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A note on the Geronimus 
transformation and Sobolev 
orthogonal polynomials

Maxim Derevyagin · Francisco Marcellán

Abstract In this note we recast the Geronimus transformation in 
the framework of polynomials orthogonal with respect to symmetric 
bilinear forms. We also show that the double Geronimus 
transformations lead to non-diagonal Sobolev type inner products.
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1 Introduction

Let us consider the following problem. Let {Pn}∞n=0 be a sequence of monic poly-
nomials orthogonal with respect to a nontrivial probability measure supported on
an infinite subset of the real line. The problem consists in finding necessary and
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sufficient conditions for the real numbers An, n = 0, 1, . . . , to make the sequence of
monic polynomials

Pn(t) +AnPn−1(t), An �= 0, n = 1, 2, . . . ,

orthogonal with respect to some measure supported on the real line. The idea of
studying this problem goes back to Shohat’s paper [21] concerning quadrature for-
mulas associated to n nodes with a degree of exactness less that 2n− 1. A few years
later after the Shohat’s publication a complete and final answer to that problem was
given by Geronimus [14]. Thus [14] provided us with a procedure of constructing
new families of orthogonal polynomials from the given ones. One can also reduce
some families of orthogonal polynomials to the known ones with the help of such a
procedure.

Recall that if we have a sequence of monic orthogonal polynomials {Pn}∞n=0 then
the polynomial transformation

Pn(t) → Pn(t) +AnPn−1(t), An �= 0, n = 1, 2, . . . ,

that gives a new family of orthogonal polynomials, is said to be the Geronimus trans-
formation [7, 22, 24]. In fact, the Geronimus transformation divides the measure of
orthogonality by the spectral parameter minus the point of transformation and adds
a mass to it at the point of transformation. See also [18], where the sequence of
polynomials associated with such a perturbation in a more general algebraic frame-
work (orthogonality with respect to a linear functional defined in the linear space of
polynomials with complex coefficients) is studied.

Besides the measure interpretation, the Geronimus transformation can be also
interpreted in terms of Jacobi matrices in the framework of the so called discrete Dar-
boux transformations and it is related to LU and UL factorizations of shifted Jacobi
matrices [7]. Although the Geronimus transformation has its origin in mechanical
quadrature [21], it has also found many applications in classical analysis, numer-
ical analysis, and physics [7, 22, 23]. In particular, it should be stressed that the
Geronimus transformation together with the Christoffel transformation (both called
discrete Darboux transformations) give a bridge between orthogonal polynomials and
discrete integrable systems [22, 23].

To go deeper in understanding the Geronimus transformation it is somehow natural
to consider its iterations. Say, two iterations of the Geronimus transformation lead to
the families of orthogonal polynomials defined by

Pn(t) → Pn(t) + BnPn−1(t)+ CnPn−2(t), n ≥ 1, Cn �= 0, n ≥ 2.

Such families have been extensively studied in the literature (see [3, 5, 15], among
others). A particular case of the corresponding inverse problem in terms of pertur-
bations of linear functionals has been analyzed in [4]. For more iterations of the
Geronimus transformation, see the results contained in [2, 17, 20]. Some particu-
lar cases of inverse problems for the cubic case have been analyzed in [19]. On the
other hand, in [16] the higher order ordinary linear differential equations associated
with polynomials orthogonal with respect to iterated Geronimus transformations of
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Laguerre orthogonal polynomials, the so called Krall-Laguerre orthogonal polynomi-
als, are studied in a framework of commutative algebras with orthogonal polynomials
as eigenfunctions.

An interesting point in analysis of iterations of the Geronimus transformation is

the following. It is well known that the sequence of monic polynomials
{
Q̃

(α)
n

}∞
n=0

,

which are orthogonal with respect to the Laguerre-Sobolev type inner product

[f, g] =
∫ ∞

0
f (t)g(t)tαe−t dt +Mf (0)g(0)+ Nf ′(0)g′(0) f, g ∈ P

defined on the linear space P of polynomials with real coefficients, can be repre-
sented in terms of the sequence of classical monic Laguerre polynomials {L(α)

n }∞n=0
as follows

Q̃(α)
n (t) = L(α+2)

n (t) + BnL
(α+2)
n−1 (t) + CnL

(α+2)
n−2 (t).

Obviously, one cannot get the Laguerre-Sobolev inner product by dividing by t2 the
measure tα+2e−t dt and adding masses to it despite the above formula suggests that
the Laguerre-Sobolev type orthogonal polynomials are the two consecutive Geron-
imus transformations of the classical Laguerre polynomials. This problem brings us
to one of the aims of this note.

One of the main ideas of the present paper is to include the Laguerre-Sobolev type
orthogonal polynomials and similar Sobolev orthogonal polynomials into the scheme
of Darboux transformations. To this end we propose to reconsider the Geronimus
transformation in a more general framework related to symmetric bilinear forms.

Recall that a symmetric bilinear form B(·, ·) in the linear space P is a mapping

B(·, ·) : P × P → R

that is linear with respect to each of their arguments and has the symmetry property

B(f, g) = B(g, f ), f, g ∈ P .

For instance, the form

(f, g)0 =
∫

R

f (t)g(t)dμ(t)

is symmetric and bilinear. It is not so hard to see that the Gram matrix
(
(ti , tj )0

)∞
i,j=0

is a Hankel matrix and is positive definite.
A bilinear form is said to be regular (resp. positive definite) if all leading princi-

pal submatrices of its Gram matrix are nonsingular (positive definite). In such cases,
the bilinear form generates a sequence of monic orthogonal polynomials in a simple
way by using the Gram-Schmidt process. Nonetheless, the main advantage of con-
sidering bilinear forms in the context of orthogonality is the ability to include many
types of orthogonality such that the corresponding Gram matrix associated with their
moments is not a Hankel matrix, e.g. the Sobolev orthogonality (see [6, 8]) and other
types of orthogonality related to matrix measures (see [12]) based on the symmetry
of a polynomial operator with respect to a bilinear form.

The paper is organized as follows. In Section 2 the classical Geronimus transfor-
mation is considered. The structure of the symmetric Jacobi matrix corresponding to
the transformed polynomials is discussed in the next section. The double Geronimus
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transformation in the framework of bilinear forms is presented in Section 4. The
last section gives details of the structure of the symmetric pentadiagonal matrix
associated with the recurrence coefficients for the transformed polynomials.

2 The classical Geronimus transformations

In this section we review some of the results of [14] from the point of view of
symmetric bilinear forms.

We start with the precise definition of the Geronimus transformation in the
framework under consideration.

Definition 2.1 Let us consider a symmetric bilinear form

(f, g)0 =
∫

R

f (t)g(t)dμ(t).

The Geronimus transformation of (·, ·)0 is a symmetric bilinear form [·, ·]1 defined
on the set P of real polynomials as follows

[tf (t), g(t)]1 = [f (t), tg(t)]1 = (f, g)0 =
∫

R

f (t)g(t)dμ(t), f, g ∈ P . (2.1)

Evidently, this definition doesn’t determine [·, ·]1 uniquely. However, we can see
how the Geronimus transformation looks like.

Proposition 2.2 Suppose that dμ has the following representation

dμ(t) = tdμ1(t), (2.2)

where dμ1 is a positive measure and it has finite moments. Then the bilinear form
[·, ·]1 admits the representation

[f, g]1 =
∫ ∞

0
f (t)g(t)dμ1(t)+

(
s∗0 −

∫ ∞

0
dμ1(t)

)
f (0)g(0), f, g ∈ P, (2.3)

where s∗0 is an arbitrary real number.

Proof It is clear that the value [1, 1]1 can be arbitrary. So, let us denote it by s∗0 , i.e.
s∗0 = [1, 1]1. Further, let us compute [f, g]1 for any f, g ∈ P :

[f, g]1 = [f (t)− f (0)+ f (0), g(t)]1 = [f (t) − f (0), g(t)]1 + [f (0), g(t)]1
= [f (t)− f (0), g(t)]1 + [f (0), g(t) − g(0)]1 + [f (0), g(0)]1
=

(
f (t) − f (0)

t
, g(t)

)
+

(
f (0),

g(t) − g(0)

t

)
+ f (0)g(0)s∗0

=
∫ ∞

0

f (t)− f (0)

t
g(t)dμ(t)

+
∫ ∞

0
f (0)

g(t) − g(0)

t
dμ(t)+ f (0)g(0)s∗0 .
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Next, using (2.2) we arrive at

[f, g]1 =
∫ ∞

0
(f (t) − f (0)) g(t)dμ1(t)

+
∫ ∞

0
f (0) (g(t) − g(0)) dμ1(t)+ f (0)g(0)s∗0 ,

which can be easily simplified to (2.3).

To get an idea about the Geronimus transformation, let us consider one particular
example of the initial inner product:

(f, g)0 =
∫ +∞

0
f (t)g(t)tαe−t dt, α > 0.

Clearly, one of the possible choices for the Geronimus transformation is the following
bilinear form

[f, g]1 =
∫ +∞

0
f (t)g(t)tα−1e−t dt, α > 0,

that is the case where s∗0 = ∫ ∞
0 tα−1e−t dt . In this case the forms (·, ·)0 and [·, ·]1

generate the sequences of monic Laguerre polynomials
{
L
(α)
n

}∞
n=0

and
{
L
(α−1)
n

}∞
n=0

,

respectively. These polynomials are related as follows

L(α)
n (t) + nL

(α)
n−1(t) = L(α−1)

n (t), n = 0, 1, . . . .

It turns out that a similar relation is also valid for the Geronimus transformation in
general.

Theorem 2.3 (cf. [14]) Let assume that (·, ·)0 and [·, ·]1 are positive definite and
regular bilinear forms, respectively. Let {Pn}∞n=0 be a sequence of monic polynomi-
als orthogonal with respect to (·, ·)0. Then a monic polynomial P ∗

n of degree n is
orthogonal with respect to [·, ·]1 if and only if it can be represented as follows

P ∗
n (t) =

1

d∗n

∣∣∣∣
Pn(t) s∗0Pn(0)+Qn(0)
Pn−1(t) s∗0Pn−1(0)+Qn−1(0)

∣∣∣∣ , (2.4)

where d∗n = s∗0Pn−1(0) + Qn−1(0) �= 0. Here, {Qn}∞n=0 denotes the sequence of
monic orthogonal polynomials of the second kind with degQn = n − 1 and defined
by Qn(x) =

∫ ∞
0

Pn(t)−Pn(x)
t−x

dμ(t).

Proof Since [·, ·]1 is regular there exists the corresponding sequence of monic
orthogonal polynomials. Suppose that P ∗

n is orthogonal, that is,
[
P ∗
n (t), t

k
]

1
=

[
tk, P ∗

n (t)
]

1
= 0, k = 0, 1, 2, . . . , n− 1.

In turn, for the original bilinear form we have
(
P ∗
n (t), t

k−1
)

0
=

[
P ∗
n (t), t

k
]

1
= 0, k = 0, 1, 2, . . . , n− 1,
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which obviously implies that

P ∗
n (t) = Pn(t)+ AnPn−1(t), (2.5)

where An is a real number. Next, let us calculate An, n ≥ 1. To this end we are going
to use the following equation

0 = [
P ∗
n (t), 1

] = s∗0P ∗
n (0)+

(
P ∗
n (t)− P ∗

n (0)

t
, 1

)

= s∗0P ∗
n (0)+

(
Pn(t)− Pn(0)

t
, 1

)
+An

(
Pn−1(t)− Pn−1(0)

t
, 1

)

= s∗0P ∗
n (0)+

∫ ∞

0

Pn(t) − Pn(0)

t
dμ(t)+ An

∫ ∞

0

Pn−1(t) − Pn−1(0)

t
dμ(t)

= s∗0 (Pn(0)+AnPn−1(0))+Qn(0)+AnQn−1(0)

= s∗0Pn(0)+Qn(0)+ An(s
∗
0Pn−1(0)+Qn−1(0)), n ≥ 1.

We see that the equation is equivalent to the orthogonality of the polynomial Pn +
AnPn−1 with respect to [·, ·]1. Hence, the equation has a unique solution and, so, one
has

s∗0Pn−1(0)+Qn−1(0) �= 0.

Furthermore, the unique solution of the above equation is

An = − s∗0Pn(0)+Qn(0)

s∗0Pn−1(0)+Qn−1(0)
, (2.6)

which leads us to formula (2.4).

Finally, it is worth mentioning that the Geronimus transformation can be also con-
sidered in the case when (·, ·)0 is regular and is not necessarily positive definite [7].
Moreover, necessary and sufficient conditions for the regularity of [·, ·]1 are analyzed
in [7, 10, 11].

3 The structure of the transformed Jacobi matrix

It is very well known that, assuming [·, ·]1 is positive definite, we can associate with
the sequence of monic orthogonal polynomials {P ∗

n }∞n=0 a monic tridiagonal Jacobi
matrix

J ∗
mon =

⎛
⎜⎜⎜⎜⎝

b∗0 1(
c∗0

)2
b∗1 1

(
c∗1

)2
b∗2

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠
.

Recall that the entries of J ∗
mon are defined by the corresponding three-term recurrence

relation

tP ∗
j (t) = P ∗

j+1(t) + b∗jP ∗
j (t)+

(
c∗j−1

)2
P ∗
j−1(t), j ∈ Z+, (3.1)
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with the initial conditions

P ∗
−1(t) = 0, P ∗

0 (t) = 1,

where b∗j ∈ R and c∗j > 0, j ∈ Z+.
Depending on circumstances it can be also convenient to consider a symmetric

tridiagonal Jacobi matrix

J ∗ =

⎛
⎜⎜⎜⎜⎝

b∗0 c∗0
c∗0 b∗1 c∗0

c∗1 b∗2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

= �−1J ∗
mon�,

where � = diag
(
1, c∗0, c

∗
0c

∗
1, c

∗
0c

∗
1c

∗
2, . . .

)
. Indeed, J ∗ is the matrix of the multipli-

cation operator with respect to the basis of orthonormal polynomials

P̂ ∗
n (t) =

1

h∗n
P ∗
n (t),

(
h∗n

)2 = [
P ∗
n , P

∗
n

]
1 , h∗n > 0.

In other words, we have the following representation

J ∗ = ([
tP̂ ∗

n (t), P̂
∗
m(t)

]
1

)∞
n,m=0

.

Since J ∗ corresponds to the Geronimus transformation, it has a special structure,
which can be expressed in terms of the coefficients An, n = 1, 2, . . . , and the free
parameter.

Theorem 3.1 (cf. [7]) Let us assume that (·, ·)0, [·, ·]1 are positive definite and
{Pn}∞n=0 and

{
P ∗
n

}∞
n=0 are, respectively, the corresponding sequences of monic

orthogonal polynomials. Then the matrix J ∗ admits the following Cholesky decom-
position

J ∗ = LL	, (3.2)

where the bidiagonal lower triangular matrix L has the form

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0
s∗0

0

A1
h0
s∗0

h1√
A1h0

0
A2h1√
A1h0

h2√
A2h1

0

A3h2√
A2h1

h3√
A3h2

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

Proof We begin by noticing that

J ∗ =

⎛
⎜⎜⎜⎝

1
h∗0

0

0 1
h∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

[
tP ∗

0 (t), P
∗
0 (t)

]
1

[
tP ∗

0 (t), P
∗
1 (t)

]
1[

tP ∗
1 (t), P

∗
0 (t)

]
1

[
tP ∗

1 (t), P
∗
1 (t)

]
1

. . .

. . .
. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

1
h∗0

0

0 1
h∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

(3.4)
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Since
[
tP ∗

n (t), P
∗
m(t)

]
1 = (

P ∗
n (t), P

∗
m(t)

)
0, the symmetric tridiagonal matrix in the

middle of the right hand side of (3.4) reduces to

(
(P ∗

n , P
∗
m)0

)∞
n,m=0 =

⎛
⎜⎜⎜⎜⎝

(
P ∗

0 , P
∗
0

)
0

(
P ∗

0 , P
∗
1

)
0 0(

P ∗
1 , P

∗
0

)
0

(
P ∗

1 , P
∗
1

)
0

(
P ∗

1 , P
∗
2

)
0

0
(
P ∗

2 , P
∗
1

)
0

(
P ∗

2 , P
∗
2

)
0

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

h2
0 A1h

2
0 0

A1h
2
0 h2

1 + A2
1h

2
0 A2h

2
1

0 A2h
2
1 h2

2 + A2
2h

2
1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

h0 0
A1h0 h1 0

A2h1 h2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h0 A1h0
0 h1 A2h1

0 h2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

in view of formula (2.5). Hence it is clear that (3.2) holds with

L =

⎛
⎜⎜⎜⎝

1
h∗0

0

0 1
h∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h0 0
A0h1 h1 0

A2h1 h2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠
. (3.5)

Now, observe that

(
h∗n+1

)2 = [
P ∗
n+1, P

∗
n+1

]
1 = [

tP ∗
n (t), P

∗
n+1(t)

]
1 = (

P ∗
n , P

∗
n+1

)
0

= (Pn + AnPn−1, Pn+1 + An+1Pn)0

= An+1h
2
n,

which gives

h∗n+1 = √
An+1h

∗
n.

Combining this and
(
h∗0

)2 = s∗0 we get that (3.5) can be easily simplified to (3.3).

As a matter of fact, this statement is a trace of the fact that the Geronimus trans-
formation can be interpreted in the matrix language (for details, see [7], as well as
[11] for the non-regular case).
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In order the paper to be self-contained a direct connection between the matrices
Jmon and J ∗

mon associated with the monic orthogonal polynomial sequences {Pn}∞n=0,{
P ∗
n

}∞
n=0, respectively, will be stated. Let

Lmon =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
A1 1 0
0 A2 1 0

0 0 A3 1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.6)

be an infinite matrix such that P ∗ = LmonP , where P ∗ = (
P ∗

0 , P
∗
1 , . . .

)	
and

P = (P0, P1, . . . )
	. On the other hand, according to the Christoffel formula (see

[9]) or, equivalently, to the fact that
[
tPn(t), P

∗
m(t)

]
1 = (

Pn(t), P
∗
m(t)

)
0 , m = 0, . . . , n− 1,

we get the relation

tPn(t) = P ∗
n+1(t) + Fn+1P

∗
n (t), Fn+1 �= 0, n ≥ 0.

In matrix terms, we have that tP = UmonP
∗, where

U	
mon =

⎛
⎜⎜⎜⎜⎜⎜⎝

F1 0
1 F2 0
0 1 F3 0

0 0 1 F4
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.7)

Thus, we can state the following

Theorem 3.2 We have that

Jmon = UmonLmon, (3.8)

J ∗
mon = LmonUmon. (3.9)

Proof Notice that
tP = UmonP

∗ = UmonLmonP . (3.10)

Thus, one gets
Jmon = UmonLmon. (3.11)

On the other hand, we see that

tP ∗ = LmontP = LmonUmonP
∗. (3.12)

As a consequence, we arrive at

J ∗
mon = LmonUmon. (3.13)
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Thus, we have a simple proof of a very well known result (see [7]) in terms of a
Darboux transformation with parameter (see also [10, 11] for similar results in the
non-regular case).

4 The double Geronimus transformation and the Sobolev orthogonality

In this section we present the double Geronimus transformation in the framework of
symmetric bilinear forms. Also, it is shown that this transformation leads to Sobolev
inner products and, therefore, to Sobolev orthogonal polynomials.

First, let us clarify what we mean by the double Geronimus transformation.

Definition 4.1 Let us consider a symmetric bilinear form (·, ·)0. The double
Geronimus transformation of (·, ·)0 is a symmetric bilinear form defined on the linear
space P of polynomials with real coefficients as follows

[t2f (t), g(t)]2 = [f (t), t2g(t)]2 = (f, g)0 =
∫

R

f (t)g(t)dμ(t), f, g ∈ P .

(4.1)

From (4.1) one can see that the form [·, ·]2 is not uniquely defined. In particular,
the symmetric matrix (since the form is symmetric)([1, 1] [1, t]

[t, 1] [t, t]
)
=

(
s∗∗0 s∗∗1
s∗∗1 s∗∗2

)

can be chosen arbitrarily. Despite this, one can see the structure of the double
Geronimus transformation.

Proposition 4.2 Suppose that dμ has the following representation

dμ(t) = t2dμ2(t), (4.2)

where dμ2 is a positive measure and it has finite moments. Then the double
Geronimus transformation of (·, ·)0 admits the representation

[f, g]2 =
∫

R

f (t)g(t)dμ2(t) +
(
f (0) f ′(0)

)
M

(
g(0)
g′(0)

)
, (4.3)

where the symmetric matrix M has the following form

M =
(
s∗∗0 s∗∗1
s∗∗1 s∗∗2

)
−

( ∫
R
dμ2(t)

∫
R
tdμ2(t)∫

R
tdμ2(t)

∫
R
t2dμ2(t)

)
.

Proof The proof is similar to that of Proposition 2.2. First, we see that

[f, g]2 = [f (t) − f (0)− tf ′(0), g(t)]2 + [f (0)+ tf ′(0), g(t)]2
=

(
f (t)− f (0)− tf ′(0)

t2
, g(t)

)
+ [f (0)+ tf ′(0), g(t)]2.

Then, making use of the representation g(t) = g(t)− g(0)− tg′(0)+ g(0)+ tg′(0)
and taking into account (4.2) we get the desired result (4.3).
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Since the symmetric matrix M can be arbitrary, from formula (4.3) one can see
that, in general, the double Geronimus transformation [·, ·]2 generates Sobolev type
inner products. In particular, one recovers the positive diagonal Sobolev type inner
products when

M =
(
λ1 0
0 λ2

)
, λ1 ≥ 0 and λ2 > 0.

At the same time, we also get that the double Geronimus transformation adds a matrix
mass at the point in some sense. Thus, the corresponding sequence of orthogonal
polynomials, which are called in the literature Sobolev type orthogonal polynomials,
are not already standard scalar orthogonal polynomials (the scalar Hankel structure
of the Gram matrix is destroyed by the perturbation) but not yet essentially matrix
orthogonal polynomials although it is convenient to consider them as matrix orthog-
onal since the Gram matrix is in fact a 2 × 2 block Hankel matrix (see [1] for some
basic properties of Sobolev type orthogonal polynomials).

Now we are in a position to give an explicit formula for the transformed polyno-
mials {P ∗∗

n }∞n=0 orthogonal with respect to [·, ·]2 in terms of the original polynomials
{Pn}∞n=0.

Theorem 4.3 Let us assume that (·, ·)0 and [·, ·]2 are both positive definite and
regular bilinear forms, respectively. Let {Pn}∞n=0 be a sequence of monic polynomi-
als orthogonal with respect to (·, ·)0. Then a monic polynomial P ∗∗

n of degree n is
orthogonal with respect to [·, ·]2 if and only if it can be represented as follows

P ∗∗
n (t) = 1

d∗∗n

∣∣∣∣∣∣∣

Pn(t) R′
n

(
0; s∗∗1

) + s∗∗0 Pn(0) Rn

(
0; s∗∗1

) + (
s∗∗2 − s∗∗0

)
P ′
n(0)

Pn−1(t) R′
n−1

(
0; s∗∗1

) + s∗∗0 Pn−1(0) Rn−1
(
0; s∗∗1

) + (
s∗∗2 − s∗∗0

)
P ′
n−1(0)

Pn−2(t) R′
n−2

(
0; s∗∗1

) + s∗∗0 Pn−2(0) Rn−2
(
0; s∗∗1

) + (
s∗∗2 − s∗∗0

)
P ′
n−2(0)

∣∣∣∣∣∣∣
,

(4.4)

where Rn(t; s) = sPn(t)+Qn(t), R′
n(t; s) = sP ′

n(t) +Q′
n(t), and

d∗∗n =
∣∣∣∣
R′
n−1

(
0; s∗∗1

) + s∗∗0 Pn−1(0) Rn−1(0; s∗∗1 )+ (
s∗∗2 − s∗∗0

)
P ′
n−1(0)

R′
n−2

(
0; s∗∗1

) + s∗∗0 Pn−2(0) Rn−2
(
0; s∗∗1

) + (
s∗∗2 − s∗∗0

)
P ′
n−2(0)

∣∣∣∣

is nonzero.

Proof The orthogonality of P ∗∗
n is equivalent to the following condition

[
P ∗∗
n (t), tk

]
2
= 0, k = 0, . . . , n− 1,

which for n ≥ 3 further reduces to
(
P ∗∗
n (t), tk−2

)
0
= 0, k = 2, . . . , n− 1.

The latter relation is obviously equivalent to the representation

P ∗∗
n (t) = Pn(t) + BnPn−1(t)+ CnPn−2(t). (4.5)
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Therefore one can see that the coefficients Bn and Cn are uniquely determined by the
relations [

P ∗∗
n (t), 1

]
2 = 0,

[
P ∗∗
n (t), t

]
2 = 0,

which can be rewritten as follows

[Pn(t), 1]2 + Bn[Pn−1(t), 1]2 + Cn[Pn−2(t), 1]2 = 0,

[Pn(t), t]2 + Bn[Pn−1(t), t]2 + Cn[Pn−2(t), t]2 = 0. (4.6)

Since the monic orthogonal polynomial P ∗∗
n of degree n is uniquely defined, the sys-

tem (4.6) has a unique solution. Indeed, on the one hand, it is clear that the system has
at least one solution because there exists a monic orthogonal polynomial of degree n.
On the other hand, if it has two different solutions then these solutions would give two
different monic orthogonal polynomials of degree n. The latter fact is not possible
according the uniqueness of such a sequence. So, we conclude that the determinant

d∗∗n =
∣∣∣∣
[Pn−1(t), 1]2 [Pn−1(t), t]2
[Pn−2(t), 1]2 [Pn−2(t), t]2

∣∣∣∣
is nonzero and the orthogonality of P ∗∗

n is equivalent to the representation

P ∗∗
n (t) = 1

d∗∗n

∣∣∣∣∣∣
Pn(t) [Pn(t), 1]2 [Pn(t), t]2
Pn−1(t) [Pn−1(t), 1]2 [Pn−1(t), t]2
Pn−2(t) [Pn−2(t), 1]2 [Pn−2(t), t]2

∣∣∣∣∣∣
.

Now, to get formula (4.4) it remains to re-express the entries of the corresponding
determinants. To this end, for the last column one can get

[Pn(t), t]2 = [
Pn(t)− Pn(0)− tP ′

n(0), t
]

2 + Pn(0)[1, t]2 + P ′
n(0)[t, t]2

=
(
Pn(t)−Pn(0)−tP ′

n(0)
t2 , t

)
0
+ s∗∗1 Pn(0)+ s∗∗2 P ′

n(0)

=
(
Pn(t)−Pn(0)−tP ′

n(0)
t

, 1
)

0
+ s∗∗1 Pn(0)+ s∗∗2 P ′

n(0)

= Qn(0)+ s∗∗1 Pn(0)+
(
s∗∗2 − s∗∗0

)
P ′
n(0)

= Rn

(
0; s∗∗1

) + (
s∗∗2 − s∗∗0

)
P ′
n(0).

Next, we also have that

[Pn(t), 1]2 = [
Pn(t)− Pn(0)− tP ′

n(0), 1
]
2 + Pn(0)[1, 1]2 + P ′

n(0)[t, 1]2
=

(
Pn(t)−Pn(0)−tP ′

n(0)
t2 , 1

)
0
+ s∗∗0 Pn(0)+ s∗∗1 P ′

n(0).

On the other hand, notice that

Q′
n(0) = limε→0

Qn(ε)−Qn(0)
ε

= limε→0
1
ε

((
Pn(t)−Pn(ε)

t−ε
, 1

)
0
−

(
Pn(t)−Pn(0)

t
, 1

)
0

)

= limε→0
1
ε

∫
R

ε(Pn(t)−Pn(0))−t (Pn(ε)−Pn(0))
t (t−ε)

dμ(t)

= ∫
R

Pn(t)−Pn(0)−tP ′
n(0)

t2 dμ(t)

=
(
Pn(t)−Pn(0)−tP ′

n(0)
t2 , 1

)
0
.
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Note that we can interchange the limit and integral due to Lebesgue’s dominated
convergence theorem. Finally, we get

[Pn(t), 1]2 = Q′
n(0)+ s∗∗0 Pn(0)+ s∗∗1 P ′

n(0)

= R′
n

(
0; s∗∗1

) + s∗∗0 Pn(0),

which completes the proof.

5 The structure of the transformed pentadiagonal matrix

In the case when the sequence of polynomials
{
P ∗∗
n

}∞
n=0 is orthogonal with respect

to an inner product of the form (4.3), it is quite natural to consider the matrix repre-
sentation of the square of the multiplication operator [12, 13]. Indeed, according to
formula (4.3) the multiplication operator is not necessarily symmetric with respect
to [·, ·]2 and as a consequence one cannot apply some classical tricks in this case.
Nevertheless, the square of the multiplication operator is symmetric by the defini-
tion of the double Geronimus transformation. Thus, the classical machinery works
for this symmetric operator. So, assuming [·, ·]2 is positive definite, let us introduce
the following symmetric matrix

J ∗∗ =
([

t2P̂ ∗∗
n (t), P̂ ∗∗

m (t)
]

2

)∞
n,m=0

,

where the corresponding orthonormal polynomials
{
P̂ ∗∗
n

}∞
n=0 are given by

P̂ ∗∗
n (t) = 1

h∗∗n
P ∗∗
n (t),

(
h∗∗n

)2 = [
P ∗∗
n , P ∗∗

n

]
2 , h∗∗n > 0.

In fact, J ∗∗ is pentadiagonal and the following statement holds true.

Theorem 5.1 Let us assume that (·, ·)0, [·, ·]2 are positive definite and {Pn}∞n=0,{
P ∗∗
n

}∞
n=0, respectively, are the corresponding sequences of monic orthogonal poly-

nomials. Then the matrix J ∗∗ admits the following Cholesky decomposition

J ∗∗ = LL	, (5.1)

where the lower triangular matrix L has only three nonvanishing diagonals and is of
the form

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0
h∗∗0

0

B1
h0
h∗∗0

h1
h∗∗1

0

C2
h0
h∗∗0

B2
h1
h∗∗1

h2
h∗∗2

0

0 C3
h1
h∗∗1

B3
h2
h∗∗2

h3
h∗∗3

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.2)
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where the ratio hn+2/hn
∗∗ 

2 can be expressed in terms of the coefficients Bn and Cn, 

n = 1, 2, ... of the linear
+
combination as follows

hn+2

h∗∗n+2
= hn+2√

Cn+2hn
, n = 0, 1, . . . . (5.3)

Remark 5.2 It should be stressed that h∗∗0 and h∗∗1 can be parametrized by the free
parameters:

(
h∗∗0

)2 = s∗∗0 ,
(
h∗∗1

)2 = s∗∗2 + s∗∗1

(
B1 − s1

s0

)
.

Proof Obviously, we have that

J ∗∗ =

⎛
⎜⎜⎜⎝

1
h∗∗0

0

0 1
h∗∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

[
t2P ∗∗

0 (t), P ∗∗
0 (t)

]
2

[
t2P ∗∗

0 (t), P ∗∗
1 (t)

]
2[

t2P ∗∗
1 (t), P ∗∗

0 (t)
]

2

[
t2P ∗∗

1 (t), P ∗∗
1 (t)

]
2

. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
h∗∗0

0

0 1
h∗∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

(5.4)

Since
[
t2P ∗∗

n (t), P ∗∗
m (t)

]
2 = (

P ∗
n (t), P

∗
m(t)

)
0, the pentadiagonal matrix in the

middle of the right hand side of (5.4) reduces to

(
(P ∗∗

n , P ∗∗
m )0

)∞
n,m=0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
P ∗∗

0 , P ∗∗
0

)
0

(
P ∗∗

0 , P ∗∗
1

)
0

(
P ∗∗

0 , P ∗∗
2

)
0 0(

P ∗∗
1 , P ∗∗

0

)
0

(
P ∗∗

1 , P ∗∗
1

)
0

(
P ∗∗

1 , P ∗∗
2

)
0

(
P ∗∗

1 , P ∗∗
3

)
0(

P ∗∗
2 , P ∗∗

0

)
0

(
P ∗∗

2 , P ∗∗
1

)
0

(
P ∗∗

2 , P ∗∗
2

)
0

(
P ∗∗

2 , P ∗∗
3

)
0

. . .

0
(
P ∗∗

3 , P ∗∗
1

)
0

(
P ∗∗

3 , P ∗∗
2

)
0

(
P ∗∗

3 , P ∗∗
3

)
0

. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2
0 B1h

2
0 C2h

2
0 0

B1h
2
0 h2

1 + B2
1h

2
0 B2h

2
1 + B1C2h

2
0 C3h

2
1

C2h
2
0 B2h

2
1 + B1C2h

2
0 h2

2 + B2
2h

2
1 + C2

2h
2
0 B3h

2
2 + B2C3h

2
1

. . .

0 C3h
2
1 B3h

2
2 + B2C3h

2
1 h2

3 + B2
3h

2
2 + C2

3h
2
1

. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h0 0
B1h0 h1 0
C2h0 B2h1 h2 0

0 C3h1 B3h2 h3
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h0 B1h0 C2h0
0 h1 B2h1 C3h1

0 h2 B3h2
. . .

0 h3
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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in view of formula (4.5). Hence it is clear that (5.1) holds with

L =

⎛
⎜⎜⎜⎝

1
h∗∗0

0

0 1
h∗∗1

. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

h0 0
B1h0 h1 0
C2h0 B2h1 h2 0

0 C3h1 B3h2 h3
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5.5)

Thus we arrive at (5.2) after simple computations. Finally, it remains to see that
(
h∗∗n+1

)2 = [
P ∗∗
n+2, P

∗∗
n+2

]
2
= [

t2P ∗∗
n (t), P ∗

n+2(t)
]

2
= (

P ∗∗
n , P ∗∗

n+2

)
0

= (Pn + BnPn−1 + CnPn−2, Pn+2 + Bn+2Pn+1 + Cn+2Pn)0

= Cn+2h
2
n,

which gives (5.3).

The next step will be to establish a direct connection between the matrices Jmon

and J ∗∗
mon associated with the monic orthogonal polynomial sequences {Pn}∞n=0,{

P ∗∗
n

}∞
n=0, respectively.

Let

Lmon =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
B1 1 0
C2 B2 1 0

0 C3 B3 1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.6)

be an infinite matrix such that P ∗∗ = LmonP , where P ∗∗ = (
P ∗∗

0 , P ∗∗
1 , . . .

)	
and

P = (P0, P1, . . . )
	. At the same time, from the equality

[
t2Pn(t), P

∗∗
m (t)

]
2
= [

Pn(t), P
∗∗
m (t)

]
0 = 0, m = 0, 1, . . . , n− 1,

one concludes that

t2Pn(t) = P ∗∗
n+2(t)+Dn+1P

∗∗
n+1(t)+ En+1P

∗∗
n (t), En+1 �= 0, n = 0, 1, . . . .

The above connection formula reads in a matrix form as t2P = UmonP
∗∗, where

U	
mon =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 0
D1 E2 0
1 D2 E3 0
0 1 D3 E4 0

0 0 1 D4 E5
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.7)

Thus, we can state the following.
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Theorem 5.3 We have that

J 2
mon = UmonLmon, (5.8)

J ∗∗
mon = LmonUmon. (5.9)

Proof Notice that
t2P = UmonP

∗∗ = UmonLmonP . (5.10)

Thus, one sees that
J 2
mon = UmonLmon. (5.11)

On the other hand, we have

t2P ∗∗ = Lmont
2P = LmonUmonP

∗∗. (5.12)

As a consequence, one gets

J ∗∗
mon = LmonUmon. (5.13)

Notice that this is the analogue for pentadiagonal matrices of the Darboux trans-
formation with parameter considered in Section 3. Moreover, the structure of the
matrix representing the multiplication operator by t2 with respect to the orthonor-
mal polynomial basis associated with the inner product [·, ·]2 is stated in terms of the
corresponding UL factorization of the pentadiagonal matrix J 2.
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