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Abstract 

Discrete orthogonal polynomials are useful tools in digital 
image processing to extract vi-sual object contours in different 
application contexts. This paper proposes an alternative 
method that extends beyond classic first-order differential 
operators, by using the prop-erties of Krawtchouk orthogonal 
polynomials to achieve a first order differential operator. 
Therefore, smoothing of the image with a 2-D Gaussian filter is 
not necessary to regularize the ill-posed nature of differentiation. 
Experimentally, we provide simulation results which show that 
the proposed method achieves good performance in comparison 
with commonly used algorithms. 

1. Introduction

Edge detection plays a relevant role in digital image processing algorithms for many different fields of application. From 
computer vision applications in the industry and medical fields [1] to 3D video and image coding [2], visual object contour 
detection is one of the functions based on edge detection, which is very often required as part of more complex operations. 
For instance, image segmentation for visual object identification and recognition, definition of regions of interest within 
a visual scene for selective coding, inspection or attention-based processing, all require fast and efficient edge detection 
algorithms [3]. 

There are various methods for edge detection in digital images based on a fairly consolidated theory (cf. [4, Chapter 15] 
and [5, Sections 4.5–4.6]). Most of the edge extraction techniques operate a predefined format of digital image representation 
(e.g. RGB, gray-scale, etc.) using differential operators to find relevant transitions in the image intensity. Such transitions 
represent edges, which are defined as the borders of either visual objects or image regions, also establishing the boundaries 
between overlapping objects or different regions. 

In many applications the relevant region boundaries, i.e., edges, are found on the luminance component of images, which 
require a gray-scale representation, even though other formats might by used (e.g. RGB). Since the majority of important low- 
level feature related information exists in gray-scale images, such as edges, smooth regions, and textures, in this work we 
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only consider gray-scale representation images. The method for edge detection in gray-scale images proposed in this paper
is based on approximate the derivatives of the function image using the Krawtchouk orthogonal polynomials properties.

The structure of this paper is as follows. In the next section we present the theoretical framework of the paper and the
basic properties of the Krawtchouk polynomials in one variable. In Section 3 we establish the Krawtchouk polynomials in
two variables, which are used to approximate the image in the sense of least squares. In Section 4we explain howwe analyze
the image by blocks and for the numerical experiments we consider a particular cases to obtain close formulas. In Section 5,
we describe our algorithm of edge detection based on the Krawtchouk polynomials. Finally in the last section we present
experimental results and concluding remarks of this work.

2. Krawtchouk polynomials in one variable

This work relies on well known references often cited to establish the basic theory of orthogonal polynomials which are
[6,7]. However these monographs essentially deal with orthogonal polynomials with respect to a continuous inner product
whilst for the purpose of our work we are focused on the discrete case as required by the type of data we are dealing
with, i.e., digital images. On the theory discrete orthogonal polynomials and applications we suggest the Refs. [8,9] or [10,
Chapter 5].

Let N ∈ N, Λ := {x0, x1, . . . , xN} ⊂ R, where x0 < x1 < · · · < xN , F(Λ) be the set of all real functions on Λ, P be the set
of all real coefficient polynomials and PN ⊂ P be the set of polynomials of degree at most N . Note that any real function of
a discrete variable f ∈ F(Λ) can be seen as the restriction on Λ of a number of functions of real variable, in particular the
Lagrange interpolation polynomial P ∈ RN such that P(xi) = f (xi) for i = 0, 1, . . . ,N . Then we have a natural identification
between the sets F(Λ) and PN .

We call weight function (or simply weight) to any positive function µ on Λ and we say that it is normalized whenN
k=0 µ(xk) = 1.
Let the pair (Λ, µ), where µ is a weight defined on Λ. The inner product on PN associated to (Λ, µ) is defined by:

⟨f , g⟩Λ,µ =

N
k=0

f (xk)g(xk)µ(xk), f , g ∈ PN (1)

with a corresponding norm ∥f ∥Λ,µ =


⟨f , f ⟩Λ,µ.
A family of polynomials {pk}mk=0 with m ≤ N is orthogonal with respect to the inner product (1) if pk is a polynomial of

degree kwith positive leading coefficient and

⟨pn, pm⟩Λ,µ =


≠ 0 if n = m,
= 0 if n ≠ m.

(2)

If ∥pk∥Λ,µ = 1 for all 0 ≤ k ≤ N , the family {pk(x)}mk=0 is called orthonormalwith respect to (1). Finally if for all 0 ≤ k ≤ N
the leading coefficient of pk(x) is equal to one, then {pk(x)}mk=0 is called a family ofmonic orthogonal polynomialswith respect
to (1).

Note that (2) is equivalent to the condition


pn, xj


Λ,µ

=

N
k=0

pn(xk)x
j
kµk = 0, for j = 0, 1, . . . , n. (3)

Then given a weight function µ, the relations (3) form a system of N equations with N + 1 unknowns (the coefficients
of polynomial), which determine the orthogonal polynomial pn(x) except for a multiplicative constant which may depend
on n.

In this paper we find a new form to obtain approximations to the derivatives in each point of the image making use of a
family of discrete orthogonal polynomials called Krawtchouk polynomials, that are orthogonal with respect to the binomial
distribution (cf. [10, Section 5.4]). In the remainder of the section, we state some definitions and properties about the monic
Krawtchouk polynomials in one variable.

Definition 2.1. Let N ∈ N, ΛN = {0, 1, 2, . . . ,N}, α ∈] − 1, 1[ and wN,α(x) the weight function

wN,α(x) =


N
x


αx(1 − α)N−x, for all x ∈ ΛN . (4)

We say that κα
n (x,N) = xn + · · ·, with n ≤ N , is the nth monic Krawtchouk polynomialwith respect to the pair (ΛN , wN,α) if


κα
n (·,N), xj


N,α

=

N
i=0

κα
n (i,N) xj wN,α(i) = 0,

for all j = 0, 1, . . . ,N , where ⟨·, ·⟩N,α = ⟨·, ·⟩ΛN ,wN,α
.
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Obviously, from the binomial theorem, the weight function (4) is normalized. The nth monic Krawtchouk polynomial in
one variable can be generated by the formula (cf. [10, (5.4.3)])

κα
n (x,N) =

n
j=0


n
j


αn−j(1 − α)j(x − N)n−j(x − j + 1)j, (5)

where (a)j denotes the Pochhammer symbol or shifted factorial as in [10, (1.1.8)].
From [10, (5.2.8)], we obtain the norms of the nth polynomials (5)

∥κα
n (·,N)∥2

N,α =

N
i=0


κα
n (i,N)

2
wN,α(i) =


N
n


n!2(α − α2)n.

If f is a function of one variable, we define the differences of first order as △+ f (x) = f (x + 1) − f (x), △f (x) =
1
2

(f (x + 1) − f (x − 1)), where the differences △f of first order is the usual central-difference formulas on 2 nodes (cf. [11,
Table 6.3]). For a function in two variables f we define the partial differences of first order as:

△x f(x, y) =
f(x + 1, y) − f(x − 1, y)

2
, △y f(x, y) =

f(x, y + 1) − f(x, y − 1)
2

. (6)

Most of the results contained in this paper can be obtained analogously for other families of discrete orthogonal polyno-
mials (see [10, Chapter 5]). However, we use the Krawtchouk polynomials because they allow to obtain closed expressions
for the discrete derivatives (differences) of the polynomials in one and two variables. The next proposition is straightforward
from the basic properties of Krawtchouk polynomials in [10, Section 5.4] and includes some of the aforementioned closed
expressions.

Proposition 2.1. The monic Krawtchouk polynomial, with α ∈] − 1, 1[, satisfies the following relations:

△+ κα
n (x,N) = n κα

n−1(x,N − 1). (7)

△κα
n (x,N) =

n
2


κα
n−1(x,N − 1) + κα

n−1(x − 1,N − 1)


(8)

Proof. From [10, (5.4.4)], we get the relations (7) for the forward difference. The central difference △κα
n (x,N) in (8), is a

direct consequences of (7). �

3. Krawtchouk polynomials in two variables

A gray-scale image with resolution (N1 + 1) × (N2 + 1) pixels (N1,N2 ∈ N) can be considered as a function of two
variables I(x, y) defined on the set ΛN1 × ΛN2 , where ΛN1 = {0, 1, . . . ,N1} and ΛN2 = {0, 1, . . . ,N2}, i.e.

I : ΛN1 × ΛN2 −→ [0, 1],
(x, y) −→ I(x, y).

Hence, the values of I on ΛN1 × ΛN2 can be represented by the matrix I of order (N1 + 1) × (N2 + 1)

I =


I(0, 0) I(0, 1) · · · I(0,N2)

I(1, 0) I(1, 1) · · · I(1,N2)
...

...
. . .

...
I(N1, 0) I(N1, 1) · · · I(N1,N2)

 . (9)

Let PN1,N2 be the linear space of polynomials in the variables x and y, of degree at most N1 and N2 respectively.
To study an image as a polynomial in two variables, we need to introduce the Krawtchouk polynomials in two variables

or bivariate Krawtchouk polynomials.

Definition 3.1. Let N1,N2 ∈ N, α1, α2 ∈]0, 1[, ΛN1 = {0, . . . ,N1} and ΛN2 = {0, . . . ,N2}. We call Two-dimensional
Krawtchouk polynomials or 2D monic Krawtchouk polynomials to the polynomial in two variables Kα1,α2

n,m (x, y) = κ
α1
n (x,N1)

κ
α2
m (y,N2), where (x, y) ∈ ΛN1 × ΛN2 .

Note that the set of 2D monic Krawtchouk polynomials

{Kα1,α2
n,m } = {κα1

n (·,N1)} ⊗ {κα2
m (·,N2)},
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where the symbol ⊗ denotes the tensor product of the set of polynomials {κ
α1
n (·,N1)} and {κ

α2
m (·,N2)} as in [12,

Section 12-3]. The 2D monic Krawtchouk polynomials are orthogonal with respect to the next inner product on PN1,N2

⟨f, g⟩2D =

N1
i=0

N2
j=0

f(xi, xj)g(xi, xj)wN1,α1(xi) wN2,α2(xj). (10)

(see [12, Lemma 12-1]), furthermore

⟨Kα1,α2
n,m ,Kα1,α2

r,s ⟩2D =

κα1
n , κα1

r


N1,α1


κα2
m , κα2

s


N2,α2

=


0 |n − r| + |m − s| > 0,
∥Kα1,α2

n,m ∥
2
2D > 0 |n − r| + |m − s| = 0,

where ∥f∥2D =
√

⟨f, f⟩2D.
For the 2D monic Krawtchouk polynomials we have the next finite difference formulas:

△x Kα1,α2
n,m (x, y) =


△x κα1

n (x,N1)

κα2
m (y,N2).

△y Kα1,α2
n,m (x, y) =


△y κα2

m (y,N2)

κα1
n (x,N1).

(11)

From the standard theory of approximation of functions (cf. [12, Chapter 12]), for M1 ∈ ΛN1 \ {0} and M2 ∈ ΛN2 \ {0},
the polynomial of total degree (M1 − 1) × (M2 − 1)

PM1,M2(x, y) =

M1−1
n=0

M2−1
m=0

βn,mKα1,α2
n,m (x, y), where βn,m =

⟨I,Kα1,α2
n,m ⟩2D

⟨Kα1,α2
n,m ,Kα1,α2

n,m ⟩2D
(12)

is such that minQ∈PM1,M2
∥I − Q∥2D = ∥I − PM1,M2∥2D, i.e. PM1,M2 is the polynomial of least square approximation of I in

PM1,M2 and we write I(x, y) ≈ PM1,M2(x, y). Furthermore, ifM1 = N1 + 1 and M2 = N2 + 1, then I = PN1,N2 .

4. Computation of the discrete derivative by blocks

In order to detect the edges points, we analyze the entire image I, by blocks Ii,j of fixed-size (n1 + 1) × (n2 + 1), where
n1 < N1 and n2 < N2. We recall that the blocks are all of the same size.

First, let us introduce some notations and definitions. If A = [aij] is a u × v real matrix, then AT denotes the transpose
matrix and vec (A) is the columnvector of (u v) entries defined as vec (A) = (a11, . . . , au1, a12, . . . , au2, . . . , a1v, . . . , auv)T .
Let an = (an(0), . . . , an(n1)) and bm = (bm(0), . . . , bm(n2)) be two row vectors of order (n1 + 1) and (n2 + 1) respectively,
where

an(ν) =
κ

α1
n (ν, n1) wn1,α1(ν)

∥κ
α1
n ∥2

n1,α1

, bm(ν) =
κ

α2
m (ν, n2) wn2,α2(ν)

∥κ
α2
m ∥2

n2,α2

.

The matrix Cn1,n2(n,m) = aTn bm is of order (n1 + 1) × (n2 + 1) and only depends on the size of the blocks, but not of its
entries.

Let βn,m(i, j) be the coefficient given by (12), considering I = Ii,j. This coefficient can be computed as follows:

βn,m(i, j) =

vec


Ii,j


, vec


Cn1,n2(n,m)


2 , (13)

where ⟨·, ·⟩2 is the usual Euclidean inner product on R(n1+1)(n2+1).
Let Bn,m be the matrix of all coefficients βn,m(i, j), with i = 0, . . . , n1 and j = 0, . . . , n2. From (13), Bn,m = I ∗

Cn1,n2(n,m), where the symbol ∗ indicates the 2-D discrete convolution of matrices (cf. [13, Section 15.1.4]). Using the
discrete Fourier transform, the convolution of thesematrices can be optimized, improving significantly the CPU time (cf. [13,
Chapter 15]).

For each pixel (i, j) of the image I, we compute the discrete partial derivative (6) of the approximation (12), only consid-
ering the information contained in the ‘‘neighborhood’’ Ii,j. When this process is finished, we obtain two matrices Px and
Py of the same size of I, where each entry (i, j) is the partial derivatives with respect to x or y. In the next section, these
matrices allow us to have a good estimate of the modulus of gradient on each point (i, j) of I.

In order to make numerical experiments we consider the parameters of Krawtchouk polynomials α1 = α2 = α =
1
2 ,

and n1 = n2 = nt = 4, i.e. we approximate the calculus of the discrete derivatives considering the information of the block
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Ii,j of order 5 × 5, with center on the entry I(i, j):

Ii,j =



I(i − 2, j − 2) I(i − 2, j − 1) I(i − 2, j) I(i − 2, j + 1) I(i − 2, j + 2)

I(i − 1, j − 2) I(i − 1, j − 1) I(i − 1, j) I(i − 1, j + 1) I(i − 1, j + 2)

I(i, j − 2) I(i, j − 1) I(i, j) I(i, j + 1) I(i, j + 2)

I(i + 1, j − 2) I(i + 1, j − 1) I(i + 1, j) I(i + 1, j + 1) I(i + 1, j + 2)

I(i + 2, j − 2) I(i + 2, j − 1) I(i + 2, j) I(i + 2, j + 1) I(i + 2, j + 2)


.

From (12) withM1 = M2 = Mt , we have for i = 0, . . . ,N1 and j = 0, . . . ,N2 the polynomial block approximation:

P(i,j)
Mt ,Mt

(x, y) ≈ I(i + x − 2, j + y − 2), (x, y) ∈ Λnt × Λnt , (14)

where for each fixed point (i, j) the polynomial P(i,j)
Mt ,Mt

(x, y) is given by (12), and the coefficients βn,m(i, j) by (13).
Now taking into account the fact that for x = y = 2 in the approximation (14) we stay just in the point I(i, j), the center

of the block Ii,j, then we can compute the first order partial differences of P(i,j)
Mt ,Mt

(x, y) using the central-difference formula
for Krawtchouk polynomials (8) together with Eqs. (11). For example, forMt = 2 we have

△x P
(i,j)
Mt ,Mt

(2, 2) = β1,0(i, j) − β1,2(i, j), △y P
(i,j)
Mt ,Mt

(2, 2) = β0,1(i, j) − β2,1(i, j), (15)

and forMt = 4

△x P
(i,j)
Mt ,Mt

(2, 2) = β1,0(i, j) − β1,2(i, j) +
3
2


β3,2(i, j) − β3,0(i, j)


,

△y P
(i,j)
Mt ,Mt

(2, 2) = β0,1(i, j) − β2,1(i, j) +
3
2


β2,3(i, j) − β0,3(i, j)


.

(16)

From (15) and (16), you can see that for the computation of Px and Py it is not necessary to compute all the matrices
Bn,m. In fact, by (16) we have that the matrices Px and Py, of the partial derivatives with respect to x or y are respectively:

Px = B1,0 − B1,2 +
3
2


B3,2 − B3,0


, Py = B0,1 − B2,1 +

3
2


B2,3 − B0,3


.

In order to ensure that all the image boundary pixels are analyzed, we ‘fill in’ the missing pixels within the convolution
operation, by mirroring the values that are inside the limits of the image I across the array border.

5. Edge detection algorithm based on Krawtchouk polynomials

The proposed edge detection algorithm is based on the results of the previous sections and is described as follows:

1. Compute the matrix of gradient magnitude.
Onceweobtain thematricesPx andPy, we compute in eachpoint (i, j) themodulus of the gradientG(i, j) (edge strength).

G(i, j) =


P 2

x (i, j) + P 2
y (i, j).

2. Find the first threshold and the strong edge points.
We compute the first level of adaptive threshold by:

τh1 = mean(G(i, j)) + k × standard deviation(G(i, j)), where k ∈ R
+.

If G(i, j) > τh1 , the point (i, j) is declared as a strong edge point.
3. Compute the second level of threshold and the weak edge points.

Now we consider only the points (i1, j1) for which

mean(G(i, j)) < G(i1, j1) < τh1 ,

and compute the second threshold τh2 < τh1 by

τh2 = mean(G(i1, j1)) + k × standard deviation(G(i1, j1)).

If G(i1, j1) > τh2 , the point (i, j) is declared as a weak edge point.
4. Declaration of edge points.

4.1. Each strong edge point is considered an edge point.
4.2. A weak edge point is considered an edge point if at least some of its eight neighboring pixels is a strong edge point.

5.- Apply Morphological operations.
The matrix Eh2 of edge points obtained by the proposed scheme, is a matrix in which in general the edge points tend
to be thick and non-continuous. Then in order to avoid these effects, it is necessary to apply morphological operations
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Table 1
Error measures for the peppers image.

Measurement φ∗ χ2∗ F∗

0.25 F∗

0.5 F∗

0.75

EM(E, ES) 0.3639 0.5865 0.3536 0.3484 0.3432
EM(E, EC ) 0.4167 0.7317 0.4408 0.4714 0.4988

Table 2
Error measures for the depth map image.

Measurement φ∗ χ2∗ F∗

0.25 F∗

0.5 F∗

0.75

EM(E, ES) 0.1493 0.3616 0.1742 0.2002 0.2246
EM(E, EC ) 0.2046 0.3987 0.2124 0.2222 0.2318

[4, Chapter 14], which can be defined as combination of the two basics operations dilation and erosion [14]. Hence the
final edge image E is obtained by performing in the first place the thinning operation and finally the linked operation.

6. Experimental results and conclusions

6.1. Edge quality evaluation

In order to obtain a quantitative approach measure of the edge detection method proposed, we use the statistical error
measures considered in [15], where the pixels in the candidate edge image are denoted by: True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN). Using this classification, we define the measures of the quality of an edge
image:φ(E, Eq),χ2(E, Eq) and Fδ(E, Eq) as in [15, (11)–(13)], respectively, where Eq is the true edge image. Finally tomeasure
the errors in a edge image we use the following numbers:

φ∗(E, Eq) = 1 − φ(E, Eq),

χ2∗(E, Eq) = 1 − χ2(E, Eq),
F∗

δ (E, Eq) = 1 − Fδ(E, Eq), where δ ∈ [0, 1].

To compare, we take as a true edge image ES and EC which are the edge images given by the Sobel (see [13, Example
15.28]) and Canny methods (see [13, Section 16.4.3]). The result for the peppers image and depth map are displayed in
Tables 1 and 2, where EM(E, Eq) denotes the error measure between the image edge proposed E and Eq = ES (or Eq = EC ).

6.2. Conclusion

The proposed algorithm has the following characteristics,

• The approximation of the partial differences (derivatives) is made with a linear combination of bivariate Krawtchouk
polynomials, which are orthogonal with respect to the inner product (10), which involved the product of binomial
distributions (4). Therefore, it is not necessary to smooth the image with a 2-D Gaussian filter before numerical
differentiation, in order to regularize the ill-posed nature of differentiation and therefore improve the edge localization.
This is a well known procedure as pointed out in [16] and used in [17].

• In [18,19] the authors describe edge detection procedures based on Chebyshev polynomials with use of a unique
threshold for the whole image. Here, we propose an algorithm that uses two-level adaptive thresholds, that reduce the
presence of false positive and false negative edge pixel.

• As consequence, a gradient operator of size 5 × 5 produces a better localized edge pixel, because the edges tend to be
thicker as the size of the block Ii,j increases [19,4].

• To avoid the thicker effect and improve the final result in our edge finder, we further apply morphological operations
(close, erode and thin) to the edge image obtained after the second processing step of the proposed algorithm. As pointed
out in recent work [14], this contributes to increase the quality of the edges.

Images taken from two quite different fields of application were used to demonstrate the effectiveness of the proposed
algorithm: (i) natural images used for object detection, surveillance, etc.; (ii) depth maps currently used in 3D video
multimedia services and applications (e.g., depth-plus-video format [20]). The results show that the proposed algorithm is
able to detect the edges of different types of images. Both the contours of overlapped objects and identification of foreground
objects in depth maps are obtained with quite good accuracy, as shown in Figs. 1, 2 and Tables 1, 2.
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Fig. 1. Edge detection on peppers image.

Fig. 2. Edge detection on depth map image.
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