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On Self-Adjoint Extensions
and Symmetries in
Quantum Mechanics

Alberto Ibort, Fernando Lledó and Juan Manuel Pérez-Pardo

Abstract. Given a unitary representation of a Lie group G on a Hilbert space H, 
we develop the theory of G-invariant self-adjoint extensions of symmetric
operators using both von Neumann’s theorem and the theory of quadratic
forms. We also analyze the relation between the reduction theory of the unitary
representation and the reduction of the G-invariant unbounded operator. We
also prove a G-invariant version of the rep-resentation theorem for closed and
semi-bounded quadratic forms. The previous results are applied to the study of
G-invariant self-adjoint exten-sions of the Laplace–Beltrami operator on a
smooth Riemannian manifold with boundary on which the group G acts. These

extensions are labeled by admissible unitaries U acting on the L2-space at the 
boundary and having spectral gap at −1. It is shown that if the unitary 
representation V of the symmetry group G is traceable, then the self-adjoint
extension of the Laplace–Beltrami operator determined by U is G-invariant if U
and V commute at the boundary. Various significant examples are discussed at
the end.

1. Introduction

Symmetries of quantum mechanical systems are described by a group of trans-
formations that preserves its essential structures. They play a fundamental
role in studying the properties of the quantum system and reveal fundamental
aspects of the theory which are not present neither in the dynamics involved
nor in the forces. Space or time symmetries, internal symmetries, the study
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of invariant states or spontaneously broken symmetries are standard ingredi-
ents in the description of quantum theories. In many cases, quantum num-
bers or superselection rules are labels characterizing representations of sym-
metry groups. The publication of the seminal books of Weyl, Wigner and van
der Waerden (cf. [37,38,40]) in the late twenties also indicates that quantum
mechanics was using group theoretical methods almost from its birth. We refer,
e.g., to [25, Chapter 12] or [31] for a more thorough introduction to various
symmetry notions in quantum mechanics.

It was shown by Wigner that any symmetry transformation of a quan-
tum system preserving the transition probabilities between two states must be
implemented by a semi-unitary (i.e., by a unitary or an anti-unitary) operator
(see, e.g., [39, Introduction] or [32, Chapters 2]). The action of a symmetry
group G on a system is given in terms of a semi-unitary projective representa-
tion of G on the physical Hilbert space, that can be described in terms of semi-
unitary representations of U(1)-central extensions of the group or by means
of an appropriate representation group (see, for instance, [6,11,12]). Since the
main examples of symmetries considered in this article will be implemented in
terms of unitary operators we will restrict here to this case. Moreover, anti-
unitary representation appear rarely in applications (typically implementing
time reversal) and restrict to discrete groups. The situation with an anti-
unitary representation of a discrete symmetry group can also be easily incor-
porated in our approach.

In order to motivate how the symmetry can be implemented at the level
of unbounded operators, consider a self-adjoint Hamiltonian T on the Hilbert
space H and let U(t) := eitT be the strongly continuous one-parameter group
implementing the unitary evolution of the quantum system. Then, if G is a
quantum symmetry represented by the unitary representation V : G → U(H)
it is natural to require that V and U commute, i.e.,

U(t)V (g) = V (g)U(t), t ∈ R, g ∈ G. (1.1)

At the level of self-adjoint generators and, recalling that the domain of T is
given by

D(T ) :=
{

ψ ∈ H | lim
t→0

(U(t) − I)ψ
t

exists
}

,

we have that (1.1) implies

V (g)D(T ) ⊂ D(T ) and V (g)Tψ = TV (g)ψ, ψ ∈ D(T ). (1.2)

Of course, the requirement that the unitary representation V of the symme-
try group G commutes with the dynamics of the system as in Eq. (1.1) is
restrictive. For example, if V is a strongly continuous representation of a Lie
group, then (1.1) implies the existence of conserved quantities that do not
depend explicitly on time. Nevertheless, the previous comments justify that
in the context of a single unbounded symmetric operator T (not necessarily a
Hamiltonian) it is reasonable to define G-invariance of T as in Eq. (1.2) (see
Sect. 3 for details).
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In the study of quantum systems it is standard that some heuristic argu-
ments suggest an expression for an observable which is only symmetric on
an initial dense domain but not self-adjoint. The description of such systems
is not complete until a self-adjoint extension of the operator has been deter-
mined, e.g., a self-adjoint Hamiltonian operator T . Only in this case, a unitary
evolution of the system is given. This is due to the one-to-one correspondence
between densely defined self-adjoint operators and strongly continuous one-
parameter groups of unitary operators Ut = exp itT provided by Stone’s theo-
rem. The specification of a self-adjoint extension is typically done by choosing
suitable boundary conditions and this corresponds to a global understanding
of the system (see, e.g., [19,20] and references therein). Accordingly, the spec-
ification of the self-adjoint extension is not just a mathematical technicality,
but a crucial step in the description of the observables and the dynamics of the
quantum system (see, e.g., [30, Chapter X] for further results and motivation).
We refer also to [18,25,35] for recent textbooks that address systematically
the problem of self-adjoint extension from different points of view (see also the
references therein).

The question of how does the process of selecting self-adjoint extensions of
symmetric operators intertwine with the notion of quantum symmetry arises.
This question is at the focus of our interest in this article. We provide here
natural characterizations of those self-adjoint extensions that are compatible
with the given symmetries. Concretely, if a symmetric operator is G-invariant
in the sense of Eq. (1.2), then it is clear that not all self-adjoint extensions
of the operator will also be G-invariant. This is evident if one fixes the self-
adjoint extension by selecting boundary conditions. In general, these condi-
tions need not preserve the underlying symmetry of the system. We present in
Sects. 3 and 4 the characterization of G-invariant self-adjoint extensions from
two different point of views: first, in the most general context of deficiency
spaces provided by von Neumann’s theorem. Second, using the representation
theorem of quadratic forms in terms of self-adjoint operators. We prove in
Theorem 4.2 a G-invariant version of the representation theorem for quadratic
forms. In Sect. 5, we give an alternative notion of G-invariance in terms of
the theory of von Neumann algebras (cf., Proposition 5.4). We relate also here
the irreducible sub-representations of V with the reduction of the correspond-
ing G-invariant self-adjoint extensions T . In particular, we show that if T is
unbounded and G-invariant, then the group G must act on the Hilbert space
via a highly reducible representation V . Finally, we apply the theory devel-
oped to a large class of self-adjoint extension of the Laplace–Beltrami operator
on a smooth, compact manifold with smooth boundary on which a group is
represented with a traceable unitary representation (see Definition 6.9). In par-
ticular, self-adjoint extensions of the Laplace–Beltrami operator with respect
to groups acting by isometries on the manifold are discussed. In this context
the extensions are labeled by suitable unitaries on the boundary of the man-
ifold (see [19] for details). Concrete manifolds like a cylinder or a half-sphere
with Z2 or SO(2) actions, respectively, will also be analyzed.
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Apart from the previous considerations there are many instances where,
though only partially, the previous problem has been considered. Just to men-
tion a few here we refer to the analysis of translational symmetries and the
study of self-adjoint extensions of the Laplacian in the description of a scalar
quantum field in 1 + 1 dimensions in a cavity [5]. In a different context, we
quote the spectral analysis of Hamiltonians in concentric spherical shells where
the spherical symmetry is used in a critical way [16,17]. In an operator theo-
retic context we refer, for example, to the notion of periodic Weyl–Titchmarsh
functions or invariant operators with respect to linear-fractional transforma-
tions [7,8]. Even from a purely geometric viewpoint we should mention the
analysis of isospectral manifolds in the presence of symmetries [36]. We also
refer to [35, Section 13.5] for the analysis of self-adjoint extensions commuting
with a conjugation.

This article is organized as follows: in Sect. 2, we summarize well-known
results on the theory of self-adjoint extensions, including the theory of scales of
Hilbert spaces. In the next section, we introduce the main definitions concern-
ing G-invariant operators and give an explicit characterization of G-invariant
self-adjoint extensions in the most general setting, i.e., using the abstract char-
acterization due to von Neumann [34]. In Sect. 4, we introduce the notion of
G-invariant quadratic forms and show that the self-adjoint operators repre-
senting them will also be G-invariant operators. In the following section, we
present first steps of a reduction theory for G-invariant self-adjoint operators.
For this, we use systematically the notion of an unbounded operator affiliated
to a von Neumann algebra. In Sect. 6, we analyze the quadratic forms associ-
ated with the Laplace–Beltrami operator when there is a Lie group acting on
the manifold. Thus, we provide a characterization of the self-adjoint extensions
of the Laplace–Beltrami operator that are G-invariant.

Notation: In this article, all unbounded, linear operators T that act on a sep-
arable, complex Hilbert space H are densely defined and we denote the corre-
sponding domain by D(T ) ⊂ H.

2. Basic Material on Self-Adjoint Extensions

For convenience of the reader and to fix our notation we will summarize here
some standard facts on the theory of self-adjoint extensions of symmetric oper-
ators, representation theorems for quadratic forms and the theory of rigged
Hilbert spaces. We refer to standard references, e.g., [3,21,22,29,35], for proofs,
further details and references.

2.1. Symmetric and Self-Adjoint Operators in Hilbert Space

Let T be an unbounded, linear operator on the complex, separable Hilbert
space H and with dense domain D(T ) ⊂ H. Recall that the operator T is
called symmetric if

〈Ψ , TΦ〉 = 〈TΨ ,Φ〉 ∀Ψ,Φ ∈ D(T ).
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Moreover, T is self-adjoint if it is symmetric and D(T ) = D(T †), where the
domain of the adjoint operator D(T †) is the set of all Ψ ∈ H such that there
exists χ ∈ H with

〈Ψ , TΦ〉 = 〈χ ,Φ〉 ∀Φ ∈ D(T ).

In this case, we define T †Ψ := χ. If T is symmetric then T † is a closed extension
of T , T ⊂ T †, i.e., D(T ) ⊂ D(T †) and T †|D(T ) = T.

The relation between self-adjoint and closed, symmetric operators is sub-
tle and extremely important, specially from the physical point of view. It is
thus natural to ask if given a symmetric operator one can find a closed exten-
sion of it that is self-adjoint and whether or not it is unique. Von Neumann
addressed this issue in the late 20s and answered the question in an abstract
setting, cf., [34]. We recall the main definition and results needed later (see
[30, Theorem X.2]).

Definition 2.1. Let T be a closed, symmetric operator. The deficiency spaces
N± are defined to be

N± = {Φ ∈ H|(T † ∓ i)Φ = 0}.

The deficiency indices are

n± = dimN±.

Theorem 2.2 (von Neumann). Let T be a closed, symmetric operator. The
self-adjoint extensions of T are in one-to-one correspondence with the set of
unitaries (in the usual inner product) of N+ onto N−. If K is such a unitary
then the corresponding self-adjoint operator TK has domain

D(TK) = {Φ + (I + K)ξ|Φ ∈ D(T ), ξ ∈ N+},

and

TK(Φ + (I + K)ξ) = T †(Φ + (I + K)ξ) = TΦ + i(I + K)ξ.

Remark 2.3. (i) The preceding definition and theorem can be also stated
without assuming that the symmetric operator T is closed (see, e.g., [15,
Section XII.4]). In view of Corollary 3.3 and that in the context of von
Neumann algebras of Sect. 5 the closure of T is essential, we make this
simplifying assumption here.

(ii) We refer to [28] for a recent article that characterizes the class of all self-
adjoint extensions of the symmetric operator obtained as a restriction of
a self-adjoint operator to a suitable subspace of its domain. In particular,
the explicit relation of the techniques used to the classical result by von
Neumann is also worked out.

Finally, we recall that the densely defined operator T : D(T ) → H is
semi-bounded from below if there is a constant m ≥ 0 such that

〈Φ , TΦ〉 ≥ −m‖Φ‖2 ∀Φ ∈ D(T ).

The operator T is positive if the lower bound satisfies m = 0. Note that semi-
bounded operators are automatically symmetric.
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2.2. Closable Quadratic Forms

In this section, we introduce the notion of closed and closable quadratic forms.
Standard references are, e.g., [21, Chapter VI], [29, Section VIII.6] or [13,
Section 4.4].

Definition 2.4. Let D be a dense subspace of the Hilbert space H and denote
by Q : D × D → C a sesquilinear form (anti-linear in the first entry and linear
in the second entry). The quadratic form associated with Q with domain D is
its evaluation on the diagonal, i.e., Q(Φ) := Q(Φ,Φ) , Φ ∈ D. The sesquilinear
form is called Hermitean if

Q(Φ,Ψ) = Q(Ψ,Φ), Φ,Ψ ∈ D.

The quadratic form is semi-bounded from below if there is an m ≥ 0 such that

Q(Φ) ≥ −m‖Φ‖2, Φ ∈ D.

The smallest possible value m satisfying the preceding inequality is called the
lower bound for the quadratic form Q. In particular, if Q(Φ) ≥ 0 for all Φ ∈ D
then we call Q positive.

Note that if Q is semi-bounded with lower bound m, then

Q(Φ) + m‖Φ‖2, Φ ∈ D
is positive on the same domain. We need to recall also the notions of clos-
able and closed quadratic forms as well as the fundamental representation
theorems that relate closed, semi-bounded quadratic forms with self-adjoint,
semi-bounded operators.

Definition 2.5. Let Q be a semi-bounded quadratic form with lower bound
m ≥ 0 and dense domain D ⊂ H. The quadratic form Q is closed if D is closed
with respect to the norm

|‖Φ‖|Q :=
√

Q(Φ) + (1 + m)‖Φ‖2, Φ ∈ D.

If Q is closed and D0 ⊂ D is dense with respect to the norm |‖ · ‖|Q , then D0

is called a form core for Q.
Conversely, the closed quadratic form Q with domain D is called an

extension of the quadratic form Q with domain D0. A quadratic form is said
to be closable if it has a closed extension.

Remark 2.6. (i) The norm |‖ · ‖|Q is induced by the following inner product
on the domain:

〈Φ,Ψ〉Q := Q(Φ,Ψ) + (1 + m)〈Φ,Ψ〉, Φ,Ψ ∈ D.

(ii) It is always possible to close D ⊂ H with respect to the norm |‖ · ‖|Q. The
quadratic form is closable iff this closure is a subspace of H.

The following representation theorem shows the deep relation between
closed, semi-bounded quadratic forms and self-adjoint operators. This result
goes back to the pioneering work in the 1950s by Friedrichs, Kato, Lax and
Milgram, and others (see, e.g., comments to Section VIII.6 in [29]). The repre-
sentation theorem can be extended to the class of sectorial forms and operators
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(see [21, Section VI.2]), but we will only need here its version for self-adjoint
operators.

Theorem 2.7. Let Q be an Hermitean, closed, semi-bounded quadratic form
defined on the dense domain D ⊂ H. Then it exists a unique, self-adjoint,
semi-bounded operator T with domain D(T ) and the same lower bound such
that

(i) Ψ ∈ D(T ) iff Ψ ∈ D and it exists χ ∈ H such that

Q(Φ,Ψ) = 〈Φ, χ〉, ∀Φ ∈ D.

In this case, we write TΨ = χ and Q(Φ,Ψ) = 〈Φ, TΨ〉 for any Φ ∈ D,
Ψ ∈ D(T ).

(ii) D(T ) is a core for Q.

Following [13, Theorem 4.4.2] we get the following characterization of
representable quadratic forms.

Theorem 2.8. Let Q be a semi-bounded, quadratic form with lower bound m
and domain D. Then the following conditions are equivalent:

(i) There is a lower semi-bounded operator T with lower bound m representing
the quadratic form Q.

(ii) The domain D is complete with respect to the norm |‖ · ‖|Q.

One of the most common uses of the representation theorem is to obtain
self-adjoint extensions of symmetric, semi-bounded operators. Given a semi-
bounded, symmetric operator T one can consider the associated quadratic
form

QT (Φ,Ψ) = 〈Φ , TΨ〉 Φ,Ψ ∈ D(T ).

These quadratic forms are always closable, cf., [30, Theorem X.23], and, there-
fore, their closure is associated with a unique self-adjoint operator.

Even if a symmetric operator has uncountably many possible self-adjoint
extensions, the representation theorem above allows to select a particular one
given a suitable quadratic form. This extension is called the Friedrichs’ or hard
extension and is in a natural sense maximal (see Chapters 10 and 13 in [35]
for a relation to Krein–von Neumann or soft extensions). The approach that
we shall take in Sects. 4 and 6 uses this kind of Friedrichs-type extension.

2.3. Scales of Hilbert Spaces

The theory of scales of Hilbert spaces, also known as theory of rigged Hilbert
spaces, has been used in many ways in mathematics and mathematical physics.
One of the standard applications of this theory appears in the proof of the
representation theorems mentioned above. We state next the main results,
(see [9, Chapter I], [22, Chapter 2] for proofs and more results).

Let H be a Hilbert space with scalar product 〈· , ·〉 and induced norm
‖ · ‖. Let H+ be a dense, linear subspace of H which is a complete Hilbert
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space with respect to another scalar product that will be denoted by 〈· , ·〉+.
The corresponding norm is ‖ · ‖+ and we assume that

‖Φ‖ ≤ ‖Φ‖+, Φ ∈ H+. (2.1)

Any vector Φ ∈ H generates a continuous linear functional LΦ : H+ → C

as follows. For Ψ ∈ H+ define

LΦ(Ψ) = 〈Φ ,Ψ〉. (2.2)

Continuity follows by the Cauchy–Schwarz inequality and Eq. (2.1).
Since LΦ is a continuous linear functional on H+ it can be represented,

according to Riesz theorem, using the scalar product in H+. Namely, it exists
a vector ξ ∈ H+ such that

∀Ψ ∈ H+, LΦ(Ψ) = 〈Φ ,Ψ〉 = 〈ξ ,Ψ〉+, (2.3)

and the norm of the functional coincides with the norm in H+ of the element
ξ. One can use the above equalities to define an operator

Î : H → H+

ÎΦ = ξ.
(2.4)

This operator is clearly injective since H+ is a dense subset of H and therefore
it can be used to define a new scalar product on H

〈· , ·〉− := 〈Î· , Î·〉+. (2.5)

The completion of H with respect to this scalar product defines a new Hilbert
space, H−, and the corresponding norm will be denoted accordingly by ‖ · ‖−.
It is clear that H+ ⊂ H ⊂ H− , with dense inclusions. Since ‖ξ‖+ = ‖ÎΦ‖+ =
‖Φ‖−, the operator Î can be extended by continuity to an isometric bijection.

Definition 2.9. The Hilbert spaces H+, H and H− introduced above define a
scale of Hilbert spaces. The extension by continuity of the operator Î is called
the canonical isometric bijection. It is denoted by:

I : H− → H+. (2.6)

Proposition 2.10. The scalar product in H can be extended continuously to a
pairing

(· , ·) : H− × H+ → C. (2.7)

Proof. Let Φ ∈ H and Ψ ∈ H+. Using the Cauchy–Schwarz inequality we have
that

|〈Φ ,Ψ〉| = |〈IΦ ,Ψ〉+| ≤ ‖IΦ‖+‖Ψ‖+ = ‖Φ‖−‖Ψ‖+ (2.8)

and we can extend the scalar product by continuity to the pairing (· , ·). �

8



3. Self-Adjoint Extensions with Symmetry

We begin now analyzing the question of how the process of finding a self-
adjoint extension of a symmetric operator intertwines with the notion of a
quantum symmetry. We will denote by G a group and let

V : G → U(H)

be a fixed unitary representation of G on the complex, separable Hilbert space
H. We will introduce the notion of G-invariance by which we mean invariance
under the fixed representation V .

Definition 3.1. Let T be a linear operator with dense domain D(T ) ⊂ H and
consider a unitary representation V : G → U(H). The operator T is said to be
G-invariant if TV (g) ⊇ V (g)T , i.e., if V (g)D(T ) ⊂ D(T ) for all g ∈ G and

TV (g)Ψ = V (g)TΨ ∀g ∈ G, ∀Ψ ∈ D(T ).

Due to the invertibility of the unitary operators representing the group
we have the following immediate consequence on G-invariant subspaces K of
H which we will use several times:

if V (g)K ⊂ K, ∀g ∈ G, then V (g)K = K ∀g ∈ G. (3.1)

Proposition 3.2. Let T : D(T ) ⊂ H → H be a G-invariant, symmetric operator.
Then the adjoint operator T † is G-invariant.

Proof. Let Ψ ∈ D(T †). Then, according to the definition of adjoint operator
there is a vector χ ∈ H such that

〈Ψ , TΦ〉 = 〈χ ,Φ〉 ∀Φ ∈ D(T ).

Using the G-invariance we have

〈V (g)Ψ , TΦ〉 = 〈Ψ , V (g−1)TΦ〉
= 〈Ψ , TV (g−1)Φ〉
= 〈χ , V (g−1)Φ〉
= 〈V (g)χ ,Φ〉.

The preceding equalities hold for any Φ ∈ D(T ) and therefore V (g)Ψ ∈ D(T †).
Moreover, we have that T †V (g)Ψ = V (g)χ = V (g)T †Ψ. �

Corollary 3.3. Let T : D(T ) ⊂ H → H be a G-invariant and symmetric oper-
ator on H. Then its closure T is also G-invariant.

Proof. The operator T is symmetric and, therefore, closable. From T = T ††

and since T is G-invariant, we have by the preceding proposition that T † is
G-invariant, hence also T = (T †)†. �

The preceding result shows that we can always assume without loss of
generality that the G-invariant symmetric operators are closed.

We begin next with the analysis of the G-invariance of the self-adjoint
extensions given by von Neumann’s classical result (cf., Theorem 2.2).
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Corollary 3.4. Let T : D(T ) ⊂ H → H be a closed, symmetric and G-invariant
operator. Then, the deficiency spaces N±, cf., Definition 2.1, are invariant
under the action of the group, i.e.,

V (g)N± = N±.

Proof. Let ξ ∈ N+ ⊂ D(T †). Then (T † − i)ξ = 0 and we have from Proposi-
tion 3.2 that

(T † − i)V (g)ξ = V (g)(T † − i)ξ = 0.

This shows that V (g)N+ ⊂ N+ for all g ∈ G and by (3.1) we get the equality.
Similarly for N−. �

Theorem 3.5. Let T : D(T ) ⊂ H → H be a closed, symmetric and G-invariant
operator with equal deficiency indices (cf., Definition 2.1). Let TK be the self-
adjoint extension of T defined by the unitary K : N+ → N−. Then TK is
G-invariant iff V (g)Kξ = KV (g)ξ for all ξ ∈ N+, g ∈ G.

Proof. To show the direction “⇐” recall that by Theorem 2.2 the domain of
TK is given by

D(TK) = D(T ) ⊕ (I + K)N+.

Let Ψ ∈ D(T ) and ξ ∈ N+. Then we have that

V (g)(Ψ + (I + K)ξ) = V (g)Ψ + (V (g) + V (g)K)ξ

= V (g)Ψ + (V (g) + KV (g))ξ

= V (g)Ψ + (I + K)V (g)ξ.

By assumption V (g)Ψ ∈ D(T ), and by Corollary 3.4, V (g)ξ ∈ N+. Hence
V (g)D(TK) ⊂ D(TK). Moreover, we have that for Φ = Ψ + (I + K)ξ ∈ D(TK)

TKV (g)Φ = T †V (g)(Ψ + (I + K)ξ)

= TV (g) + T †V (g)(I + K)ξ

= V (g)TΨ + V (g)T †(I + K)ξ = V (g)TKΦ,

where we have used Proposition 3.2.
To prove the reverse implication “⇒” suppose that we have the self-

adjoint extension defined by the unitary

K ′ = V (g)KV (g)†.

If we consider the domain D(TK′) defined by this unitary we have that

D(TK′) = D(T ) + (I + V (g)KV (g)†)N+

= V (g)D(T ) + V (g)(I + K)V (g)†N+

= V (g)D(TK) = D(TK),

where we have used again Proposition 3.2, Corollary 3.4 and (3.1). Now von
Neumann’s result stated in Theorem 2.2 establishes a one-to-one correspon-
dence between isometries K : N+ → N− and self-adjoint extensions of the
operator T . Therefore K = K ′ = V (g)KV (g)† and the statement follows. �
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4. Invariant Quadratic Forms

As mentioned in the first two sections the relation between closed, semi-
bounded quadratic forms and self-adjoint operators is realized through the
so-called representation theorems. We present here a notion of G-invariant
quadratic form and prove a representation theorem for G-invariant structures.

Definition 4.1. Let Q be a quadratic form with domain D and let V : G →
U(H) be a unitary representation of the group G. We will say that the qua-
dratic form is G-invariant if V (g)D ⊂ D for all g ∈ G and

Q(V (g)Φ) = Q(Φ) ∀Φ ∈ D, ∀g ∈ G.

It is clear by the polarization identity that if the quadratic form Q
is G-invariant, then the associated sesquilinear form also satisfies Q(V (g)Φ,
V (g)Ψ) = Q(Φ,Ψ), g ∈ G.

We will now relate the notions of G-invariance for self-adjoint operators
and for quadratic forms.

Theorem 4.2. Let Q be a closed, semi-bounded quadratic form with domain D
and let T be the representing semi-bounded, self-adjoint operator. The quadratic
form Q is G-invariant iff the operator T is G-invariant.

Proof. To show the direction “⇒” recall from Theorem 2.7 that Ψ ∈ D(T ) iff
Ψ ∈ D and there exists χ ∈ H such that

Q(Φ,Ψ) = 〈Φ , χ〉 ∀Φ ∈ D.

Then, if Ψ ∈ D(T ), and using the G-invariance of the quadratic form, we have
that

Q(Φ, V (g)Ψ) = Q(V (g)†Φ,Ψ)

= 〈V (g)†Φ , χ〉 = 〈Φ , V (g)χ〉.
This implies that V (g)Ψ ∈ D(T ) and from

TV (g)Ψ = V (g)χ = V (g)TΨ, Ψ ∈ D(T ), g ∈ G,

we show the G-invariance of the self-adjoint operator T .
For the reverse implication “⇐” we use the fact that D(T ) is a core for

the quadratic form. For Φ,Ψ ∈ D(T ) we have that

Q(Φ,Ψ) = 〈Φ , TΨ〉 = 〈V (g)Φ , V (g)TΨ〉
= 〈V (g)Φ , TV (g)Ψ〉 = Q(V (g)Φ, V (g)Ψ).

These equalities show that the G-invariance of Q is true at least for the ele-
ments in the domain of the operator. Now for any Ψ ∈ D there is a sequence
{Ψn}n ⊂ D(T ) such that |‖Ψn − Ψ‖|Q → 0. This, together with the equality
above, implies that {V (g)Ψn}n is a Cauchy sequence with respect to |‖ · ‖|Q.
Since Q is closed, the limit of this sequence is in D. Moreover, it is clear that
limn→∞ V (g)Ψn = V (g)Ψ, hence

|‖V (g)Ψn − V (g)Ψ‖|Q → 0.
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So far we have proved that V (g)D ⊂ D. Now for any Φ,Ψ ∈ D consider
sequences {Φn}n, {Ψn}n ⊂ D(T ) that converge, respectively, to Φ,Ψ ∈ D in
the topology induced by |‖ · ‖|Q. Then the limit

Q(Φ,Ψ) = lim
n→∞ lim

m→∞ Q(Φn,Ψm)

= lim
n→∞ lim

m→∞ Q(V (g)Φn, V (g)Ψm) = Q(V (g)Φ, V (g)Ψ).

concludes the proof. �
The preceding result and Theorem 2.8 allow to give the following char-

acterization of representable G-invariant quadratic forms.

Proposition 4.3. Let Q be a G-invariant, semi-bounded quadratic form with
lower bound m and domain D. The following statements are equivalent:
(i) There is a G-invariant, self-adjoint operator T on D(T ) ⊂ H with lower

semi-bound m and that represents the quadratic form, i.e.,

Q(Φ,Ψ) = 〈Φ , TΨ〉 ∀Φ ∈ D, ∀Ψ ∈ D(T ).

(ii) The domain D of the quadratic form is complete in the norm |‖ · ‖|Q.

To conclude this section, we make contact with the theory of scales of
Hilbert spaces introduced in Sect. 2.3. Let Q be a closed, semi-bounded qua-
dratic form with domain D ⊂ H. We will show that if Q is G-invariant then
one can automatically produce unitary representations V± on the natural scale
of Hilbert spaces

H+ ⊂ H ⊂ H−,

where H+ := D.

Theorem 4.4. Let Q be a closed, semi-bounded, G-invariant quadratic form
with lower bound m. Then
(i) V restricts to a unitary representation V+ on H+ := D ⊂ H with scalar

product given by

〈Φ ,Ψ〉+ := 〈Φ ,Ψ〉Q = (1 + m)〈Φ ,Ψ〉 + Q(Φ,Ψ), Φ,Ψ ∈ H+.

(ii) V extends to a unitary representation V− on H− and we have, on H−,

V+(g)I = IV−(g), g ∈ G, (4.1)

where I : H− → H+ is the canonical isometric bijection of Definition 2.9.

Proof. (i) To show that the representation V+ := V |H+ is unitary with respect
to 〈· , ·〉+ note that by definition of G-invariance of the quadratic form we have
for any g ∈ G that V (g) : H+ → H+ and

〈V (g)Φ , V (g)Ψ〉+ = 〈Φ ,Ψ〉+ Φ,Ψ ∈ H+.

Since any V (g) is invertible we conclude that V restricts to a unitary repre-
sentation on H+.

(ii) To show that V extends to a unitary representation V− on H− con-
sider first the following representation of G on H−:

V−(g) := I−1V+(g)I.
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We show first that this representation is unitary: since V− is invertible it is
enough to check the isometry condition using part (i). Indeed, for any α, β ∈
H− we have

〈V−(g)α , V−(g)β〉− = 〈I−1V+(g)Iα , I−1V+(g)Iβ〉−
= 〈V+(g)Iα , V+(g)Iβ〉+ = 〈Iα , Iβ〉+ = 〈α , β〉−.

The restriction of V−(g), g ∈ G, to H coincides with V (g). Indeed, consider
the pairing (· , ·) : H− × H+ → C of Proposition 2.10 and let Φ ∈ H ⊂ H−.
Then for all Ψ ∈ H+

(V−(g)Φ ,Ψ) = (I−1V+(g)IΦ ,Ψ)
= 〈V (g)+IΦ ,Ψ〉+
= 〈IΦ , V+(g−1)Ψ〉+
= (Φ , V+(g−1)Ψ)
= 〈Φ , V (g−1)Ψ〉
= 〈V (g)Φ ,Ψ〉 = (V (g)Φ ,Ψ).

Since V−(g) is a bounded operator in H− and H is dense in H−, V−(g) is the
extension of V (g) to H−. �

5. Reduction Theory

The aim of this section is to provide an alternative point of view for the notion
of G-invariance of operators (cf., Sect. 3) in terms of von Neumann algebras.
Based on this approach we will address some reduction issues of the unbounded
operator in terms of the reducibility of unitary representation V implementing
the quantum symmetry.

Recall that a von Neumann algebra A is a unital *-subalgebra of L(H)
(the set of bounded linear operators in H) which is closed in the weak operator
topology. Even if a von Neumann algebra consists only of bounded linear oper-
ators acting on a Hilbert space, this class of operator algebras can be related in
a natural way to closed, unbounded and densely defined operators. In fact, von
Neumann introduced these algebras in 1929 and proved the celebrated bicom-
mutant theorem, when he extended the spectral theorem to closed, unbounded
normal operators in a Hilbert space (cf., [33]). Since then, the notion of affil-
iation of an unbounded operator to an operator algebra has been applied in
different situations (see, e.g., [10,41,42]).

Let S be a self-adjoint subset of L(H), i.e., if S ∈ S, then S∗ ∈ S. We
denote by S ′ the commutant of S in L(H), i.e., the set of all bounded and
linear operators on H commuting with all operators in S. It is a fact that S ′ is
a von Neumann algebra and that the corresponding bicommutant S ′′ := (S ′)′

is the smallest von Neumann algebra containing S, i.e., S ′′ is the von Neumann
algebra generated by the set S ⊂ L(H). We refer to Sections 4.6 and 5.2 of
[27] for further details and proofs.
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The definition of commutant of a densely defined unbounded operator T
is more delicate since one has to take into account the domains. The following
definition generalizes the notion of commutant mentioned before.

Definition 5.1. Let T : D(T ) ⊂ H → H be a closed, densely defined operator.
The commutant of T is given by

{T}′ := {A ∈ L(H) | AD(T ) ⊂ D(T ) and TAΦ = ATΦ, Φ ∈ D(T )},

i.e., A ∈ {T}′ if TA ⊇ AT .

Since T is a closed operator we have that {T}′ ∩{T †}′ is a von Neumann
algebra in L(H). We denote the von Neumann algebra associated with the
bounded components of T as

W ∗(T ) := ({T}′ ∩ {T †}′)′ ⊂ L(H).

In particular, if T is self-adjoint, the spectral projections of T are contained
in W ∗(T ).

Definition 5.2. The closed, densely defined operator T : D(T ) ⊂ H → H is
affiliated to a von Neumann algebra A ⊂ L(H) (and we write this as TaA) if

W ∗(T ) ⊂ A.

Remark 5.3. There are different equivalent characterizations of the notion of
affiliation: TaA iff {T}′ ∩ {T †}′ ⊃ A′. In particular, this implies that TA′ ⊇
A′T , A′ ∈ A′, i.e., A′D(T ) ⊂ D(T ) and TA′Φ = A′TΦ for all A′ ∈ A′,
Φ ∈ D(T ). If T is an (unbounded) self-adjoint operator, then W ∗(T ) coincides
with the von Neumann algebra C(T )′′ generated by the Cayley transform of
T . Recall that the Cayley transform

C(T ) := (I − iT )(I + iT )−1 ∈ U(H)

is a unitary that can be associated with T . We conclude that TaA iff C(T ) ∈ A.
Finally, note that if T is a bounded operator then, W ∗(T ) = {T, T †}′′ is

the von Neumann algebra generated by T, T † and TaA iff T, T † ∈ A.

In the following result, we will give a useful characterization of G-
invariance for symmetric operators in terms of the affiliation to the commutant
of the quantum symmetry.

Proposition 5.4. Let T : D(T ) ⊂ H → H be a closed, symmetric operator.
Then, T is G-invariant iff TaV ′, where V is the von Neumann algebra gen-
erated by {V (g) | g ∈ G} (i.e., V = {V (g) | g ∈ G}′′ ⊂ L(H)) and V ′

its commutant. Moreover, any G-invariant self-adjoint extension of T is also
affiliated to V ′.

Proof. If TaV ′, then it is immediate that T is G-invariant, since (V ′)′ ⊂ {T}′ ∩
{T †}′ and therefore the generators {V (g) | g ∈ G} of the von Neumann algebra
V = V ′′ satisfy {V (g) | g ∈ G} ⊂ {T}′. This gives the G-invariance of T (cf.,
Definition 5.1).
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To show the reverse implication assume that T is G-invariant according
to Definition 3.1, i.e., {V (g) | g ∈ G} ⊂ {T}′. From Proposition 3.2, we also
have that

{V (g) | g ∈ G} ⊂ {T}′ ∩ {T †}′,

hence

V ′ = {V (g) | g ∈ G}′ ⊃ ({T}′ ∩ {T †}′)′ = W ∗(T ),

which implies that TaV ′. The same argument shows that any G-invariant,
self-adjoint extension of T is also affiliated to V ′. �

We begin next with the analysis of the relation between the reducing
subspaces of the quantum symmetry V and those of the self-adjoint operator
T defined on the dense domain D(T ). The following result and part (ii) of
Theorem 5.7 are straightforward consequences of Schur’s lemma.

Lemma 5.5. Let T : D(T ) ⊂ H → H be a self-adjoint operator. If T is G-
invariant with respect to a unitary, irreducible representation V of G on the
Hilbert space H, then T must be bounded and

T = i

(
λ − 1
λ + 1

)
I for some λ ∈ T \ {−1}.

Proof. Schur’s lemma and the irreducibility of V imply that V ′ = CI. More-
over, by Proposition 5.4 and since the Cayley transform is a unitary and
C(T ) ∈ V ′ we have

C(T ) = (I − iT )(I + iT )−1 = λI for some λ ∈ T.

The case λ = −1 is not possible since C(T ) is an isometry of (I+ iT )D(T ) onto
(I − iT )D(T ) and D(T ) is dense. Therefore C(T ) = λI for some λ ∈ T \ {−1}.
This implies that for any Φ ∈ D(T ) we have

TΦ = i

(
λ − 1
λ + 1

)
Φ.

Since the right-hand side of the previous equation is bounded we can extend
the formula for T to the whole Hilbert space. �

To continue our analysis, we have to define first in which sense an
unbounded operator can be reduced by a closed subspace. Roughly speaking,
the reduction means that we can write T as the sum of two parts: one acting
on the reducing subspace and one acting on its orthogonal complement. The
following definition generalizes the standard one for bounded operators and
uses the notion of commutant of an unbounded operator as in Definition 5.1.

Definition 5.6. Let T : D(T ) ⊂ H → H be a self-adjoint operator and H1 be
a closed subspace of the Hilbert space H. We denote by P1 the orthogonal
projection onto H1. The subspace H1 (or P1) reduces T if P1 ∈ {T}′, i.e., if
P1D(T ) ⊂ D(T ) and TP1 Φ = P1T Φ, Φ ∈ D(T ).
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The previous definition implies that if H1 is reducing for T , then P⊥
1 =

I − P1 is also reducing and D(T ) = D(T ) ∩ H1 + D(T ) ∩ H⊥
1 . Moreover, the

subspace H1 is invariant in the sense that

T |(D(T ) ∩ H1) ⊂ H1 and T |(D(T ) ∩ H⊥
1 ) ⊂ H⊥

1 .

If T is self-adjoint, then the spectral projections E(ω) (with ω Borel on the
spectrum σ(T )) reduce T .

Theorem 5.7. Let G be a group and consider a unitary, reducible representation
V which decomposes as

V =
N⊕

n=1
Vn on H =

N⊕
n=1

Hn, N ∈ N ∪ {∞},
where the sub-representations Vk, k = 1, . . . , N are irreducible and mutually
inequivalent. Let T : D(T ) ⊂ H → H be a self-adjoint and G-invariant operator
with respect to the representation V . Then

(i) Any projection Pk onto Hk, k = 1, . . . , N , is central in V, (i.e., Pk ∈
V ∩ V ′), and reduces the operator T , (i.e., Pk ∈ {T}′).

(ii) If N < ∞, then T must be a bounded operator and there exist λk ∈
T \{−1}, k = 1, . . . , N , such that

T ∼= i diag
((

λ1 − 1
λ1 + 1

)
IH1 , . . . ,

(
λN − 1
λN + 1

)
IHN

)
.

Proof. (i) Since the Vk’s are all irreducible and mutually inequivalent it follows
by Schur’s lemma that

V ′ ∼= {diag(λ1IH1 , . . . , λN IHN
) | λ1, . . . , λN ∈ C}.

Moreover, since any Pk reduces V it is immediate that the projections are cen-
tral. To show that Pk ∈ {T}′, k = 1, . . . , N , consider the spectral projections
E(·) of T and define for any Φ ∈ D(T ) the following positive finite measure on
the Borel sets of σ(T ):

μΦ(ω) := ‖E(ω)Φ‖2 = 〈Φ, E(ω)Φ〉.
Now, any Pk is central for V and, by G-invariance, Proposition 5.4 implies that
E(ω) ∈ V ′ for any Borel set ω. Therefore we have

μPkΦ(ω) = ‖E(ω)PkΦ‖2 ≤ ‖E(ω)Φ‖2 = μΦ(ω)

and this implies that PkD(T ) ⊂ D(T ). Similarly, using the spectral theorem
one can show that

〈y, TPk Φ〉 = 〈y, Pk T Φ〉 for all y ∈ H, Φ ∈ D(T ),

hence Pk ∈ {T}′.
(ii) Since T = T ∗ we have that the Cayley transform is unitary and

C(T ) = (I − iT )(I + iT )−1 ∈ V ′.

Therefore, there is a λk ∈ T, k = 1, . . . , N , such that

C(T ) ∼= diag(λ1IH1 , . . . , λN IHN
).
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As in the proof of Lemma 5.5 we exclude first the case λk = −1, k = 1, . . . , N . If
λk = −1 and since the projection Pk is reducing we have for any Φk ∈ PkD(T )
that

(I + iT )Φk = −(I − iT )Φk ⇒ Φk = 0.

Therefore PkD(T ) = {0} and we can omit the kth-summand in the decompo-
sition of T . Hence without loss of generality we can assume that λk ∈ T\{−1},
k = 1, . . . , N and a similar reasoning on each block as in Lemma 5.5 gives the
formula for T . �

Part (ii) of the previous theorem says that any representation of V imple-
menting a quantum symmetry of an unbounded, self-adjoint operator must be
highly reducible. Note that only if N = ∞ may T be unbounded. E.g., consider
the case where limN λN = −1. In the particular case of a compact group acting
on an infinite-dimensional Hilbert space, we know that the decomposition of
V into irreducible representations must have infinite irreducible components.
In this sense, the representations considered in the examples of the following
sections are meaningful. The following remark and Proposition 5.9 show that
this is so even if we consider equivalent irreducible representations.

Remark 5.8. If the irreducible representations are not mutually inequivalent,
then the corresponding projections need not be reducing. In fact, consider the
example V = V1 ⊕ V2 on H = H1 ⊕ H2 with V1

∼= V2, i.e., there is a unitary
U : H1 → H2 such that V2 = UV1U

∗. Then

V ′ =
{(

λ1IH1 λ2U
∗

λ3U λ4IH2

) ∣∣∣∣λk ∈ C, k = 1, . . . , 4
}

and

V = V ′′ =
{(

A1 0
0 UA1U

∗

) ∣∣∣∣A1 ∈ L(H1)
}

.

This shows that Pk /∈ V and, in fact if V is a quantum symmetry for T , then
Pk need not be reducing for T .

It can be shown that T must also be bounded in this later case. Take into
account that it is not assumed that the irreducible representations are finite
dimensional. Below we show this in the simple case that the representation
V is a composition of two equivalent representations. The generalization to a
finite number of equivalent representations is straightforward.

Proposition 5.9. Let G be a group and consider a unitary, reducible repre-
sentation V which decomposes as a direct sum of two equivalent, irreducible
representations. Let T : D(T ) ⊂ H → H be a G-invariant, self-adjoint operator
with respect to the representation V . Then T must be a bounded operator.

Proof. By assumption, we have that V = V1 ⊕ V2 with V2 = UV1U
∗ where

U : H1 → H2 is the unitary operator representing the equivalence and H =
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H1 ⊕H2. According to the previous remark we have that the Cayley transform
of the operator T is

C(T ) =
(

λ1IH1 λ2U
∗

λ3U λ4IH2

)
, for some λk ∈ C, k = 1, . . . , 4.

Moreover, since C(T ) is a unitary operator, the coefficient matrix

Λ :=
(

λ1 λ2

λ3 λ4

)

is a 2 × 2 unitary matrix, i.e., Λ ∈ U(2). Therefore it exists a unique, unitary
matrix

Σ =
(

s1 s2

s3 s4

)
∈ U(2)

that diagonalizes Λ, i.e., Σ∗ΛΣ = diag(λ̃1, λ̃2), λ̃k ∈ T, k = 1, 2. Consider the
unitary operator

S =
(

s1IH1 s2U
∗

s3U s4IH2

)
.

This unitary transformation satisfies that

S∗C(T )S =
λ̃1 IH̃1

0
0 λ̃2 IH̃2

for some λ̃1, λ̃2 ∈ T, (5.1)

where the new block structure represents a different decomposition of H =
H̃1 ⊕ H̃2. With respect to this decomposition there are associated two proper
subspaces of C(T ) with proper projections P̃1 and P̃2. Notice that these pro-
jections reduce T . These projections do not coincide in general with P1 and
P2, the projections associated with the decomposition V = V1 ⊕ V2.

The same arguments as in the proof of Theorem 5.7 lead us to exclude
the cases λ̃k = −1 and we can consider that λ̃k ∈ T\{−1}, k = 1, 2. Hence T
is a bounded operator. �

The following result is a straightforward consequence of the main results
in this section.

Corollary 5.10. Let T be an unbounded self-adjoint operator on a Hilbert space
H which is G-invariant with respect to a unitary representation V : G → U(H).
Then V cannot be a direct sum of finitely many irreducible representations.

The present section is a first step to analyze the relation between the
reduction theory of a quantum mechanical symmetry and the reduction of
the unbounded G-invariant operator. In particular, we consider only when V
decomposes as a direct sum of irreducible representations. This is enough for
the applications we have in mind in the following sections, where mainly com-
pact groups act as a quantum symmetry. For a systematic and general theory
of reduction one has to address, among other things, the type decomposition
of the von Neumann algebras corresponding to the intertwiner spaces of the
representation V and the corresponding direct integral decomposition of the
self-adjoint operator T (see, e.g., [24,26]).

18



6. Invariant Self-Adjoint Extensions of the Laplace–Beltrami
Operator

As an application of the previous results we analyze the class of self-adjoint
extensions of the Laplace–Beltrami operator on a Riemannian manifold intro-
duced in [19] according to their invariance properties with respect to a sym-
metry group, in particular with respect to a group action on the manifold.

Throughout the rest of this and the next section we will consider a
smooth, compact, Riemannian manifold with boundary (Ω, ∂Ω, η). The bound-
ary ∂Ω of the Riemannian manifold (Ω, ∂Ω, η) has itself the structure of a
Riemannian manifold without boundary (∂Ω, ∂η). The Riemannian metric at
the boundary is just the pull-back of the Riemannian metric ∂η = i∗η , where
i : ∂Ω ↪→ Ω is the canonical inclusion map. The spaces of smooth functions
over the manifolds verify that

C∞(Ω)
∣∣
∂Ω

� C∞(∂Ω).

The Sobolev spaces of order k ∈ R
+ over the manifolds (Ω, ∂Ω, η) and (∂Ω, ∂η)

are going to be denoted by Hk(Ω) and Hk(∂Ω), respectively. There is an
important relation between the Sobolev spaces defined over the manifolds Ω
and ∂Ω. This is the well-known Lions trace theorem (see, e.g., [2, Theorem
7.39] and Theorem 9.4 of Chapter 1 in [23]).

Theorem 6.1 (Lions). Let Φ ∈ C∞(Ω) and let γ : C∞(Ω) → C∞(∂Ω) be the
trace map γ(Φ) = Φ|∂Ω. There is a unique continuous extension of the trace
map such that

(i) γ : Hk(Ω) → Hk−1/2(∂Ω), k > 1/2.
(ii) The map is surjective.

6.1. A Class of Self-Adjoint Extensions of the Laplace–Beltrami Operator

We recall here some results from [19] that describe a large class of self-adjoint
extensions of the Laplace–Beltrami operator. The extensions are parameterized
in terms of suitable unitaries on the boundary Hilbert space. This class is
constructed in terms of a family of closed, semi-bounded quadratic forms via
the representation theorem (cf., Theorem 2.7). Before introducing this family
we shall need some definitions.

Definition 6.2. Let U : L2(∂Ω) → L2(∂Ω) be unitary and denote by σ(U) its
spectrum. The unitary U on the boundary has spectral gap at −1 if one of the
following conditions hold:

(i) I + U is invertible.
(ii) −1 ∈ σ(U) and −1 is not an accumulation point of σ(U).

The eigenspace associated with the eigenvalue −1 is denoted by W . The cor-
responding orthogonal projections will be written as PW and PW ⊥ = I − PW .

Definition 6.3. Let U be a unitary operator acting on L2(∂Ω) with spectral gap
at −1. The partial Cayley transform AU : L2(∂Ω) → L2(∂Ω) is the operator

AU := iPW ⊥(U − I)(U + I)−1.
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Definition 6.4. Let U be a unitary with spectral gap at −1. The unitary is
said to be admissible if the partial Cayley transform AU leaves the subspace
H1/2(∂Ω) invariant and is continuous with respect to the Sobolev norm of
order 1/2, i.e.,

‖AUϕ‖H1/2(∂Ω) ≤ K‖ϕ‖H1/2(∂Ω).

Example 6.5. Consider a manifold with boundary given by the unit circle,
i.e., ∂Ω = S1, and define the unitary (Uβϕ)(z) := eiβ(z) ϕ(z), ϕ ∈ L2(S1). If
β ∈ L2(S1) and ranβ ⊂ {π} ∪ [0, π − δ] ∪ [π + δ, 2π), for some δ > 0, then Uβ

has gap at −1. If, in addition, β ∈ C∞(S1), then Uβ is admissible.

Definition 6.6. Let U be a unitary with spectral gap at −1, AU the correspond-
ing partial Cayley transform and γ the trace map considered in Theorem 6.1.
The Hermitean quadratic form QU associated with the unitary U is defined
by

QU (Φ,Ψ) = 〈dΦ ,dΨ〉Λ1 − 〈γ(Φ) , AUγ(Φ)〉∂Ω

on the domain

DU = {Φ ∈ H1(Ω)| PW γ(Φ) = 0}.

Here 〈· , ·〉Λ1 stands for the canonical scalar product among one-forms on the
manifold Ω.

It is worth to mention the reasons behind Definitions 6.2 and 6.4. The
spectral gap condition ensures that the partial Cayley transform becomes a
bounded, self-adjoint operator on the subspace W⊥ and this guarantees that
the quadratic form QU is lower semi-bounded. Notice that we are dealing with
unbounded quadratic forms and thus they are not continuous mappings of the
Hilbert space. The admissibility condition is an analytic requirement to ensure
that QU is a closable quadratic form.

In the next theorem, we give a class of self-adjoint extensions of the mini-
mal Laplacian operator Δmin on the domain H2

0(Ω). We refer to [19, Section 4]
for a complete proof and additional motivation. All the extensions are labeled
by suitable unitaries U at the boundary.

Theorem 6.7. Let U : L2(∂Ω) → L2(∂Ω) be an admissible unitary operator
with spectral gap at −1. Then the quadratic form QU of Definition 6.6 is semi-
bounded from below and closable. Its closure is represented by a semi-bounded,
self-adjoint extension of the minimal Laplacian −Δmin.

6.2. Unitaries at the Boundary and G-Invariance

We will use next the results of Sect. 4 to give necessary and sufficient condi-
tions on the characterization of the unitary U in order that the corresponding
quadratic form (QU ,DU ) is G-invariant. In particular, from Theorem 4.2, we
conclude that the self-adjoint operator representing its closure will also be
G-invariant.

We need to consider first the quadratic form corresponding to the Neu-
mann extension of the Laplace–Beltrami operator:

QN (Φ) = ‖dΦ‖2, Φ ∈ DN = H1(Ω).
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We will also call it Neumann quadratic form. Note that it corresponds to the
quadratic form QU of the previous section with admissible unitary U = I.
Moreover, U has spectral gap at −1 and for the corresponding orthogonal
projection we have PW = I, hence AU = 0.

Let G be a Lie group and V : G → U(L2(Ω)) be a continuous unitary
representation of G, i.e., for any Φ ∈ L2(Ω) the map

G � g �→ V (g)Φ

is continuous in the L2-norm. We will assume that QN is G-invariant, that is,
V (g)H1(Ω) ⊂ H1(Ω) and QN (V (g)Φ) = QN (Φ) for all Φ ∈ H1(Ω) and g ∈ G.
Then the following lemma shows that V defines also a continuous unitary
representation on H1(Ω) with its corresponding Sobolev scalar product.

Lemma 6.8. Let V a strongly continuous unitary representation of the Lie
group G on L2(Ω) such that Neumann’s quadratic form QN is G-invariant.
Then V leaves invariant the subspace H1(Ω) and defines a strongly continuous
unitary representation on it.

Proof. Since V (g) is invertible it is enough to show that V (g) is an isometry
with respect to the Sobolev norm || · ||1 (see also the proof of Theorem 4.4).
But this is immediate since V is unitary on L2(Ω) and QN is G-invariant.
This is trivial if we realize that || · ||21 = || · ||20 + QN (·), then because of the
G-invariance of QN we get that ||V (g)Φ||1 = ||Φ||1 for all Φ ∈ H1(Ω), g ∈ G.

Finally, to prove strong continuity on H1(Ω), use the invariance

‖V (g)Φ‖1 = ‖Φ‖1, g ∈ G

and a standard weak compactness argument. �
Definition 6.9. The representation V : G → L2(Ω) has a trace (or that it is
traceable) along the boundary ∂Ω if there exists another continuous, unitary
representation v : G → U(L2(∂Ω)) such that

γ(V (g)Φ) = v(g)γ(Φ), (6.1)

for all Φ ∈ H1(Ω) and g ∈ G or, in other words, that the following diagram is
commutative:

H1(Ω)
V (g)−→ H1(Ω)

γ ↓ ↓ γ

H1/2(∂Ω)
v(g)−→ H1/2(∂Ω)

We will call v the trace of the representation V .

Notice that if the representation V is traceable, its trace v is unique.
Now we are able to prove the following theorem:

Theorem 6.10. Let G a Lie group, and V : G → U(L2(Ω)) a traceable contin-
uous, unitary representation of G with unitary trace v : G → U(L2(∂Ω)) along
the boundary ∂Ω. Denote by (QU ,DU ) the closable and semi-bounded quadratic
form of Definition 6.6 with an admissible unitary U ∈ U(L2(Ω)) having spec-
tral gap at −1. Assume that the corresponding Neumann quadratic form QN

is G-invariant. Then we have the following cases:
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(i) If [v(g), U ] = 0 for all g ∈ G, then QU is G-invariant. Its closure is
also G-invariant and the self-adjoint extension of the minimal Laplacian
representing the closed quadratic form will also be G-invariant.

(ii) Consider the decomposition of the boundary Hilbert space L2(∂Ω) ∼= W ⊕
W⊥, where W is the eigenspace associated with the eigenvalue −1 of U
and denote by PW the orthogonal projection onto W . If QU is G-invariant
and PW : H1/2(∂Ω) → H1/2(∂Ω) continuous, then [v(g), U ] = 0 for all
g ∈ G.

Proof. (i) Assume first that [v(g), U ] = 0, g ∈ G. To show that QU is
G-invariant we have to analyze first the block structure of U and v(g) with
respect to the decomposition L2(∂Ω) ∼= W ⊕ W⊥. Since

U ∼=
(−I 0

0 U0

)
and v(g) ∼=

(
v1(g) v2(g)
v3(g) v4(g)

)

the commutation relations imply that v2(g)(I + U0) = 0 and [v4(g), U0] = 0.
But since U has spectral gap at −1, then I + U0 is invertible on W⊥ and we
must have v2(g) = 0. The unitarity of v(g) implies v3(g) = 0 and v(g) has
block diagonal structure.

By assumption QN is G-invariant, so it is enough to show that the bound-
ary quadratic form

B(Φ) := 〈γ(Φ) , AUγ(Φ)〉∂Ω, Φ ∈ DU

is also G-invariant, i.e., V (g)DU ⊂ DU and B(V (g)Φ) = B(Φ), Φ ∈ DU . To
show the first inclusion, note that for any Φ ∈ DU we have

PW γ(V (g)Φ) = PW v(g)γ(Φ) = v(g)PW γ(Φ) = 0,

where we have used that V is traceable along ∂Ω, v(g) has diagonal block

structure and PW
∼=

(
I 0
0 0

)
.

Finally, for any g ∈ G and Φ ∈ DU we check

B(V (g)Φ) = 〈v4(g)γ(Φ) , AUv4(g)γ(Φ)〉W ⊥ = 〈v4(g)γ(Φ) , v4(g)AUγ(Φ)〉W ⊥

= 〈γ(Φ) , AUγ(Φ)〉W ⊥ = B(Φ).

Note that all scalar products refer to W⊥ and that for the last equation we
used v4(g) ∈ {U0}′ iff v4(g) ∈ {AU}′ and, again, all commutants are taken
with respect to W⊥ (cf., Sect. 5). Since QU is G-invariant and closable and
the representation V unitary it is straightforward to show that its closure is
also G-invariant (see, e.g., Theorem VI.1.17 in [21]). By Theorem 4.2 it follows
that the self-adjoint extension of the minimal Laplacian representing the closed
quadratic form will also be G-invariant.

(ii) By assumption we have that

PW : H1/2(∂Ω) → H1/2(∂Ω)

is continuous in the fractional Sobolev norm and, therefore, γ(DU ) is dense in
W⊥. Since QU is G-invariant we have V (g)DU ⊂ DU , hence for any Φ ∈ DU

0 = PW γ(V (g)Φ) = PW v(g)γ(Φ) = PW v(g)P⊥
W γ(Φ).
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From the density of γ(DU ) in W⊥ we conclude that v(g) ∼=
(

v1(g) 0
0 v4(g)

)

and we only need to show [v4(g), U0] = 0 on W⊥. But this follows from the
G-invariance of the boundary quadratic form B and, again, the density of
γ(DU ) in W⊥. �

We can now consider the following immediate consequences.

Corollary 6.11. Let U ∈ U(L2(∂Ω)) be admissible and such that I + U is
invertible. Then QU on DU is G-invariant iff [v(g), U ] = 0 for all g ∈ G.

Proof. We only need to show that the G-invariance implies that the unitaries
on the boundary commute. Note that by assumption −1 �∈ σ(U) and, with
the notation in the preceding theorem, we have that W = {0}. Therefore
DU = H1(Ω) and the corresponding trace give γ(DU ) = H1/2(∂Ω) which is
dense in L2(∂Ω). The rest of the reasoning is literally as in the proof of part (ii)
of Theorem 6.10. �

We conclude giving a characterization of G-invariance of the quadratic
form QU that uses the point spectrum of the unitary U . Recall that λ is in
the point spectrum of an operator T if (λ − T ) is not injective, i.e., λ is an
eigenvalue of T . We denote the set of all eigenvalues by σp(T ) ⊂ σ(T ).

Lemma 6.12. Consider a unitary U ∈ U(L2(∂Ω)) with spectral gap at −1.
Assume that H1/2(∂Ω) is invariant for U and that its restriction

U+ := U |H1/2(∂Ω)

is continuous with respect to the Sobolev 1/2-norm. If U+ has only point spec-
trum, i.e., σ(U+) = σp(U+), then U is admissible, i.e., the partial Cayley
transform AU leaves the fractional Sobolev space H1/2(∂Ω) invariant and is
continuous with respect to the Sobolev 1/2-norm. The orthogonal projection
PW leaves also the Sobolev space H1/2(∂Ω) invariant and is continuous with
respect to the 1/2-norm.

Proof. Note first that

σ(U+) ⊂ σp(U+) ⊂ σp(U) ⊂ σ(U)

and, therefore, if U has spectral gap at −1, then U+ has also spectral gap at
−1. Then by Cauchy–Riesz functional calculus (cf., [14, Chapter VII]) we have
that

AU =
1

2πi c1

i
λ − 1
λ + 1

(λ − U)−1 dλ and PW =
1

2πi c2

(λ − U)−1 dλ,

where c1andc2 are closed, simple and positively oriented curves. The curve c1

encloses σ(T )\{−1} and c2 encloses only {−1}. Note that the the gap condition
is essential here. It is clear that both AU and PW are bounded operators in
H1/2(∂Ω) as required. �

23



Corollary 6.13. Consider a unitary U ∈ U(L2(∂Ω)) with spectral gap at
−1. Assume that H1/2(∂Ω) is invariant for U , that its restriction U+ :=
U |H1/2(∂Ω) is continuous with respect to the Sobolev 1/2-norm and that
σ(U+) = σp(U+). Then QU on DU is G-invariant iff [v(g), U ] = 0 for all
g ∈ G.

Proof. By the preceding lemma we have that U is admissible and that PW is
continuous in the 1/2-norm. The statement follows then directly from Theo-
rem 6.10. �

In the final section, we will present examples with unitaries which satisfy
the conditions mentioned in the statements above.

6.3. Groups Acting by Isometries

We will discuss now the important instance when the unitary representation
is determined by an action of the group G on Ω by isometries. Thus, assume
that the group G acts smoothly by isometries on the Riemannian manifold
(Ω, ∂Ω, η). Any g ∈ G specifies a diffeomorphism g : Ω → Ω that we will
denote with the same symbol for simplicity of notation. Moreover, we have
that

g∗η = η,

where g∗ stands for the pull-back by the diffeomorphism g. These diffeomor-
phisms restrict to isometric diffeomorphisms on the Riemannian manifold at
the boundary (∂Ω, ∂η) (see, e.g., [1, Lemma 8.2.4]),

(g|
∂Ω)∗∂η = ∂η.

These isometric actions of the group G induce unitary representations of the
group on Ω and ∂Ω. In fact, consider the following representations:

V : G → U(L2(Ω)), V (g)Φ = (g−1)∗Φ Φ ∈ L2(Ω).
v : G → U(L2(∂Ω)), v(g)ϕ = (g|−1

∂Ω
)∗ϕ ϕ ∈ L2(∂Ω).

Then a simple computation shows that,

〈V (g−1)Φ , V (g−1)Ψ〉 = 〈Φ ,Ψ〉,
where we have used the change of variables formula and the fact that isomet-
ric diffeomorphisms preserve the Riemannian volume, i.e., g∗dμη = dμη. The
result for the boundary is proved similarly. The induced actions are related
with the trace map as

γ(V (g)Φ) = v(g)γ(Φ) g ∈ G,Φ ∈ H1(Ω),

and therefore the unitary representation V is traceable along the boundary of
Ω with trace v.

Moreover, we have that the quadratic form QN is G-invariant.

Proposition 6.14. Let G be a Lie group that acts by isometric diffeomorphisms
on the Riemannian manifold (Ω, ∂Ω, η) and let V : G → U(L2(Ω)) be the
associated unitary representation. Then, Neumann’s quadratic form QN (Φ) =
〈dΦ ,dΦ〉 with domain H1(Ω) is G-invariant.
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Proof. First notice that the pull-back of a diffeomorphism commutes with the
action of the exterior differential. Then we have that

d(V (g−1)Φ) = d(g∗Φ) = g∗dΦ.

Hence

〈d(V (g−1)Φ) ,d(V (g−1)Ψ)〉 =
Ω

η−1(g∗dΦ, g∗dΨ)dμη

=
Ω

g∗(η−1(dΦ,dΨ))g∗dμη

=
gΩ

η−1(dΦ,dΨ)dμη

= 〈dΦ ,dΨ〉, (6.2a)

where in the second inequality we have used that g : Ω → Ω is an isometry
and therefore

η−1(g∗dΦ, g∗dΨ) = g∗η−1(g∗dΦ, g∗dΨ) = g∗(η−1(dΦ,dΨ)).

The Eq. (6.2) guaranty also that V (g)H1(Ω) = H1(Ω) since V (g) is a unitary

operator in L2(Ω) and the norm
√

‖d · ‖2
Λ1 + ‖ · ‖2 is equivalent to the Sobolev

norm of order 1. �

Before making explicit the previous structures in concrete examples we
summarize the the main ideas in this section as follows: given a group acting
by isometric diffeomorphisms on a Riemannian manifold, then any operator at
the boundary, that satisfies the conditions in Definitions 6.2 and 6.4, and that
verifies the commutation relations of Theorem 6.10 (i) describes a G-invariant
quadratic form. The closure of this quadratic form characterizes uniquely a
G-invariant self-adjoint extension of the Laplace–Beltrami operator (cf. The-
orems 2.7 and 4.2).

7. Examples

In this section, we introduce two particular examples of G-invariant quadratic
forms. In the first example, we are considering a situation where the symmetry
group is a finite, discrete group. In the second one, we consider G to be a
compact Lie group.

Example 7.1. Let Ω be the cylinder [−1, 1] × [−1, 1]/∼ , where ∼ is the equiv-
alence relation (x, 1) ∼ (x,−1). The boundary ∂Ω is the disjoint union of the
two circles Γ1 = {{−1} × [−1, 1]/∼} and Γ2 = {{1} × [−1, 1]/∼}, (see Fig. 1).
Let η be the euclidean metric on Ω. Now let G = Z2={e,f} be the discrete,
abelian group of two elements and consider the following action in Ω:

e : (x, y) → (x, y),

f : (x, y) → (−x, y).
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Γ1 Γ2

Figure 1. Representation of the cylinder in Example 7.1. Γ1

and Γ2 are the disconnected components of the boundary

The induced action at the boundary is

e : (±1, y) → (±1, y),

f : (±1, y) → (∓1, y).

Clearly G transforms Ω onto itself and preserves the boundary. Moreover,
it is easy to check that f∗η = η. Since the boundary ∂Ω consists of two
disjoints manifolds Γ1 and Γ2, the Hilbert space of the boundary is L2(∂Ω) =
L2(Γ1) ⊕ L2(Γ2). Any Φ ∈ L2(∂Ω) can be written as

Φ =
(

Φ1(y)
Φ2(y)

)

with Φi ∈ L2(Γi). The only nontrivial action on L2(∂Ω) is given by

v(f)
(

Φ1(y)
Φ2(y)

)
=

(
0 I

I 0

) (
Φ1(y)
Φ2(y)

)
.

The set of unitary operators that describe the closable quadratic forms as
defined in the previous section is given by suitable unitary operators

U =
(

U11 U12

U21 U22

)
,

with Uij = L2(Γj) → L2(Γi). According to Theorem 6.10 (i) the unitary oper-
ators commuting with v(f) will lead to G-invariant quadratic forms. Imposing(

0 I

I 0

)(
U11 U12

U21 U22

)
=

(
U11 U12

U21 U22

) (
0 I

I 0

)
,

we get the conditions

U21 − U12 = 0,

U22 − U11 = 0.

Obviously there is a wide class of unitary operators, i.e., boundary con-
ditions, that will be compatible with the symmetry group G. We will consider
next two particular classes of boundary conditions. First, consider the following
unitary operators

U =
eiβ1I1 0

0 eiβ2I2
, (7.1)
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where βi ∈ C∞(S1, [−π + δ, π − δ] ∪ {π}) for some δ > 0. It is showed in
[19, Sections 3 and 5] that this class of unitary operators have spectral gap
at -1 and are admissible (see also Sect. 6.2). Moreover, this choice of unitary
matrices corresponds to select Robin boundary conditions of the form:

γ

(
−dΦ

dx

)∣∣∣∣
Γ1

= − tan(β1/2)γ(Φ)
∣∣
Γ1

; γ

(
dΦ
dx

)∣∣∣∣
Γ2

= − tan(β2/2)γ(Φ)
∣∣
Γ2

.

(7.2)

The G-invariance condition above imposes β1 = β2. Notice that when β1 �=
β2 we can obtain meaningful self-adjoint extensions of the Laplace–Beltrami
operator that, however, will not be G-invariant.

We can also consider unitary operators of the form

U =
0 eiα

e−iα 0 , (7.3)

where α ∈ C∞(S1, [0, 2π]). Again, it is proved in [19] that this class of unitary
operators have spectral gap at −1 and are admissible. In this case, the uni-
tary matrix corresponds to select so-called quasi-periodic boundary conditions,
cf. [4], i.e.,

γ(Φ)|Γ1 = eiαγ(Φ)|Γ2 ,

γ

(
−dΦ

dx

)∣∣∣∣
Γ1

= eiαγ

(
dΦ
dx

)∣∣∣∣
Γ2

.

The G-invariance condition imposes eiα = e−iα and therefore among all the
quasi-periodic conditions only the periodic ones, α ≡ 0, are compatible with
the G-invariance.

Example 7.2. Let Ω be the unit, upper hemisphere centered at the origin.
Its boundary ∂Ω is the unit circle on the z = 0 plane. Let η be the induced
Riemannian metric from the euclidean metric in R

3. Consider the compact
Lie group G = SO(2) that acts by rotation around the z-axis. If we use polar
coordinates on the horizontal plane, then the boundary ∂Ω is isomorphic to
the interval [0, 2π] with the two endpoints identified. We denote by θ the
coordinate parameterizing the boundary and the boundary Hilbert space is
L2(S1).

Let ϕ ∈ H1/2(∂Ω) and consider the action on the boundary by a group
element gα ∈ G, α ∈ [0, 2π], given by

v(g−1
α )ϕ(θ) = ϕ(θ + α).

To analyze what are the possible unitary operators that lead to G-invariant
quadratic forms it is convenient to use the Fourier series expansions of the
elements in L2(∂Ω). Let ϕ ∈ L2(∂Ω) , then

ϕ(θ) =
∑
n∈Z

ϕ̂neinθ,

27



where the coefficients of the expansion are given by

ϕ̂n =
1
2π

2π

0

ϕ(θ)e−inθdθ.

We can therefore consider the induced action of the group G as a unitary
operator on �2 , the Hilbert space of square summable sequences. In fact we
have that:

̂(v(g−1
α )ϕ)n =

1
2π

2π

0

ϕ(θ + α)e−inθdθ

=
∑
m∈Z

ϕ̂meimα
2π

0

ei(m−n)θ

2π
dθ = einαϕ̂n.

This shows that the induced action of the group G is a unitary operator in U(�2)
that acts diagonally in the Fourier series expansion. More concretely, we can

represent it as ̂v(g−1
α )nm = einαδnm . From all the possible unitary operators

acting on the Hilbert space of the boundary, only those whose representation in
�2 commutes with the above operator will lead to G-invariant quadratic forms

(cf., Theorem 6.10 (i)). Since ̂v(g−1
α ) acts diagonally on �2 it is clear that only

operators of the form Ûnm = eiβnδnm, {βn}n ⊂ R, will lead to G-invariant
quadratic forms.

As a particular case we can consider that all the parameters are equal,
i.e., βn = β, n ∈ Z. In this case it is clear that (Ûϕ)n = eiβϕn, which gives
the following admissible unitary with spectral gap at −1:

Uϕ = eiβϕ.

This shows that the unique Robin boundary conditions compatible with the
SO(2)-invariance are those that are defined with a constant parameter along
the boundary, i.e.,

γ

(
dΦ
d�n

)
= − tan(β/2)γ(Φ), β ∈ [0, 2π], (7.4)

where �n stands for normal vector field pointing outwards to the boundary.
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[35] Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer,
Dordrecht (2012)

[36] Shams, N., Stanhope, E., Webb, D.L.: One cannot hear orbifold isotropy type.
Arch. Math. 87, 375–384 (2006)

[37] van der Waerden, B.L.: Die gruppentheoretische Methode in der Quanten-
mechanik. Julius Springer, Berlin (1932)

[38] Weyl, H.: Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig (1928)

[39] Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group.
Ann. Math. 40, 149–204 (1939)

[40] Wigner, E.P.: Gruppentheorie und ihre Anwendung auf die Quantenmechanik
der Atomspektren. F. Vieweg und Sohn, Braunschweig (1931)

[41] Woronowicz, S.L.: Unbounded elements affiliated with C*-algebras and noncom-
pact quantum groups. Commun. Math. Phys. 136, 399–432 (1991)
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