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ABST RACT

Given a strongly regular Hankel matrix, and its associated sequence of moments which
defines a quasi definite moment linear functional, we study the perturbation of a fixed
moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear
functional whose action results in such a perturbation and establish necessary and suffi

cient conditions in order to preserve the quasi definite character. A relation between the
corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic
behavior of their zeros. We also study the invariance of the Laguerre Hahn class of linear
functionals under such perturbation, and determine its relation with the so called canon

ical linear spectral transformations.
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1. Introduction
1.1. Hankel matrices and orthogonal polynomials

Given a sequence of complex numbers {,}
with complex coefficients P such that

(MXT) (1)

In the literature (see [9,17], among others), M is said to be a moment linear functional, and the complex numbers {1}, are
called the moments associated with M. The semi infinite matrix

one can define a linear functional M in the linear space of polynomials

n=0
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is the Gram matrix associated with the bilinear form of the linear functional (1) in terms of the canonical basis {x"} ,_, of P.1f
there exist a family of monic polynomials such that deg(P,) n and

M, Poy(X)Pr(x)( ) Yy 20nm, Yo7 0,n,m = 0,
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where d,,, is the Kronecker delta, then {P;} ., is called the monic orthogonal polynomials sequence (MOPS) associated with
M.

The Hankel matrices and their determinants play an important role in the study of moment functionals. The linear func
tional (1) is called quasi definite if the moments matrix is strongly regular or, equivalently, the determinants of the principal
leading submatrices H, of order (n + 1) x (n + 1) are all different from 0. In this case, there exists a unique MOPS associated
with M.

On the other hand, a linear functional M is called positive definite if and only if its moments are all real and
detH, > 0,n > 0. In such a case, there exist a unique sequence of real polynomials {p,},., orthonormal with respect to
M, i.e., the following condition holds

(M, Dp(X)P (X)) Onm,

where
DPa(®) X"+ 5,x" ! + (lower degree terms), 7y, >0, n > 0.

From the Riesz representation theorem, we know that every positive definite linear functional M has an integral represen
tation (not necessarily unique)

M) [ ),

where u denotes a nontrivial measure supported on some infinite subset I of the real line.
One of the most important characteristics of orthonormal polynomials on the real line is the fact that any three consec
utive polynomials are connected by the simple recurrence relation

Xpn(x) n1Ppiq (X) + bn+1pn(x) + anPp 1(X)a nz= 07 (3)

with initial conditions p ; =0, p, = 1,"/%, and recurrence coefficients given by
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There are explicit formulae for orthonormal polynomials in terms of the determinants of the corresponding Hankel matrix.
The n th degree orthonormal polynomial is given by the Heine’s formula
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while its leading coefficient is given by a ratio of two Hankel determinants

A detHn 1
/n detH, -
The n th order reproducing kernel associated with {p,},., is defined by

n
Ka(x,y) Y p@®p(y), n=0.
k0
The name comes from the fact that, for any polynomial g, of degree at most n, we have

69) /%wmmwwm.

The reproducing kernel can be represented in a simple way in terms of the polynomials p,, and p,,.; using the Christoffel Dar
boux formula (see [9,17], among others)

pn+1 (X)pn(y) pn(x)an (y)
+1 I
Xy
which can be deduced in a straightforward way from the three term recurrence relation (3). We will denote by Kff‘j) (x,y) the

i th (resp.j th) partial derivative of K, (x,y) with respect to the variable x (resp. y). For the quasi definite case, the reproduc
ing kernel is defined as

I<H (X7y) an

X#Y,



" Pe(0)PL(Y)
Kn(x,y) ki;, o
When polynomials are studied, one of the most important quantities to be considered are their zeros. The fundamental the
orem of algebra asserts that any polynomial of degree n has exactly n zeros (counting multiplicities). When dealing with
orthogonal polynomials on the real line, one can say much more about their localization. Two of the most relevant properties
of their zeros are the following:

(i) The zeros of p, are all real, simple and lie in the convex hull of I.
(ii) Suppose x,1 < Xp2 < < Xnn are the zeros of p,, then

Xnk < Xn 1.k < Xn,k+l~, 1 < k <n 1.

Our interest in perturbations of Hankel matrices is motivated by their many applications in mathematical and physical
problems. Their relations with moment problems ([7]), integrable systems ([23]), Padé approximation ([20]), as well as their
applications in coding theory and combinatorics (see [18,22] and references therein), constitute an illustrative sample of
their impact.

1.2. Perturbations of Hankel matrices

Before introducing the problem to be analyzed in this contribution, let us briefly discuss two rather straightforward but
interesting examples where the moments are modified in a natural way. First, instead of taking the canonical basis of P, con
sider the basis {1, (x a), (x a), ...}, where a € R. Then, the new sequence of moments {v,},., is given by

n & n nj.n j . n nij.nj )
on (M, (x a") <M,]zoj<j>( 1" a fo> ;(J,)( H"am iy, (4)

As a consequence, the (n + 1) x (n+ 1) principal leading submatrix of the corresponding Hankel matrix is
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Thus, if M is a quasi definite moment linear functional, then the polynomials
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constitute a sequence of monic polynomials orthogonal with respect to M, using the new basis, with Q,(x a) Pn(x). No
tice that this simple change of the basis resulted in a perturbation on the antidiagonals of (2). Namely, each of the (j + 1) th
antidiagonal is perturbed by the addition of the constant m;. In the remaining of the manuscript, we will use the basis
{1,(x a),(x a) ...}, since most of the required calculations can be performed in a simpler way.

The second example is given by the Uvarov’s spectral transformation (see [21,24]), whose action results in a perturbation
of the first moment vy, while leaving the others unaffected. This perturbation (the most simple case that we can consider) is
closely related with the Uvarov Chihara integrable system (see [23]). In order to define it, we introduce the real Dirac delta
functional 6(x a) supported at x a, which acts in the following way

(6(x a),P(x)) P(a), PeP.
Then, Uvarov’s transformation is defined by

(Mu,p(x))  (M.p(x) + m{3x a),p(x)) (M.p(x)) +mp(a),
i.e., a perturbation on the first antidiagonal on the Hankel matrix.
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Now a natural question arises: Is there a linear functional M such that its action results on a perturbation of (only) the
moment v; or, equivalently, the (j + 1) th antidiagonal of the Hankel matrix H? In other words, we are interested in the prop
erties of a functional M whose moments are given by

Un, n#j,
On+m;, N Jj

U (M, (x a)) { (6)

for some m € R, i.e,, its corresponding Hankel matrix is

Ug e b +My Vi
Hm) Jo+m o vy Vg | (7)
Vjr1 oo Dojyr Dgjg2

An analogous problem for linear functionals defined in the linear space of Laurent polynomials has been analyzed recently in
[6]. There, the corresponding moments matrix is a Toeplitz matrix and the perturbation studied is one that modifies two
symmetric subdiagonals of such matrix by means of a modification of the Lebesgue measure, supported on the unit circle.
The main objective of this manuscript is to study equivalent perturbations of Hankel matrices, which appear in the theory of
orthogonal polynomials on the real line. In Section 2, a linear functional with the desired properties, denoted by AM;, is de
fined in terms of M, and we obtain necessary and sufficient conditions for the quasi definiteness of M;, provided that M is
quasi definite. Under those conditions, we obtain an expression that relates their corresponding families of orthogonal poly
nomials. In Section 3, we analyze the connection between M; and the so called canonical spectral transformations, and the
invariance of the Laguerre Hahn class under this perturbation is studied in Section 4. Section 5 deals with an asymptotic
analysis of the zeros of the corresponding orthogonal polynomials. Finally, in Section 6, we pose some related open problems
that will be considered in future contributions.

2. A perturbation on the antidiagonal of a Hankel matrix

In order to state our main result, we will need some definitions. Given a moment linear functional M, the usual distri
butional derivative DM (see [19]) is given by

(DM,p)  (M,p)), peP.

In particular, if j is a nonnegative integer, then

(DV3(x a),p(x)) ( 1/p"(a).

Now, we introduce the linear functional M;, given by
M;,p(x))  (M,p(x)) +( 1) ]—,’ (DVs(x  a),p(x))  (M,p(x))+ ]-—,]PU) (a), (8)
where m; and a are real constants.

It is easy to see that all the moments associated with M; are equal to the moments v, of M, except for the j th one, which
is equal to v; + m;. That is, if we denote by v, the moments of M;, then they are given by (6) and their corresponding Hankel
matrix is (7). Notice that this perturbation is the simplest one that preserves the Hankel structure of the moment matrix.

We are ready to state our main result, which establishes necessary and sufficient conditions under which the linear func
tional M; preserves the quasi definite character, and provides the relation between the corresponding MOPS. We refer to
[2,4,5,12] for other contributions about some other kinds of perturbations of moment functionals.

Proposition 1. Let M be a quasi definite moment linear functional and {Py}, its corresponding MOPS. Then the following
statements are equivalent:

(i) The moment linear functional M;, defined as in (8), is quasi definite.
(ii) For every n > 0, the matrix I; + K;D;, with

({) 0 K9%a,a) K @a) - K°(a,a)
J G.1) G 11 0.1)
) K , K ,a K, (a,a
D, ﬂ Kj n1 ) ( 1

J!



and I; denotes the (j + 1) x (j + 1) identity matrix, is non singular and

Pl 1’ Pa(a)
2 P! V(@) | P @)
(M, P (x)) + D;(I; + K;D;) ) # 0.
Pa(@) P (a)
Moreover, if M; is quasi definite and we denote by {P,(j; )}, its corresponding MOPS, then
K9%ax) 1" P.(a)
KV 19q x PV(a)
Pa(j:x) Pai) | " ,( "oy 1| (9)
00) p(i).
K9 (a,x) n (@)

Proof. Suppose that M; is a quasi definite moment linear functional. Since {p,},., is the MOPS associated with M, there
exist constants A0, ..., A.n 1 Such that

n 1
Puisx)  Pa(®) + ) niPi(x). (10)
k 0

Thus, using the orthogonality property, we have

mmkj] G I
(M P R00) (1)t "ortie
MEE) T (MEX)

Substituting the above expression in (10), we obtain
J

a5 () Gl @

j

o > Pk(x)

i (M, Py (x)) (11)
Pa(x) Z( )P ki )

In particular, for 0 < i < j, we get the following linear system of j + 1 equations and j + 1 unknowns

PYGix)  PY(x) Z( )PU G K™ (a,x), (12)

Ank , 0<k<n 1.

Pu(j;x)  Pa(x)

which, setting x a, reads as
Pn(j;a) Py(a)
Vo || P

]

(I +K;D)
PrGia) ] [P
From (11), if Pﬁ,”(i; a) 0 for all 0 <1<, then we have P,(j;x) Pu(x), which contradicts the uniqueness of P,. Thus

Pa(j;a), P (s a), ... ,PY(j;:a)] is not zero, and it constitutes the unique solution of the linear system. Therefore the
i+ 1) x (j + 1) matrix I; + K;D; is non singular. Furthermore, (11) reduces to (9).
On the other hand,

0 (Mj, PalGs ¥0Pa()) (M, Pa(is 0Pa(00)) + o [Pa(i: X)Pa(x)]

<M,[Pn<x> %i(’)l’“’oam"’ } >+m’[P0x n ()7,
10

T

P9 (a) Py(a)
PV V(a) | P (@
(M, Py(x)Pp (X)) + . D;(I; + K;D))

Pa(a) PY(a)



For the converse, assume that (ii) holds, and define {P,(j; )},., as in (9). Then it is straightforward to show that {P,(j; )} ., is
the MOPS with respect to M;, and its quasi definite character is proved. O

3. Canonical linear spectral transformations

In this section, we will assume M is a positive definite linear functional, with an associated positive Borel measure u sup
ported in some interval I of the real line. The corresponding Stieltjes function is then defined by

S /I du(y)

X y’
and admits the following equivalent representation as a series expansion at infinity
o~ Ha
NI 13)
n 0

i.e., it is a generating function of the sequence of moments for the measure du (questions about convergence are not con
sidered here). In many problems, (13) has more simple analytical and transformation properties than the spectral measure
 and hence dealing with S(x) is often much more convenient for analysis.

A generic linear spectral transformation of a Stieltjes function S(x) is another Stieltjes function of the form

S ) A(x)S(x) + B(x)
C(x)S(x) +D(x)’
where A(x), B(x), C(x) and D(x) are polynomials. If C(x) 0, then the transformation is called linear.

If the linear functional M; is quasi definite and we denote by S its corresponding Stieltjes function, then we can connect S
and S by a simple relation. In fact, since only the j th moment is perturbed, then it is clear that

(14)

S(x) S(X)+—(X g

that is, the Stieltjes function is modified by the addition of a rational function with a pole of order j + 1 at x a. In this way,
we conclude

(15)

x ay"'s(x)+m;
(X a)j+1

and therefore the transformation is linear.

S(x)

Definition 1. The moment linear functional M belongs to the Laguerre Hahn class if its corresponding Stieltjes function
satisfies the Ricatti equation

D(X)S'(x)  BX)S?(x) + C(X)S(x) + D(x), (16)

where ®@(x),B(x),C(x) and D(x) are polynomials with complex coefficients such that ®&(x)=#0 and
D(x)  [(DM)0®](X) + (M0C)(x)  [(M & M)0oB](x).

The invariance of the Laguerre Hahn class under rational spectral transformations was established in [24]. Therefore, in
our case we can conclude

Proposition 2. Let M be a linear functional that belongs to the Laguerre Hahn class. Then M; also belongs to the Laguerre Hahn
class and its corresponding Stieltjes function satisfies

D(X)S'(x)  B)S2(x) + C(x)S(x) + D(x),
with
Ox) (x aF?ox),
Bx) (x aP7Bx),
Cx) (x a?Cx) mx ay"'B),
D(x) m?B(x) mj(x ay"'C)+m(i+1)(x ay®dx) +(x a)¥ D).

]

Proof. From the previous discussion, it is clear that M; belongs to the Laguerre Hahn class. Now, let S be the Stieltjes func
tion associated with M. Then,



D(x)S'(x)  B(x)S*(x) + C(x)S(x) + D(x)
holds for some polynomials ®,B, C and D. Moreover, from (15) we obtain
’ 2
~ m; ~ m; ~ m;
d(x) S(x) —(x a)j”) B(x) (S(x) 7()( a)M) +C(x) S(x) —(x a)’“) + D(x).

Rearranging the terms, we can complete the proof. O

Remark 1. If B (x)=0in (16), then the corresponding linear functional is said to be semiclassical. This is an important class of
linear functionals, since they extend some well known characterizations of the classical orthogonal polynomials. In [24], the
authors also prove that the semiclassical class is invariant under linear spectral transformations. Thus, if M is a semiclassical
linear functional, then M; is also a semiclassical linear functional.

4. Zeros

In this section, we will continue with the assumption that the linear functional M is positive definite, and we will assume
that M; is quasi definite. We will show some properties regarding the zeros of its corresponding MOPS. Let x4, ..., x, be the
zeros of P, (j;x) on I with odd multiplicity and define Q,(x) (x x;) (x x,). Then, P,(j;x)Q,(x)(x a)*, where k is the
smallest integer such that k > (j + 1)/2, is a polynomial that does not change sign on I and, furthermore, we have

(M P )Q (0 (x - @) (M Pa(i0)QX)(x  a)™) #0.
From the orthogonality of P,(j;x) with respect to M;, for n > 2k we have
Proposition 3. P,(j;x) has at least n 2k zeros with odd multiplicity on L

Now, we analyze the asymptotic behavior of the zeros of {P(j; )},., when the mass m; tends to infinity. Notice that, from

(5),

o T LT Un
. 1 vj +m; Uaj Unij
Pa(j;X) —o—— 17
W) e, T (17)
Un 1 Unij 1 Uon 1
1 e gy - x a)®

On the other hand, let {R(a; )} where k is a positive integer, be the MOPS with respect to the linear functional

n=0’

(M,p()): (M, (x a)p(x)),

i.e., k iterations of the Christoffel perturbation. Then,

Ugjr2 Vi3 +-¢ Unj Unyj1
U2j+3 U2jpsa -+ Unij1 Unjt2
- 1
R ax) ——— | : . : : , n>j+1,
n j 1( ) detHElzjjzz) . . . : :
Unyj  Ungjs1 -0 U2n 2 Uon 1
1 x a - x a"'? x a*l'!
where H® denotes the Hankel matrix associated with {R¥(a; )}nso- Now, if the matrix in (17) is block partitioned into
A B
C DJ
where Ais a (j+ 1) x (j + 1) matrix, then
A B
det { c D} det(D)det(A BD 'C).

This equation is usually called Schur’s identity. It is clear that det(D) ~detH?/%(x ay*'R2%,")(a;x). Moreover, BD 'Cis a
(j+1) x (j + 1) matrix that does not depend on m;, and thus



detH? 2 (x ay"'R™(a;x)Q(my)

P (j: ) - e — : (18)
detH? %) R(m;)
where Q(m;) and R(m;) are monic polynomials in m; of degree j + 1. Therefore,
nl,i% PoGix)  (x ay'RVY (@ x), (19)
and, by Hurwitz’s theorem, we conclude
Propos:?o;aﬂ. The zeros Xq(j;m;), k 1., ...,n, of the polynomial Pp(j;x) converge to the zeros of the polynomial
(x ay R i (@ X) when m; tends to infinity.

Observe that the mass point a attracts j + 1 zeros of P,(j;x) when m; tends to infinity.

A rather natural question is if the x, (j; m;), considered as functions of m;, tends to the zeros of (x ~ay*"'R2V:Y; (a:x) ina
monotonic way. For the particular case whenj 0, it was proved (see [10,11]) that the zeros of the so called Laguerre and
Jacobi type orthogonal polynomials, which are particular cases of the Uvarov’s perturbation, do behave monotonically with
respect to m;. Unfortunately, this phenomenon does not occur for every positive integer j. We have performed some numer
ical experiments with specific classical measures. For example, if the initial measure is the one associated with the Laguerre
polynomials L%(x),j 1anda O, then the zeros x,,(1;m;) of the corresponding polynomials L(1;x) do converge to those of
X2L**3(x), although they are not monotonic functions of m;, when it varies in (0, o).

We present some tables that show the behavior of the zeros of P,(j;x) with respect to m;, when the initial measure is
du(x) 1/v1 x2dx (Chebyshev polynomials of the first kind) forj 1andn 2,3.(See Tables 1 and 2).

Notice the existence of complex zeros depending the values of the parameter m;. This is a consequence of the non positive
definite character of My, since det H, (m;) is negative for m, large enough. In general, for a given moment functional M; with
m; large enough, the determinant of H;(m;) is negative. It is also observed that two zeros of the polynomial approach the
point x a as m; increases, as established in Proposition 4.

5. Further open questions

In this section, we formulate some natural open questions which arose during the study of the main problem stated in the
paper. First of all, it is natural to ask if, given j € N, the corresponding perturbation functional M; preserves the positive def
initeness of M. Of course, the necessary and sufficient conditions are given by (ii) in Proposition 1, replacing
(M, Pu(j; x)Pr(x)) # 0 by (M;, Pu(j; x)Pp(x)) > 0, n > 0. However, if one is interested in the existence of a neighborhood

Table 1
Zeros of P,(j;x) fora 3,j 1 and some values of m;.
my X2.1(;m;) X22(j;m;)
0 -0.707107 0.707107
0.1 —-0.4034 1.61713
0.5 —-0.317089 3.16098
1 —-0.355225 3.74581
5 —0.95446 4.54373
10 —2.39228 4.881
102 3.18582 + 1.08651i 3.18582 — 1.08651i
10° 3.01522 +0.317155i 3.01522 — 0.317155i
104 3.0015 + 0.0995593i 3.0015 — 0.0995593i
10° 3.00015 + 0.0314605i 3.00015 — 0.0314605i

Table 2

Zeros of P5(j;x) fora 3,j 1 and some values of m;.
m X31(j;m) X32(j;m) X33(j;m)
0 —0.866025 0 0.866025
0.1 —0.801321 0.51227 3.61105
0.5 -1.18576 0.0479705 3.7638
1 —3.70458 —0.305553 3.86415
5 —0.510437 3.38703 + 0.805069i 3.38703 — 0.805069i
10 —0.525903 3.15823 +0.549961i 3.15823 — 0.549961i
10?2 —0.538469 3.01358 + 0.167363i 3.01358 — 0.167363i
103 —0.539661 3.00134 + 0.052716i 3.00134 - 0.052716i
104 —-0.539779 3.00013 + 0.0166637i 3.00013 - 0.0166637i

10° —0.539791 3.00001 + 0.0052693i 3.00001 — 0.0052693i




(71, T2) such that the functional M;is positive definite for every m; € ( 71, 72), then to determine such interval from (ii) might
be very complicated. An open problem is to analyze if there exists a different approach that allows one to determine the val
ues of m;such that M;is positive definite. Certainly, the interval (71, 72) should depend essentially on the initial functional
M and the point a.

Another question that might be of interest is if, given two positive definite moment functionals M and M, there exists a

sequence of perturbations M;, such that we can obtain M from the consecutive application of those perturbations to M, i.e.,

M M

M, ; o Mie ® N
M—>M(1> @ 5 S MY = M

with the condition that positiveness must be preserved in each step.

As an example, consider the linear functionals M'and M?, associated with the Chebyshev polynomials of the first and
second kind, respectively. When using the basis {1, (x 1), (x 1), ...},itis easy to see that one of the sequences of mo
ments can be obtained from the other by means of a shift. Thus, one can go from M to M? applying a sequence of pertur
bations M;,,k 0,1,.. .,witha 1, and appropriated masses m;,. However, proceeding in such a way, positive definiteness
would be lost after second step. Nevertheless, another sequence M;, which preserves the positive definiteness may still exist.
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