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a b s t  r a c t

Given a strongly regular Hankel matrix, and its associated sequence of moments which 
bation of a fixed 
defines a quasi definite moment linear functional, we study the pertur
Keywords: Hankel matrix, Linear moment functional, Orthogonal polynomials, Laguerre-Hahn clas

moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear 
functional whose action results in such a perturbation and establish necessary and suffi
cient conditions in order to preserve the quasi definite character. A relation between the 
corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic 
behavior of their zeros. We also study the invariance of the Laguerre Hahn class of linear 
functionals under such perturbation, and determine its relation with the so called canon
ical linear spectral transformations.
1. Introduction
ca

is 
th n
s, Zeros
 in the linear space of polynomials 

ð1Þ

, and the complex numbers flngnP0 are 
1.1. Hankel matrices and orthogonal polynomials

Given a sequence of complex numbers flngnP0, one can define a linear functional M
with complex coefficients P such that

hM; xni ln:

In the literature (see [9,17], among others), M is said to be a moment linear functional
ð2Þ
s of the canonical basis fxngnP0 of P. I f 
lled the moments associated with M. The semi infinite matrix

H h M ; xiþji
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where dn;m is the Kronecker delta, then fPngnP0 is called the monic orthogonal polynomials sequence (MOPS) associated with
M.

The Hankel matrices and their determinants play an important role in the study of moment functionals. The linear func
tional (1) is called quasi definite if the moments matrix is strongly regular or, equivalently, the determinants of the principal
leading submatrices Hn of order ðnþ 1Þ � ðnþ 1Þ are all different from 0. In this case, there exists a unique MOPS associated
with M.

On the other hand, a linear functional M is called positive definite if and only if its moments are all real and
det Hn > 0;n P 0. In such a case, there exist a unique sequence of real polynomials fpngnP0 orthonormal with respect to
M, i.e., the following condition holds

M; pnðxÞpmðxÞh i dn;m;

where

pnðxÞ cnxn þ dnxn 1 þ ðlower degree termsÞ; cn > 0; n P 0:

From the Riesz representation theorem, we know that every positive definite linear functionalM has an integral represen
tation (not necessarily unique)

M; xnh i
Z

I
xndlðxÞ;

where l denotes a nontrivial measure supported on some infinite subset I of the real line.
One of the most important characteristics of orthonormal polynomials on the real line is the fact that any three consec

ð3Þ
utive polynomials are connected by the simple recurrence relation

xpnðxÞ anþ1pnþ1ðxÞ þ bnþ1pnðxÞ þ anpn 1ðxÞ; n P 0;

with initial conditions p 1 � 0; p0 � l 1=2
0 , and recurrence coefficients given by

an

Z
I

xpn 1ðxÞpnðxÞdlðxÞ
cn 1

cn
> 0;

bn

Z
I

xp2
nðxÞdlðxÞ

dn

cn

dnþ1

cnþ1
:

s of the corresponding Hankel matrix.
There are explicit formulae for orthonormal polynomials in terms of the determinant

The n th degree orthonormal polynomial is given by the Heine’s formula�� ��
l l l . . . l
0 1 2 n

l1 l2 l3 . . . lnþ1

��� ���

pnðxÞ

1

det Hn det Hn 1

p ..
. ..

.
. . . ..

. ..
.

�����
�����;
� �
ln 1 ln lnþ1 . . . l2n 1

1 x x2 . . . xn
�� ��
while its leading coefficient is given by a ratio of two Hankel determinants

cn
det Hn 1

det Hn

s
:

The n th order reproducing kernel associated with fp g is defined by
n nP0Xn
ave
Knðx; yÞ
k 0

pkðxÞpkðyÞ; n P 0:

The name comes from the fact that, for any polynomial qn of degree at most n, we hZ

s pn and pnþ1 using the Christoffel Dar
qnðyÞ
I

qnðxÞKnðx; yÞdlðxÞ:

The reproducing kernel can be represented in a simple way in terms of the polynomial
on (3). We will denote by Kði;jÞn ðx; yÞ the
the quasi definite case, the reproduc
boux formula (see [9,17], among others)

Knðx; yÞ anþ1
pnþ1ðxÞpnðyÞ pnðxÞpnþ1ðyÞ

x y
; x – y;

which can be deduced in a straightforward way from the three term recurrence relati
i th (resp. j th) partial derivative of Knðx; yÞ with respect to the variable x (resp. y). For
ing kernel is defined as



Knðx; yÞ
Xn

k 0

PkðxÞPkðyÞ
c2

k

:

When polynomials are studied, one of the most important quantities to be considered are their zeros. The fundamental the
orem of algebra asserts that any polynomial of degree n has exactly n zeros (counting multiplicities). When dealing with
orthogonal polynomials on the real line, one can say much more about their localization. Two of the most relevant properties
of their zeros are the following:

(i) The zeros of pn are all real, simple and lie in the convex hull of I.
(ii) Suppose xn;1 < xn;2 < < xn;n are the zeros of pn, then

xn;k < xn 1;k < xn;kþ1; 1 6 k 6 n 1:

Our interest in perturbations of Hankel matrices is motivated by their many applications in mathematical and physical
problems. Their relations with moment problems ([7]), integrable systems ([23]), Padé approximation ([20]), as well as their
applications in coding theory and combinatorics (see [18,22] and references therein), constitute an illustrative sample of
their impact.

1.2. Perturbations of Hankel matrices

Before introducing the problem to be analyzed in this contribution, let us briefly discuss two rather straightforward but
of taking the canonical basis of P, con
ents ftngnP0 is given by
interesting examples where the moments are modified in a natural way. First, instead
sider the basis f1; ðx aÞ; ðx aÞ2; . . .g, where a 2 R. Then, the new sequence of mom� 	* + � 	
ð4Þ

ding Hankel matrix is
tn M; ðx aÞn
� �

M;
Xn

j 0

n

j
ð 1Þn jan jxj

Xn

j 0

n

j
ð 1Þn jan jlj:

As a consequence, the ðnþ 1Þ � ðnþ 1Þ principal leading submatrix of the correspon

eHn ½tiþj 2�16i;j6n

l0 l1 þm1 � � � ln þmn

l1 þm1 l2 þm2 � � � lnþ1 þmnþ1

. . . .

26666
37777;
. . . .6 7
. . . .4 5
ð5Þ
ln þmn lnþ1 þmnþ1 � � � l2n þm2n

where

mn

Xn 1

j 1

n

j

� 	
ð 1Þn jan jlj:

Thus, if M is a quasi definite moment linear functional, then the polynomials

Q nðxÞ
1

det eHn 1

t0 t1 t2 � � � tn

t1 t2 t3 � � � tnþ1

..

. ..
.

� � � ..
. ..

.

����������

����������; n P 0;
tn 1 tn tnþ1 � � � t2n 1

1 ðx aÞ ðx aÞ2 � � � ðx aÞn
��� ���
new basis, with Qnðx aÞ PnðxÞ. No
ls of (2). Namely, each of the ðjþ 1Þ th
constitute a sequence of monic polynomials orthogonal with respect toM, using the
tice that this simple change of the basis resulted in a perturbation on the antidiagona
he manuscript, we will use the basis
a simpler way.
whose action results in a perturbation
st simple case that we can consider) is
ne it, we introduce the real Dirac delta
antidiagonal is perturbed by the addition of the constant mj. In the remaining of t
f1; ðx aÞ; ðx aÞ2; . . .g, since most of the required calculations can be performed in

The second example is given by the Uvarov’s spectral transformation (see [21,24]),
of the first moment t0, while leaving the others unaffected. This perturbation (the mo
closely related with the Uvarov Chihara integrable system (see [23]). In order to defi
functional dðx aÞ supported at x a, which acts in the following way
hdðx aÞ; PðxÞi PðaÞ; P 2 P:
Then, Uvarov’s transformation is defined by

hMU ;pðxÞi hM;pðxÞi þmhdðx aÞ;pðxÞi hM;pðxÞi þmpðaÞ;
i.e., a perturbation on the first antidiagonal on the Hankel matrix.



Now a natural question arises: Is there a linear functional cM such that its action results on a perturbation of (only) the
moment tj or, equivalently, the ðjþ 1Þ th antidiagonal of the Hankel matrix eH? In other words, we are interested in the prop
erties of a functional cM whose moments are given by

etn hcM; ðx aÞni
tn; n – j;

tn þmj; n j;



ð6Þ

for some m 2 R, i.e., its corresponding Hankel matrix is

HðmjÞ

t0 � � � tj þmj tjþ1 � � �

..

.
q ..

. ..
.

� � �
tj þmj � � � t2j t2jþ1 � � �
tjþ1 � � � t2jþ1 t2jþ2 � � �

..

. ..
. ..

. ..
. . .

.

2666666664

3777777775
: ð7Þ

An analogous problem for linear functionals defined in the linear space of Laurent polynomials has been analyzed recently in
[6]. There, the corresponding moments matrix is a Toeplitz matrix and the perturbation studied is one that modifies two
symmetric subdiagonals of such matrix by means of a modification of the Lebesgue measure, supported on the unit circle.
The main objective of this manuscript is to study equivalent perturbations of Hankel matrices, which appear in the theory of
orthogonal polynomials on the real line. In Section 2, a linear functional with the desired properties, denoted byMj, is de
fined in terms ofM, and we obtain necessary and sufficient conditions for the quasi definiteness ofMj, provided thatM is

esponding families of orthogonal poly
nical spectral transformations, and the
4. Section 5 deals with an asymptotic
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quasi definite. Under those conditions, we obtain an expression that relates their corr
nomials. In Section 3, we analyze the connection betweenMj and the so called cano
invariance of the Laguerre Hahn class under this perturbation is studied in Section
, we pose some related open problems
analysis of the zeros of the corresponding orthogonal polynomials. Finally, in Section 6
that will be considered in future contributions.
2. A perturbation on the antidiagonal of a Hankel matrix
linear functional M, the usual distri
In order to state our main result, we will need some definitions. Given a moment
butional derivative DM (see [19]) is given by

hDM;pi hM;p0i; p 2 P:

In particular, if j is a nonnegative integer, then

hDðjÞdðx aÞ;pðxÞi ð 1ÞjpðjÞðaÞ:
ð8Þ

tn ofM, except for the j th one, which
by (6) and their corresponding Hankel
nkel structure of the moment matrix.
onditions under which the linear func
the corresponding MOPS. We refer to
t functionals.

orresponding MOPS. Then the following
Now, we introduce the linear functional Mj, given by

hMj;pðxÞi hM;pðxÞi þ ð 1Þj mj

j!
hDðjÞdðx aÞ;pðxÞi hM;pðxÞi þmj

j!
pðjÞðaÞ;

where mj and a are real constants.
It is easy to see that all the moments associated withMj are equal to the moments

is equal to tj þmj. That is, if we denote by etk the moments ofMj, then they are given
matrix is (7). Notice that this perturbation is the simplest one that preserves the Ha

We are ready to state our main result, which establishes necessary and sufficient c
tional Mj preserves the quasi definite character, and provides the relation between
[2,4,5,12] for other contributions about some other kinds of perturbations of momen

Proposition 1. Let M be a quasi definite moment linear functional and fPngnP0 its c
statements are equivalent:

(i) The moment linear functional Mj, defined as in (8), is quasi definite.
3
(ii) For every n P 0, the matrix Ij þ KjDj, with� 	2 3 2
 7
j

j
� � � 066 77 Kðj;0Þn 1ða; aÞ Kðj 1;0Þ

n 1 ða; aÞ � � � Kð0;0Þn 1 ða; aÞ
ðj;1Þ ðj 1;1Þ ð0;1Þ6
 7777;
Dj

mj

j! ..
. . .

. ..
.

666 777; Kj

Kn 1ða; aÞ Kn 1 ða; aÞ � � � Kn 1 ða; aÞ
. . . .

6666
 5

0 � � �

j
� 	64 75 .. .. . . ..

ðj;jÞ ðj 1;jÞ ð0;jÞ
4

0 Kn 1ða; aÞ Kn 1 ða; aÞ � � � Kn 1ða; aÞ



and Ij denotes the ðjþ 1Þ � ðjþ 1Þ identity matrix, is non singular and

hM; P2
nðxÞi þ

PðjÞn ðaÞ
Pðj 1Þ

n ðaÞ
..
.

PnðaÞ

2666664

3777775
T

DjðIj þ KjDjÞ 1

PnðaÞ
Pð1Þn ðaÞ

..

.

PðjÞn ðaÞ

2666664

3777775– 0:

Moreover, if Mj is quasi definite and we denote by fPnðj; ÞgnP0 its corresponding MOPS, then

Pnðj; xÞ PnðxÞ

Kðj;0Þn 1ða; xÞ
Kðj 1;0Þ

n 1 ða; xÞ

..

.

Kð0;0Þn 1 ða; xÞ

2666664

3777775
T

DjðIj þ KjDjÞ 1

PnðaÞ
Pð1Þn ðaÞ

..

.

PðjÞn ðaÞ

2666664

3777775: ð9Þ

Proof. Suppose that Mj is a quasi definite moment linear functional. Since fpngnP0 is the MOPS associated with M, there
exist constants kn;0; . . . ; kn;n 1 such that

Pnðj; xÞ PnðxÞ þ
Xn 1

k 0

kn;kPkðxÞ: ð10Þ
Thus, using the orthogonality property, we have� 	

kn;k

hM; Pnðj; xÞPkðxÞi
hM; P2

kðxÞi
mj

j!

Pminðk;jÞ
l 0

j

l
Pðj lÞ

n ðj; aÞPðlÞk ðaÞ

hM; P2
kðxÞi

; 0 6 k 6 n 1:

Substituting the above expression in (10), we obtain� 	

mj
Xn 1

Pminðk;jÞ
l 0

j

l
Pðj lÞ

n ðj; aÞPðlÞk ðaÞ
ð11Þ

jþ 1 unknowns
Pnðj; xÞ PnðxÞ j!
k 0 hM; P2

kðxÞi
PkðxÞ

PnðxÞ
mj

j!

Xj

l 0

j

l

� 	
Pðj lÞ

n ðj; aÞKðl;0Þn 1ða; xÞ:

In particular, for 0 6 i 6 j, we get the following linear system of jþ 1 equations and
ð12Þ
PðiÞðj; xÞ PðiÞðxÞ mj
Xj j
� 	

Pðj lÞðj; aÞKðl;iÞ ða; xÞ;
n n j!
l 0 l n n 1

which, setting x a, reads as
Pnðj; aÞ
ð1Þ

266
377 PnðaÞ

ð1Þ

266
377
Ij þ KjDj
� � Pn ðj; aÞ

..
666 777 Pn ðaÞ

..
666 777:
ntradicts the uniqueness of Pn. Thus
.

PðjÞn ðj; aÞ
4 5 .

PðjÞn ðaÞ
4 5

From (11), if PðlÞn ðj; aÞ 0 for all 0 6 l 6 j, then we have Pnðj; xÞ PnðxÞ, which co
of the linear system. Therefore the
½Pnðj; aÞ; Pð1Þn ðj; aÞ; . . . ; PðjÞn ðj; aÞ�
t

is not zero, and it constitutes the unique solution

ðjþ 1Þ � ðjþ 1Þ matrix Ij þ KjDj is non singular. Furthermore, (11) reduces to (9).

On the other hand,

0 – hMj; Pnðj; xÞPnðxÞi hM; Pnðj; xÞPnðxÞi þ
mj

j!
½Pnðj; xÞPnðxÞ�ðjÞjx a

M; PnðxÞ
mj

j!

Xj

l 0

j
l

� 	
Pðj lÞ

n ðj; aÞKðl;0Þn 1ða; xÞ
" #

PnðxÞ
* +

þmj

j!
½Pnðj; xÞPnðxÞ�ðjÞjx a
PðjÞn ðaÞ
2 3T

PnðaÞ
2 3
hM; PnðxÞPnðxÞi þ
Pðj 1Þ

n ðaÞ
..
.

66664
77775 DjðIj þ KjDjÞ 1

Pð1Þn ðaÞ
..
.

66664
77775:
ðjÞ

PnðaÞ Pn ðaÞ



For the converse, assume that ðiiÞ holds, and define fPnðj; ÞgnP0 as in (9). Then it is straightforward to show that fPnðj; ÞgnP0 is
the MOPS with respect to Mj, and its quasi definite character is proved. h

3. Canonical linear spectral transformations

In this section, we will assumeM is a positive definite linear functional, with an associated positive Borel measure l sup
ported in some interval I of the real line. The corresponding Stieltjes function is then defined by

SðxÞ
Z

I

dlðyÞ
x y

;

and admits the following equivalent representation as a series expansion at infinity

SðxÞ
X1
n 0

ln

xnþ1 ; ð13Þ

i.e., it is a generating function of the sequence of moments for the measure dl (questions about convergence are not con
sidered here). In many problems, (13) has more simple analytical and transformation properties than the spectral measure
l and hence dealing with SðxÞ is often much more convenient for analysis.

A generic linear spectral transformation of a Stieltjes function SðxÞ is another Stieltjes function of the form

eSðxÞ AðxÞSðxÞ þ BðxÞ
; ð14Þ

is called linear.
CðxÞSðxÞ þ DðxÞ

where AðxÞ;BðxÞ;CðxÞ and DðxÞ are polynomials. If CðxÞ 0, then the transformatione
If the linear functionalMj is quasi definite and we denote by S its corresponding Stieltjes function, then we can connect Se s clear that

ð15Þ

ole of order jþ 1 at x a. In this way,
and S by a simple relation. In fact, since only the j th moment is perturbed, then it i

eSðxÞ SðxÞ þ mj

ðx aÞjþ1 ;

that is, the Stieltjes function is modified by the addition of a rational function with a p

we conclude

e ðx aÞjþ1SðxÞ þmj
SðxÞ
ðx aÞjþ1
and therefore the transformation is linear.
if its corresponding Stieltjes function

ð16Þ

cients such that UðxÞ– 0 and
Definition 1. The moment linear functional M belongs to the Laguerre Hahn class
satisfies the Ricatti equation

UðxÞS0ðxÞ BðxÞS2ðxÞ þ CðxÞSðxÞ þ DðxÞ;

where UðxÞ;BðxÞ;CðxÞ and DðxÞ are polynomials with complex coeffi
was established in [24]. Therefore, in

DðxÞ ½ðDMÞh0U�ðxÞ þ ðMh0CÞðxÞ ½ðM�MÞh0B�ðxÞ.

The invariance of the Laguerre Hahn class under rational spectral transformations
nMj also belongs to the Laguerre Hahn
our case we can conclude

Proposition 2. LetM be a linear functional that belongs to the Laguerre Hahn class. The
class and its corresponding Stieltjes function satisfies
eUðxÞeS 0ðxÞ eBðxÞeS2ðxÞ þ eCðxÞeSðxÞ þ eDðxÞ;

with eUðxÞ ðx aÞ2jþ2UðxÞ;
eBðxÞ ðx aÞ2jþ2BðxÞ;eCðxÞ ðx aÞ2jþ2CðxÞ mjðx aÞjþ1BðxÞ;
class. Now, let S be the Stieltjes func
eDðxÞ m2
j BðxÞ mjðx aÞjþ1CðxÞ þmjðjþ 1Þðx aÞjUðxÞ þ ðx aÞ2jþ2DðxÞ:

Proof. From the previous discussion, it is clear thatMj belongs to the Laguerre Hahn
tion associated with M. Then,



UðxÞS0ðxÞ BðxÞS2ðxÞ þ CðxÞSðxÞ þ DðxÞ

holds for some polynomials U;B;C and D. Moreover, from (15) we obtain

UðxÞ eSðxÞ mj

ðx aÞjþ1

!0
BðxÞ eSðxÞ mj

ðx aÞjþ1

 !2

þ CðxÞ eSðxÞ mj

ðx aÞjþ1

!
þ DðxÞ:

Rearranging the terms, we can complete the proof. h

Remark 1. If B (x)=0 in (16), then the corresponding linear functional is said to be semiclassical. This is an important class of
linear functionals, since they extend some well known characterizations of the classical orthogonal polynomials. In [24], the
authors also prove that the semiclassical class is invariant under linear spectral transformations. Thus, ifM is a semiclassical
linear functional, then Mj is also a semiclassical linear functional.

4. Zeros

In this section, we will continue with the assumption that the linear functionalM is positive definite, and we will assume
thatMj is quasi definite. We will show some properties regarding the zeros of its corresponding MOPS. Let x1; . . . ; xr be the
zeros of Pnðj; xÞ on I with odd multiplicity and define QrðxÞ ðx x1Þ ðx xrÞ. Then, Pnðj; xÞQ rðxÞðx aÞ2k, where k is the
smallest integer such that k P ðjþ 1Þ=2, is a polynomial that does not change sign on I and, furthermore, we have
hMj; Pnðj; xÞQ rðxÞðx aÞ2ki hM; Pnðj; xÞQ rðxÞðx aÞ2ki– 0:
From the orthogonality of Pnðj; xÞ with respect to Mj, for n > 2k we have
s mj tends to infinity. Notice that, from
Proposition 3. Pnðj; xÞ has at least n 2k zeros with odd multiplicity on I.

Now, we analyze the asymptotic behavior of the zeros of fPnðj; ÞgnP0 when the mas

(5), � �
t0 � � � tj þmj � � � tn�� ��
ð17Þ
Pnðj; xÞ 1

det Hn 1ðmjÞ

..

. ..
. ..

.

tj þmj t2j tnþj

..

. ..
.

���������

���������:

t t t

�� ��
respect to the linear functional
n 1 nþj 1 2n 1

1 � � � ðx aÞj � � � ðx aÞn
��� ���

On the other hand, let fRk
nða; ÞgnP0, where k is a positive integer, be the MOPS with

hcM;pðxÞi : hM; ðx aÞkpðxÞi;

i.e., k iterations of the Christoffel perturbation. Then,
t2jþ2 t2jþ3 � � � tnþj tnþjþ1
��� ���
þ 1;

ix in (17) is block partitioned into
R2ðjþ1Þ
n j 1ða; xÞ 1

det Hð2jþ2Þ
n j 2

t2jþ3 t2jþ4 � � � tnþjþ1 tnþjþ2

..

. ..
. . .

. ..
. ..

.

tnþj tnþjþ1 � � � t2n 2 t2n 1

1 ðx aÞ � � � ðx aÞn j 2 ðx aÞn j 1

����������

����������
; n > j

where HðkÞ denotes the Hankel matrix associated with fRkða; Þg . Now, if the matr
aÞjþ1R2ðjþ1Þ
n j 1ða; xÞ. Moreover, BD 1C is a
n nP0

A B
C D


 �
;

where A is a ðjþ 1Þ � ðjþ 1Þ matrix, then

det
A B
C D


 �
detðDÞdetðA BD 1CÞ:

This equation is usually called Schur’s identity. It is clear that detðDÞ det Hð2jþ2Þ
n j 2ðx
ðjþ 1Þ � ðjþ 1Þ matrix that does not depend on mj, and thus



Pnðj; xÞ
det Hð2jþ2Þ

n j 2ðx aÞjþ1R2ðjþ1Þ
n j 1ða; xÞQðmjÞ

det Hð2jþ2Þ
n j 2RðmjÞ

; ð18Þ

where QðmjÞ and RðmjÞ are monic polynomials in mj of degree jþ 1. Therefore,

lim
mj!1

Pnðj; xÞ ðx aÞjþ1R2ðjþ1Þ
n ðjþ1Þða; xÞ; ð19Þ

and, by Hurwitz’s theorem, we conclude

Proposition 4. The zeros xn;kðj; mjÞ; k 1; . . . ;n, of the polynomial Pnðj; xÞ converge to the zeros of the polynomial
ðx aÞjþ1R2ðjþ1Þ

n�ðjþ1Þða; xÞ when mj tends to infinity.
Observe that the mass point a attracts jþ 1 zeros of Pnðj; xÞ when mj tends to infinity.
A rather natural question is if the xn;kðj; mjÞ, considered as functions of mj, tends to the zeros of ðx aÞjþ1R2ðjþ1Þ

n ðjþ1Þða; xÞ in a
monotonic way. For the particular case when j 0, it was proved (see [10,11]) that the zeros of the so called Laguerre and
Jacobi type orthogonal polynomials, which are particular cases of the Uvarov’s perturbation, do behave monotonically with
respect to mj. Unfortunately, this phenomenon does not occur for every positive integer j. We have performed some numer
ical experiments with specific classical measures. For example, if the initial measure is the one associated with the Laguerre
polynomials La

nðxÞ; j 1 and a 0, then the zeros xn;kð1; mjÞ of the corresponding polynomials La
nð1; xÞ do converge to those of

x2Laþ4
n 2ðxÞ, although they are not monotonic functions of mj, when it varies in ð0;1Þ.
We present some tables that show the behavior of the zeros of Pnðj; xÞ with respect to mj, when the initial measure is

dlðxÞ 1= 1 x2
p

dx (Chebyshev polynomials of the first kind) for j 1 and n 2;3. (See Tables 1 and 2).
is is a consequence of the non positive
or a given moment functionalMj with
zeros of the polynomial approach the
Notice the existence of complex zeros depending the values of the parameter mj. Th
definite character ofM1, since det H1ðm1Þ is negative for m1 large enough. In general, f
mj large enough, the determinant of HjðmjÞ is negative. It is also observed that two

point x a as mj increases, as established in Proposition 4.
5. Further open questions
tudy of the main problem stated in the
ctionalMj preserves the positive def
by ðiiÞ in Proposition 1, replacing

d in the existence of a neighborhood

x2;2ðj; mjÞ

0.707107
1.61713
3.16098
3.74581
4.54373
4.881
3:18582� 1:08651i

3:01522� 0:317155i

3:0015� 0:0995593i

3:00015� 0:0314605i

x3;3ðj; m1Þ

0.866025
3.61105
In this section, we formulate some natural open questions which arose during the s
paper. First of all, it is natural to ask if, given j 2 N, the corresponding perturbation fun
initeness of M. Of course, the necessary and sufficient conditions are given
hMj; Pnðj; xÞPnðxÞi– 0 by hMj; Pnðj; xÞPnðxÞi > 0; n P 0. However, if one is intereste

Table 1
Zeros of P2ðj; xÞ for a 3; j 1 and some values of m1.

m1 x2;1ðj; mjÞ

0 �0.707107
0.1 �0.4034
0.5 �0.317089
1 �0.355225
5 �0.95446
10 �2.39228

102 3:18582þ 1:08651i

103 3:01522þ 0:317155i

104 3:0015þ 0:0995593i

105 3:00015þ 0:0314605i

Table 2
Zeros of P3ðj; xÞ for a 3; j 1 and some values of m1.

m1 x3;1ðj; m1Þ x3;2ðj; m1Þ

0 �0.866025 0
0.1 �0.801321 0.51227

0.5 �1.18576 0.0479705 3.7638
1 �3.70458 �0.305553 3.86415
5 �0.510437 3:38703þ 0:805069i 3:38703� 0:805069i
10 �0.525903 3:15823þ 0:549961i 3:15823� 0:549961i

102 �0.538469 3:01358þ 0:167363i 3:01358� 0:167363i

103 �0.539661 3:00134þ 0:052716i 3:00134� 0:052716i

104 �0.539779 3:00013þ 0:0166637i 3:00013� 0:0166637i

105 �0.539791 3:00001þ 0:0052693i 3:00001� 0:0052693i



ðs1; s2Þ such that the functional Mj is positive definite for every mj 2 ð s1; s2Þ, then to determine such interval from ðiiÞ might
be very complicated. An open problem is to analyze if there exists a different approach that allows one to determine the val
ues of mj such that Mj is positive definite. Certainly, the interval ðs1; s2Þ should depend essentially on the initial functional
M and the point a.

Another question that might be of interest is if, given two positive definite moment functionals M and fM, there exists a
Msequence of perturbations Mjk such that we can obtain f from the consecutive application of those perturbations to M, i.e.,

M !
Mj1

Mð1Þ M!
j2Mð2Þ M!

j3� � �  !
Mjk MðkÞ ! fM;

with the condition that positiveness must be preserved in each step.
As an example, consider the linear functionals M1 and M2, associated with the Chebyshev polynomials of the first and

second kind, respectively. When using the basis f1; ðx  1Þ; ðx  1Þ2; . . . g, it is easy to see that one of the sequences of mo
ments can be obtained from the other by means of a shift. Thus, one can go from M1 to M2 applying a sequence of pertur
bations Mjk ; k  0; 1; . .  . , with a  1, and appropriated masses mjk . However, proceeding in such a way, positive definiteness
would be lost after second step. Nevertheless, another sequence Mjk which preserves the positive definiteness may still exist.
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