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through the so-called type I and type II
convergence proper-ties of type II Hermite–P
For such approximants Markov and Stieltjes
present, such results have not been obtain
paper, we provide Markov and Stieltjes type 
Hermite–Padé approximants for Nikishin sys

1. Introduction

Let s be a finite Borel measure with consta
support supp(s) contains infinitely many poin
If supp(s) is an unbounded set we assume ad
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Δ = Co(supp(s)) we denote the smallest interval which contains supp(s). We denote 
this class of measures by M(Δ). Let

ŝ(z) =
∫

ds(x)
z − x

be the Cauchy transform of s.
Given any positive integer n ∈ N there exist polynomials Qn, Pn satisfying:

• degQn ≤ n, degPn ≤ n − 1, Qn �≡ 0,
• (Qnŝ− Pn)(z) = O(1/zn+1), z → ∞.

The ratio πn = Pn/Qn of any two such polynomials defines a unique rational func-
tion called the nth term of the diagonal sequence of Padé approximants to ŝ. Cauchy 
transforms of measures are important: for example, many elementary functions may be 
expressed through them, the resolvent function of a bounded selfadjoint operator adopts 
that form, and they characterize all functions holomorphic in the upper half plane whose 
image lies in the lower half plane and can be extended continuously to the complement of 

tive values for z < a and positive values 
em A.6]. Providing efficient methods for 
 theory of rational approximation.
in [15] (in the context of the theory of 

ŝ(z) (1.1)

easy to deduce that this limit takes place 
. Stieltjes in [22] showed that (1.1) takes 
e sequence (cn)n≥0, cn =

∫
xnds(x), is

roblem for measures of bounded support 
ains Markov’s result. In [2], T. Carleman 

= ∞ (1.2)

erminate. For an arbitrary measure s ∈
ay that it satisfies Carleman’s condition 

into R+ the image measure satisfies

ions to the case of vector rational ap-
 by Hermite in order to study the tran-
theory have been obtained. See [23] for 
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a finite segment [a, b] of the real line taking nega
for z > b (then supp(s) ⊂ [a, b]), see [13, Theor
their approximation is a central question in the

When Δ is bounded, A.A. Markov proved 
continued fractions) that

lim
n→∞

πn(z) =

uniformly on each compact subset of C\Δ. It is 
with geometric rate. When Δ is a half line, T.J
place if and only if the moment problem for th
determinate. It is well known that the moment p
is determinate; therefore, Stieltjes’ theorem cont
proved when Δ ⊂ R+ that ∑

n≥1
|cn|−1/2n

is sufficient for the moment problem to be det
M(Δ), where Δ is contained in a half line, we s
if after an affine transformation which takes Δ
Carleman’s condition.

Padé approximation has two natural extens
proximation. These extensions were introduced
scendency of e. Other applications in number 



a survey of results in this direction. Recently, these approximants and their associated 
Hermite–Padé polynomials have appeared in a natural way in certain models coming 
from probability theory and mathematical physics. A summary of this type of applica-
tions can be found in [14].

Given a system of finite Borel measures S = (s1, . . . , sm) with constant sign and a
multi-index n = (n1, . . . , nm) ∈ Z

m
+ \{0}, |n| = n1+· · ·+nm, where Z+ denotes the set of

non-negative integers and 0 the m-dimensional zero vector, there exist polynomials an,j ,
j = 0, . . . , m, not all identically equal to zero, such that:

• deg an,j ≤ nj − 1, j = 1, . . . , m, deg an,0 ≤ max(nj) − 2,
• an,0(z) +

∑m
j=1 an,j(z)ŝj(z) = O(1/z|n|), z → ∞ (deg an,j ≤ −1 means that

an,j ≡ 0).

Analogously, there exist polynomials Qn, Pn,j , j = 1, . . . , m, satisfying:

• degQn ≤ |n|, Qn �≡ 0, degPn,j ≤ |n| − 1, j = 1, . . . , m,
• Qn(z)ŝj(z) − Pn,j(z) = O(1/znj+1), z → ∞, j = 1, . . . , m.

. . . , an,m) and (Qn, Pn,1, . . . , Pn,m) have
roximants (polynomials) of (ŝ1, . . . , ̂sm),
 to that of classical Padé approximation.
pproximation is easy to view as an ap-
, . . . , ̂sm) by considering a sequence of
. . , Pn,m/Qn), n ∈ Λ ⊂ Z

m
+ , where Qn is

garding type I, it is not obvious what is 
ould be considered as the approximant. 
traightforward analogues of the Markov 

uce what is called a Nikishin system of 
t Δα, Δβ be two intervals contained in
common, σα ∈ M(Δα), σβ ∈ M(Δβ),
 define a third one as follows (using the

x)dσα(x).

he measure σβ . The more appropriate
thetic inconveniences. We need to take

〈σα, σβ〉
〉
.
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Traditionally, the systems of polynomials (an,0, 
been called type I and type II Hermite–Padé app
respectively. When m = 1 both definitions reduce

From the definition, type II Hermite–Padé a
proximating scheme of the vector function (ŝ1

vector rational functions of the form (Pn,1/Qn, .
a common denominator for all components. Re
the object to be approximated or even what sh
Our goal is to clarify these questions providing s
and Stieltjes theorems.

Before stating our main result, let us introd
measures to which we will restrict our study. Le
the real line which have at most one point in 
and σ̂β ∈ L1(σα). With these two measures we
differential notation)

d〈σα, σβ〉(x) := σ̂β(

Above, σ̂β denotes the Cauchy transform of t
notation σ̂β causes space consumption and aes
consecutive products of measures; for example,

〈σγ , σα, σβ〉 :=
〈
σγ ,



Here, we assume not only that σ̂β ∈ L1(σα) but also 〈σα, σβ 〉̂ ∈ L1(σγ) where 〈σα, σβ 〉̂
denotes the Cauchy transform of 〈σα, σβ〉. Inductively, one defines products of a finite
number of measures.

Definition 1.1. Take a collection Δj , j = 1, . . . , m, of closed intervals contained in the
real line such that, for j = 1, . . . , m − 1

Δj ∩ Δj+1 = ∅, or Δj ∩ Δj+1 = {xj,j+1},

where xj,j+1 is a single point. Let (σ1, . . . , σm) be a system of measures such that
Co(supp(σj)) = Δj , σj ∈ M(Δj), j = 1, . . . , m, and

〈σj , . . . , σk〉 :=
〈
σj , 〈σj+1, . . . , σk〉

〉
∈ M(Δj), 1 ≤ j < k ≤ m. (1.3)

When Δj ∩Δj+1 = {xj,j+1} we also assume that xj,j+1 is not a mass point of either σj

or σj+1. We say that (s1, . . . , sm) = N (σ1, . . . , σm), where

s1 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈σ1, σ2, . . . , σm〉

 (σ1, . . . , σm).

self to measures with bounded support 
 Δj. Definition 1.1 includes interesting
ubsection 1.4]). We follow the approach 
he existence of all the moments of the 
purpose of simplifying the presentation 
ver, we wish to point out that the results 
 the definition given in [10] of a Nikishin 

n = (n, n) E.M. Nikishin proved in [16]

, j = 1, 2,

In [1] this result was extended to any
ting measures with unbounded support. 
ulti-indices was treated in [6,7] and [12].
1, . . . , σm) is a generator of a Nikishin
s well as any subsystem of consecutive
s are bounded and consecutive supports 
owing, for 1 ≤ j ≤ k ≤ m we denote

,j := 〈σk, σk−1, . . . , σj〉.
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is the Nikishin system of measures generated by

Initially, E.M. Nikishin in [16] restricted him
and no intersection points between consecutive
examples which appear in practice (see, [10, S
of [10, Definition 1.2] assuming additionally t
generating measures. This is done only for the 
without affecting too much the generality. Howe
of this paper have appropriate formulations with
system.

When m = 2, for multi-indices of the form 
that

lim
n→∞

Pn,j(z)
Qn(z) = ŝj(z)

uniformly on each compact subset of C \ Δ1. 
Nikishin system of m measures including genera
The convergence for more general sequences of m

In [10, Lemma 2.9] it was shown that if (σ
system then (σm, . . . , σ1) is also a generator (a
measures drawn from them). When the support
do not intersect this is trivially true. In the foll

sj,k := 〈σj , σj+1, . . . , σk〉, sk



To state our main results, the natural framework is that of multi-point type I Hermite–
Padé approximation.

Definition 1.2. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm), n = (n1, . . . , nm) ∈ Z
m
+ \ {0},

and wn, degwn ≤ |n| + max(nj) − 2, a polynomial with real coefficients whose zeros lie
in C \ Δ1, be given. We say that (an,0, . . . , an,m) is a type I multi-point Hermite–Padé
approximation of (ŝ1,1, . . . , ̂s1,m) with respect to wn if:

i) deg an,j ≤ nj − 1, j = 1, . . . , m, deg an,0 ≤ n0 − 1, n0 := maxj=1,...,m(nj) − 1, not all
identically equal to 0 (nj = 0 implies that an,j ≡ 0),

ii) An,0/wn ∈ H(C \ Δ1) and An,0(z)/wn(z) = O(1/z|n|), z → ∞, where

An,j := an,j +
m∑

k=j+1

an,kŝj+1,k(z), j = 0, . . . ,m− 1, An,m := an,m.

If degwn = |n| + max(nj) − 2 the second part of ii) is automatically fulfilled. Should
degwn = N < |n| + max(nj) − 2 then |n| + max(nj) − 2 −N (asymptotic) interpolation

max(nj) − 2 interpolation conditions
e total number of free parameters (the
m) equals |n| + max(nj) − 1; therefore,
be solved in order that i)–ii) take place 
when wn ≡ 1 we recover the definition
pproximation.
e II multi-point Hermite–Padé approx-
raic and analytic properties regarding 
 behavior, and orthogonality conditions 
pproximants have been studied, for ex-
], which include the case of multi-point 

idean topology of the real line. We have

, σm), n = (n1, . . . , nm) ∈ Z
m
+ \ {0},

ial with real coefficients whose zeros lie
ite–Padé approximation (an,0, . . . , an,m)
determined except for a constant factor,

ν = 0, . . . , |n| − 2, (1.4)

ple zeros in 
◦
Δ1 and no other zeros in
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conditions are imposed at ∞. In general |n| +
are imposed at points in (C \ Δ1) ∪ {∞}. Th
coefficients of the polynomials an,j , j = 0, . . . , 
the homogeneous linear system of equations to 
always has a non-trivial solution. Notice that 
given above for classical type I Hermite–Padé a

An analogous definition can be given for typ
imants but we will not dwell into this. Algeb
uniqueness, integral representations, asymptotic
satisfied by type I and type II Hermite–Padé a
ample, in [1,3–7,9,10,12,17], and [18, Chapter 4
approximation.

Let 
◦
Δ denote the interior of Δ with the Eucl

Theorem 1.3. Let (s1,1, . . . , s1,m) = N (σ1, . . .
and wn, degwn ≤ |n| + max(nj) − 2, a polynom
in C \Δ1, be given. The type I multi-point Herm
of (ŝ1,1, . . . , ̂s1,m) with respect to wn is uniquely 
and deg an,j = nj − 1, j = 0, . . . , m. Moreover∫

xνAn,1(x)dσ1(x)
wn(x) = 0,

which implies that An,1 has exactly |n| − 1 sim
C \ Δ2. Additionally,



An,0(z)
wn(z) =

∫ An,1(x)dσ1(x)
wn(x)(z − x) (1.5)

and

an,0(z) = −
∫ ∑m

j=1(wn(x)an,j(z) − wn(z)an,j(x))ds1,j(x)
(z − x)wn(x) . (1.6)

Notice that nothing has been said about the location of the zeros of the polynomi-
als an,j . For special sequences of multi-indices this information can be deduced from the
convergence of type I Hermite–Padé approximants. We have the following result (see also 
Lemma 3.1).

Theorem 1.4. Let S = (s1,1, . . . , s1,m) = N (σ1, . . . , σm), Λ ⊂ Z
m
+ an infinite sequence of

distinct multi-indices, and (wn)n∈Λ, degwn ≤ |n| +max(nj) −2, a sequence of polynomials
with real coefficients whose zeros lie in C \ Δ1, be given. Consider the corresponding
sequence (an,0, . . . , an,m), n ∈ Λ, of type I multi-point Hermite–Padé approximants of S
with respect to (wn)n∈Λ. Assume that(

(nk)
)
≤ C < ∞, (1.7)

m or σm satisfies Carleman’s condition.

j = 0, . . . ,m− 1, (1.8)

. The accumulation points of sequences
, n ∈ Λ are contained in Δm ∪ {∞}.

0, . . . ,m− 1, (1.9)

1 ∪ Δm).

res no special analytic property from the 
ept for Carleman’s condition on σm.
ns (an,j/an,m), n ∈ Λ, j = 0, . . . , m − 1,
the measures in the Nikishin system 

n,j/Qn), n ∈ Λ, j = 1, . . . , m, of type II
 recover the Cauchy transforms of the 

tin sent us [19] and [20]. The first one of 
 the second one. Those papers deal with 
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sup
n∈Λ

max
j=1,...,m

(nj) − min
k=1,...,m

and that either Δm−1 is bounded away from Δ
Then,

lim
n∈Λ

an,j

an,m
= (−1)m−j ŝm,j+1,

uniformly on each compact subset K ⊂ C \ Δm

of zeros of the polynomials an,j, j = 0, . . . , m
Additionally,

lim
n∈Λ

An,j

an,m
= 0, j =

uniformly on each compact subset K ⊂ C \ (Δj+

We wish to underline that Theorem 1.4 requi
generating measures of the Nikishin system exc

Notice that the sequences of rational functio
allow to recover the Cauchy transforms of 
N (σm, . . . , σ1) in contrast with the sequences (P
multi-point Hermite–Padé approximants which
measures in N (σ1, . . . , σm).

In the process of writing this paper, S.P. Sue
these papers announces the results contained in



the study of type I Hermite–Padé approximants for an interesting class of systems of two 
functions (m = 2) which form a generalized Nikishin system in the sense that the second 
generating measure lives on a symmetric (with respect to the real line) compact set made 
up of finitely many analytic arcs which does not separate the complex plane and may 
be complex valued. The authors obtain the logarithmic asymptotic of the sequences of 
Hermite–Padé polynomials an,j , j = 1, 2, and an analogue of (1.8) for j = 1. Convergence
is proved in capacity (see [19, Theorem 1] and [20, Corollary 1]).

For the proof of Theorem 1.4 we need a convenient representation of the reciprocal 
of the Cauchy transform of a measure. It is known that for each σ ∈ M(Δ), where Δ is 
contained in a half line, there exists a measure τ ∈ M(Δ) and �(z) = az + b, a = 1/|σ|, 
b ∈ R, such that

1/σ̂(z) = �(z) + τ̂(z), (1.10)

where |σ| is the total variation of σ. See [13, Appendix] and [21, Theorem 6.3.5] for 
measures with compact support, and [10, Lemma 2.3] when the support is contained in 
a half line.

ures appear frequently in our reasonings, 
n relation with measures denoted with 
ing sub-indices. The same goes for the 

+ τ̂j,k(z).

+ τ̂α(z).

t and will be used in combination with 

satisfies Carleman’s condition so do s1,2

n 2 we prove Theorems 1.3 and 1.5. We 
 for the proof of Theorem 1.4. Section 3
nsions of the main result to sequences of 
1.7), estimates of the rate of convergence 
is bounded and Δm ∩ Δm−1 = ∅, and

on schemes.
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We call τ the inverse measure of σ. Such meas
so we will fix a notation to distinguish them. I
s they will carry over to them the correspond
polynomials �. For example,

1/ŝj,k(z) = �j,k(z)

We also write

1/σ̂α(z) = �α(z)

The following result has independent interes
Lemma 2.4 below in the proof of Theorem 1.4.

Theorem 1.5. Let (s1,1, s1,2) = N (σ1, σ2). If σ1

and τ1.

This paper is organized as follows. In Sectio
also present some notions and results necessary
contains the proof of Theorem 1.4 and some exte
multi-indices satisfying conditions weaker than (
in (1.8)–(1.9) for the case when Δm or Δm−1

applications to other simultaneous approximati



2. Proof of Theorem 1.3 and auxiliary results

We begin with a lemma which allows to give an integral representation of the remain-
der of type I multi-point Hermite–Padé approximants.

Lemma 2.1. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Assume that there exist poly-
nomials with real coefficients a0, . . . , am and a polynomial w with real coefficients whose
zeros lie in C \ Δ1 such that

A(z)
w(z) ∈ H(C \ Δ1) and A(z)

w(z) = O
(

1
zN

)
, z → ∞,

where A := a0 +
∑m

k=1 akŝ1,k and N ≥ 1. Let A1 := a1 +
∑m

k=2 akŝ2,k. Then

A(z)
w(z) =

∫ A1(x)
(z − x)

dσ1(x)
w(x) . (2.1)

If N ≥ 2, we also have

= 0, . . . , N − 2. (2.2)

es in 
◦
Δ1.

(x)
x)

dσ1(x)
w(x)

(x))ds1,k(x)
+ w(z)

∫ A1(x)
(z − x)

dσ1(x)
w(x) .

(x)
)
/(z − x)

(z) − w(z)ak(x))ds1,k(x)
z − x)w(x)

= w(z)O
(
1/zN

)
, z → ∞.
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∫
xνA1(x)dσ1(x)

w(x) , ν

In particular, A1 has at least N − 1 sign chang

Proof. We have

A(z) = a0(z) +
m∑

k=1

ak(z)ŝ1,k(z) ∓ w(z)
∫ A1

(z −

= a0(z) +
∫ ∑m

k=1(w(x)ak(z) − w(z)ak
(z − x)w(x)

For each k = 1, . . . , m (
w(x)ak(z) − w(z)ak

is a polynomial in z. Therefore,

P (z) := a0(z) +
∫ ∑m

k=1(w(x)ak
(

represents a polynomial. Consequently

A(z) = P (z) + w(z)
∫ A1(x)dσ1(x)

(z − x)w(x)



These equalities imply that

P (z) = w(z)O(1/z), z → ∞.

Therefore, degP < degw and is equal to zero at all the zeros of w. Hence P ≡ 0. (Should 
w be a constant polynomial likewise we get that P ≡ 0.) Thus, we have proved (2.1).

From our assumptions and (2.1), it follows that

A(z)
w(z) =

∫ A1(x)
(z − x)

dσ1(x)
w(x) = O

(
1/zN

)
, z → ∞.

Suppose that N ≥ 2. We have the asymptotic expansion

∫ A1(x)
(z − x)

dσ1(x)
w(x) =

N−2∑
ν=0

dν
zν+1 +

∫
xN−1A1(x)
zN−1(z − x)

dσ1(x)
w(x)

=
N−2∑
ν=0

dν
zN+1 + O

(
1/zN

)
, z → ∞,

ν = 0, . . . , N − 2.

. , N − 2,

 changes in 
◦
Δ1 at the points x1, . . . , xN .

(x)
x) = 0

w has constant sign in 
◦
Δ1 and σ1 is a

t contains infinitely many points. Thus,
equal to N − 1 as claimed. �
ving ratios of Cauchy transforms were 
blish that

〉
〉̂
, 1 = j < k ≤ m. (2.3)

measure σ.)
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where

dν =
∫

xνA1(x)dσ1(x)
w(x) ,

Therefore,

dν = 0, ν = 0, . .

which is (2.2).
Suppose that A1 has at most Ñ < N − 1 sign

Take q(x) =
∏Ñ

k=1(x − xk). According to (2.2)∫
q(x)A1(x)dσ1

w(

which is absurd because q(a1 +
∑m

k=2 akŝ2,k)/
measure with constant sign in 

◦
Δ1 whose suppor

the number of sign changes must be greater or 

In [10, Lemma 2.10], several formulas invol
proved. The most useful ones for this paper esta

ŝ1,k

ŝ1,1
= |s1,k|

|s1,1|
−
〈
τ1,1, 〈s2,k, σ1

(Recall that |σ| denotes the total variation of a 



We are ready for the

Proof of Theorem 1.3. Let (an,0, . . . , an,m) be a type I multi-point Hermite–Padé ap-
proximation of (ŝ1,1, . . . , ̂s1,m) with respect to wn. From Definition 1.2, formulas (1.4)
and (1.5) follow directly from (2.2) and (2.1), respectively. Relation (1.6) is obtained 
from (1.5) solving for an,0.

In the proof of Lemma 2.1 we saw that (1.4) implies that An,1 has at least |n| −1 sign
changes in 

◦
Δ1. We have that (s2,2, . . . , s2,m) = N (σ2, . . . , σm) forms a Nikishin system.

According to [10, Theorem 1.1], An,1 can have at most |n| − 1 zeros in C \ Δ2. Taking
account of what we proved previously, it follows that An,1 has exactly |n| − 1 simple
zeros in 

◦
Δ1 and it has no other zero in C \ Δ2. This is true for any n ∈ Z

m
+ \ {0}.

Suppose that for some n ∈ Z
m
+ \{0} and some j ∈ {1, . . . , m}, we have that deg an,j =

ñj − 1 < nj − 1. Then, according to [10, Theorem 1.1] An,1 could have at most |n| −
nj + ñj − 1 ≤ |n| − 2 zeros in C \Δ2. This is absurd because we have proved that it has
|n| − 1 zeros in 

◦
Δ1.

Now, suppose that for some n ∈ Z
m
+ \ {0}, there exist two non-collinear type I multi-

point Padé approximants (an,0, . . . , an,m) and (ãn,0, . . . , ̃an,m) of (ŝ1,1, . . . , ̂s1,m) with
respect to w . From (1.6) it follows that (a , . . . , an,m) and (ãn,1, . . . , ̃an,m) are not

j − 1, j = 1, . . . , m. Consequently, there
, . . . , an,m − Cãn,m) �= 0 and deg(an,j −
earity, (an,0 −Cãn,0, . . . , an,m −Cãn,m)
nt of (ŝ1,1, . . . , ̂s1,m) with respect to wn.
nj−1. Therefore, non-collinear solutions

 To this end we need to transform An,0.
= maxk=1,...,m nk. Since n0 = nj − 1, we
− 1. If j = 1, using (1.10) and (2.3) it

an,0τ̂1,1 −
m∑

k=2

an,k
〈
τ1,1, 〈s2,k, σ1〉

〉̂
,

(z) = O
(
1/z|n|−1), z → ∞.

= 0, . . . , |n| − 3,

. , σk 〉̂. Hence Bn,1 has at least |n| − 2
1.1] the linear form Bn,1 has at most

10
n n,1
collinear. We know that deg an,j = deg ãn,j = n

exists some constant C such that (an,1 − Cãn,1
Cãn,j) < nj − 1 for some j ∈ {1, . . . , m}. By lin
is a multi-point type I Hermite–Padé approxima
This is not possible because deg(an,j−Cãn,j) <
cannot exist.

We still need to show that deg an0 = n0 − 1.
Let j be the first component of n such that nj

have that either j = 1 or n0 ≥ nk, k = 1, . . . , j
follows that

Bn,0 := An,0

ŝ1,1
= �1,1an,0 +

m∑
k=1

|s1,k|
|s1,1|

an,k +

where

Bn,0/wn ∈ H(C \ Δ1), Bn,0(z)/wn

Using Lemma 2.1 it follows that∫
xνBn,1(x)dτ1,1(x)

wn(x) , ν

where Bn,1 = an,0 −
∑m

k=2 an,k〈〈σ2, σ1〉, σ3, . .

sign changes in 
◦
Δ1. According to [10, Theorem



deg an,0 + n2 + · · ·+ nm zeros in all of C \Δ2. Should deg an,0 ≤ n0 − 2, we would have
that deg an,0 + n2 + · · · + nm ≤ |n| − 3 which contradicts that Bn,1 has at least |n| − 2
zeros in 

◦
Δ1. Thus, when j = 1 it is true that deg an,0 = n0 − 1. In general, the proof is

similar as we will see.
Suppose that j, as defined in the previous paragraph, is ≥ 2. Then, either n0 = nk,

k = 1, . . . , j − 1 or there exists j < j for which n0 = nk, k = 1, . . . , j− 1 and n0 > nj. In
the first case, applying [10, Lemma 2.12], we obtain that there exists a Nikishin system 
(s∗1,1, . . . , s∗1,m) = N (σ∗

1 , . . . , σ
∗
m), a multi-index n∗ = (n∗

0, . . . , n
∗
m) ∈ Z

m+1
+ which is a

permutation of n with n∗
0 = nj , and polynomials with real coefficients a∗n,k, deg a∗n,k ≤

n∗
k − 1, k = 0, . . . , m, such that

An,0

ŝ1,j
= a∗n,0 +

m∑
k=1

a∗n,k.ŝ
∗
1,k

Due to the structure of the values of the components of the multi-index a∗n,j = (−1)jan,0

and n∗
j = n0 (see formula (31) in [9]). We can proceed as before and find that deg a∗n,j =

n∗
j −1, j = 1, . . . , m. In particular, deg an,j = n0−1. In the other case, [10, Lemma 2.12]

a∗n,k, ŝ
∗
1,k

nstant, and n∗
j = n0 (see formula (31)

ove, we obtain that deg a∗n,j = n∗
j − 1, 

ecause we already know that deg an,j =

tatement of [10, Theorem 1.1] there is a 
e C. That is, it should refer to zeros at 
 statements of [10, Lemmas 2.1, 2.2] and 

tent plays a central role in the proof of 
 plane C. By U(B) we denote the class 
t of disks. Set

Ui} ∈ U(B)
}
,

 Ui. The quantity h(B) is called the

11
gives that

An,0

ŝ1,j
= a∗n,0 +

m∑
k=1

where a∗nj = ±an,0 + Can,j, C �= 0 is some co
in [9]). Repeating the arguments employed ab
j = 1, . . . , m. In particular, deg an,0 = n0 − 1, b
nj − 1 < n0 − 1. �
Remark 2.2. We wish to point out that in the s
misprint on the last line where C should replac
finite points. This can be checked looking at the
the proof of [10, Theorem 1.1] itself.

The notion of convergence in Hausdorff con
Theorem 1.4. Let B be a subset of the complex
of all coverings of B by at most a numerable se

h(B) = inf
{ ∞∑

i=1
|Ui| : {

where |Ui| stands for the radius of the disk
1-dimensional Hausdorff content of the set B.



Definition 2.3. Let (ϕn)n∈N be a sequence of complex functions defined on a domain
D ⊂ C and ϕ another function defined on D (the value ∞ is permitted). We say that 
(ϕn)n∈N converges in Hausdorff content to the function ϕ inside D if for each compact
subset K of D and for each ε > 0, we have

lim
n→∞

h
{
z ∈ K :

∣∣ϕn(z) − ϕ(z)
∣∣ > ε

}
= 0

(by convention ∞ ±∞ = ∞). We denote this writing h-limn→∞ ϕn = ϕ inside D.

To obtain Theorem 1.4 we first prove (1.8) with convergence in Hausdorff content in 
place of uniform convergence (see Lemma 3.1 below). We need the following notion.

Let s ∈ M(Δ) where Δ is contained in a half line of the real axis. Fix an arbitrary 
κ ≥ −1. Consider a sequence of polynomials (wn)n∈Λ, Λ ⊂ Z+, such that degwn = κn ≤
2n + κ + 1, whose zeros lie in R \ Δ. Let (Rn)n∈Λ be a sequence of rational functions
Rn = pn/qn with real coefficients satisfying the following conditions for each n ∈ Λ:

a) deg pn ≤ n + κ, deg qn ≤ n, qn �≡ 0,
b) (qnŝ− pn)(z)/wn = O(1/zn+1−�) ∈ H(C \ Δ), z → ∞, where � ∈ Z+ is fixed.

 diagonal multi-point Padé approximants

Λ the number of free parameters equals 
 linear equations to be solved in order to 
 � = 0 there is only one more parameter
iding with a (near) diagonal multi-point
 not guaranteed. This is the reason why 
i-point Padé approximants of ŝ.
point Padé approximants, the following 
2] in terms of convergence in Hausdorff 

is contained in a half line. Assume that 
of zeros of wn lying on a closed bounded
∈ Λ, or s satisfies Carleman’s condition. 

ide C \ Δ.

measures and Theorem 1.5 comes in our 

lity, we can assume that Δ ⊂ R+ and
denote the sequences of moments of σ1
n on R+, we have that
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We say that (Rn)n∈Λ is a sequence of incomplete
of ŝ.

Notice that in this construction for each n ∈
2n +κ +2 whereas the number of homogeneous
find qn and pn is equal to 2n + κ − � + 1. When
than equations and Rn is defined uniquely coinc
Padé approximation. When � ≥ 1 uniqueness is
we chose to call them incomplete diagonal mult

For sequences of incomplete diagonal multi-
Stieltjes type theorem was proved in [1, Lemma
content.

Lemma 2.4. Let s ∈ M(Δ) be given where Δ
(Rn)n∈Λ satisfies a)–b) and either the number 
segment of R \Δ tends to infinity as n → ∞, n 
Then

h- lim
n∈Λ

Rn = ŝ, ins

We will need to use Lemma 2.4 for different 
aid.

Proof of Theorem 1.5. Without loss of genera
that σ1 is positive. Let (cn)n∈Z+ and (c̃n)n∈Z+

and s1,2, respectively. Since σ̂2 has constant sig



|c̃n| =
∫

xn
∣∣σ̂2(x)

∣∣dσ1(x) ≤
1∫

0

xn
∣∣σ̂2(x)

∣∣dσ1(x) +
∞∫
1

xn
∣∣σ̂2(x)

∣∣dσ1(x) ≤ |s1,2| + Ccn,

where C = max{|σ̂2(x)| : x ∈ [1, +∞)} < ∞ because limx→∞ σ̂2(x) = 0. Consequently,∑
n≥1

|c̃n|−1/2n ≥
∑
n≥1

(
|s1,2| + Ccn

)−1/2n

≥
∑

{n:Ccn<|s1,2|}

(
2|s1,2|

)−1/2n +
∑

{n:Ccn≥|s1,2|}
(2Ccn)−1/2n.

If the first sum after the last inequality contains infinitely many terms then that sum 
is already divergent. If it has finitely many terms then Carleman’s condition for σ1
guarantees that the second sum is divergent. Thus, s1,2 satisfies Carleman’s condition.

To prove the second part we need to express the moments (dn)n∈Z+ of τ1 in terms
of the moments of σ1. In the proof of [10, Lemma 2.3] we showed that the moments
(dn)n∈Z+ are finite (since all the moments of σ1 are finite) and can be obtained solving
the system of equations

0c0

1 + · · · + dnc0.

coefficients a and b, respectively, of the
/σ̂1.) Read the paragraph after formula

t

/cn+3
0 (2.4)

f the system and

0 · · ·
. . . . . .
. . . . . .
· · · c1

∣∣∣∣∣∣∣∣∣∣
f dimension n +2 with constant diagonal 
s several characteristics:
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1 = d−2c0

0 = d−2c1 + d−1c0

0 = d−2c2 + d−1c1 + d

... =
...

0 = d−2cn+2 + d−1cn+

(The values of d−2 and d−1 turn out to be the 
polynomial �1 in the decomposition (1.10) of 1
(9) in [10].

To find dn we apply Cramer’s rule and we ge

dn = (−1)nΩn

where cn+3
0 gives the value of the determinant o

Ωn =

∣∣∣∣∣∣∣∣∣∣

c1 c0

c2 c1
...

. . .
cn+2 cn+1

is the determinant of a lower Hessenberg matrix o
terms. The expansion of the determinant Ωn ha



• It has exactly 2n+1 non-zero terms.
• For each n ≥ 0, the sum of the subindexes of each non-zero term equals n + 2 (if a

factor is repeated its subindex is counted as many times as it is repeated).
• The number of factors in each term is equal to n + 2.

The last assertion is trivial. To calculate the number of non-zero terms notice that 
from the first row we can only choose 2 non-zero entries. Once this is done, from the 
second row we can only choose 2 non-zero entries, and so forth, until we get to the last 
row where we only have left one non-zero entry to choose.

Regarding the second assertion we use induction. When n = 0 it is obvious. Assume 
that each non-zero term in the expansion of Ωn has the property that the sum of its
subindexes equals n + 2 and let us show that each non-zero term in the expansion of 
Ωn+1 has the property that the sum of its subindexes equals n + 3. Expanding Ωn+1 by
its first row we have

Ωn+1 = c1Ωn − c0Ω
∗
n,

where Ω∗
n is obtained substituting the first column of Ωn by the column vector

ranspose). Using the induction hypothe-
 c1Ωn and c0Ω∗

n the sum of its subindexes

 that the general expression of Ωn is

cn+2−j
0 cα1 · · · cαj

,

j and εα = ±1. Thus

n+2−j
0 cα1 · · · cαj

. (2.5)

tains the factor cn+2 and that is when
terms 1 ≤ αk ≤ n +1. Let us prove that

cn+2 for all α. (2.6)

tor except the first, it follows that

1 αk/(n+2)(∫
dσ1(x)

)j−(
∑j

k=1 αk)/(n+2)

.

complete the proof of (2.6).
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(c2, . . . , cn+3)t (the superscript t means taking t
sis it easily follows that in each term arising from
must equal n + 3.

Using the properties proved above we obtain

Ωn =
n+2∑
j=1

∑
α1+···+αj=n+2

εα

where α = (α1, . . . , αj), 1 ≤ αk ≤ n + 2, 1 ≤ k ≤

|Ωn| ≤
n+2∑
j=1

∑
α1+···+αj=n+2

c

In this sum, there is only one term which con
j = 1. That term is cn+1

0 cn+2. In the rest of the 

cn+2−j
0 cα1 · · · cαj

≤ cn+1
0

In fact, using the Hölder inequality on each fac

cn+2−j
0 cα1 · · · cαj

≤ cn+2−j
0

(∫
xn+2dσ1(x)

)∑j
k=

It remains to employ that 
∑j

k=1 αk = n + 2 to 



From (2.4), (2.5), and (2.6), we have that

dn ≤ 2n+1cn+2/c
2
0

and the Carleman condition for τ1 readily follows. �
An immediate consequence of Theorem 1.5 is the following

Corollary 2.5. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be such that Δ1 is contained in a
half line and σ1 satisfies Carleman’s condition. Then, for all j = 1, . . . , m we have that
s1,j and τ1,j satisfy Carleman’s condition.

Proof. For s1,1 the assertion is the hypothesis. Let j ∈ {2, . . . , m}. Notice that s1,j =
〈σ1, s2,j〉 and (s1,1, s1,j) = N (σ1, s2,j) so s1,j , j = 2, . . . , n satisfies Carleman’s condi-
tion due to Theorem 1.5. Since s1,j , j = 1, . . . , m satisfies Carleman’s condition then
Theorem 1.5 also gives that τ1,j , j = 1, . . . , m satisfies Carleman’s condition. �

Actually we will use this result for (sm,m, . . . , sm,1) = N (σm, . . . , σ1).

rsion of (1.8).

em 1.4 are fulfilled. Then, for each fixed 

1,

1 inside C \ Δm. (3.1)

ch that for each j = 0, . . . , m and n ∈ Λ,
zeros in 

◦
Δj.

to Lemma 2.4, so without loss of gener-

ctly |n| − 1 simple zeros in C \ Δ2 and
nomial wn,1, degwn,1 = |n| − 1, whose

O
(

1
z|n|−n1

)
, z → ∞, (3.2)
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3. Proof of Theorem 1.4

The first step consists in proving a weaker ve

Lemma 3.1. Assume that the conditions of Theor
j = 0, . . . , m − 1

h- lim
n∈Λ

an,j

an,m
= (−1)m−j ŝm,j+

h- lim
n∈Λ

an,m

an,j
= (−1)m−j ŝ−1

m,j+

There exists a constant C1, independent of Λ, su
the polynomials an,j have at least (|n|/m) − C1

Proof. If m = 1 the statement reduces directly 
ality we can assume that m ≥ 2. Fix n ∈ Λ.

In Theorem 1.3 we proved that An,1 has exa
they all lie in 

◦
Δ1. Therefore, there exists a poly

zeros lie in 
◦
Δ1 such that

An,1

wn,1
∈ H(C \ Δ2) and An,1

wn,1
=

where nj = max{nk : k = j, . . . , m}.



From (3.2) and Lemma 2.1 it follows that∫
xνAn,2(x) dσ2(x)

wn,1(x) = 0, ν = 0, . . . , |n| − n1 − 2, (3.3)

and

An,1(z)
wn,1(z)

=
∫ An,2(x)dσ2(x)

wn,1(x)(z − x) . (3.4)

In particular, (3.3) implies that An,2 has at least |n| − n1 − 1 sign changes in 
◦
Δ2. (We

cannot claim that An,2 has exactly |n| −n1−1 simple zeros in C \Δ3 and that they all lie in
◦
Δ2 except if n1 = n1.) Therefore, there exists a polynomial wn,2, degwn,2 = |n| −n1−1,
whose zeros lie in 

◦
Δ2, such that

An,2

wn,2
∈ H(C \ Δ3) and An,2

wn,2
= O

(
1

z|n|−n1−n2

)
, z → ∞.

Iterating this process, using Lemma 2.1 several times, on step j, j ∈ {1, . . . , m}, we 

j = |n| −n1−· · ·−nj−1−1, whose zeros
that(

1
z|n|−n1−···−nj

)
, z → ∞. (3.5)

−nj ≤ 0. Since limn∈Λ |n| = ∞, because
∈ Λ with |n| sufficiently large. In what 

in that An,m ≡ an,m has nm − 1 sign
s means that deg an,m = nm − 1 and all
rove that An,j, j = 1, . . . , m has exactly
they are all simple and lie in

◦
Δj , where

.7].)
|n| − n1 − · · · − nm−1 − 1 sign changes
hich may lie outside of Δm is bounded

)
≤

m−1∑
k=1

nk − nk ≤ (m− 1)C,

oes not depend on n ∈ Λ.
1, degwn,m−1 = |n| −n1−· · ·−nm−2−1,
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find that there exists a polynomial wn,j, degwn,

are points where An,j changes sign in
◦
Δj such 

An,j

wn,j
∈ H(C \ Δj+1) and An,j

wn,j
= O

This process concludes as soon as |n| −n1 −· · ·
of (1.7) we can always take m steps for all n
follows, we only consider such n’s.

When n1 = n1 ≥ · · · ≥ nm = nm, we obta
changes in 

◦
Δm and since deg an,m ≤ nm − 1 thi

its zeros lie in 
◦
Δm. (In fact, in this case we can p

|n| − n1 − · · · − nj−1 − 1 zeros in C \Δj+1, that
Δm+1 = ∅, compare with [8, Propositions 2.5, 2

In general, we have that an,m has at least 
in

◦
Δm; therefore, the number of zeros of an,m w

by

deg an,m −
(
|n| − n1 − · · · − nm−1 − 1

where C is the constant given in (1.7), which d
For j = m −1 we have that there exists wn,m−

whose zeros lie in 
◦
Δm−1 such that



An,m−1

wn,m−1
= an,m−1 + an,mσ̂m

wn,m−1
∈ H(C \ Δm) and

An,m−1

wn,m−1
= O

(
1

z|n|−n1−···−nm−1

)
, z → ∞,

where deg an,m−1 ≤ nm−1 − 1, deg an,m ≤ nm − 1. Thus, using (1.7) it is easy to
check that (an,m−1/an,m)n∈Λ forms a sequence of incomplete diagonal multi-point Padé
approximants of −σ̂m satisfying a)–b) with appropriate values of n, κ and �. Due to
Lemma 2.4 it follows that

h- lim
n∈Λ

an,m−1

an,m
= −σ̂m, inside C \ Δm.

Dividing by σ̂m and using (1.10), we also have

An,m−1

σ̂mwn,m−1
= an,m−1τ̂m + bn,m−1

wn,m−1
∈ H(C \ Δm),

where bn,m−1 = an,m + �man,m−1 and

nm−1−1

)
, z → ∞.

ence of incomplete diagonal multi-point
 appropriate values of n, κ and �. Then

inside C \ Δm,

inside C \ Δm.

ists a polynomial wn,m−2, degwn,m−2 =
−2 such that

,m〈σm−1, σm〉̂ ∈ H(C \ Δm−1)

nm−2

)
, z → ∞.
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An,m−1

σ̂mwn,m−1
= O

(
1

z|n|−n1−···−

Consequently, (bn,m−1/an,m−1)n∈Λ forms a sequ
Padé approximants of −τ̂m satisfying a)–b) with
Lemma 2.4 and Corollary 2.5 imply that

h- lim
n∈Λ

bn,m−1

an,m−1
= −τ̂m,

or, equivalently,

h- lim
n∈Λ

an,m

an,m−1
= −σ̂−1

m ,

We have proved (3.1) for j = m − 1.
For j = m − 2, we have shown that there ex

|n| − n1 − · · · − nm−3 − 1, whose zeros lie in 
◦
Δm

An,m−2

wn,m−2
= an,m−2 + an,m−1σ̂m−1 + an

wn,m−2

and

An,m−2

wn,m−2
= O

(
1

z|n|−n1−···−



However, using (1.10) and (2.3), we obtain

an,m−2 + an,m−1σ̂m−1 + an,m〈σm−1, σm〉̂
σ̂m−1

= (�m−1an,m−2 + an,m−1 + C1an,m) + an,m−2τ̂m−1 − an,m
〈
τm−1, 〈σm, σm−1〉

〉̂
,

where deg �m−1 = 1 and C1 is a constant. Consequently, An,m−2/σ̂m−1 adopts the form
of A in Lemma 2.1, An,m−2/(σ̂m−1wn,m−2) ∈ H(C \ Δm−1), and

An,m−2

σ̂m−1wn,m−2
= O

(
1

z|n|−n1−···−nm−2−1

)
, z → ∞. (3.6)

From (2.2) in Lemma 2.1 it follows that for ν = 0, . . . , |n| − n1 − · · · − nm−2 − 3∫
xν

(
an,m−2(x) − an,m(x)〈σm, σm−1〉̂(x)

) dτm−1(x)
wn,m−2(x) = 0.

Therefore, an,m−2 − an,m〈σm, σm−1〉̂ ∈ H(C \Δm) must have at least |n| −n1 − · · · −
◦

that there exists a polynomial w∗
n,m−2,

 zeros are simple and lie in 
◦
Δm−1 such

〉̂ ∈ H(C \ Δm)

1
−···−nm−3−2nm−2−1

)
, z → ∞.

 ∈ Λ, is a sequence of incomplete diag-
ma 2.4 and Corollary 2.5 we obtain its
〉̂. To prove the other part in (3.1), we
 as we did in the case j = m − 1.
. . , m − 3} (for j = m − 2, m − 1 it’s 
 reduce An,j so as to eliminate all an,k,
g an,j+1. Consider the ratio An,j/σ̂j+1.

1,k|
+1|

an,j+1

)
+ an,j τ̂j+1

+2,k, σj+1〉
〉̂
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nm−2 − 2 sign changes in Δm−1. This means 
degw∗

n,m−2 = |n| − n1 − · · · − nm−2 − 2, whose
that

an,m−2 − an,m〈σm, σm−1

w∗
n,m−2

and

an,m−2 − an,m〈σm, σm−1〉̂
w∗

n,m−2
= O

(
z|n|−n1

Due to (1.7), this implies that (an,m−2/an,m), n
onal Padé approximants of 〈σm, σm−1〉̂. By Lem
convergence in Hausdorff content to 〈σm, σm−1
divide by 〈σm, σm−1〉̂(z) use (1.10) and proceed

Let us prove (3.1) in general. Fix j ∈ {0, .
been proved). Having in mind (3.5) we need to
k = j + 1, . . . , m − 1. We start out eliminatin
Using (1.10) and (2.3) we obtain that

An,j

σ̂j+1
=

(
�j+1an,j +

m∑
k=j+1

|sj+
|σj

−
m∑

k=j+2

an,k
〈
τj+1, 〈sj



has the form of A in Lemma 2.1, where An,j/(σ̂j+1wn,j) ∈ H(C \ Δj+1), and

An,j

σ̂j+1wn,j
∈ O

(
1

z|n|−n1−···−nj−1

)
, z → ∞.

From (2.2) of Lemma 2.1, we obtain that for ν = 0, . . . , |n| − n1 − · · · − nj − 3

0 =
∫

xν

(
an,j(x) −

m∑
k=j+2

an,k〈sj+2,k, σj+1〉̂(x)
)
dτj+1(x)
wn,j(x)

which implies that the function in parenthesis under the integral sign has at least |n| −
n1 − · · · − nj − 2 sign changes in 

◦
Δj+1. In turn, it follows that there exists a polynomial

w̃n,j , deg w̃n,j = |n| −n1 −· · ·−nj − 2, whose zeros are simple and lie in 
◦
Δj+1 such that

an,j −
∑m

k=j+2 an,k〈sj+2,k, σj+1〉̂
w̃n,j

∈ H(C \ Δj+2)

and

1
|−n1−···−nj−1−2nj−1

)
, z → ∞.

t

. . , σk

〉
, k = j + 3, . . . ,m.

∑m
k=j+2 an,k〈sj+2,k, σj+1〉̂ (in case that

j+2,k, σj+1〉̂
〉̂

An,j. After m −j−2 reductions obtained
at there exists a polynomial which we 
m − j− 1)nj − 2, whose zeros are simple

σj+1〉̂ ∈ H(C \ Δm)

1
|−n1−···−nj−1−(m−j)nj−1

)
, z → ∞.
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an,j −
∑m

k=j+2 an,k〈sj+2,k, σj+1〉̂
w̃n,j

= O
(
z|n

Notice that an,j+1 has been eliminated and tha

〈sj+2,k, σj+1〉 =
〈
〈σj+2, σj+1〉, σj+3, .

Now we must do away with an,j+2 in an,j −
j + 2 < m). To this end, we consider the ratio

an,j −
∑m

k=j+2 an,k〈s
〈σj+2, σj+1

and repeat the arguments employed above with 
applying consecutively Lemma 2.1, we find th
denote w∗

n,j , degw∗
n,j = |n| −n1 − · · ·−nj−1 − (

and lie in 
◦
Δm−1 such that

an,j − (−1)m−jan,m〈σm, . . . ,

w∗
n,j

and

an,j − (−1)m−jan,m〈σm, . . . , σj+1〉̂
w∗

n,j
= O

(
z|n



Dividing by (−1)m−j〈σm, . . . , σj+1〉̂, from here we also get that

an,j(−1)m−j〈σm, . . . , σj+1〉̂
−1

− an,m

w∗
n,j

∈ H(C \ Δm)

and

an,j(−1)m−j〈σm, . . . , σj+1〉̂
−1

− an,m

w∗
n,j

= O
(

1
z|n|−n1−···−nj−1−(m−j)nj−2

)
, z → ∞.

On account of (1.7), these relations imply that (an,j/an,m), n ∈ Λ, is a sequence
of incomplete diagonal multi-point Padé approximants of (−1)m−j〈σm, . . . , σj+1〉̂ and
(an,m/an,j), n ∈ Λ, is a sequence of incomplete diagonal multi-point Padé approximants
of (−1)m−j〈σm, . . . , σj+1〉̂

−1
. Since 〈σm, . . . , σj+1〉̂

−1
= τ̂m,j+1+�m,j+1, from Lemma 2.4

and Corollary 2.5 we obtain (3.1).
Going one step further using Lemma 2.1, we also obtain that

0 =
∫

xνa (x)dτm,j+1
, ν = 0, . . . , |n| − n1 − · · · − nj−1 − (m− j)nj − 4

· · · − nj−1 − (m − j)nj − 3 sign changes
 non-negative constant C1, independent
j, j = 0, . . . , m, in Δm is bounded from
tement. �
we saw that all the zeros of an,m lie in
ve immediately uniform convergence on 
ergence in Hausdorff content. For other
rk a little harder.

ponent of (n0, . . . , nm) such that nj =
− 1, that all its zeros are simple and lie

 1.3]) we know that there exists a per-
ponents of (n0, n1, . . . , nm) decreasingly,
 system (r1,1, . . . , r1,m) = N (ρ1, . . . , ρm)

g qn,k ≤ nλ(k) − 1, k = 0, . . . ,m.

0 ≤ j < k ≤ n with nj = nk then also
e proof of [9, Lemma 2.3], it follows that 
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n,j
w∗

n,j(x)

which implies that an,j has at least |n| − n1 −
in 

◦
Δm. From (1.7) we obtain that there exists a

of n ∈ Λ, such that the number of zeros of an,
below by (|n|/m) − C1. This settles the last sta

In the case of decreasing components in n, 
Δm and [11, Lemma 1] would allow us to deri
each compact subset of C \ Δm from the conv
configurations of the components we have to wo

Proof of Theorem 1.4. Let j be the last com
minj=0,...,m(nj). Let us prove that deg an,j = nj

in 
◦
Δm.
From [10, Theorem 3.2] (see also [9, Theorem

mutation λ of (0, . . . , m) which reorders the com
nλ(0) ≥ · · · ≥ nλ(m), and an associated Nikishin
such that

An,0 =
(
qn,0 +

m∑
k=1

qn,kr̂1,k

)
ŝ1,λ(0), de

The permutation may be taken so that for all 
λ(j) < λ(k). In this case, see formulas (31) in th



qn,m = ±an,j. Reasoning with qn,0 +
∑m

k=1 qn,k r̂1,k as we did with An,0 we obtain that
deg qn,m = nλ(m)−1 and that its zeros are all simple and lie in 

◦
Δm. However, nλ(m) = nj

and qn,m = ±an,j so the statement holds.
The index j as defined above may depend on the multi-index n ∈ Λ. Given j ∈

{0, . . . , m}, let us denote by Λ(j) the set of all n ∈ Λ such that j is the last component 
of (n0, . . . , nm) such that nj = minj=0,...,m(nj). Fix j and suppose that Λ(j) contains
infinitely many multi-indices. If j = m, then [11, Lemma 1] and the first limit in (3.1)
imply that

lim
n∈Λ(m)

an,j

an,m
= (−1)m−j ŝm,j+1, j = 0, . . . ,m− 1,

uniformly on each compact subset of C \ Δm, as needed.
Assume that j ∈ {0, . . . , m − 1}. Since all the zeros of an,j lie in

◦
Δm, using [11, 

Lemma 1] and the second limit in (3.1) for j = j, we obtain that

lim
n∈Λ(j)

an,m

an,j
= 1

(−1)m−jŝm,j+1
, (3.7)

The function on the right hand side of
and the approximating functions are

 it readily follows that on any compact
n ∈ Λ(j), the polynomials an,m have no
such that Λ(j) contains infinitely many 
 points of the zeros of the polynomials 

⊂ C \Δm for each fixed j = 0, . . . , m −1,
 an,j/an,m ∈ H(D). From [11, Lemma 1]

j = 0, . . . ,m− 1, (3.8)

e D was chosen arbitrarily, as long as 
 is uniform on each compact subset of
d side of (1.8) is a function which does
implies that for each j = 0, . . . , m − 1
ynomials an,j must be in Δm ∪ {∞} as

ŝj+1,k + ŝj+1,m.
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uniformly on each compact subset of C \ Δm. 
(3.7) is holomorphic and never zero on C \ Δm

holomorphic on C \Δm. Using Rouche’s theorem
subset K ⊂ C \ Δm for all sufficiently large |n|, 
zero on K. This is true for any j ∈ {0, . . . , m}
multi-indices. Therefore, the only accumulation
an,m are in Δm ∪ {∞}.

Hence, on any bounded region D such that D
and all sufficiently large |n|, n ∈ Λ, we have that
and the first part of (3.1) it follows that

lim
n∈Λ

an,j

an,m
= (−1)m−j ŝm,j+1,

uniformly on each compact subset of D. Sinc
D ⊂ C \ Δm, it follows that the convergence
C \ Δm and we have (1.8). Since the right han
not vanish in D ⊂ C \ Δm, Rouche’s theorem 
the accumulation points of the zeros of the pol
claimed. (For j = m this was proved above.)

Now,

An,j

an,m
= an,j

an,m
+

m−1∑
k=j+1

an,k

an,m



According to formula (17) in [10, Lemma 2.9]

0 ≡ (−1)m−j ŝm,j+1 +
m−1∑

k=j+1

(−1)m−kŝm,k+1ŝj+1,k + ŝj+1,m, z ∈ C \ (Δj+1 ∪ Δm).

Deleting one expression from the other we have that

An,j

an,m
=

(
an,j

an,m
− (−1)m−j ŝm,j+1

)
+

m−1∑
k=j+1

(
an,k

an,m
− (−1)m−kŝm,k+1

)
ŝj+1,k (3.9)

Consequently, for each j = 0, . . . , m − 1, from (1.8) we obtain (1.9). �
Remark 3.2. Observe that in the process of the proof of Theorem 1.4 we showed 
that if j is the last component of an arbitrary multi-index (n0, . . . , nm) for which
nj = minj=0,...,m(nj), then deg an,j = nj − 1, all the zeros of an,j are simple and lie
in 

◦
Δm. For sequences of multi-indices verifying (1.7) one can show that for all an,j ,

simple and/or lie in the complement of 
onstant C in (1.7)) which is independent 
ill prove some relations concerning the 
olynomials.

ositively oriented closed simple Jordan
, . . . , m to be the number of zeros of an,j

 denote by Λ(j) the set of all n ∈ Λ such 
ich satisfies nj = minj=0,...,m(nj).

 Theorem 1.4 hold and Δm is bounded.

j = 0, . . . ,m− 1,
j = m.

(3.10)

umulate (or lie) on Δm.

) contains infinitely many multi-indices. 
s that

πi

∫
Γ

(1/ŝm,j+1)′(z)
(1/ŝm,j+1)(z)

dz = 1,
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j = 0, . . . , m the number of zeros that are not 
◦
Δm is bounded by a constant (related with the c
of n. We will not dwell into this, instead we w
asymptotic configuration of the zeros of these p

Suppose that Δm is bounded. Let Γ be a p
curve that surrounds Δm. Define κn,j(Γ ), j = 0
outside Γ . As above, given j ∈ {0, . . . , m}, let us
that j is the last component of (n0, . . . , nm) wh

Corollary 3.3. Suppose that the assumptions of
Then for all sufficiently large |n|, n ∈ Λ(j),

κn,j(Γ ) =
{

nj − nj,

nm − nj − 1,

The rest of the zeros of the polynomials an,j acc

Proof. Fix j ∈ {0, . . . , m − 1}. Assume that Λ(j
Using the argument principle and (3.7) it follow

lim
n∈Λ(j)

1
2πi

∫
Γ

(an,m/an,j)′(z)
(an,m/an,j)(z)

dz = 1
2



because 1/ŝm,j+1 has one pole and no zeros outside Γ (counting the point ∞). Recall
that deg an,j = nj − 1, j = 0, . . . , m and that all the zeros of an,j lie on Δm. Then, for
all sufficiently large |n|, n ∈ Λ(j),

(nm − 1) − (nj − 1) − κn,m(Γ ) = 1.

Consequently,

κn,m(Γ ) = nm − nj − 1, n ∈ Λ(j). (3.11)

Analogously, from (3.8), for j = 0, . . . , m − 1, we obtain

lim
n∈Λ

1
2πi

∫
Γ

(an,j/an,m)′(z)
(an,j/an,m)(z) dz = 1

2πi

∫
Γ

ŝ ′
m,j+1(z)
ŝm,j+1(z)

dz = −1.

Therefore, for all sufficiently large |n|, n ∈ Λ,

nj − nm + κn,m(Γ ) − κn,j(Γ ) = −1, j = 0, . . . ,m− 1,

st statement follows from the fact that 
 an,j are in Δm ∪ {∞}. �
 valid if in place of (1.7) we require that

∞, j = 1, . . . ,m. (3.12)

mma 2.4 in which the parameter � in b) 
f of Lemma 2 in [1] admits this variation 
t resolved in the proof of [7, Corollary 1].

et and Δm−1∩Δm = ∅, it not difficult to
1.9) with geometric rate. More precisely, 

,j+1

∥∥∥∥1/|n|

K
= δj < 1. (3.13)

: j ≤ k ≤ m− 1} < 1. (3.14)

first and (3.9). The proof of the first is 
he fact that the number of interpolation 
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which together with (3.11) gives (3.10). The la
the only accumulation points of the zeros of the

Remark 3.4. The thesis of Theorem 1.4 remains

nj = |n|
m

+ o
(
|n|

)
, |n| →

To prove this we need an improved version of Le
depends on n but �(n) = o(n), n → ∞. The proo
with some additional technical difficulties in par

Remark 3.5. If either Δm or Δm−1 is a compact s
show that convergence takes place in (1.8) and (
for j = 0, . . . , m − 1, and K ⊂ C \ Δm, we have

lim sup
n∈Λ

∥∥∥∥ an,j

an,m
− (−1)m−j ŝm

For j = 0, . . . , m − 1, and K ⊂ C \ (Δj+1 ∪ Δm)

lim sup
n∈Λ

∥∥∥∥An,j

an,m

∥∥∥∥1/|n|

K
≤ max{δk

The second relation trivially follows from the 
similar to that of [7, Corollary 1]. It is based on t



points on Δm−1 is O(|n|), |n| → ∞, and that the distance from Δm to Δm−1 is positive.
Relations (3.13) and (3.14) are also valid if (1.7) is replaced with (3.12).

Asymptotically, (3.12) still means that the components of n are equally valued. One 
can relax (3.12) requiring, for example, that the generating measures are regular in the 
sense of [21, Chapter 3] in which case the exact asymptotics of (3.13) and (3.14) can 
be given (see [17], [18, Chapter 5, Section 7], [8, Theorem 5.1, Corollary 5.3], and [19, 
Theorem 1]).

Remark 3.6. The previous results can be applied to other approximation schemes. 
Let S1 = N (σ1

0 , . . . , σ
1
m1

), S2 = N (σ2
0 , . . . , σ

2
m2

), σ1
0 = σ2

0 be given. Fix n1 =
(n1,0, n1,1, . . . , n1,m1) ∈ Z

m1+1
+ and n2 = (n2,0, n2,1, . . . , n2,m2) ∈ Z

m2+1
+ , |n2| = |n1| − 1.

Let n = (n1, n2). There exists a non-zero vector polynomial with real coefficients
(an,0, . . . , an,m1), deg(an,k) ≤ n1,k − 1, k = 0, . . . , m1, such that for j = 0, . . . , m2,∫

xνAn,0(x)ds2
j (x) = 0, ν = 0, . . . , n2,j − 1,

where

an,kŝ
1
1,k.

σ2
0(x) = 0, deg bn,j ≤ n2,j − 1. (3.15)

C \Δ1
1, they are all simple and lie in

◦
Δ1

0
1
0)) and Δ1

1 = Co(supp(σ1
1)). Therefore,

–Padé approximation of (ŝ1,1, . . . , ̂s1,m)
 may be applied.

é approximation for Nikishin systems of analytic 

hier–Villars, Paris, 1926.
 Indag. Math. (N.S.) 5 (1994) 161–187.
mants to Nikishin systems. I, Acta Sci. Math. 

mants to Nikishin systems. II, Acta Sci. Math. 

nce of generalized Hermite–Padé approximants 
–196.
n the convergence of multi-point Hermite–Padé 
 25 (2007) 89–107.
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An,0 = an,0 +
m1∑
k=1

In other words∫ (
bn,0(x) +

m2∑
j=1

bn,j(x)ŝ2
1,j(x)

)
An,0(x)d

This implies that An,0 has exactly |n2| zeros in 
(see [10, Theorem 1.2]). Here Δ1

0 = Co(supp(σ
(an,0, . . . , an,m) is a type I multi-point Hermite
with respect to wn and the results of this paper
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