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ON ALPERT MULTIWAVELETS

JEFFREY S. GERONIMO AND FRANCISCO MARCELLÁN

(Communicated by Walter Van Assche)

Abstract. The multiresolution analysis of Alpert is considered.
Explicit for-mulas for the entries in the matrix coefficients of the
refinement equation are given in terms of hypergeometric functions.
These entries are shown to solve generalized eigenvalue equations as
well as partial difference equations. The matrix coefficients in the
wavelet equation are also considered and conditions are given to obtain
a unique solution.

1. Introduction

The theory of wavelets has had a broad and lasting impact on various areas
of mathematics and engineering such as numerical analysis, signal processing, and
harmonic analysis [5], [6], [19], [20]. The most well-known wavelet may be the Haar
wavelet which is not continuous and one of the great achievements in the area is
Daubechies’ construction of compactly supported, orthogonal wavelets that are at
least continuous [7]. The theory of one variable multiwavelets [1], [9], [11], [17],
[18] is an extension of wavelet theory to the case of when there are several scal-
ing functions instead of just one. This extra flexibility allows the construction of
piecewise polynomial scaling functions and wavelets that are compactly supported,
orthogonal, and at least continuous [10]. The scaling function associated with the
Haar wavelet is the constant function supported on [0, 1] and zero elsewhere and the
linear space associated with this function is the space of piecewise constant polyno-
mials with integer knots. The extension of this space to higher degree polynomials
gives the space of piecewise polynomials of degree n with integer knots and an or-
thogonal basis for this space are the Legendre polynomials restricted to [0, 1] and
their integer translates. Alpert first developed the multiresolution analyses associ-
ated with these spaces and applied them to various problems in integral equations
[2] and numerical analysis [8] and [21]. For an alternative use of orthogonal poly-
nomials to construct nontraditional “wavelets” see [16]. An important equation
in multiresolution analysis is the refinement equation which links the scaling func-
tions on one level to their scaled versions. Here we examine in more detail the
coefficients in the refinement equation associated with the Alpert multiresolution
analysis with the intent of obtaining formulas for these coefficients as well as recur-
rence relations. These lead to combinatorial identities and orthogonality relations
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that seem to have been unnoticed. In section 1 we review Alpert’s multiresolution
analyses and make contact with the Legendre polynomials. In section 2 we derive
various representations for the entries of the matrices in the refinement equation
and discuss the orthogonality relations satisfied by these coefficients. In section 3
we develop recurrence formulas satisfied by these coefficients and show that they
give rise to some generalized eigenvalue problems. In section 4 we investigate the
Fourier transform of the scaling functions which turns out to be related to Bessel
functions of half integer order. Using some identities satisfied by Bessel functions
we arrive at other recurrences satisfied by the entries in the refinement matrices.
Finally in section 5 we consider the matrices in the wavelet equation associated
with these multiresolution analyses. These matrices must satisfy certain conditions
which follow from the orthogonality of the wavelets to the scaling functions and to
the other wavelets. We present natural conditions in order for there to be a unique
solution to these equations.

2. Preliminaries

Let φ0, . . . , φr be compactly supported L2-functions, and suppose that V0 =
clL2 span{φi(· − j) : i = 0, 1, . . . , r, j ∈ Z}. Then V0 is called a finitely generated
shift invariant (FSI) space. Let (Vp)p∈Z be given by Vp = {φ(2p·) : φ ∈ V0}. Each
space Vp may be thought of as approximating L2 at a different resolution depending
on the value of p. The sequence (Vp) is called a multiresolution analysis [7, 12, 14]
generated by φ0, . . . , φr if (a) the spaces are nested, · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ,
and (b) the generators φ0, . . . , φr and their integer translates form a Riesz basis for
V0. Because of (a) and (b) above, we can write

(1) Vj+1 = Vj ⊕Wj ∀j ∈ Z.

The space W0 is called the wavelet space, and if ψ0, . . . , ψr generate a shift-invariant
basis for W0, then these functions are called wavelet functions. If, in addition,
φ0, . . . , φr and their integer translates form an orthogonal basis for V0, then (Vp) is
called an orthogonal MRA. Let Sn

−1 be the space of polynomial splines of degree n
continuous except perhaps at the integers, and set V n

0 = Sn
−1 ∩ L2(R). With V n

p

as above these spaces form a multiresolution analysis. If n = 0 the multiresolution
analysis obtained is associated with the Haar wavelet while for n > 0 they were
introduced by Alpert [1, 2]. If we let

φj(t) =

{
p̂j(2t− 1), 0 ≤ t < 1

0, elsewhere,

where p̂j(t) is the Legendre polynomial [22] of degree j orthonormal on [−1, 1] with
positive leading coefficient i.e. p̂j(t) = kjt

j + lower degree terms with kj > 0 and

∫ 1

−1

p̂j(t)p̂k(t)dt = δk,j ,

then

(2) Φn =
[
φ0 · · · φn

]T
,
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and its integer translates form an orthogonal basis for V0. For the convenience in
later computations we set

(3) Pn(t) =

⎡
⎢⎣
p̂0(t)
...

p̂n(t)

⎤
⎥⎦χ[0,1].

Equation (1) implies the existence of the refinement equation,

(4) Φn(
t

2
) = Cn

−1Φn(t) + Cn
1 Φn(t− 1),

where the Cn
i , i = −1, 1, are (n+1)× (n+1) matrices. The orthonormality of the

entries in Φn(
t
2 ) implies that

(5) 2In+1 = Cn
−1C

n
−1

T + Cn
1 C

n
1
T ,

where In is the n×n identity matrix and AT is the transpose of A. In terms of the
entries of Pn we see

(6) p̂i(t) =
i∑

j=0

(Cn
−1)i,j p̂j(2t+ 1)|[−1,0) +

i∑
j=0

(Cn
1 )i,j p̂j(2t− 1)|[0,1],

for −1 ≤ t ≤ 1. In order to exploit the symmetry of the Legendre polynomials we
shift t → t+ 1 so that

Φn(
t+ 1

2
) = Pn(t) = Cn

−1Φn(t+ 1) + Cn
1 Φn(t)

= Cn
−1Pn(2t+ 1) + Cn

1 Pn(2t− 1).(7)

The monic polynomials have the following representation in terms of a 2F1 hyper-
geometric function [22, p. 80],

(8) pn(t) =
2nn!

(n+ 1)n
2F1

(
−n, n+ 1

1
;
1− t

2

)
,

where formally,

pFq

(
a1, . . . ap
b1, . . . bq

; t

)
=

∞∑
i=0

(a1)i . . . (ap)i
(b1)i . . . (bq)i(1)i

ti

with (a)0 = 1 and (a)i = (a)(a + 1) . . . (a + i − 1) for i > 0. Since one of the
numerator parameters in the definition of pn is a negative integer the series in
equation (8) has only finitely many terms. The relation between p̂n and pn is given
by

(9) p̂n(t) =

√
2n+ 1(2n− 1)!!√

2n!
pn(t).

A representation that makes the symmetry of the Legendre polynomials manifest
is [22, p. 83]

(10) p2n(x) = (−1)n
(1/2)n

(n+ 1/2)n
2F1

(
−n, n+ 1/2

1/2
; x2

)
,

and

(11) p2n+1(x) = (−1)n
(3/2)nx

(n+ 3/2)n
2F1

(
−n, n+ 3/2

3/2
; x2

)
.
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Finally we recall the well-known recurrence formula satisfied by the monic Legendre
polynomial,

(12) pn+1(t) = tpn(t)−
n2

(2n+ 1)(2n− 1)
pn−1(t).

2.1. Coefficient representations. Since the Legendre polynomials are symmetric
or antisymmetric we need only compute C1 which equation (7) shows is given by

(13) Cn
1 =

∫ 1

0

Pn(t)Pn(2t− 1)Tdt,

so that

(14) (Cn
1 )i,j =

∫ 1

0

p̂i(t)p̂j(2t− 1)dt.

In the above equation we index the entries in Cn
1 beginning with i = 0, j = 0.

Because of the orthogonality of the Legendre polynomials to powers of t less that
their degree the above integral is equal to zero for i < j. Summarizing we find

Lemma 1. Let Cn
1 and Cn

−1 be the matrix coefficients in the above refinement
equation. Then Cn

1 is a lower triangular matrix with positive diagonal entries.
Furthermore

(15) (Cn
−1)i,j = (−1)i+j(Cn

1 )i,j , i, j ≥ 0,

which gives the orthogonality relations

(16) 0 = ((−1)i+k + 1)

i∑
j=0

(Cn
1 )i,j(C

n
1 )k,j k > i,

and

(17) 1 =

i∑
j=0

(Cn
1 )i,j(C

n
1 )i,j .

We examine the above integral using monic polynomials pi which in terms of
hypergeometric functions is

I1i,j =

∫ 1

0

pi(t)pj(2t− 1)dt(18)

=
2i+j(1)i(1)j

(i+ 1)i(j + 1)j
I2i,j ,(19)

where

I2i,j = (−1)j
∫ 1

0
2F1

(
−i, i+ 1

1
;
1− t

2

)
2F1

(
−j, j + 1

1
; t

)
dt.

The symmetry of the Legendre polynomials has been used to obtain the last expres-
sion. From the definition of the hypergeometric functions we find after integration,

I2i,j = (−1)j
i∑

k=0

j∑
n=0

(−i)k(i+ 1)k
(1)k(1)k2k

(−j)n(j + 1)n
(1)n(1)n

k!n!

(n+ k + 1)!
.
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Since (n+k+1)! = (k+2)n(1)k+1 the sum on n equals 2F1

(
−j, j+1

k+2 ; 1
)
=

(k−j+1)j
(k+2)j

by the Chu-Vandermonde formula [4, p. 3], so

I2i,j = (−1)j
i∑

k=j

(−i)k(i+ 1)k
(1)k(1)k+12k

(k − j + 1)j
(k + 2)j

,

where the fact that (k− j +1)j = 0 for k < j has been used to obtain the equality.
Shifting k by k−j, then using the identities (a+j)k = (a)k(a+j)k with a = −i, i+1,

(k + 1)j =
(1)j(j+1)k

(1)k
, and (k + j + 2)j =

(1)2j+1(2j+2)k
(1)j+1(j+2)k

, yields

I2i,j = (−1)j
(−i)j(i+ 1)j
(1)2j+12j

−i+j∑
k=0

(−i+ j)k(i+ j + 1)k
(1)k(2j + 2)k2k

= (−1)j
(−i)j(i+ 1)j
(1)2j+12j

2F1

(
−i+ j, i+ j + 1

2j + 2
;
1

2

)
.

Substituting this into equation (18) yields

(20) I1i,j =
2i(1)i(i+ 1)j(1)j

(1)i−j(i+ 1)i(j + 1)j(1)2j+1
2F1

(
−i+ j, i+ j + 1

2j + 2
;
1

2

)
,

where we have used the identity (−1)j(−i)j = (1)i/(1)i−j . This shows that

(Cn
1 )i,j =

(2i− 1)!!(2j − 1)!!
√
(2i+ 1)(2j + 1)

(1)j(1)i
I1i,j

= li,j 2F1

(
−i+ j, i+ j + 1

2j + 2
;
1

2

)
,(21)

where

(22) li,j =

√
2i+ 1

2j + 1

(i+ j)!

2j(2j)!(i− j)!
.

When the parity of i and k are the same, the sum in equation (16) must be equal
to zero and it is easy to check that the sum in (16) is not in general equal to zero
when i and k are of different parities. If we set n = i − j in the hypergeometric
function above, the function becomes

(23) 2n
(2j + 2)n

(n+ 2j + 1)n
2F1

(
−n, n+ 2j + 1

2j + 2
;
1

2

)
= p(2j+1,−1)

n (0),

where p
(α,β)
n (x) is the monic Jacobi polynomial. Since β = −1, p

(2j+1,−1)
n (x) is

not in the standard class of Jacobi orthogonal polynomials, furthermore in the
discrete orthogonality above both the degree and the order are changing. The
representation given in equation (21) suggests an easy recurrence formula in i but
not so simple in j. A useful representation for the above hypergeometric function
that simplifies the dependence on j maybe obtained by using the transformation

2F1

(
−n, b

c ; x
)
= (b)n

(c)n
(−x)n2F1

(
−n, −c−n+1

−b−n+1 ; 1
x

)
which yields,

l̂i,j 2F1

(
−(i− j), i+ j + 1

2j + 2
;
1

2

)
= 2F1

(
−(i− j), −i− j − 1

−2i
; 2

)

= 2F1

(
−n, −2i+ n− 1

−2i
; 2

)
,(24)
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where l̂i,j = (−2)i−j (i+j+1)!(i+j)!
(2j+2)!(2i)! and n = i − j. The last equality shows that the

hypergeometric function is related to Krawtchouk polynomials [3, p. 347].
The orthogonality relation (16) is nontrivial only among the even and odd rows

of Cn
1 . To take this into account we use the expressions (10) and (11). Furthermore

in order to make apparent the polynomial character in j of the resulting hyper-
geometric function we use the transformation leading to equation (24). In this
case

I12i,j =(−1)i+j2j
(1)i(1)j

(−i)i(j+1)j

∫ 1

0

t2i2F1

(
−i, −i+1/2

−2i+1/2
; 1/t2

)
2F1

(
−j, j+1

1
; t

)

= (−1)i+j2j
(1)i(1)j

(−i)i(j + 1)j

i∑
k=0

(−i)k(−i+ 1/2)k
(1)k(−2i+ 1/2)k

Se
j,n,

(25)

where

Se
j,j =

j∑
n=0

(−j)n(j + 1)n
(1)n(1)n

∫ 1

0

t2(i−k)+ndt

=
1

2(i− k) + 1

j∑
n=0

(−j)n(j + 1)n(2(i− k) + 1)n
(1)n(1)n(2(i− k) + 2)n

.

The last sum is 3F2

(
−j, j+1, 2(i−k)+1

1, 2(i−k)+2
; 1

)
=

(−j)j(2(i−k)−j+1)j
(1)j(2(i−k)+2)j

where the Pfaff-

Saalschutz formula [4, p.9] has been used since the hypergeometric function is
balanced (i.e the sum of the numerator parameter is one less than the sum of
the denominator parameters). Substitution of the above result in equation (25)
yields

(26) I12i,j = (−1)i+j2j
(1)i(−j)j

(−i)i(j + 1)j
Ŝ2i,j ,

where

(27) Ŝ2i,j =
i∑

k=0

(−i)k(−i+ 1/2)k(2(i− k)− j + 1)j
(1)k(−2i+ 1/2)k(2(i− k) + 1)j+1

.

Now it is most convenient to consider j even or odd. For j → 2j the above sum is
equal to zero for i− j < k. Thus,

Ŝ2i,2j =

i−j∑
k=0

(−i)k(−i+ 1/2)k(2(i− k)− 2j + 1)2j
(1)k(−2i+ 1/2)k(2(i− k) + 1)2j+1

.

For m = 0, 1 we have the equations,

(2(i− k − j)+ 1+m)2j−m = 22j−m (i− k − j+ m+1
2

)(i− k − j + 1+ m
2
) · · · (i− 1

2
)(i)

(−i+ 1
2
)k(−i)k

= (−1)m22j−m ((−i+ j + −m+1
2

)k(−i+ j − m
2
)k(−i)j(−i+ 1

2
)j−m

(−i+ 1/2)k(−i)k
,
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and (2(i − k) + 1)2j+1−m = 22j+1−m (−i+1/2)k(i+1/2)j+1−m(−i)k(i+1)j
(−i−j+m−1/2)k(−i−j)k

. Thus with

m = 0,

Ŝ2i,2j =
1

2

(−i)j(−i+ 1/2)j
(i+ 1/2)j+1(i+ 1)j

i−j∑
k=0

(−i+ j)k(−i+ j + 1/2)k(−i− j − 1/2)k(−i− j)k
(1)k(−2i+ 1/2)k(−i)k(−i+ 1/2)k

=
1

2

(−i)j(−i+ 1/2)j
(i+ 1/2)j+1(i+ 1)j

4F3

(
−i+ j, −i+ j + 1/2, −i− j − 1/2, −i− j

−2i+ 1/2, −i, −i+ 1/2
; 1

)
.

Substitution of this into equation (27) yields

I12i,2j = 22j−1 (−i)j(−i+ 1/2)j(2j)!

(i+ 1/2)j+1(i+ 1)j(2j + 1)2j

4F3

(
−(i− j), −i+ j + 1/2, −i− j − 1/2, −i− j

−2i+ 1/2, −i, −i+ 1/2
; 1

)
.(28)

With j → 2j − 1 in equation (26) and m = 1 in the above identities we obtain

I12i,2j−1 = 22j−2 (−i)j(−i+ 1/2)j−1(2j − 1)!

(i+ 1/2)j(2j)2j−1(i+ 1)j

4F3

(
−(i− j), −i+ j − 1/2, −i− j + 1/2, −i− j

−2i+ 1/2, −i, −i+ 1/2
; 1

)
.(29)

Similar manipulations for i odd lead to

I12i+1,2j = 22j−1 (−i)j(−i− 1/2)j(2j)!

(i+ 3/2)j(i+ 1)j+1(2j + 1)2j

4F3

(
−(i− j), −i+ j − 1/2, −i− j − 1, −i− j − 1/2

−2i− 1/2, −i, −i− 1/2
; 1

)
,(30)

and

I12i+1,2j+1 = 22j
(−i)j(−i− 1/2)j+1(2j + 1)!

(i+ 3/2)j+1(i+ 1)j+1(2j + 2)2j+1

4F3

(
−(i− j), −i+ j + 1/2, −i− j − 1, −i− j − 3/2

−2i− 1/2, −i, −i− 1/2
; 1

)
.(31)

Collecting the above computations gives:

Theorem 2. The entries in the matrix Cn
1 have the following representations:

(Cn
1 )i,j =

√
(2i+ 1)(2j + 1)(i+ j)!

2j(2j + 1)!(i− j)!
2F1

(
−i+ j, i+ j + 1

2j + 2
;
1

2

)

= (−1)i−j

√
(2i+ 1)(2j + 1)(2i)!

2i(i+ j + 1)!(i− j)!
2F1

(
−i+ j, −i− j − 1

−2i
; 2

)
.(32)

Alternatively,

(Cn
1 )2i,j = W2i,j

4F3

(
−i+ � j

2�, −i+ 
 j
2�+ 1/2, −i− � j

2�, −i− 
 j
2� − 1/2

−2i+ 1/2, −i, −i+ 1/2
; 1

)
(33)
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and

(Cn
1 )2i+1,j = W2i+1,j

4F3

(
−i+ 
 j

2�, −i+ � j
2� − 1/2, −i− 
 j

2� − 1, −i− � j
2� − 1/2

−2i− 1/2, −i, −i− 1/2
; 1

)
,(34)

with

W2i,j = K2i,j

2j−1j!(−i)� j
2 �
(−i− 1

2 )��j�2�

(i+ 1
2 )� j

2 �+1(i+ 1)� j
2 �
(j + 1)j

,

W2i+1,j = K2i+1,j

2j−1j!(−i)� j
2 �
(−i+ 1

2 )� j
2 �

(i+ 1
2 )� j

2 �+1(i+ 1)� j
2 �
(j + 1)j

,

and

Ki,j =
(2i− 1)!!(2j − 1)!!

√
(2i+ 1)(2j + 1)

(1)i(1)j
.

In all cases the above hypergeometric functions are balanced. Also the above func-
tions satisfy the orthogonality relations given by equations (16) and (17).

The values of (Cn
1 )i,j for j = i, i− 1, and i− 2 with n > 2 are simple and given

by

(35) (Cn
1 )i,i =

1

2i
, (Cn

1 )i,i−1 =

√
(2i+ 1)(2i− 1)

2i
,

and

(36) (Cn
1 )i,i−2 =

(i− 2)
√

(2i+ 1)(2i− 1)

2i
.

For n > 1 we find using Kummer’s theorem [4, p.9],

(Cn
1 )i,0 =

√
2i+ 1

Γ(3/2)

Γ((2− i)/2)Γ((i+ 3)/2)

=

{
0, i even, i > 0,

(−1)
i−1
2

√
2i+1
2 ( 12 ) i−1

2
/((i+ 1)/2)!, i odd, i > 0,

where Γ is the Gamma function. That (Cn
1 )2i,0 = 0 also follows from the symmetry

and orthogonality of the Legendre polynomials. For the simplest case when n = 0
i.e. piecewise constant scaling functions we find that

C0
1 = 1.

For other n we find,

C1
1 =

(
1 0√
3
2

1
2

)
, C2

1 =

⎛
⎜⎝ 1 0 0√

3
2

1
2 0

0
√
15
4

1
4

⎞
⎟⎠ , and C3

1 =

⎛
⎜⎜⎜⎝

1 0 0 0√
3
2

1
2 0 0

0
√
15
4

1
4 0

−
√
7
8

√
21
8

√
35
8

1
8

⎞
⎟⎟⎟⎠ .
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3. Recurrence formulas and generalized eigenvalue problem

The contiguous relations for hypergeometric functions give recurrence formulas
among the entries in the matrix Cn

1 which we now study. A useful and well-known
relation ([3, equation (2.5.15)]) that 2F1 hypergeometric functions satisfy is the
following:

e1 2F1

(
a− 1, b+ 1

c
; x

)
= e2 2F1

(
a, b

c
; x

)

+ e3 2F1

(
a+ 1, b− 1

c
; x

)
,(37)

where

e1 = 2b(c− a)(b− a− 1), e3 = 2a(b− c)(b− a+ 1),

and

e2 = (b− a)[(1− 2x)(b− a− 1)(b− a+ 1) + (b+ a− 1)(2c− b− a− 1)].

With x = 1/2, a = −i+ j, b = i+ j+1, c = 2j+2 and the definition of li,j we find

(i+ j + 2)(i+ 1− j)i√
(2i+ 3)(2i+ 1)j(j+ 1)

(Cn
1 )i+1,j=(Cn

1 )i,j−
(i+ j)(i− j − 1)(i+ 1)√
(2i− 1)(2i+ 1)j(j + 1)

(Cn
1 )i−1,j ,

where the top line of equation (32) has been used. Since (i + j + 2)(i − j + 1) =
(i+1)(i+2)−j(j+1) we see that the above equation can be recast as a generalized
eigenvalue equation,

(38) Ai(C
n
1 )i,j = j(j + 1)Bi(C

n
1 )i,j , 0 ≤ j ≤ i < n,

where

(39) Ai =
i(i+ 1)(i+ 2)√
(2i+ 3)(2i+ 1)

E+ +
(i− 1)(i)(i+ 1)√
(2i+ 1)(2i− 1)

E−,

and

(40) Bi =
i√

(2i+ 3)(2i+ 1)
E+ + 1 +

i+ 1√
(2i+ 1)(2i− 1)

E−.

Here E± are the forward and backward shifts in i respectively. In the above equation
the fact that (Cn

1 )i,j = 0 for i < j has been used. To obtain a recurrence for fixed
i substitute x = 2, a = −i+ j, b = −i− j − 1 and c = −2i in equation (37) which
when coupled with the second line in equation (32) yields

(i+ j)(j + 1)(i− j + 1)√
(2j + 1)(2j − 1)

(Cn
1 )i,j−1 − 3(j + 1)j(Cn

1 )i,j

+
(i+ j + 2)j(i− j − 1)√

(2j + 1)(2j + 3)
(Cn

1 )i,j+1 = −i(i+ 1)(Cn
1 )i,j .

This also can be recast as the generalized eigenvalue equation,

(41) Âj(C
n
1 )i,j = i(i+ 1)B̂j(C

n
1 )i,j , 0 < j ≤ i < n,

where

(42) Âj =
j(j + 1)(j + 2)√
(2j + 3)(2j + 1)

Ê+ + 3j(j + 1)1 +
(j − 1)(j)(j + 1)√
(2j + 1)(2j − 1)

Ê−,
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and

(43) B̂j =
j√

(2j + 3)(2j + 1)
Ê+ + 1 +

j + 1√
(2j + 1)(2j − 1)

Ê−.

Here Ê± are the forward, backward shifts in j respectively. As above we use the
condition that (Cn

1 )i,j = 0 for i < j. An interesting formula may be found by
eliminating pj(2t− 1) in (18) using equation (12) which gives

I1i,j = −I1i,j−1 −
(j − 1)2

(2j − 1)(2j − 3)
I1i,j−2 + 2

∫ 1

0

tpi(t)pj−1(2t− 1)dt.

Now eliminating tpi(t) yields

I1i,j = −I1i,j−1 −
(j − 1)2

(2j − 1)(2j − 3)
I1i,j−2 + 2I1i+1,j−1 +

2i2

(2i+ 1)(2i− 1)
I1i−1,j−1.

The first line of equation (21) yields after increasing j by one,

(44) Ãj(C
n
1 )i,j = B̃i(C

n
1 )i,j , 0 ≤ j ≤ i < n,

where

(45) Ãj =
j√

(2j + 1)(2j − 1)
Ê− + 1 +

j + 1√
(2j + 3)(2j + 1)

Ê+,

and

(46) B̃i =
2i√

(2i+ 1)(2i− 1)
E− +

2(i+ 1)√
(2i+ 3)(2i+ 1)

E+.

With the above we formulate:

Theorem 3. Let Cn
1 and Cn

−1 be as in Theorem (2). Then they satisfy the gen-
eralized eigenvalue problems given in equations (38) and (41) and the difference
equation (44).

4. The Fourier transform

An important object in wavelet theory is the Fourier transform of the scaling
functions. To exploit the symmetry of the Legendre polynomials we will use equa-
tion (7) and define

P̃n(a) =

∫ ∞

−∞
eiatΦn(

t+ 1

2
)dt =

∫ 1

−1

eiatPn(t)dt,

so that

(47) P̃n(a) = Tn(a)P̃n(a/2),

where

(48) Tn(a) = (Cn
−1e

ia/2 + Cn
1 e

−ia/2)/2.

Since (see [15])

(49)

∫ 1

−1

eiatp̂n(t)dt =
√
2n+ 1

√
2πinJn+1/2(a)/

√
a,

10



where Jν is the Bessel function of order ν, we obtain the addition formula,

√
2j + 1ij

Jj+1/2(a)√
a

=
1

2

j∑
k=0

(Cn
1 )j,k((−1)j+keia/2 + e−ia/2)ik

√
2k + 1

Jk+1/2(a/2)√
a
2

,(50)

where the symmetry properties of entries of Cn
−1 have been used. Thus for j → 2j

in the above formula we find

√
4j + 1(−1)j

J2j+1/2(a)√
a

= cos(a/2)

j∑
k=0

(−1)k(Cn
1 )2j,2k

√
4k + 1

J2k+1/2(a/2)√
a
2

+ sin(a/2)

j−1∑
k=0

(−1)k(Cn
1 )2j,2k+1

√
4k + 3

J2k+3/2(a/2)√
a
2

,

while for j → 2j + 1,

√
4j + 3(−1)j

J2j+3/2(a)√
a

= − sin(a/2)

j∑
k=0

(−1)k(Cn
1 )2j+1,2k

√
4k + 1

J2k+1/2(a/2)√
a
2

+ cos(a/2)

j−1∑
k=0

(−1)k(Cn
1 )2j+1,2k+1

√
4k + 3

J2k+3/2(a/2)√
a
2

.

Recurrence formulas may also be obtained using the fact that Bessel functions
satisfy a differential difference equation. Multiply equation (47) by

√
a for a > 0

and set

(51) P̂n(a) =
√
2π

[
J1/2(a) · · · in

√
2n+ 1Jn+1/2(a)

]T
= GnJn(a),

where

(52) Gn =
√
2πdiagonal(1, . . . , in

√
2n+ 1),

and

(53) Jn(a) =
[
J1/2(a) · · · Jn+1/2(a)

]T
.

With the above substitions equation (47) becomes

(54) P̂n(a) =
√
2Tn(a)P̂n(a/2).

Differentiation of P̂n and the use of the differential difference relation 2Jn+1/2(a)
′ =

Jn−1/2(a)− Jn+3/2(a) yields

2P̂n(a)
′ = 2GnJn(a)

′ = GnLnJn(a) +Gn[J−1/2(a), 0 . . . , 0,−Jn+3/2(a)]
T

= GnLnG
−1
n

√
2Tn(a)P̂n(a/2) +Gn[J−1/2(a), 0 . . . , 0,−Jn+3/2(a)]

T ,

where Ln is an (n + 1) × (n + 1) tridiagonal matrix which is −1 on the upper
diagonal, 0 on the diagonal, and 1 on the lower diagonal, and equations (54) and
(51) have been used to obtain the last equality. Differentiation of the right hand

11



side of equation (54) using similar manipulations as above yields

Tn(a)
′P̂n(a/2) =

(
HnTn(a)−

1

2
Tn(a)Hn

)
P̂n(a/2)(55)

+
1√
2
Gn[J−1/2(a), 0, . . . , 0,−Jn+3/2(a)]

T

− 1

2
Tn(a)Gn[J−1/2(a/2), 0 . . . , 0,−Jn+3/2(a/2)]

T ,

where Hn = GnLnG
−1
n . Examination of the above equation for a small and positive

shows that for fixed j the sequence ((−1)j+ke−ia/2 + eia/2)Jk(a/2), k = 0, . . . , n is
linearly independent. Thus the above equation yields the difference equation,

Ki(C
n
1 )i,j = Jj(C

n
1 )i,j , 0 < i < j < n,(56)

where

Ki =

√
2i+ 1

2i− 1
E− +

√
2i+ 1

2i+ 3
E+,

and

Jj =
1

2

√
2j − 1

2j + 1
Ê− +

1

2

√
2j + 3

2j + 1
Ê+ + 1.

5. Wavelets

We now develop equations to compute a set of orthogonal wavelets associated
with the above scaling functions. We are interested in finding wavelet functions
that form a basis for L2(R) and are obtained by integer translates and dilations by
2 of a fixed set of functions. From equation (1) with the change of variable that
leads to (7), then for approximation order n it is enough to find (n+ 1)× (n+ 1)
matrices D−1 and D1, and functions

Ψn =
(
ψn
0 · · · ψn

n

)T
given by

Ψn(
t+ 1

2
) = Dn

−1Φn(t+ 1) +Dn
1Φn(t)

= Dn
−1Pn(2t+ 1) +Dn

1Pn(2t− 1),(57)

where the last equality holds for −1 ≤ t ≤ 1. The imposed orthogonality implies

(58) Cn
−1D

n
−1

T + Cn
1 D

n
1
T = 0,

and

(59) Dn
−1D

n
−1

T +Dn
1D

n
1
T = 2In+1.

From (57) we find

Dn
1 =

∫ 1

0

Ψn(t)Pn(2t− 1)dt,

and

Dn
−1 =

∫ 0

−1

Ψn(t)Pn(2t+ 1)dt.

For general n there is an infinite number of solutions to the above equations even if
we ask that the wavelet functions in Ψn be symmetric or antisymmetric. If we solve
equations (58) and (59) with n = 0, we find that (D0

−1)0,0 = −(D0
1)0,0 = (C0

1)0,0

12



so that the first wavelet function is the Haar wavelet which is antisymmetric. Thus
to obtain symmetry set (Dn

−1)i,j = (−1)i+j+1(Dn
1 )i,j , 0 ≤ i, j ≤ n. For n = 1 we

find

D1
1 =

(
(D1

1)0,0 (D1
1)0,1

(D1
1)1,0 (D1

1)1,1

)
,

and

D1
−1 =

(
(−D1

1)0,0 (D1
1)0,1

(D1
1)1,0 (−D1

1)1,1

)
.

If we insist that D1
1 has positive diagonal entries, there is a unique solution to

equations (58) and (59) given by

D1
1 =

(
(C1

1)1,1 −(C1
1 )1,0

0 1

)
.

This suggests that a unique solution can be found for which Dn
1 is upper triangular

with positive diagonal entries.

Theorem 4. Let C1 be a lower triangular matrix with positive diagonal entries sat-
isfying C−1C

T
−1 +C1C

T
1 = 2I where C−1 be obtained from C1 by the symmetry re-

lation (C−1)i,j = (−1)i+j(C1)i,j. Then for n ≥ 1 there is a unique upper triangular
(n+1)×(n+1) matrix D1 with positive diagonal entries that satisfies equations (58)
and (59) where D−1 has the symmetry relations (D−1)i,j = (−1)i+j+1(D1)i,j and
(D1)n,n = 1

Proof. We note that the result is true for n = 1 so we suppose it is true by induction
for n−1. Consider the n×n matrices Ĉ1 obtained from C1 by deleting the first row
and column. Then from the induction hypothesis there is a unique upper triangular
D̂1 associated with Ĉ1 which satisfies equations (58) and (59) and (D̂1)n−1,n−1 = 1.

Let c0 be the first column of C1, ĉi, i = 1, . . . , n be the rows of Ĉ1, and write

C1 =

(
c0 0

Ĉ1

)
.

Likewise let d0 be the first row of D1 and d̂i, i = 1, . . . , n be the rows of D̂1. Using
the symmetry equations we see that (58) and (59) yield the equations,

(60) ((c0)i, ĉi)d
T
0 = 0, i = 1, 3, . . . ,

(61) (0, d̂i)d
T
0 = 0, i = 2, 4, . . . ,

and

(62) d0d
T
0 = 1.

Since Ĉ1 is lower triangular with positive diagonal elements, the vectors (c0)i, ĉi)

in equation (60) are independent. The equations Ĉ−1(D̂−1)
T + Ĉ1(D̂1)

T = 0 and

D̂−1(D̂−1)
T + D̂1(D̂1)

T = 0 show that the vectors (0, d̂i) in (61) are orthogonal
to each other and to the vectors in (60). Thus the rank of the matrix whose rows
are the equations (60) and (61) is n. With i = 1 in (60) we find (C1)0,1(D1)0,0 +
(C1)1,1(D1)0,1 = 0, which implies that (D1)0,0 is the free variable which is made
unique by the choice of the positive solution to equation (62). �
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We now show

Lemma 5. Given Cn
i , i = {−1, 1}, suppose Dn

1 and D1
1 satisfy the hypothesis of

Theorem (4). Then (Dn
1 )n−2j,n = 0 and (Dn

1 )n−2j,n−k = (Dn−1
1 )n−2j,n−k.

Proof. We begin with the observation that from the symmetry relations we find
(Dn

−1)n−2j,n = −(Dn
1 )n−2j,n. Thus the last row of equation (59) shows that

(Dn
−1)n−2j,n = 0. The proof of Theorem (4) also shows that in order to com-

pute (Dn
1 )n−2k,i, i = n− 2k, .., n− 1, we can choose D̂1 and D̂−1 so that they start

with the row n − 2j + 1 (starting from zero) of Dn
1 and Dn

−1. Examination of the
equations (60) and (61) yields

(Cn
1 )n−i,n−i−1(D

n
1 )n−i−1,n−i−1 + (Cn

1 )n−i,n−i(D
n
1 )n−i−1,n−i = 0,

and

(Dn
1 )

2
n−i−1,n−i−1 + (Dn

1 )
2
n−i−1,n−i = 1,

for i = 0, 1. The unique solutions of these equations from Theorem (4) and the
entries of (Cn

1 ) in equation (35) above are given respectively by equations (63) and
(64) below and show explicitly that the result for (Dn

1 )n−2,n−k, k = 1, 2. Using

that (Cn
1 )n−j,n−k = (Cn−1

1 )n−j+1,n−k+1 for j > 0, k > 0 in equations (60) and the
induction hypothesis in equations (61) implies that the entries (Dn

1 )n−2j,n−k solve

the same equations as (Dn−1
1 )n−2j,n−k for k = 1, . . . , 2j. The uniqueness of the

solutions given by Theorem (4) above proves the Lemma. �

Using Theorem (4) allows us to compute some of the matrix elements in Dn
1 . To

this end we find for row n+ 1, (Dn
1 )n,n = 1, for row n,

(63) (Dn
1 )n−1,n−1 =

1

2n
, (Dn

1 )n−1,n = −
√

(2n+ 1)(2n− 1)

2n
,

for row n− 1
(64)

(Dn
1 )n−2,n−2 =

1

2n− 2
, (Dn

1 )n−2,n−1 = −
√

(2n− 1)(2n− 3)

2n− 2
, (Dn

1 )n−2,n = 0,

for row n− 2,

(Dn
1 )n−3,n−3 =

3

4(n− 1)(n− 2)
, (Dn

1 )n−3,n−2 = −3
√
(2n− 3)(2n− 5)

4(n− 1)(n− 2)
,

(Dn
1 )n−3,n−1 =

(2n+ 1)
√

(2n− 1)(2n− 5)

4(n)(n− 1)
, (Dn

1 )n−3,n =

√
(2n+ 1)(2n− 5)

4(n)(n− 1)
.

Note added in proof

In [13], it is shown that the nonzero entries inDn
1 are balance 4F3 hypergeometric

functions evaluated at 1 and the wavelet functions associated with these matrices
are piecewise hypergeometric polynomials.
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[18] Löıc Hervé, Multi-resolution analysis of multiplicity d: applications to dyadic interpola-
tion, Appl. Comput. Harmon. Anal. 1 (1994), no. 4, 299–315, DOI 10.1006/acha.1994.1017.
MR1310654 (97a:42026)

[19] Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of
L2(R), Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87, DOI 10.2307/2001373. MR1008470
(90e:42046)
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