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University of Coimbra, Largo D. Dinis, 3001-501 Coimbra, Portugal

ajplb@mat.uc.pt, ehuertas@mat.uc.pt
2 Faculdade de Matemática,
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Abstract. This paper deals with monic orthogonal polynomial sequen-
ces (MOPS in short) generated by a Geronimus canonical spectral trans-
formation of a positive Borel measure μ, i.e., (x− c)−1dμ(x)+Nδ(x− c),
for some free parameter N ∈ IR+ and shift c. We analyze the behavior
of the corresponding MOPS. In particular, we obtain such a behavior
when the mass N tends to infinity as well as we characterize the precise
values of N such the smallest (respectively, the largest) zero of these
MOPS is located outside the support of the original measure μ. When
μ is semi-classical, we obtain the ladder operators and the second order
linear differential equation satisfied by the Geronimus perturbed MOPS,
and we also give an electrostatic interpretation of the zero distribution
in terms of a logarithmic potential interaction under the action of an
external field. We analyze such an equilibrium problem when the mass
point of the perturbation c is located outside the support of μ.

Keywords: Orthogonal polynomials,Canonical spectral transformations
of measures, Zeros, Monotonicity, Laguerre polynomials, Asymptotic be-
havior, Electrostatic interpretation, Logarithmic potential.

1 Introduction

1.1 Geronimus Perturbation of a Measure

In the last years some attention has been paid to the so called canonical spectral
transformations of measures. Some authors have analyzed them from the point
of view of Stieltjes functions associated with such a kind of perturbations (see
[23]) or from the relation between the corresponding Jacobi matrices (see [24]).
The present contribution is focused on the behavior of zeros of monic ortho-
gonal polynomial sequences (MOPS in the sequel) associated with a particular
transformation of measures called the Geronimus canonical transformation on
the real line. Let μ be an absolutely continuous measure with respect to the
Lebesgue measure supported on a finite or infinite interval E = supp(μ), such
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that C0(E) = [a, b] ⊆ IR. The basic Geronimus perturbation of μ is defined as

dνN (x) =
1

(x− c)
dμ(x) +Nδ(x− c), (1)

with N ∈ IR+, δ(x − c) the Dirac delta function in x = c, and the shift of the
perturbation verifies c �∈ E. Observe that it is given simultaneously by a rational
modification of μ by a positive linear polynomial whose real zero c is the point of
transformation (also known as the shift of the transformation) and the addition
of a Dirac mass at the point of transformation as well.

This transformation was introduced by Geronimus in the seminal papers
[11,12] devoted to provide a procedure of constructing new families of orthogonal
polynomials from other orthogonal families, and also was studied by Shohat (see
[18]) concerning about mechanical quadratures. The problem was revisited by
Maroni in [16], into a more general algebraic frame, who gives an expression for
the MOPS associated with (1) in terms of the so called co-recursive polynomials
of the classical orthogonal polynomials. In the past decade, Bueno and Mar-
cellán reinterpreted this perturbation in the framework of the so called discrete
Darboux transformations, LU and UL factorizations of shifted Jacobi matrices
[5]. This interpretation as Darboux transformations, together with other canoni-
cal transformations (Christoffel and Uvarov), provide a link between orthogonal
polynomials and discrete integrable systems (see [1,19,20]). More recently, in [4]
the authors present a new computational algorithm for computing the Gero-
nimus transformation with large shifts, and [7] concerns about a new revision
of the Geronimus transformation in terms of symmetric bilinear forms in order
to include certain Sobolev and Sobolev–type orthogonal polynomials into the
scheme of Darboux transformations.

The purpose of this contribution is twofold. First, using a similar approach
as was done in [13], we provide a new connection formula for the Geronimus
perturbed MOPS, which will be crucial to obtain sharp limits (and the speed
of convergence to them) of their zeros. We provide a comprehensive study of
the zeros in terms of the free parameter of the perturbation N , which somehow
determines how important the perturbation on the classical measure μ is. Second,
from the aforementioned new connection formula we recover (from an alternative
point of view) a connection formula already known in the literature (see [16]) in
terms of two consecutive polynomials of the original measure μ. We also obtain
explicit expressions for the ladder operators and the second order differential
equation satisfied by the Geronimus perturbed MOPS. When the measure μ
is semi-classical, we also obtain the corresponding electrostatic model for the
zeros of the Geronimus perturbed MOPS, showing that they are the electrostatic
equilibrium points of positive unit charges interacting according to a logarithmic
potential under the action of an external field (see, for example, Szegő’s book
[21, Sect. 6.7], Ismail’s book [15, Chap. 3] and the references therein).

The structure of the paper is as follows. The rest of this Section is devoted
to introduce without proofs some relevant material about modified inner pro-
ducts and their corresponding MOPS. In Section 2 we provide our main results.
We obtain a new connection formula for orthogonal polynomials generated by
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a basic Geronimus transformation of a positive Borel measure μ, sharp bounds
and speed of convergence to them for their real zeros, and the ladder opera-
tors and the second linear differential equation that they satisfy. The results
about the zeros follows from a lemma concerning the behavior of the zeros of
a linear combination of two polynomials. In Section 3, we proof all the result
provided in the former Section. Finally, in Section 4, we explore these results for
the Geronimus perturbed Laguerre MOPS. For μ being semi-classical, we obtain
the corresponding electrostatic model for the zeros of the Geronimus perturbed
MOPS as equilibrium points in a logarithmic potential interaction of positive
unit charges under the presence of an external field. We analyze such an equi-
librium problem when the mass point is located outside the support of μ, and
we provide explicit formulas for the Laguerre weight case.

1.2 Modified Inner Products and Notation

Let μ be a positive Borel measure μ, with existing moments of all orders, and
supported on a subset E ⊆ IR with infinitely many points. Given such a measure,
we define the standard inner product 〈·, ·〉μ : IP× IP → IR by

〈f, g〉μ =

∫
E

f(x)g(x)dμ(x), f, g ∈ IP, (2)

where IP is the linear space of the polynomials with real coefficients, and the

corresponding norm || · ||μ : IP → [0,+∞) is given by ||f ||μ =
√∫

E |f(x)|2dμ(x).
Let {Pn}n≥0 be the MOPS associated with μ. It is well known that the former
MOPS satisfy the recurrence formula

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), P−1 = 0, P1 = 1. (3)

According to the Christoffel-Darboux formula, for the n-th kernel polynomial
corresponding to {Pn}n≥0 we have, for every n ∈ IN

Kn(x, y) =

n∑
k=0

Pk(x)Pk(y)

||Pk||2μ
=

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

(x − y)

1

||Pn||2μ
. (4)

Here and subsequently, {P c,[k]
n }n≥0 denotes the MOPS with respect to

〈f, g〉μ,[k] =
∫
E

f(x)g(x)(x − c)kdμ(x), (5)

where c /∈ E = supp(μ). The polynomials {P c,[k]
n }n≥0 are orthogonal with

respect to a polynomial modification of the measure μ called the k-iterated
Christoffel perturbation. If k = 1 we have the Christoffel canonical transfor-

mation of the measure μ (see [23,24]). It is well known that P
c,[1]
n (x) is the
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monic kernel polynomial which can be represented as (see [6, (7.3)])

P c,[1]
n (x) =

1

(x − c)
(Pn+1(x)− πn Pn(x)) =

‖Pn‖2μ
Pn(c)

Kn(x, c), (6)

πn = πn(c) =
Pn+1(c)

Pn(c)
, Pn(c) �= 0. (7)

Next, let us consider the basic Geronimus perturbation of μ given in (1). Let
{Qc

n}n≥0 be the MOPS associated with νN (x) when N = 0. That is, they are
orthogonal with respect to the measure

dνN=0(x) = dν(x) =
1

(x− c)
dμ(x). (8)

This constitutes a linear rational modification of μ, and the correspondingMOPS
{Qc

n}n≥0 with respect to

〈f, g〉ν =

∫
E

f(x)g(x)dν(x) =

∫
E

f(x)g(x)
1

(x − c)
dμ(x) (9)

has been extensively studied in the literature (see, among others, [3], [10, §2.4.2],
[15, §2.7], [22,23]). It is known that, for n ≥ 0, Qc

n(x) can be expressed as

Qc
n(x) = Pn(x)− rn−1 Pn−1(x), Qc

0 = 1, (10)

rn−1 = rn−1(c) =
Fn(c)

Fn−1(c)
, F−1(c) = 1, c /∈ E. (11)

The functions Fn(s) =
∫
E

Pn(x)
x−s dμ(x), s ∈ C \ E, are the Cauchy integrals of

{Pn}n≥0, or functions of the second kind associated with {Pn}n≥0. For a proper
way to compute the above Cauchy integrals, we refer the reader to [10, §2.3].
From the above, it is clear that

Kc
n(x, y) =

n∑
k=0

Qc
k(x)Q

c
k(y)

||Qc
k||2ν

=
Qc

n+1(x)Q
c
n(y)−Qc

n+1(y)Q
c
n(x)

(x− y)

1

||Qc
n||2ν

(12)

are the kernel polynomials corresponding to {Qc
n}n≥0, which also satisfies the

corresponding reproducing property of polynomial kernels with respect to ν

∫
E

f (x)Kc
n (x, c) dν(x) = f (c) , (13)

for any polynomial f ∈ IP with deg f ≤ n. The so called confluent form of (12)
is given by the positive quantity (see [6])

Kc
n(c, c) =

[Qc
n+1]

′(c)Qc
n(c)− [Qc

n]
′(c)Qc

n+1(c)

||Qc
n||2ν

=

n∑
k=0

[Qc
k(c)]

2

‖Qc
k‖2ν

> 0. (14)
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The key concept to find several of our results is that the polynomials {Pn}n≥0 are
the monic kernel polynomials of parameter c of the sequence {Qc

n}n≥0. According
to this argument, the following expressions hold

Pn(x) =
‖Qc

n‖2ν
Qc

n(c)
Kc

n(x, c) =
1

(x − c)

(
Qc

n+1(x)−
Qc

n+1(c)

Qc
n(c)

Qc
n(x)

)
. (15)

Finally, let {Qc,N
n }n≥0 be the MOPS associated to dνN when N > 0. That is,

{Qc,N
n }n≥0 are the Geronimus perturbed polynomials orthogonal with respect

to the the inner product

〈f, g〉νN =

∫
E

f(x)g(x)
1

(x − c)
dμ(x) +Nf(c)g(c). (16)

Note that this is a standard inner product in the sense that, for every f, g ∈ IP,
we have 〈xf, g〉νN = 〈f, xg〉νN . From (9), (16), an easy computation shows that

〈f, g〉νN = 〈f, g〉ν +Nf(c)g(c). (17)

Is the aim of this contribution to analyze the asymptotic behavior of the
zeros of Qc,N

n and provide as well an electrostatic model for these zeros when
the original measure μ is semi-classical. To this end, we will use the remarkable
fact that, for any f, g ∈ IP the multiplication operator by (x − c) is symmetric
with respect to (9). That is, 〈(x − c)f, g〉ν = 〈f, (x − c)g〉ν = 〈f, g〉μ, which is a
straightforward consequence of the inner products (2), (5), (9) and (16).

2 Statement of the Main Results

2.1 Connection Formulas

Next, we provide a new connection formula for Qc,N
n (x) in terms of Qc

n(x) and

the monic Kernel polynomials P
c,[1]
n (x). This representation will allow us to ob-

tain the results about monotonicity, asymptotics, and speed of convergence (pre-
sented below in this Section) for the zeros of Qc,N

n (x) in terms of the parameter
N present in the perturbation (1).

Theorem 1. The Geronimus perturbed orthogonal polynomials of the sequence
{Q̃c,N

n }n≥0, with Q̃c,N
n (x) = κnQ

c,N
n (x), can be represented as

Q̃c,N
n (x) = Qc

n(x) +NBc
n(x− c)P

c,[1]
n−1 (x), (18)

with κn = 1 +NBc
n and

Bc
n =

−Qc
n(c)Pn−1(c)

‖Pn−1‖2μ
= Kc

n−1(c, c) > 0. (19)
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Observe that one can even give another alternative expression for Bc
n, which

only involves polynomials and functions of the second kind relative to the original
measure μ, evaluated at the point of transformation c. Combining (10) with (19),
we deduce that

Bc
n = Kc

n−1(c, c) =
rn−1 P

2
n−1 − Pn(c)Pn−1(c)

‖Pn−1‖2μ
. (20)

As a direct consequence of the above theorem, we can expressQc,N
n (x) in terms

of only two consecutive elements of the initial MOPS {Pn}n≥0. This expression
of Qc,N

n was already studied in the literature (see [16, formula (1.4)] and [7,
Sec. 1]). In fact, the original aim of Geronimus in its pioneer works on the
subject was to find necessary and sufficient conditions for the existence of a
sequence of coefficients Λn, such that the linear combination of polynomials
Pn(x) + ΛnPn−1(x), Λn �= 0, n ≥ 0 were, in turn, orthogonal with respect to
some measure supported on IR. Here we rewrite the value of Λn in several new
equivalent ways. Substituting (10) and (6) into (18) yields

Q̃c,N
n (x) = κnQ

c,N
n (x) = Pn(x) − rn−1Pn−1(x) +NBc

n (Pn(x)− πn−1Pn−1(x)) .

Thus, having in mind that κn = 1 + NBc
n, after some trivial computations we

can state the following result.

Proposition 1. The monic Geronimus perturbed orthogonal polynomials of the
sequence {Qc,N

n }n≥0 can be represented as

Qc,N
n (x) = Pn(x) + Λc

n Pn−1(x), (21)

Λc
n = Λc

n(N) =
πn−1 − rn−1

1 +NBc
n

− πn−1, (22)

with πn−1, rn−1 given in (7) and (11) respectively.

Remark 1. The coefficient Λc
n(N) can also be expressed only in terms of quanti-

ties relative to the original non-perturbed measure μ, the point of transformation
c and the mass N . Thus, from (20) and (22), we obtain

Λc
n(N) =

(
1

πn−1 − rn−1
−N

P 2
n−1(c)

‖Pn−1‖2μ

)−1

− πn−1.

Also, observe that for N = 0, the coefficient Λc
n(0) reduces to rn−1, and we

recover the connection formula (10).

2.2 Asymptotic Behavior and Sharp Limits of the Zeros

Let xn,s, x
c,[k]
n,s , ycn,s, and yc,Nn,s , s = 1, . . . , n be the zeros of Pn(x), P

c,[k]
n (x), Qc

n(x),

and Qc,N
n (x), respectively, all arranged in an increasing order, and assume that

C0(E) = [a, b]. Next, we analyze the behavior of zeros yc,Nn,s as a function of the
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mass N in (1). We obtain such a behavior when N tends from zero to infinity as
well as we characterize the exact values of N such the smallest (respectively, the
largest) zero of {Qc,N

n }n≥0 is located outside of E = supp(μ). In order to do that,
we use a technique developed in [2, Lemma 1] and [8, Lemmas 1 and 2] concerning
the behavior and the asymptotics of the zeros of linear combinations of two
polynomials h, g ∈ IP with interlacing zeros, such that f(x) = hn(x) + cgn(x).
From now on, we will refer to this technique as the Interlacing Lemma.

Taking into account that the positive constant Bc
n does not depend on N ,

we can use the connection formula (18) to obtain results about monotonicity,
asymptotics, and speed of convergence for the zeros of Qc,N

n (x) in terms of the

mass N . Indeed, let assume that yc,Nn,k , k = 1, 2, ..., n, are the zeros of Qc,N
n (x).

Thus, from (18), the positivity of Bc
n, and Theorem 2, we are in the hypothesis

of the Interlacing Lemma, and we immediately conclude the following results.

Theorem 2. If C0(E) = [a, b] and c < a, then

c < yc,Nn,1 < ycn,1 < x
c,[1]
n−1,1 < yc,Nn,2 < ycn,2 < · · · < x

c,[1]
n−1,n−1 < yc,Nn,n < ycn,n.

Moreover, each yc,Nn,k is a decreasing function of N and, for each k = 1, . . . , n−1,

lim
N→∞

yc,Nn,1 = c, lim
N→∞

yc,Nn,k+1 = x
c,[1]
n−1,k ,

as well as

lim
N→∞

N [yc,Nn,1 − c] =
−Qc

n(c)

Bc
nP

c,[1]
n−1 (c)

,

lim
N→∞

N [yc,Nn,k+1 − x
c,[1]
n−1,k] =

−Qc
n(x

c,[1]
n−1,k)

Bc
n(x

c,[1]
n−1,k−c)[P

c,[1]
n−1 ]

′(xc,[1]
n−1,k)

.

Theorem 3. If C0(E) = [a, b] and c > b, then

ycn,1 < yc,Nn,1 < x
c,[1]
n−1,1 < · · · < ycn,n−1 < yc,Nn,n−1 < x

c,[1]
n−1,n−1 < ycn,n < yc,Nn,n < c.

Moreover, each yc,Nn,k is an increasing function of N and, for each k = 1, . . . , n−1,

lim
N→∞

yc,Nn,n = c, lim
N→∞

yc,Nn,k = x
c,[1]
n−1,k,

and
lim

N→∞
N [c− yc,Nn,n ] =

Qc
n(c)

Bc
nP

c,[1]
n−1 (c)

,

lim
N→∞

N [x
c,[1]
n−1,k − yc,Nn,k ] =

Qc
n(x

c,[1]
n−1,k)

Bc
n(x

c,[1]
n−1,k

−c)[P
c,[1]
n−1 ]

′(xc,[1]
n−1,k

)
.

Notice that the mass point c attracts one zero of Qc,N
n (x), i.e. when N → ∞,

it captures either the smallest or the largest zero, according to the location of
the point c with respect to the support of the measure μ. When either c < a or
c > b, at most one of the zeros of Qc,N

n (x) is located outside of [a, b]. Next, give
explicitly the value N0 of the mass N , such that for N > N0 one of the zeros is
located outside [a, b].
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Corollary 1 (minimum mass). If C0(E) = [a, b] and c /∈ [a, b], the following

expressions hold. If c < a (or c > b) then, the smallest zero yc,Nn,1 (respectively,

the greatest zero yc,Nn,n ) satisfies

yc,Nn,1 > a (respectively yc,Nn,n < b), for N < N0,

yc,Nn,1 = a (respectively yc,Nn,n = b), for N = N0,

yc,Nn,1 < a (respectively yc,Nn,n > b), for N > N0,

where
N0 = N0(n, c, a) =

−Qc
n(a)

Kc
n−1(c,c)(a−c)P

c,[1]
n−1 (a)

> 0,

respectively

N0 = N0(n, c, b) =
−Qc

n(b)

Kc
n−1(c,c)(b−c)P

c,[1]
n−1 (b)

> 0.

Proof. (a) In order to deduce the location of yc,Nn,1 with respect to the point

x = a, it is enough to observe that Qc,N
n (a) = 0 if and only if N = N0.

(b) Also, in order to find the location of yc,Nn,n with respect to the point x = b,

notice that Qc,N
n (b) = 0 if and only if N = N0.

2.3 Ladder Operators and 2nd Order Linear Differential Equation

Our next result concerns the ladder (creation and annihilation) operators, and
the second order linear differential equation (also known as the holonomic equa-
tion) corresponding to {Qc,N

n }n≥0. We restrict ourselves to the case in which μ is
a classical or semi-classical measure, and therefore satisfying a structure relation
(see [9] and [17]) as

σ(x)[Pn(x)]
′ = a(x;n)Pn(x) + b(x;n)Pn−1(x) (23)

where a(x;n) and b(x;n) are polynomials in the variable x, whose fixed degree
do not depend on n. In order to obtain these results, we will follow a different
approach as in [15, Ch. 3]. Our technique is based on the connection formula
(21) given in Proposition 1, the three term recurrence relation (3) satisfied by
{Pn}n≥0, and the structure relation (23). The results are presented here and will
be proved in Section 3.

Theorem 4. Let an = −ξc1(x;n)I+Dx and a†n = −ηc2(x;n)I+Dx be differential
operators, where I, Dx are the identity and x-derivative operator respectively,
satisfying

an[Q
c,N
n (x)] = ηc1(x;n)Q

c,N
n−1(x), (24)

a†n[Q
c,N
n−1(x)] = ξc2(x;n)Q

c,N
n (x), (25)

where, for k = 1, 2

ξck(x;n) =
Ck(x;n)B2(x;n) γn−1 +Dk(x;n)Λ

c
n−1

Δ(x;n) γn−1
, ηc

k(x;n) =
Dk(x;n)− Ck(x;n)Λ

c
n

Δ(x;n)
.
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In turn, all the above expressions are given only in terms of the coefficients in
(3), (23), and (21) as follows

B2(x;n) = Λc
n−1

(
1

Λc
n−1

+ (x−βn−1)
γn−1

)
, C1(x;n) =

1
σ(x)

(
a(x;n)− Λc

n
b(x;n)
γn−1

)
,

D1(x;n) =
1

σ(x)

(
b(x;n) + Λc

n b(x;n− 1)
(

a(x;n−1)
b(x;n−1) +

(x−βn−1)
γn−1

))
,

C2(x;n) =
−Λc

n−1

σ(x)

(
a(x;n)
γn−1

+ b(x;n−1)
γn−1

(
1

Λc
n−1

+ (x−βn−1)
γn−1

))
,

D2(x;n) =
Λc

n−1

σ(x)
σ(x)−b(x;n)+a(x;n−1)γn−1+b(x;n−1)(x−βn−1)

γn−1

(
1

Λc
n−1

+ (x−βn−1)
γn−1

)]
,

Δ(x;n) = B2(x;n) +
Λc

n Λc
n−1

γn−1
, degΔ(x;n) = 1.

Thus, an and a†n are respectively lowering and raising operators associated to the
Geronimus perturbed MOPS {Qc,N

n }n≥0.

For a deeper discussion of raising and lowering operators we refer the reader to
[15, Ch. 3]. We next provide the second order linear differential equation satisfied
by the MOPS {Qc,N

n }n≥0 when the measure μ is semi-classical (for definition of a
semi-classical measure see [17]). This is the main tool for the further electrostatic
interpretation of zeros.

Theorem 5. The Geronimus perturbed MOPS {Qc,N
n }n≥0 satisfies the holo-

nomic equation (second order linear differential equation)

[Qc,N
n (x)]′′ +R(x;n)[Qc,N

n (x)]′ + S(x;n)Qc,N
n (x) = 0,

where

R(x;n) = −
(
ξc1(x;n) + ηc2(x;n) +

[ηc
1(x;n)]

′

ηc
1(x;n)

)
,

S(x;n) = ξc1(x;n)η
c
2(x;n)− ηc1(x;n)ξ

c
2(x;n) +

ξc1(x;n)[η
c
1(x;n)]

′−[ξc1(x;n)]
′ηc

1(x;n)
ηc
1(x;n)

.

3 Proofs of the Main Results

3.1 Proof of Theorem 1 and the Positivity of Bc
n

First, we need to prove the following lemma concerning a first way to represent
the Geronimus perturbed polynomials Qc,N

n (x), using the kernels (12).

Lemma 1. Let {Qc,N
n }n≥0 and {Qc

n}n≥0 be the MOPS corresponding to the
measures νN and ν respectively. Then, the following connection formula holds

Qc,N
n (x) = Qc

n(x)−NQc,N
n (c)Kc

n−1(x, c), (26)

Qc,N
n (c) =

Qc
n(c)

1 +NKc
n−1(c, c)

= κ−1
n Qc

n(c), (27)

where κn = 1 +NBc
n , and Kc

n−1(c, c) is given in (14).

9



Proof. From (17) we can express Qc,N
n (x) in terms of the polynomials Qc

n(x)
with coefficients

bn,k =
Qc

i(x), Q
c,N
n (x)

ν

‖Qc
k‖2ν

, 0 ≤ k ≤ n− 1,

and hence we have

Qc,N
n (x) = Qc

n(x)−NQc,N
n (c)

n−1∑
k=0

Qc
k(x)Q

c
k (c)

‖Qc
k‖2ν

.

Next, taking into account (4) for the sequence {Qc
k}n≥0, we get

Qc,N
n (x) = Qc

n(x) −NQc,N
n (c)Kc

n−1(x, c).

In order to find Qc,N
n (c), we evaluate (26) in x = c, which yields (27). This

completes the proof.

Next, in order to prove the orthogonality of the polynomials defined by (18),
we deal with the basis Bn = {1, (x − c), (x − c)2, . . . , (x − c)n} of the space of
polynomials of degree at most n. Thus

〈1, Q̃c,N
n 〉νN = 〈1, Qc

n〉ν +NBc
n〈1, (x− c)P

c,[1]
n−1 〉ν +NQc

n(c) = 0,

〈(x− c), Q̃c,N
n 〉νN = 〈(x− c), Qc

n〉ν +NBc
n〈1, P c,[1]

n−1 〉μ,[1] = 0,

...

〈(x− c), Q̃c,N
n 〉νN = 〈(x− c)n−1, Qc

n〉ν +NBc
n〈(x − c)n−2, P

c,[1]
n−1 〉μ,[1] = 0,

〈(x− c), Q̃c,N
n 〉νN = ‖Qc

n‖2ν +NBc
n‖P c,[1]

n−1‖2μ,[1] > 0.

In order to prove (19), from (6), (15), (13) we deduce

〈(x − c), P
c,[1]
n−1 (x)〉ν =

∫
E
(x− c) 1

(x−c)

(
Pn+1(x) − Pn+1(c)

Pn(c)
Pn(x)

)
dν(x)

=
‖Qc

n‖2
ν

Qc
n(c)

∫
E
Kc

n(x, c)dν(x)

− Qc
n−1(c)

‖Qc
n−1‖2

ν

‖Qc
n‖2

ν

Qc
n(c)

Kc
n(c,c)

Kc
n−1(c,c)

‖Qc
n−1‖2

ν

Qc
n−1(c)

∫
E
Kc

n−1(x, c)dν(x)

=
‖Qc

n‖2
ν

Qc
n(c)

− Qc
n−1(c)

‖Qc
n−1‖2

ν

‖Qc
n‖2

ν

Qc
n(c)

Kc
n(c,c)

Kc
n−1(c,c)

‖Qc
n−1‖2

ν

Qc
n−1(c)

=
−Qc

n(c)
Kc

n−1(c,c)
.

Hence, taking into account (14), we have

Bc
n =

−κnQ
c,N
n (c)

〈1, (x− c)P
c,[1]
n−1 (x)〉ν

=
−κn

Qc
n(c)

1+NKc
n−1(c,c)

−Qc
n(c)

Kc
n−1(c,c)

= Kc
n−1(c, c) > 0.

10



3.2 Proofs of Theorems 2 and 3

To apply the Interlacing Lemma and get the results of Theorems 2 and 3, we
need to show that we satisfy the hypotheses of the Interlacing Lemma. To do

this, we first prove that the zeros of Qc
n(x) and (x− c)P

c,[1]
n−1 (x) interlace.

Lemma 2. Let ycn,k and x
c,[1]
n,k be the zeros of Qc

n(x) and P
c,[1]
n (x), respectively,

all arranged in an increasing order. The inequalities

ycn+1,1 < x
c,[1]
n,1 < ycn+1,2 < x

c,[1]
n,2 < · · · < ycn+1,n < xc,[1]

n,n < ycn+1,n+1

hold for every n ∈ IN.

Proof. Combining (15) with (6) yields

(x− c)2P c,[1]
n (x) = Qc

n+2(x)− dcnQ
c
n+1(x) + ecnQ

c
n(x), (28)

where

ecn = Pn+1(c)
Pn(c)

Qc
n+1(c)

Qc
n(c)

=
‖Qc

n+1‖2
ν

‖Qc
n‖2

ν

Kc
n+1(c,c)

Kc
n(c,c)

> 0,

dcn =
Qc

n+2(c)

Qc
n+1(c)

+ Pn+1(c)
Pn(c)

=
Qc

n+2(c)+Qc
n(c)e

c
n

Qc
n+1(c)

.

On the other hand, the sequence {Qc
n}n≥0 satisfies the three term recurrence

relation
Qc

n(x) = (x− βc
n)Q

c
n−1(x)− γc

nQ
c
n−2(x), n = 1, 2, . . . (29)

The coefficients βc
n, and γc

n are given in several works. A particularly clear dis-
cussion about how to obtain βc

n, γ
c
n from those βn, γn of the initial μ is given

in [10, §2.4.4]. From (11), for n ≥ 1, the modified coefficients are given by
βc
n = βn + rn − rn−1, and γc

n = γn−1
rn−1

rn−2
, with the initial conditions for n = 0,

βc
0 = β0 + r0, γc

0 =

∫
E

dν(x) =

∫
E

1

x− c
dμ(x) = −F0(c).

Combining (28) with (29) yields

(x − c)2P c,[1]
n (x) =

(
x− βc

n+2 − dcn
)
Qc

n+1(x) +
(
ecn − γc

n+2

)
Qc

n(x). (30)

Being μ a positive definite measure, the modified measure ν is also positive
definite, because c /∈ E = supp(μ) and therefore (x− c)−1 do not change sign in
E. Hence, by [6, Th. 4.2(a)], the coefficient of Qc

n(x) in (30) can be expressed by

ecn − γc
n+2 =

||Qc
n+1||2ν

||Qc
n||2ν

Kc
n+1(c,c)

Kc
n(c,c)

− 1
)
= 1

||Qc
n||2ν

[Qc
n+1(c)]

2

Kc
n(c,c)

> 0, (31)

which is positive for every n ≥ 0, no matter the position of c with respect to the

interval E. Finally, evaluating P
c,[1]
n (x) at the zeros yn+1,k, from (30) and (31),

we get (x−c)2P
c,[1]
n (yn+1,k) =

(
ecn − γc

n+2

)
Qc

n(yn+1,k), for every k = 1, . . . , n+1,
so it is clear that

sign (P c,[1]
n (yn+1,k)) = sign (Qc

n(yn+1,k)), k = 1, . . . , n+ 1. (32)

Thus, from (32) and the very well known fact that the zeros of Qc
n+1(x) interlace

with the zeros of Qc
n(x), we conclude that P

c,[1]
n (x) has at least one zero in every

interval (yn+1,k, yn+1,k+1) for every k = 1, . . . n. This completes the proof.
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3.3 Proofs of Theorems 4 and 5

Next, we prove Theorem 4. Shifting the index in (23) as n → n − 1, and using
(3) we obtain

[Pn−1(x)]
′ = −b(x;n−1)

σ(x) γn−1
Pn(x) +

a(x;n−1)
σ(x) + b(x;n−1)(x−βn−1)

σ(x) γn−1

)
Pn−1(x). (33)

Next, taking x derivative in (21), we get [Qc,N
n (x)]

′
= [Pn(x)]

′ + Λc
n [Pn−1(x)]

′.
Substituting (23) and (33) into the above expression, we obtain the relation

[Qc,N
n (x)]′ = C1(x;n)Pn(x) +D1(x;n)Pn−1(x), (34)

with the explicit expressions for C1(x;n) and D1(x;n) in the statement of Theo-
rem 4. Observe that the sequences of monic polynomials {Qc,N

n }n≥0 and {Pn}n≥0

are also related by

Qc,N
n−1(x) = A2(n)Pn(x) +B2(x;n)Pn−1(x), (35)

[Qc,N
n−1(x)]

′ = C2(x;n)Pn(x) +D2(x;n)Pn−1(x), (36)

where A2(n), B2(x;n), C2(x;n), and D2(x;n) are given in the statement of
Theorem 4. The above two expressions are a straightforward consequence of (21),
(23), (34), and the three term recurrence relation (3) for the MOPS {Pn}n≥0.

We next provide the converse relation of (35)–(36) for the polynomials Pn(x)
and Pn−1(x). That is, we express these two consecutive polynomials of {Pn}n≥0

in terms of only two consecutive Geronimus perturbed polynomials of the MOPS
{Qc,N

n }n≥0, as follows

Pn(x) =
B2(x;n)
Δ(x;n) Q

c,N
n (x)− Λc

n

Δ(x;n)Q
c,N
n−1(x),

Pn−1(x) =
Λc

n−1

Δ(x;n) γn−1
Qc,N

n (x) + 1
Δ(x;n)Q

c,N
n−1(x).

(37)

where

Δ(x;n) =
Λc

n−1

γn−1
x− βn−1 + Λc

n + γn−1

Λc
n−1

)
, degΔ(x;n) = 1.

To obtain the above expressions, note that (35)–(36) can be interpreted as a
system of two linear equations with two polynomial unknowns, namely Pn(x)
and Pn−1(x), hence from Cramer’s rule (37) follows. Finally, replacing (37) in
(34) and (36) one obtains the ladder equations

[Qc,N
n (x)]′ =

C1(x;n)B2(x;n) γn−1+D1(x;n)Λc
n−1

Δ(x;n) γn−1
Qc,N

n (x) +
D1(x;n)−C1(x;n)Λc

n
Δ(x;n)

Qc,N
n−1(x)

[Qc,N
n−1(x)]

′ =
C2(x;n)B2(x;n) γn−1+D2(x;n)Λc

n−1

Δ(x;n) γn−1
Qc,N

n (x) +
D2(x;n)−C2(x;n)Λc

n
Δ(x;n)

Qc,N
n−1(x),

which are fully equivalent to (24)–(25). This completes the proof of Theorem 4.
The proof of Theorem 5 comes directly from the ladder operators provided

in Theorem 4. The usual technique (see, for example [15, Th. 3.2.3]) consists
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in applying the raising operator to both sides of the equation satisfied by the
lowering operator, i.e.

a†n
1

ηc
1(x;n)

an[Q
c,N
n (x)]

]
= a†n Qc,N

n−1(x)
]
= ξc2(x;n)Q

c,N
n (x)

is a second order differential equation for Qc,N
n (x). After some doable computa-

tions, Theorem 5 easily follows.

Remark 2. Observe that the coefficients A2(n), B2(x;n), C1(x;n), D1(x;n),
C2(x;n), D2(x;n), and Δ(x;n) can be given strictly in terms of the follow-
ing known quantities: the coefficient Λc

n in (22), the coefficients βn−1, γn−1 of
the three term recurrence relation (3) and σ(x), a(x;n), b(x;n) of the structure
relation (23) satisfied by {Pn}n≥0.

4 Zero Behavior and Electrostatic Model
for the Laguerre Case

Once we have the second order differential equation satisfied by the MOPS
{Qc,N

n }n≥0 it is easy to obtain an electrostatic model for their zeros (see [13,14,15]
among others). In this Section we shall derive the electrostatic model for the ze-
ros in case μ is the Laguerre classical measure.

Let {Lα
n}n≥0 be the monic Laguerre polynomials orthogonal with respect

to the Laguerre classical measure dμα(x) = xαe−xdx, α > −1, supported on
[0,+∞). We will denote by {Qα,c,N

n }n≥0 and {Qα,c
n }n≥0 the MOPS correspond-

ing to (1) and (8) when μ is the Laguerre classical measure, and {yα,c,Nn,s }ns=1,
{yα,cn,s}ns=1 their corresponding zeros.

The structure relation (23) for the monic classical Laguerre polynomials is

σ(x)[Lα
n(x)]

′ = a(x;n)Lα
n(x) + a(x;n)Lα

n−1(x),

and therefore σ(x) = x, a(x;n) = n, and b(x;n) = n(n + α). Their three term
recurrence relation is xLα

n(x) = Lα
n+1(x) + βnL

α
n(x) + γnL

α
n−1(x), with βn =

βα
n = 2n + α + 1, γn = γα

n = n(n + α), and the connection formula (21)
for Qα,c,N

n (x) in terms of {Lα
n}n≥0 reads Qα,c,N

n (x) = Lα
n(x) + Λα,c

n Lα
n−1(x).

Taking into account exclusively the coefficients in the above three expressions,
we obtain the explicit expressions for the ladder operators and the coefficients in
the holonomic equation for this example. After some cumbersome computations,
for Λα,c

n = Λα,c
n (N) in (21) we have

Cα
1 (x;n) =

n− Λα,c
n

x
, Dα

1 (x;n) =
n(n+ α) + (x− (n+ α))Λα,c

n

x
,

Aα
2 (n) =

−Λα,c
n

(n− 1)(n+ α− 1)
, Bα

2 (x;n) = 1 + Λα,c
n−1

(x+ 1− 2n+ α)

(n− 1)(n+ α− 1)
,

Cα
2 (x;n) =

−1

x
− Λα,c

n−1

x+ 1− (n+ α)

x(n− 1)(n− 1 + α)
,

Dα
2 (x;n) =

x− (n+ α)

x
+ Λα,c

n−1

(x+ 1− 2n+ α)(x− (n+ α)) + (x− n(n+ α))

x(n− 1)(n− 1 + α)
.
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Fig. 1. The graphs of L0
3(x) (dotted) and Q0,−1,N

3 (x) for some values of N

Hence, they satisfy the holonomic equation

[Qα,c,N
n (x)]′′ +RL(x;n)[Q

α,c,N
n (x)]′ + SL(x;n)Q

α,c,N
n (x) = 0, (38)

with coefficients

RL(x;n) =
−Λα,c

n

Λα,c
n x+ (n− Λα,c

n ) (n+ α− Λα,c
n )

+
α+ 1

x
− 1,

SL(x;n) =
Λα,c
n x+ (n+ α) (n− Λα,c

n )

x (Λα,c
n x+ (n− Λα,c

n ) (n+ α− Λα,c
n ))

+
n− 1

x
.

Now we evaluate (38) at the zeros {yα,c,Nn,s }ns=1, yielding

[Qα,c,N
n ]′′

[Qα,c,N
n ]′

= −RL(y
α,c,N
n,s ;n) =

Λα,c
n

Λα,c
n yα,c,N

n,s + (n− Λα,c
n ) (n+ α− Λα,c

n )
− α+ 1

yα,c,N
n,s

+ 1.

The above reads as the electrostatic equilibrium condition for {yα,c,Nn,s }ns=1.
Taking uL(n;x) = Λα,c

n x+ (n− Λα,c
n ) (n+ α− Λα,c

n ), it can be rewritten as

n∑
j=1, j �=k

1

yα,c,Nn,j − yα,c,Nn,k

+
1

2

[uL]
′(n; yα,c,Nn,k )

uL(n; y
α,c,N
n,k )

− 1

2

α+ 1

yα,c,Nn,s

+
1

2
= 0,

which means that the set of zeros {yα,c,Nn,s }ns=1 are the critical points of the gradi-
ent of the total energy. Hence, the electrostatic interpretation of the distribution
of zeros means that we have an equilibrium position under the presence of an
external potential

V ext
L (x) =

1

2
lnuL(x;n)− 1

2
lnxα+1e−x, (39)

where the first term represents a short range potential corresponding to a unit
charge located at the unique real zero zL(n;x) =

−1
Λα,c

n
(n− Λα,c

n ) (n+ α− Λα,c
n )
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of the linear polynomial uL(x;n), and the second one is a long range potential
associated with the Laguerre weight function.

To illustrate the results of Theorem 2, we consider the Geronimus perturbation
(1) on the Laguerre measure with α = 0 and c = −1, and we obtain the behavior
of the zeros {y0,−1,N

n,s }ns=1 as N increases. We enclose in Fig. 1 the graphs of L0
3(x)

(dotted line), Q0,−1
3 (x) (dash-dotted line), and Q0,−1,N

3 (x) for some N , to show
the monotonicity of their zeros as a function of the mass N .

Table 1. Zeros of Q0,−1,N
3 (x) and z(0,−1, 3, N ; x) for some values of N

N 1st 2nd 3rd z(N)

0 0.296771 1.794881 5.327153 −1.27309

0.0125 0.096936 1.381317 4.846199 −0.039345

0.025 −0.079531 1.196907 4.66079 −0.015274

0.05 −0.324373 1.050055 4.50679 −0.156362

5 −0.988481 0.87094 4.276644 −0.700057

Table 1 shows the behavior of the zeros of Q0,−1,N
3 (x) for several choices

of N . Observe that the smallest zero converges to c = −1 and the other two

zeros converge to the zeros of the monic kernel polynomial L
α,c,[1]
2 (x), in ac-

cordance with Theorem 2. That is, they converge to x
0,−1,[1]
2,1 = 0.869089 and

x
0,−1,[1]
2,2 = 4.273768. Notice that all the zeros decrease as N increases. The

zeros outside the interval [0,+∞), namely the support of the classical Laguerre
measure, appear in bold.
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tionnelle. Application aux polynômes de Laguerre-Hahn. Ann. Polon. Math. 52,
175–185 (1990)

10. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numer-
ical Mathematics and Scientific Computation Series. Oxford University Press, New
York (2004)

11. Geronimus, Y.L.: On the polynomials orthogonal with respect to a given number
sequence and a theorem. In: Hahn, W., Nauk, I.A. (eds.), vol. 4, pp. 215–228 (1940)
(in Russian)

12. Geronimus, Y.L.: On the polynomials orthogonal with respect to a given number
sequence. Zap. Mat. Otdel. Khar’kov. Univers. i NII Mat. i Mehan. 17, 3–18 (1940)
(in Russian)

13. Huertas, E.J., Marcellán, F., Rafaeli, F.R.: Zeros of orthogonal polynomials gen-
erated by canonical perturbations of measures. Appl. Math. Comput. 218(13),
7109–7127 (2012)

14. Ismail, M.E.H.: More on electrostatic models for zeros of orthogonal polynomials.
Numer. Funct. Anal. Optimiz. 21, 191–204 (2000)

15. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable.
Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University
Press, Cambridge (2005)
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