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of algebraic facts regarding orthogonal polynomials on the real line (OPRL) such as
recursion relations and Christoffel–Darboux (CD) formula. In that case we have a chain
of orthogonal polynomials {Pl(x)}∞l=0 of increasing degree l. In [7] we extended that
approach to the multiple orthogonality scenario, and the Gauss decomposition of an
appropriate moment matrix led to sequences of families of multiple orthogonal poly-
nomials in the real line (MOPRL), {Q(II,a1(l))

[�ν1(l);�ν2(l−1)]}∞l=0 and {Q̄(I,a1(l))
[�ν2(l);�ν1(l−1)]}∞l=0. These

families happen to be biorthogonal, and therefore we will refer to them as biorthogonal
sequences of linear forms. The recursion formulae are relations constructed in terms of
the linear forms in these sequences. However, the Daems–Kuijlaars Christoffel–Darboux
formula given in Proposition 4 – that was re-deduced in [7] by linear algebraic means
(Gauss decomposition) and the use of the ABC theorem – was not expressed in terms
of linear forms belonging to the mentioned sequences. This situation is rather different
to the OPRL case, in that standard scenario of the CD formula, call it the ABC type
CD formula, is expressed in terms of orthogonal polynomials in the sequence. The aim
of this paper is to show that, within that scheme, we can deduce an alternative but
equivalent MOPRL Christoffel–Darboux formula constructed in terms of linear forms in
the sequences {Q(II,a1(l))

[�ν1(l);�ν2(l−1)]}∞l=0 and {Q̄(I,a1(l))
[�ν2(l);�ν1(l−1)]}∞l=0 as in OPRL situation. Besides

we are able to find an OPRL type CD formula, expressed in terms solely of elements
type, there are two prices to pay: first,

C type CD formula for these MOPs and
he recursion relation; i.e., the Jacobi co-
ulae as Jacobi type CD formulae as they
atrix associated with the biorthogonal

there are many ways to prove the CD
could prove it using the ABC theorem

d on the other hand using the eigen-value
proaches – ABC and Jacobi – lead, in
ver, as already mentioned, in the MOP
results: the ABC type CD formula (or
ype CD formula.

back in 1873 when Hermite proved the
r, K. Mahler delivered at the University
led down the foundations of this theory,
pproximation when expressed in terms
nality of polynomials. Given an interval
the finite positive Borel measures with
. Fix μ ∈ M(Δ), and let us consider a
∈ N; i.e. w1, . . . , wp being real integrable
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in the biorthogonal sequences of MOP of mixed
we need, in general, more terms than in the AB
second, we will need to know the coefficients in t
efficients. We will refer to these type of CD form
are based on the structure of the Jacobi type m
sequences which gives their recursion relations.

We must stress that in the OPRL scenario
formula [26]. In particular, on the one hand we
combined with the moment matrix symmetry an
properties of the Jacobi matrix. These two ap
this simple situation, to the same result. Howe
scenario the two approaches lead to different
Daems–Kuijlaars CD formula) and the Jacobi t

1.1. Historical background

Simultaneous rational approximation starts
transcendence of the Euler number in [21]. Late
of Groningen several lectures [24] where he sett
see also [13] and [22]. Simultaneous rational a
of Cauchy transforms leads to multiple orthogo
Δ ⊂ R of the real line, let M(Δ) denote all
support containing infinitely many points in Δ
system of weights �w = (w1, . . . , wp) on Δ, with p



functions on Δ which does not change sign on Δ. Fix a multi-index �ν = (ν1, . . . , νp) ∈
Z
p
+, Z+ = {0, 1, 2, . . .}, and denote |�ν| = ν1 + · · · + νp. Then, there exist polynomials,

A1, . . . , Ap not all identically equal to zero which satisfy the following orthogonality
relations

∫
Δ

xj

p∑
a=1

Aa(x)wa(x)dμ(x) = 0, degAa ≤ νa − 1, j = 0, . . . , |�ν| − 2. (1)

Analogously, there exists a polynomial B not identically equal to zero, such that

∫
Δ

xjB(x)wb(x)dμ(x) = 0, degB ≤ |�ν|, j = 0, . . . , νb − 1, b = 1, . . . , p. (2)

These are the so called multiple orthogonal polynomials of type I and type II, respec-
tively, with respect to the combination (μ, �w, �ν) of the measure μ, the systems of weights
�w and the multi-index �ν. When p = 1 both definitions coincide with standard orthogonal

μ ∈ M(Δ) and a system of weights �w

normal if degAa must equal to νa − 1,
respectively. When for a pair (μ, �w) all
then the pair is called type I perfect or
l of polynomials have been employed in
example, in [11] F. Beukers shows that
an be placed in the context of a combi-
lity which is called mixed type multiple
xed type approximation has appeared in
motion theories, [12,15,23]. Sorokin [27]
construction which is closely connected
ype. In [29] a Riemann–Hilbert problem
ality of type I and II, extending in this
dard orthogonality. In [15] mixed type
erspective. For a general study, but not
Darboux kernels see [26]. In [9] we gave
eralized orthogonal polynomials. In [16]
dy of average characteristic polynomials
-dimensional, nonintersecting Brownian
time t = 0 and two prescribed ending

nalyzed with the aid of Hermite MOP.
n to fulfill that its zeros on the real line

l of the support of the measure and the
erlace.
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polynomials on the real line. Given a measure
on Δ a multi-index �ν is called type I or type II
a = 1, . . . , p, or degB must equal to |�ν| − 1,
the multi-indices are type I or type II normal,
type II perfect respectively. Multiple orthogona
several proofs of irrationality of numbers. For
Apery’s proof [10] of the irrationality of ζ(3) c
nation of type I and type II multiple orthogona
orthogonality of polynomials. More recently, mi
random matrix and non-intersecting Brownian
studied a simultaneous rational approximation
with multiple orthogonal polynomials of mixed t
was found that characterizes multiple orthogon
way the result previously found in [20] for stan
multiple orthogonality was analyzed from this p
including multiple orthogonality, of Christoffel–
a generalization of CD formulae to matrix gen
MOPRL and some CD kernels are used in the stu
and in [17] some properties of models of n one
motions with two prescribed starting points at
points at time t = 1 in a critical regime are a
Finally, in [19] a large class of MOPRL are show
are simple, lie in the interior of the convex hul
zeros of consecutive orthogonal polynomials int



1.2. Perfect systems and MOPRL of mixed type

In order to introduce multiple orthogonal polynomials of mixed type we consider two
systems of weights �w1 = (w1,1, . . . , w1,p1) and �w2 = (w2,1, . . . , w2,p2) where p1, p2 ∈ N,
and two multi-indices �ν1 = (ν1,1, . . . , ν1,p1) ∈ Z

p1
+ and �ν2 = (ν2,1, . . . , ν2,p2) ∈ Z

p2
+ with

|�ν1| = |�ν2| + 1. There exist polynomials A1, . . . , Ap1 , not all identically zero, such that
degAs < ν1,s, which satisfy the following relations

∫
Δ

p1∑
a=1

Aa(x)w1,a(x)w2,b(x)xjdμ(x) = 0, j = 0, . . . , ν2,b − 1, b = 1, . . . , p2. (3)

In this paper we say that we have p1 components of type II and p2 components of
type I. They are called mixed multiple-orthogonal polynomials with respect to the com-
bination (μ, �w1, �w2, �ν1, �ν2) of the measure μ, the systems of weights �w1 and �w2 and the
multi-indices �ν1 and �ν2. It is easy to show that finding the polynomials A1, . . . , Ap1 is
equivalent to solving a system of |�ν2| homogeneous linear equations for the |�ν1| unknown
coefficients of the polynomials. Since |�ν1| = |�ν2| + 1 the system always has a nontrivial

ns is the so called moment matrix, and
cornerstone of this paper. Observe that
= 1 in type I case. Hence in general we
{1, . . . , p1} such that degAa < ν1,a − 1.
sure μ ∈ M(Δ) and systems of weights
�ν1, �ν2) the conditions (3) determine that
t the combination (μ, �w1, �w2) is perfect.
of mixed type orthogonal polynomials
, . . . , p1} that Aa1 monic. Following [15]
nd denote the corresponding system of
ely, we can proceed as follows, since the
that

2,b(x)dμ(x) �= 0.

ed type of multi-orthogonal polynomials

)w2,b(x)dμ(x) = 1,

otation A
(II,a1)
[�ν1;�ν2],a and A

(I,a2)
[�ν1;�ν2],a to denote

e II and I normalizations, respectively.
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solution. The matrix of this system of equatio
the study of its Gauss decomposition will be the
when p1 = 1 we are in the type II case and if p2
can find a solution of (3) where there is an a ∈
When given a combination (μ, �w1, �w2) of a mea
�w1 and �w2 on Δ if for each pair of multi-indices (
degAa = ν1,a − 1, a = 1, . . . , p1, then we say tha
In this case we can determine a unique system
(A1, . . . , Ap1) satisfying (3) requiring for a1 ∈ {1
we say that we have a type II normalization a
polynomials by A

(II,a1)
a , j = 1, . . . , p1. Alternativ

system of weights is perfect from (3) we deduce

∫
xν1,r1

p1∑
a=1

Aa(x)w1,a(x)w

Then, we can determine a unique system of mix
(A(I,a2)

1 , . . . , A
(I,a2)
p2 ) imposing that

∫
xν1,a2

p1∑
a=1

A(I,a2)
a (x)w1,a(x

which is a type I normalization. We will use the n
these multiple orthogonal polynomials with typ



A known illustration of perfect combinations (μ, �w1, �w2) can be constructed with an
arbitrary positive finite Borel measure μ and systems of weights formed with exponen-
tials:

(
eγ1x, . . . , eγpx

)
, γi �= γj , i �= j, i, j = 1, . . . , p, (4)

or by binomial functions

(
(1 − z)α1 , . . . , (1 − z)αp

)
, αi − αj /∈ Z, i �= j, i, j = 1, . . . , p (5)

or combining both classes, see [25]. Recently, in [18] the authors were able to prove
perfectness for a wide class of systems of weights. These systems of functions, now called
Nikishin systems, were introduced by E.M. Nikishin [25] and initially named MT-systems
(after Markov and Tchebycheff).

1.3. Gauss decomposition and multiple orthogonality of mixed type. A reminder

ntegrable systems have been connected
. We are particularly interested in the
developed in [1–5], and applied further
ethod we use in this paper to get an
pe.
sary material for the construction of the
ula. We introduce the moment matrix
multiple orthogonality. Then, we outline
cing a Jacobi type semi-infinite matrix

trix. For that aim we need as starting
α,pα

), α = 1, 2 and p1, p2 ∈ {1, 2, 3, . . .}
them on an interval Δ ⊂ R. Given two
of |�nα| = nα,1 + · · · + nα,pα

any given
rough Euclidean division, the following
2, . . . , pα} and rα(l) such that rα(l) ∈

for example [28], a composition of an integer n
) positive integers. Two sequences that differ in
eir sum, while they are considered to define the
many distinct compositions. Given that for the

evant we have stressed this aspect and preferred
be also used.

5

Orthogonal polynomials and the theory of i
in several ways in the mathematical literature
one based in the Gauss decomposition that was
in [6–8]. These papers set the basis for the m
alternative CD formula for MOPRL of mixed ty

In the following we extract from [7] the neces
mentioned alternative Christoffel–Darboux form
and recall how the Gauss decomposition leads to
how the recursion relations appears by introdu
and recall the reader the CD formula [14,15].

1.3.1. The moment matrix
We now proceed to define the moment ma

point two systems of weights �wα = (wα,1, . . . , w

and a finite Borel measure dμ supported all of
compositions1 �nα = (nα,1, . . . , nα,pα

), α = 1, 2,
l ∈ Z+ := {0, 1, 2, . . .} determines uniquely, th
non-negative integers kα(l) ∈ Z+, aα(l) ∈ {1,
{0, 1, . . . , nα,aα(l) − 1} and

1 Do not confuse with a partition; in Combinatorics, see
is a way of writing n as the sum of a sequence of (strictly
the order of their terms define different compositions of th
same partition of that number. Every integer has finitely
Gauss decomposition description of MOP this order is rel
the name of composition to that of multi-index, which can



l =
{
kα(l)|�nα| + rα(l), aα(l) = 1,
kα(l)|�nα| + nα,1 + · · · + nα,aα(l)−1 + rα(l), aα(l) �= 1.

(6)

We define two monomial vectors that may be understood as sequences of monomials
according to the composition �nα, α = 1, 2, introduced previously.

χα :=

⎛
⎜⎜⎜⎜⎜⎜⎝

χα,[0]
χα,[1]

...
χα,[k]

...

⎞
⎟⎟⎟⎟⎟⎟⎠

where χα,[k] :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χα,[k],1
χα,[k],2

...
χα,[k],aα

...
χα,[k],pα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and χα,[k],aα
:=

⎛
⎜⎜⎝

xknα,aα

xknα,aα+1
...

xknα,aα+(nα,aα−1)

⎞
⎟⎟⎠.

In a similar manner for α = 1, 2 we define the weighted monomial vectors

ξα :=

⎛
⎜⎜⎜⎜⎜⎜

ξα,[0]
ξα,[1]

...

⎞
⎟⎟⎟⎟⎟⎟ where ξα,[k] :=

⎛
⎜⎜⎜⎝

wα,1χα,[k],1
wα,2χα,[k],2

...
wα,pα

χα,[k],pα

⎞
⎟⎟⎟⎠ .

d set the compositions n1,1 = 3, n1,2 = 2
,2) and �w2 = (w2,1). Then

8, x4, x5, . . .
)�

,

w1,1x
4, w1,1x

5, w1,2x
2, w1,2x

3, . . .
)�

,

and blue (dark gray in print), for α = 1,
steps of 3 for the monomial powers in

the corresponding MOP of mixed type
ose p2 = 1) these colors are associated,
II that this example leads to the red

nstruction of the monomial vectors χα

nly the two compositions �nα, α = 1, 2,
ents, χ(l)

α and ξ
(l)
α , of these semi-infinite

he just introduced Euclidean division

wα,aα(l)x
να,aα(l)

α we define

6

⎝ ξα,[k]
...

⎠
For example, let us put p1 = 2 and p2 = 1 an

and n2,1 = 1 with weight vectors �w1 = (w1,1, w1

χ1 =
(
1, x, x2, 1, x, x3, x4, x5, x2, x3, x6, x7, x

χ2 =
(
1, x, x2, . . .

)�
,

ξ1 =
(
w1,1, w1,1x,w1,1x

2, w1,2, w1,2x,w1,1x
3,

ξ2 = w2,1
(
1, x, x2, . . .

)�
.

We have used two colors, red (light gray in print)
to remark the two (p1 = 2) forms of growth, in
red component and of 2 for the blue one. For
(in this case are just of type II as we have cho
as we will see, to the two components of type
and blue components. Observe that for the co
and weighted monomial vectors ξα, α = 1, 2, o
are needed. However, the l-th entries or coeffici
vectors can be explicitly expressed in terms of t

χ(l)
α = xνα,aα(l) , ξ(l)

α =

where for any given l ∈ Z+ and aα := 1, 2, . . . , p



να,aα
(l) :=

⎧⎪⎨
⎪⎩

kα(l)|�nα| + nα,aα
− 1, aα < aα(l),

kα(l)|�nα| + rα(l), aα = aα(l),
kα(l)|�nα| − 1, aα > aα(l).

Notice that να,aα
(l) is the highest degree of all the monomials of type aα up to the

component χ
(l)
α included, of the monomial vector.

We stress that for a given positive integer l the number aα(l) ∈ {1, . . . , pα} distin-
guishes to which of the pα possible components, or different colors (light and dark gray
in print) in the previous example (of type II for α = 1 and type I for α = 2) this integer
belongs to. Later on for any positive integer l we will need to know which is the closest
integer by defect or by excess in a given component aα ∈ {1, . . . , pα}, α ∈ {1, 2}. For that
aim we introduce the functions

[·,·]≶α : Z+ × {1, . . . , pα} → Z+,

(l, a) �→ [l, a]≶α ,

where
⎧ ∑

α,i − 1, a < aα(l),
a = aα(l),

nα,i − 1, a > aα(l),
a−1
i=1 nα,i, a < aα(l),

a = aα(l),
pα

i=a+1 nα,i, a > aα(l).
(7)

rs; i.e., that [l, a]>α ([l, a]<α ) is the smallest
) and aα([l, a]>α ) = a (aα([l, a]<α ) = a).
ociated to the compositions �nα, α = 1, 2,
g manner

�dμ(x). (8)

Gauss decomposition of the moment

, �w1, �w2) we define

factorization) of a semi-infinite moment
roblem of finding the solution of

7

[l, a]<α :=
⎪⎨
⎪⎩

kα(l)|�nα| + a
i=1 n

l,

kα(l)|�nα| −
∑pα

i=a+2

[l, a]>α :=

⎧⎪⎨
⎪⎩

(kα(l) + 1)|�nα| +
∑

l,

(kα(l) + 1)|�nα| −
∑

It can be proven that these are the desired intege
(largest) integer such that [l, a]>α ≥ l ([l, a]<α ≤ l

Finally, given the weighted monomials ξα, ass
we introduce the moment matrix in the followin

Definition 1. The moment matrix is given by

g :=
∫

ξ1(x)ξ2(x)

1.3.2. Multiple orthogonality of mixed type: The
matrix

Definition 2. For a given perfect combination (μ

(1) The Gauss decomposition (also known as LU
matrix g, determined by (μ, �w1, �w2), is the p



g = S−1S̄, S =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
S1,0 1 0 · · ·
S2,0 S2,1 1 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ ,

S̄−1 =

⎛
⎜⎜⎜⎜⎝

S̄′
0,0 S̄′

0,1 S̄′
0,2 · · ·

0 S̄′
1,1 S̄′

1,2 · · ·
0 0 S̄′

2,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ , (9)

where Si,j , S̄
′
i,j ∈ R.

(2) In terms of these matrices we construct the polynomials

A(l)
a :=

∑′

i

Sl,ix
k1(i), (10)

where the sum
∑′ is taken for a fixed a = 1, . . . , p1 over those i such that a = a1(i)

and i ≤ l. We also construct the dual polynomials

k2(j)S̄′
j,l, (11)

r those j such that b = a2(j) and j ≤ l.
ms associated with multiple orthogonal

=

⎛
⎜⎝

Q̄(0)

Q̄(1)

...

⎞
⎟⎠ =

(
S̄−1)�ξ2. (12)

in Definition 2, are given by

Q̄(l)(x) :=
p2∑
b=1

Ā
(l)
b (x)w2,b(x). (13)

≤ ν2,b(l − 1) − 1, b = 1, . . . , p2,

8

Ā
(l)
b :=

∑′

j

x

where the sum
∑′ is taken for a given b ove

(3) Vectors of linear forms and dual linear for
polynomials and their duals are defined by

Q :=

⎛
⎜⎝

Q(0)

Q(1)

...

⎞
⎟⎠ = Sξ1, Q̄ :

Then – see Propositions 3, 4, 5 and 6 in [7] –

Proposition 1.

(1) The linear forms and their duals, introduced

Q(l)(x) :=
p1∑
a=1

A(l)
a (x)w1,a(x),

(2) The orthogonality relations

∫
Q(l)(x)w2,b(x)xkdμ(x) = 0, 0 ≤ k



∫
Q̄(l)(x)w1,a(x)xkdμ(x) = 0, 0 ≤ k ≤ ν1,a(l − 1) − 1, a = 1, . . . , p1, (14)

are fulfilled.
(3) We have the following identifications

A(l)
a = A

(II,a1(l))
[�ν1(l);�ν2(l−1)],a, Ā

(l)
b = A

(I,a1(l))
[�ν2(l);�ν1(l−1)],b,

in terms of multiple orthogonal polynomials of mixed type with two normalizations I
and II, respectively.

(4) The following multiple bi-orthogonality relations among linear forms and their duals

∫
Q

(II,a1(l))
[�ν1(l);�ν2(l−1)](x)Q̄(I,a1(k))

[�ν2(k);�ν1(k−1)](x)dμ(x) = δl,k, l, k ∈ Z+, (15)

hold.

Observe that a major difference between the usual approach to MOPRL of mixed
type, in which the orthogonality relations (3) are discussed in its own, and the described

iorthogonality conditions given by (15).
relations – the perpendicularity of each

onality of the set of polynomials {Pl}∞l=0
arallel before in the MOPRL scenario.
e have two sequences of MORPL – with
uch that its biorthogonality is equivalent
families.

ons
etry that implies the recursion relations
der the shift operators Υα defined by

,aα(l)]> (16)

Υαξα(x) = xξα(x)

be the particular Hankel symmetries for

e Hankel type symmetry

. (17)

9

Gauss decomposition approach is precisely the b
While for standard OPRL both type orthogonal
polynomial Pl to {1, x, . . . , xl−1} and the orthog
– are discussed in equal footing this has no p
Biorthogonality (15) gives such a bridge; i.e., w
normalizations of types I and II, respectively – s
to the multiple orthogonality condition of both

1.3.3. Jacobi type matrices and recursion relati
The moment matrix has a Hankel type symm

and the Christoffel–Darboux formula. We consi

(Υα)l,j := δj,[l+1

which satisfy the following relation

Υαχα(x) = xχα(x) =⇒

In terms of these shift matrices we can descri
the moment (see Proposition 12 in [7]) matrix

Proposition 2. The moment matrix g satisfies th

Υ1g = gΥ�
2



From this symmetry we see that the following is consistent

Definition 3. We define the matrices

J := SΥ1S
−1 = S̄Υ�

2 S̄−1 = J+ + J−, J+ :=
(
SΥ1S

−1)
+, J− :=

(
S̄Υ�

2 S̄−1)
−,

(18)

where the sub-indices + and − denote the upper triangular and strictly lower triangular
projections.

The matrix J for this MORPL of mixed type is therefore, not a tridiagonal matrix as
for the standard OPRL, but more generally a banded matrix with the number of upper
and lower diagonal determined by the number of components and compositions.

The recursion relations follow immediately from the eigenvalue property

JQ(x) = xQ(x), Q̄(x)�J = xQ̄(x)�, (19)

which imply for {Q(II,a1(l))
[�ν1(l);�ν2(l−1)](x)}∞l=0 and {Q̄(I,a1(k))

[�ν2(k);�ν1(k−1)](x)}∞k=0 recursion rela-
(II,a (l)) d as a finite sum of linear forms in

(x) as a finite combination of dual linear

ula for MOP of mixed type

el is defined by

](y)Q̄
(I,a1(k))
[�ν2(k);�ν1(k−1)](x). (20)

block form as follows
)

efficients of v and v[≥l] the semi-infinite
his decomposition induces the following

[l,≥l]

M [≥l]

)
.

n–Berg–Collar) type theorem – this de-
he OPRL case –

10
tions; i.e., each xQ 1
[�ν1(l);�ν2(l−1)](x) is expresse

{Q(II,a1(i))
[�ν1(i);�ν2(i−1)](x)}∞i=0 and each xQ̄

(I,a1(k))
[�ν2(k);�ν1(k−1)]

forms in {Q̄(I,a1(j))
[�ν2(j);�ν1(j−1)](x)}∞j=0.

1.3.4. The ABC type Christoffel–Darboux form

Definition 4. The l-th Christoffel–Darboux kern

K [l](x, y) :=
l−1∑
k=0

Q
(II,a1(k))
[�ν1(k);�ν2(k−1)

Any semi-infinite vector v can be written in

v =
(

v[l]

v[≥l]

v[l] is the finite vector formed with the first l co
vector formed with the remaining coefficients. T
block structure for any semi-infinite matrix

M =
(

M [l] M

M [≥l,l]

In Corollary 2 in [7] we found an ABC (Aitke
nomination is the one that appears in [26] for t



Proposition 3. The Christoffel–Darboux kernel can be expressed in terms of the inverse
of the truncated moment matrix as follows

K [l](x, y) =
(
ξ
[l]
2 (x)

)�(
g[l])−1

ξ
[l]
1 (y). (21)

Finally what we call the ABC type or Kuijlaars–Daems CD formula for MOP of mixed
type is (see Proposition 21 in [7])

Proposition 4. For l ≥ max(|�n1|, |�n2|) the following

(x− y)K [l](x, y) =
p2∑
b=1

Q̄
(II,b)
[�ν2(l−1)+�e2,b;�ν1(l−1)](x)Q(I,b)

[�ν1(l−1);�ν2(l−1)−�e2,b](y)

−
p1∑
a=1

Q̄
(I,a)
[�ν2(l−1);�ν1(l−1)−�e1,a](x)Q(II,a)

[�ν1(l−1)+�e1,a;�ν2(l−1)](y) (22)

holds.

d type has been proven by Kuijlaars and
,15]. Later on, in [7] it was proven for the
alytic conditions as in [14,15] – using the
e {�ei,a}pi

a=1 ⊂ R
pi stands for the vectors

tress the appearance of �ν2(l − 1) + �e2,b,
hich are multi-indexes that do not belong
e sequence of biorthogonal linear forms
=0. Our alternative proposal, despite of
below, involves only linear forms in the

multiple orthogonal polynomials of

r the arithmetic congruence modulo pα;

1} ∼= Zpα
= Z/(pαZ), α = 1, 2.

ng Jacobi type Christoffel–Darboux for-

11
This ABC type CD formula for MOP of mixe
Daems using a Riemann–Hilbert problem, see [14
first time by algebraic means – not relying on an
ABC theorem (21) and the symmetry (17). Her
in the respective canonical basis, i = 1, 2. We s
�ν2(l−1)−�e2,b, �ν1(l−1)−�e1,a and �ν1(l−1)+�e1,a w
to the multi-index sequence associated with th
{Q(II,a1(l))

[�ν1(l);�ν2(l−1)](x)}∞l=0 and {Q̄(I,a1(k))
[�ν2(k);�ν1(k−1)](x)}∞k

having a larger number of terms, as we will see
sequence.

2. Jacobi type Christoffel–Darboux formula for
mixed type

Given any positive integer l ∈ Z+ we conside
i.e.

l = l̄α mod pα, l̄α ∈ {0, 1, . . . , pα −

The result of this paper is the following

Theorem 1. For l ≥ max{|�n1|, |�n2|} the followi
mula holds



(y − x)K [l](x, y) =
∑

(i,j)∈σ1[l]

Q̄
(I,a1(j))
[�ν2(j);�ν1(j−1)](x)Jj,iQ(II,a1(i))

[�ν1(i);�ν2(i−1)](y)

−
∑

(i,j)∈σ2[l]

Q̄
(I,a1(j))
[�ν2(j);�ν1(j−1)](x)Jj,iQ(II,a1(i))

[�ν1(i);�ν2(i−1)](y),

where

σ1[l] :=
{
l, . . . ,

[
l,
(
a1(l) − 1

)
1
]>
1

}
×

{[
l − 1, . . . ,

(
a1(l − 1) + 1

)
1
]<
1

}
,

σ2[l] :=
{[

l − 1,
(
a2(l − 1) + 1

)
2
]<
2 , . . . , l − 1

}
×
{
l, . . . ,

[
l,
(
a2(l) − 1

)
2
]>
2

}
.

Proof. Splitting the eigenvalue property (19) into blocks we get

JQ(y) = yQ(y) =⇒ J [l]Q(y)[l] + J [l,≥l]Q(y)[≥l] = yQ(y)[l]

+
[
Q̄(x)�

][≥l]
J [≥l,l] = x

[
Q̄(x)�

][l]

)�][l] and the second one from the right

(x)�
][≥l]

J [≥l,l]Q(y)[l]

] = (y − x)K [l](x, y)

n though J [l,≥l] has semi-infinite length
nly contains a finite number of nonzero
r of itself. The same reasoning applies
lumns but again it only contains a finite
pper right corner of itself. Of course the
ll depend on the value of l. To be more

zero elements of J along a given row or

12
Q̄(x)�J = xQ̄(x)� =⇒
[
Q̄(x)�

][l]
J [l]

Multiply the first equation from the left by [Q̄(x
by Q(y)[l] substract both results to obtain

[
Q̄(x)�

][l]
J [l,≥l]Q(y)[≥l] −

[
Q̄

= (y − x)
[
Q̄(x)�

][l] ·Q(y)[l

A brief study of the shape of J shows that, eve
rows, most of its elements are 0. Actually it o
entries that concentrate in the lower left corne
to J [≥l,l]. This matrix has semi-infinite length co
number of nonzero terms concentrated in the u
number of terms involved in this expression wi
precise we proceed as follows.

After a study of the shape of J we can state

Lemma 1. For l ≥ max{|�n1|, |�n2|} the only non
column are



J[l−1,(a1(l−1)+1)1]<1 ,l

∗
...
∗

Jl,[l−1,(a2(l−1)+1)2]<2
∗ · · · ∗ Jl,l ∗ · · · ∗ Jl,[l+1,(a1(l+1)−1)2]>1

∗
...
∗

J[l+1,(a2(l+1)−1)2]>2 ,l

Using this lemma we get the desired result and the proof is complete. �
Remarkably, this Jacobi type CD formula is expressed uniquely in terms of our se-

quences of biorthogonal linear forms {Q(II,a1(l))
[�ν1(l);�ν2(l−1)](x)}∞l=0 and {Q̄(I,a1(k))

[�ν2(k);�ν1(k−1)](x)}∞k=0,
and does not need of alien multi-indexes to it, as �ν2(l − 1) + �e2,b, �ν2(l − 1) − �e2,b,
�ν1(l − 1) − �e1,a and �ν1(l − 1) + �e1,a that appear in the standard CD formula for MOP
of mixed type (22). The price we have to pay to have all the terms in the sequence

d more terms than in the formula (22)
summand is strange to the biorthogonal

al sequence that is needed in this Jacobi

) + 1
)
α

]<
α
, α = 1, 2

l,(a2(l)−1)2]>2 −l∑
k=0

[
n2(l + k) − k

]
.

positions are �n1 = (1, . . . , 1) and �n2 =

�n2|(|�n2| + 1)
2 .

terms. In order to be more clear let us
, 2) and �n2 = (3, 2). The corresponding

13
of biorthogonal polynomials is that we will nee
where we have (p1 +p2) summands (where each
sequence of linear forms).

The number of terms N from the biorthogon
type CD formula can be expressed in terms of

nα(l) := l −
[
(l − 1),

(
aα(l − 1

as follows

Proposition 5. We have the following equation

N =
[l,(a1(l)−1)1]>1 −l∑

k=0

[
n1(l + k) − k

]
+

[

The worst situation is reached when the com
(1, . . . , 1); in this case we have that

N = |�n1|(|�n1| + 1)
2 + |

For any other pair of compositions we have less
suppose that p1 = 3 and p2 = 2 with �n1 = (4, 3
Jacobi type matrix has the following shape



J =
(

J [12] J [12,≥12]

J [≥12,12] J [≥12]

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ . . .

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ . . .

...
...

...
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23)

ber.
and �n2 = (3, 2)) for l = 12 we have

(j)

]
−

[ 13∑
i=12

11∑
j=9

Q̄(x)(i)Ji,jQ(y)(j)
]
.

of factorization factors

f S or of S̄, this means that each term
ions between S with S̄. We are not too
want here is the most simple expression

realize that this is achieved if we use
the upper part of J and the expression

ce, for every Jl,k we will have expressions
and the elements of their inverses – thus,
kind functions. The only terms from the
ill be involved when calculating any Jl,k
e l− |�n1| diagonal (both included) of S
|�n2| diagonal (both included) of S̄. And

ere are three different kinds of elements

14
⎝ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

where ∗ denotes a non-necessarily null real num
In our example (p1 = 3, p2 = 2, �n1 = (4, 3, 2)

(y − x)K [12](x, y) =
[ 11∑

i=6

16∑
j=12

Q̄(x)(i)Ji,jQ(y)

2.1. Expressing the Jacobi type matrix in terms

As we have seen we can write J in terms o
of J has two different expressions, giving relat
concerned about these relations since what we
we can get for the elements of J . It is easy to
the expression involving S in order to calculate
involving S̄ to calculate the lower part of it. Hen
in terms of the factorization matrices coefficients
in terms of the MOPRL and associated second
factorization matrices (or their inverses) that w
are just those between the main diagonal and th
and those between the main diagonal and the l+
not even all of them. As we are about to see th



in J . The ones along the main diagonal, the ones along the immediate closest diagonals to
the main one, and finally all the remaining diagonals. The recursion relation coefficients
Jk,l are ultimately related to the MOPRL and its associated second kind functions in
the following way

Proposition 6. The elements of the recursion matrix J can be written in terms of products
of the entries of the LU factorization matrices and its inverses as follows

Jl,l = Sl,[(l−1),a(l)]<1 + S−1
[(l+1),a(l)]>1 ,l

+
∑

a=1,...,p1
a�=a1(l)

Sl,[(l−1),a]<1 S
−1
[(l+1),a]>1 ,l

= S̄l,[(l+1),a(l)]>2 S̄
−1
l,l + S̄l,lS̄

−1
[(l−1),a(l)]<2 ,l

+
∑

a=1,...,p2
a�=a2(l)

S̄l,[(l+1),a]>2 S̄
−1
[(l−1),a]<2 ,l

Jl,l+1 = S−1
[(l+1),a(l)]>1 ,l+1 +

∑
a=1,...,p1
a�=a1(l)

Sl,[(l−1),a]<1 S
−1
[(l+1),a]>1 ,l+1

Jl+1,l = S̄l+1,[(l+1),a(l)]>2 S̄
−1
l,l +

∑
S̄l+1,[(l+1),a]>2 S̄

−1
[(l−1),a]<2 ,l

a]>1 ,l+k
,

1),a]<2 ,l
,

(16) of Υα, α = 1, 2, and the definition
cients. �
d

r ≤ r′,
pα

a=r Xa, r > r′.

iversidad Complutense de Madrid Pro-
tenses Predoctorales en España 2011”.
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a=1,...,p2
a�=a2(l)

Jl,l+k =
(a1(l)−1)1∑p1

a=(a1(l+k−1)+1)1

Sl,[(l−1),a]<1 S
−1
[(l+1),

2 ≤ k ≤
[
(l + 1),

(
a1(l + 1) − 1

)
1
]<
1 − l,

Jl+k,l =
(a2(l)−1)2∑p2

a=(a2(l+k−1)+1)2

S̄l+k,[(l+1),a]>2 S̄
−1
[(l−

2 ≤ k ≤
[
(l + 1),

(
a2(l + 1) − 1

)
2
]<
2 − l.

Proof. To prove it we just take the definition
of J given in (18) to compute the different coeffi

Where, for r, r′ < pα, α ∈ {1, 2}, we have use

r′∑pα

a=r

Xa =
{∑r′

a=r Xa,∑r′

a=1 Xa +
∑
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