similar performance

for small and medium shifts in the variance process, approximately 1:1 � � � 1:5. The AEWMA3-S2-2

design is slightly better than the others for very small and medium shifts, � 2 [1:1; 1:6]. In the interval

� 2 [1:7; 3], the �rst three AEWMA-S2 designs show similar performance. The AEWMA4-S2-2 design

loses e¢ ciency for medium and large shifts.

In Table 8 , we can compare the �rst four AEWMA-S2 designs and a Shewhart-S2 control chart

with the same rational subgroup size, n = 5 (S-1 design). It can be seen that Shewhart control chart

is not competitive for small and medium shifts. Also, we can compare the second four AEWMA-S2

charts and the same Shewhart-S2 design (S-1). In this case, S-1 is still less competitive than four

AEWMA-S2 designs.

Besides, we can compare the ARL values of the �rst four AEWMA-S2 designs and two alternative

EWMA-S2 designs. These EWMA-S2 charts are designed to get minimum ARL values at shifts � = 1:1

(E-1) and � = 1:5 (E-2). In this case, it can be seen that the four proposed AEWMA-S2 designs and

only E-1 have a similar performance for small shifts, E-1 is only competitive in � = 1:1. E-2 is

not competitive for small and medium shifts. For large shifts, approximately � � 1:5, the �rst three

AEWMA-S2 designs are competitive with E-2 but E-1 is not competitive. De�nitely, the four proposed

AEWMA-S2 control charts show good performance through the whole shifts range. Additionally, we

can compare the ARL values of the second four AEWMA-S2 charts and the EWMA-S2 with designs

that were got for minimum ARL values at shifts � = 2 (E-3) and � = 3 (E-4). In this case, it can be

seen that the four proposed AEWMA-S2 designs have good performance for every possible shifts, E-3

and E-4 are only competitive for � � 2:5.

Moreover, Table 8 allows us to compare the ARL values of the �rst four AEWMA-S2 designs with

two alternative EWMA-S2-CT charts. These EWMA-S2-CT charts are designed to get minimum ARL

values at shifts � = 1:1 (CT-1) and � = 1:5 (CT-2). This comparison shows that the four proposed

AEWMA-S2 control charts are more competitive than CT-1 and CT-2 for approximately � � 1:5.

Only CT-2 is competitive in � � 1:6. Furthermore, we can compare the ARL values of the second

four AEWMA-S2 charts and the EWMA-S2-CT charts for two design, with minimum ARL values at

shifts � = 2 (CT-3) and � = 3 (CT-4). In this case, it can be seen that the four proposed AEWMA-S2

control charts have a competitive performance for all shift, CT-3 and CT-4 are only competitive for

� � 2:5.

Our �nal comparison is between the proposed AEWMA-S2 control charts and the AEWMA-S2

control charts of Shu (2008). In this regard, Table 8 allows us to compare the �rst four proposed
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�

1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.0 2.5 3.0

1-S2-1 41.79 17.19 10.04 7.01 5.40 4.43 3.78 2.71 1.95 1.58

2-S2-1 41.99 17.20 9.91 6.82 5.18 4.18 3.52 2.43 1.70 1.39

3-S2-1 42.63 17.41 10.00 6.87 5.22 4.22 3.55 2.45 1.71 1.40

4-S2-1 43.96 18.19 10.60 7.41 5.74 4.74 4.08 3.00 2.25 1.87

1-S2-2 55.71 22.59 11.89 7.46 5.28 4.05 3.28 2.16 1.51 1.27

2-S2-2 55.64 22.60 11.91 7.47 5.28 4.05 3.28 2.16 1.51 1.27

3-S2-2 53.43 21.46 11.42 7.28 5.21 4.03 3.28 2.16 1.51 1.27

4-S2-2 55.09 22.40 11.84 7.46 5.29 4.07 3.31 2.19 1.54 1.29

S-1 95.15 42.39 21.58 12.61 8.24 5.86 4.46 2.55 1.61 1.30

E-1 41.98 18.19 11.13 8.06 6.40 5.37 4.67 3.48 2.64 2.26

E-2 51.41 20.64 11.07 7.14 5.18 4.06 3.35 2.29 1.62 1.34

E-3 58.11 24.00 12.64 7.87 5.50 4.17 3.36 2.17 1.51 1.27

E-4 65.03 28.27 15.04 9.25 6.32 4.67 3.66 2.24 1.50 1.25

CT-1 46.33 20.64 13.17 9.73 7.76 6.48 5.58 3.96 2.67 2.03

CT-2 58.98 22.47 11.66 7.39 5.30 4.13 3.39 2.28 1.60 1.33

CT-3 60.70 24.91 12.99 8.02 5.57 4.20 3.36 2.16 1.49 1.26

CT-4 65.02 28.27 15.04 9.25 6.32 4.67 3.66 2.24 1.50 1.25

SH-1 44.37 18.20 10.48 7.17 5.39 4.29 3.55 2.35 1.59 1.30

SH-2 56.41 22.63 11.81 7.40 5.23 4.01 3.26 2.14 1.49 1.25

Table 8: The ARL values in zero-state with ARL0 = 200 and n = 5. We are considered: AEWMA1-S2-1

(1-S2-1), AEWMA2-S2-1 (2-S2-1), AEWMA3-S2-1 (3-S2-1), AEWMA4-S2-1 (4-S2-1), AEWMA1-S2-2 (1-S2-2),

AEWMA2-S2-2 (2-S2-2), AEWMA3-S2-2 (3-S2-2), AEWMA4-S2-2 (4-S2-2), Shewhart-S2 (S-1), EWMA-S2-1 (E-

1), EWMA-S2-2 (E-2), EWMA-S2-3 (E-3), EWMA-S2-4 (E-4), EWMA-S2-CT1 (CT-1), EWMA-S2-CT2 (CT-2),

EWMA-S2-CT3 (CT-3), EWMA-S2-CT4 (CT-4), AEWMA-S2-SH-1 (SH-1) and AEWMA-S2-SH-2 (SH-2).
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varying smoothing parameter. The proposed AEWMA-S2 control charts are very easy to understand

and to implement in the practice. We should have in mind that the size shift depends on the nature of

the monitored process. Since in actual operation, smaller shifts are more frequent than larger shifts,

we have shown that these proposed charts have a good performance for small and medium shifts and

even for large shifts. Therefore, the proposed charts can be competitive with respect to the alternative

charts of the literature on a wide range of shifts.
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