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1. Introduction

In this paper we basically study one of the classical problems in the theory of orthogo-
nal polynomials that goes back to the work of Fejér [16] and Shohat [26]. It can be stated

l of the real
{Pn(t)}n≥0.
omials

(1.1)

a family of
pported on

esent paper
uation such
which were
evertheless,
case of the

s of orthog-
[17] and it
d until the
nov [27,28],
Geronimus
work to the
as given in

ed Darboux
cobi matri-
ns from the

n the linear
e image of

r functional
new linear

a)
〉
.

as follows. Given a nontrivial probability measure μ supported on an interva
line, consider the corresponding sequence of monic orthogonal polynomials
Then the problem is to find out when the sequence {Qn}n≥0 of monic polyn

Qn(t) := Pn(t) + A
[n]
1 Pn−1(t) + · · · + A

[n]
N Pn−N (t)

with real numbers A
[n]
1 , · · · , A[n]

N , A[n]
N �= 0, and P−i = 0, for i = 1, . . . , N , is

monic orthogonal polynomials with respect to some probability measure ν su
an interval of the real line.

This problem has not been fully understood up until now and in the pr
we give the most thorough answer by demonstrating that in the general sit
families {Qn(t)}n≥0 could lead to Sobolev type orthogonal polynomials,
introduced in a general framework in the early nineties; see [22] and [1]. N
few years after the Shohat publication a complete answer to the particular
problem, when

Qn(t) := Pn(t) + A
[n]
1 Pn−1(t),

was given by Geronimus in [17], providing a way to generate new familie
onal polynomials. Since even nowadays it is not so easy to get access to
is only accessible in Russian, the paper by Geronimus remained unnotice
work on discrete-time Toda and Volterra lattices by Spiridonov and Zheda
where they called the new family of orthogonal polynomials {Qn(t)}n≥0 the
transformation of {Pn(t)}n≥0 (see also [30]). Later on, a more general frame
Geronimus transformation and its inverse, the Christoffel transformation, w
[2–5,7,18,21,24,25,29]. In this framework both the transformations are call
transformations because they are related to UL- and LU -factorization of Ja
ces and are discrete analogs of the famous Bäcklund–Darboux transformatio
theory of integrable systems.

To get a basic idea about [7,29], let us consider a linear functional σ o
space P of polynomials with real coefficients. Next, we denote by 〈σ, p〉 th
p ∈ P by the linear functional σ. We define the moments of such a linea
by σn := 〈σ, tn〉. In addition, for polynomials p and φ, we can introduce
functionals as (see [29])

〈
φσ(t), p(t)

〉
=
〈
φ, σ(t)p(t)

〉
and

〈
(t− a)−1σ, φ(t)

〉
=
〈
σ,

φ(t) − φ(
t− a
2



The canonical Geronimus transformation of the linear functional σ corresponding to
the Geronimus transformation of orthogonal polynomials can be defined as the linear
functional σ̂ such that [23]

−1 (1.2)

ase 〈σ, f〉 =
have

h our main

estion and,
context of
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nd satisfies

ram matrix
〉, then the

nite) if the
th determi-
a sequence
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the circum-
nkel matrix
linear func-
the discrete
] to name a
rmation as
an infinite
σ̂ = (t− a) σ + σ̂0δ(t− a).

Notice that the constant σ̂0 is an arbitrary real number. In the particular c∫
I
fdμ0 where μ0 is a nontrivial probability measure and a = 0 in (1.2), we

〈σ̂, fg〉 =
∫
I

fgdμ +
(
σ̂0 −

∫
I

dμ

)
f(0)g(0)

where tdμ = dμ0. Unfortunately, this approach doesn’t allow us to deal wit
problem in the full generality and we have to go on.

In order to move to the next level of understanding of the problem in qu
so, the Geronimus transformation, we need to reconsider everything in the
symmetric bilinear forms [6,8,12,13]. To this end, let us recall that a symme
form B is a mapping B : P×P → R which is linear in each of its arguments a

B(f, g) = B(g, f).

As a consequence, we can associate with every symmetric bilinear form a G
(B(ti, tj))∞i,j=0 := (μi,j)∞i,j=0. If a bilinear form is given by B(f, g) = 〈σ, fg
corresponding Gram matrix is a Hankel matrix.

A symmetric bilinear form is said to be quasi-definite (resp. positive defi
leading principal submatrices of the Gram matrix are nonsingular (resp. wi
nant greater than zero). In this case the symmetric bilinear form generates
of orthogonal polynomials. In fact, these polynomials can be written as follo

Pn(t) =

∣∣∣∣∣∣∣∣∣
μ0,0 · · · μ0,n

...
...

...
μn−1,0 · · · μn−1,n

1 · · · tn

∣∣∣∣∣∣∣∣∣ .

The interest in considering symmetric bilinear forms in general comes from
stance that the associated Gram matrix does not have the structure of a Ha
that appears when you deal with symmetric bilinear forms associated with
tionals. Thus it allows us to consider some different kinds of orthogonality like
Sobolev one which has attracted the attention of many authors (see [13,15
few). In this framework, it is quite natural to define the Geronimus transfo
follows (see [12,17]). For a nontrivial probability measure μ0 supported on
3



subset I of the real line, let us introduce an associated symmetric bilinear form defined
on the linear space of polynomials P as

(
f(t), g(t)

)
0 =

∫
f(t)g(t)dμ0(t).

iven by the

nded to the
omials and
the double

= N . Then

said about
ch turn out
ere general
ltiplication
. Note that

s a discrete
enerated by
same time,
cial case of
obolev type
ls.
d and nota-
nsformation
tric bilinear
tor with an
ic orthogo-
f the above
I

The Geronimus transformation of (·,·)0 is the symmetric bilinear form [·,·]1 g
formula

[
tg(t), f(t)

]
1 =

[
g(t), tf(t)

]
1 =

∫
I

f(t)g(t)dμ0(t).

Moreover, in [12] the definition of the Geronimus transformation was exte
case of the polynomial h(t) = t2, and the corresponding orthogonal polyn
band matrices were studied there. In this case the transformation is called
Geronimus transformation and it is associated with the family

Qn(t) := Pn(t) + A
[n]
1 Pn−1(t) + A

[n]
2 Pn−2(t).

In this paper we start with an arbitrary polynomial h of degree deg h
following [12] we define a multiple Geronimus transformation as

[
h(t)g(t), f(t)

]
h

=
[
g(t), h(t)f(t)

]
h

=
∫
I

f(t)g(t)dμ0(t).

Now we are in a position to pose the following natural question: what can be
the symmetric bilinear form [·,·]h and related orthogonal polynomials, whi
to be of the form (1.1)? This problem is also motivated by Durán in [13], wh
results are given for symmetric bilinear forms such that the operator of mu
by h is symmetric with respect to the bilinear form, i.e. B(hf, g) = B(f, gh)
our Proposition 2 is a specific case of Lemma 3 given in [13].

In a word, the main idea of the present paper is to show that [·,·]h i
Sobolev inner product and to explain the structure of the band matrices g
the recurrence relations for Sobolev type orthogonal polynomials. At the
taking into account [14] our results can be considered as results for a spe
matrix orthogonal polynomials. Briefly speaking, in [14] it was shown that S
orthogonal polynomials are strongly related to matrix orthogonal polynomia

The structure of the paper is as follows. In Section 2 some basic backgroun
tions are presented. Section 3 deals with an extension of the Geronimus tra
to the case of arbitrary polynomials h. More precisely, we obtain the symme
forms such that the operator of multiplication by h is a symmetric opera
extra condition. In Section 4 we study the corresponding sequences of mon
nal polynomials. Section 5 is focused on an interpretation of the matrix o
4



multiplication operator based on a Darboux transformation with parameters. Finally, in
Section 6 we establish a connection between such factorizations and block Jacobi matrices
associated with matrix orthogonal polynomials deduced from the Sobolev type orthog-
onal polynomials. Thus we get that multiple Geronimus transformations in the scalar
case yield Geronimus spectral transformations for this special case of matrix orthogonal

symmetric

(2.1)

et I of the
w that the
fies a three

s a positive
n}n≥0 such

tridiagonal
polynomials.

2. Preliminaries

Here we give some basic notations and facts. Let us start by considering a
bilinear form

(f, g)0 =
∫
I

f(t)g(t)dμ0(t),

where μ0 is a nontrivial probability measure supported on an infinite subs
real line. In general, if we assume that (·,·)0 is quasi-definite, then we kno
corresponding sequence of monic orthogonal polynomials {Pn(t)}n≥0 satis
term recurrence relation

tPn(t) = Pn+1(t) + DnPn(t) + CnPn−1(t),

where Dn and Cn are real numbers with Cn �= 0 [9].
Using a matrix notation, the above expression reads

tP = JmonP,

where

Jmon =

⎡⎢⎢⎢⎣
D0 1
C1 D1 1

C2 D2
. . .

. . . . . .

⎤⎥⎥⎥⎦
is a monic Jacobi matrix and P = (P0, P1, · · ·)T . If we assume that (·,·)0 i
definite bilinear form then there is a sequence of orthonormal polynomials {P̂
that

tP̂n(t) = Ĉn+1P̂n+1(t) + D̂nP̂n(t) + ĈnP̂n−1(t), n ≥ 0.

Notice that in this case Ĉ2
n = Cn ≥ 0.

With the above sequence of orthonormal polynomials we can associate a
symmetric Jacobi matrix of the form
5



Ĵ =

⎡⎢⎢⎢⎣
D̂0 Ĉ1
Ĉ1 D̂1 Ĉ2

Ĉ2 D̂2
. . .

. . . . . .

⎤⎥⎥⎥⎦

ed with the
ormula

pression for

of Kn(x, y):

ilinear form

(3.1)

owever, the

1

⎤⎥⎦ (3.2)

cation by h

he underly-
ce of monic
such that tP̂ = Ĵ P̂ , where P̂ = (P̂0, P̂1, . . .)T .
In what follows we will need the n-th reproducing kernel Kn(t, y) associat

monic orthogonal polynomial sequence {Pn(t)}n≥0 which is defined by the f

Kn(t, y) =
n∑

k=0

Pk(t)Pk(y)
‖Pk‖2

μ0

,

where ‖Pk‖2
μ =

∫
I
|Pk(t)|2dμ0. At the same time, there is an explicit ex

Kn(x, y), which is the so-called Christoffel–Darboux formula

Kn(x, y) = Pn+1(x)Pn(y) − Pn(x)Pn+1(y)
(x− y)‖Pn‖2

μ

,

for x �= y. We will also use the following notation for the partial derivatives

K(i,j)
n (x, y) = ∂i+j(Kn(x, y))

∂xi∂yj
.

3. An extension of the Geronimus transformation to the multiple case

Let h(t) be a monic polynomial of deg h = N . Let us define a symmetric b
[·,·]h on the linear space P of all polynomials with real coefficients by

[hf, g]h = [f, hg]h =
∫
I

f(t)g(t)dμ0(t).

Clearly, this definition does not determine the bilinear form [·,·]h uniquely. H
elements of the symmetric matrix

Ŝ =

⎡⎢⎣ [1, 1]h · · · [1, tN−1]h
...

...
...

[tN−1, 1]h · · · [tN−1, tN−1]h

⎤⎥⎦ =

⎡⎢⎣ s0,0 · · · s0,N−1
...

...
...

sN−1,0 · · · sN−1,N−

can be chosen arbitrarily. It should be noted that the operator of multipli
is symmetric with respect to the inner product [·,·]h. If we assume that t
ing symmetric bilinear form is quasi-definite then the corresponding sequen
orthogonal polynomials {P ∗

n(t)}n≥0 satisfies the relation
6



h(t)P ∗
n(t) =

n+N∑
k=n−N

c
[n]
k P ∗

k (t),

where c
[n]
n+N = 1, and c

[n]
n−N > 0 for n ≥ N . Thus, we can associate with the sequence

{P ∗(t)} a 2N + 1 band matrix of the form

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3)

will choose

ultiplicities,
n n≥0

J∗
mon =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
[0]
0 c

[0]
1 · · · c

[0]
N−1 1

c
[1]
0 c

[1]
1 · · · · · · c

[1]
N 1

...
...

. . . . . . . . .
c
[N ]
0 c

[N ]
1 · · · . . . c

[N ]
2N−1 1

0 c
[N+1]
1 · · · . . . c

[N+1]
2N 1

. . . . . . . .

Before dealing with the properties of the symmetric bilinear form [·,·]h, we
an appropriate basis in the linear space P. Namely, let us consider the basis

Bh =
{
tmhk, k ≥ 0, 0 ≤ m ≤ N − 1

}
.

This allows us to express every polynomial f as

f(t) =
∑

0≤m≤N−1, k≥0

ak,mtmhk(t).

Moreover, if we fix k and define the linear operator

Sk,h(f)(t) =
N−1∑
m=0

ak,mtmhk(t)

then we have f =
∑

k≥0 Sk,h(f)(t).
Let α1, . . . , αp be the zeros of h(t) and β1 · · ·βp be their corresponding m

i.e.

h(t) = (t− α1)β1(t− α2)β2 · · · (t− αp)βp with
p∑

i=1
βi = N.

For each αi, the polynomial h(t) can be represented in the form

h(t) = (t− αi)βiqi(t) where qi(αi) �= 0.

According to the Leibniz product rule for derivatives, we have that

h(r)(t) =
r∑

k=0

(
r

k

)
βi!

(βi − k)! (t− αi)βi−kq
(r−k)
i (t).
7



Thus,

h(j)(αi) = 0 for j = 0, · · · , βi − 1.

d above we

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0
a0,1

...

...
a0,N−2
a0,N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.4)

⎤⎥⎥⎥⎥⎥⎦
βi×N
If f is a polynomial then using its representation in terms of the basis define
get

f (j)(αi) =
N−1∑
k=j

a0,k
k!

(k − j)!α
k−j
i .

As a consequence, for i = 1, . . . , p, one has

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(αi)
f (1)(αi)

...

...
f (βi−2)(αi)
f (βi−1)(αi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 αi α2
i α3

i · · · · · · · · · αN−1
i

1 2αi 3α2
i · · · · · · · · · (N − 1)αN−2

i

2! 6αi · · · · · · · · · (N − 1)(N − 2)αN−3
i

. . .
. . . · · · · · ·

...
(βi − 1)! βiαi · · · (N−1)!

(N−βi)!
αN−βi

i

⎤⎥⎥⎥⎥⎥⎥⎦
βi×N

Introducing the matrices

Fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(αi)
f (1)(αi)

...

...
f (βi−2)(αi)
f (βi−1)(αi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ai =

⎡⎢⎢⎢⎢⎢⎣
1 αi α2

i α3
i · · · · · · · · · αN−1

i

1 2αi 3α2
i · · · · · · · · · (N − 1)αN−2

i

2! 6αi · · · · · · · · · (N − 1)(N − 2)αN−3
i

. . . . . . · · · · · ·
...

(βi − 1)! βiαi · · · (N−1)!
(N−βi)!α

N−βi

i

we see that formula (3.4) for i = 1, . . . , p, i.e.

Fi = Ai

⎡⎢⎣ a0,0
...

a0,N−1

⎤⎥⎦ ,
8



can be gathered as follows:⎡⎢⎣F1
...
Fp

⎤⎥⎦ =

⎡⎢⎣A1
...
Ap

⎤⎥⎦
⎡⎢⎣ a0,0

...
a

⎤⎥⎦ = A

⎡⎢⎣ a0,0
...

a

⎤⎥⎦ . (3.5)

t a solution
denote by
and v(t) =

but, on the

s is true for
herefore the
particular,

(3.6)

ents of all
mtmhk and

(3.7)

symmetric
N×N 0,N−1 0,N−1

By the definition, the above system of linear equations (3.5) has at leas
[a0,0, a0,1, · · · a0,N−1]T . Let us assume that there is another one which we
[a′0,0, a′0,1, · · · a′0,N−1]T . Then we define the polynomials u(t) =

∑N−1
m=0 a0,mtm∑N−1

m=0 a
′
0,mtm. So, in view of (3.5) we have that for each i = 1, . . . , p,

u(j)(αi) = f (j)(αi) = u(j)(αi) for j = 0, · · · , βi − 1.

We now define the polynomial c(t) = u(t) − v(t). Notice that deg c ≤ N − 1
other hand,

c(j)(αi) = 0 for j = 0, · · · , βi − 1.

This implies that αi is a zero of multiplicity at least βi for c(t) and since thi
every i = 1, . . . , p, then deg c ≥ N . So, necessarily c(t) = 0, i.e. u(t) = v(t). T
solution of (3.5) is unique and, as a consequence, A is a nonsingular matrix. In
if the zeros of h(t) are simple then (3.5) takes the form⎡⎢⎣ f(α1)

...
f(αN )

⎤⎥⎦ =

⎡⎢⎣ 1 α1 · · · αN−1
1

...
...

...
1 αN · · · αN−1

N

⎤⎥⎦
N×N

⎡⎢⎣ a0,0
...

a0,N−1

⎤⎥⎦ .
In other words, the corresponding matrix A is a Vandermonde matrix.

Proposition 1. Let μ be a nontrivial probability measure with finite mom
nonnegative orders. Consider the measure dμ0 = hdμ. Let f(t) =

∑
ak,

g(t) =
∑

bk′,m′tm
′
hk′ be polynomials. Then [·,·]h can be represented as

[f, g]h =
∫

f(t)g(t)dμ +
[
FT

1 · · · FT
p

]
A−TSA−1

⎡⎢⎣G1
...
Gp

⎤⎥⎦ ,
where Gi = [g(αi), · · · , g(βi−1)(αi)]T , Fi = [f(αi), · · · , f (βi−1)(αi)]T and the
matrix S has the form

S =

⎡⎢⎣ s0,0 −
∫
I
dμ · · · s0,N−1 −

∫
I
tN−1dμ

...
...

...
sN−1,0 −

∫
I
tN−1dμ · · · sN−1,N−1 −

∫
I
t2N−2dμ

⎤⎥⎦ .
9



Proof. To compute [f, g]h for the given polynomials f and g let us observe that the
polynomial

f(t) −
N−1∑

a0,mtm

]
h

′
[
tm, tm

′]
h

′sm,m′ ,

N−1dμ

t2N−2dμ

⎤⎥⎦

ears in [12]
m=0

is divisible by h due to the construction. Now, we have

[f, g]h =
[
f(t) −

N−1∑
m=0

a0,mtm, g(t)
]
h

+
[

N−1∑
m=0

a0,mtm, g(t)
]

=
(
f(t) −

∑N−1
m=0 a0,mtm

h
, g(t)

)
0

+
[

N−1∑
m=0

a0,mtm, g(t) −
N−1∑
m′=0

b0,m′tm
′

+
[

N−1∑
m=0

a0,mtm,
N−1∑
m′=0

b0,m′tm
′

]
h

=
∫
I

(
f(t) −

∑N−1
m=0 a0,mtm

h

)
g(t)dμ0

+
∫
I

N−1∑
m=0

a0,mtm
(
g(t) −

∑N−1
m′=0 b0,m′tm

′

h

)
dμ0 +

N−1∑
m=0

N−1∑
m′=0

a0,mb0,m

=
∫
I

f(t)g(t)dμ−
N−1∑
m=0

N−1∑
m′=0

a0,mb0,m′

∫
I

tm
′+mdμ +

N−1∑
m=0

N−1∑
m′=0

a0,mb0,m

where sm,m′ = [tm, tm
′ ]h. In matrix form the above expression reads

[f, g]h =
∫
I

f(t)g(t)dμ

+ [ a0,0 · · · a0,N−1 ]

⎡⎢⎣ s0,0 −
∫
I
dμ · · · s0,N−1 −

∫
I
t

...
...

...
sN−1,0 −

∫
I
tN−1dμ · · · sN−1,N−1 −

∫
I

×

⎡⎢⎣ b0,0
...

b0,N−1

⎤⎥⎦ .
Next, using (3.5) we get (3.7). �

If we assume that h(t) = tN , then we have the following result that app
for N = 2.
10



Corollary 1. If μ is a nontrivial probability measure with finite moments of all nonnegative
orders then

[f, g]h =
∫

f(t)g(t)dμ +
(
f(0) · · · f (N−1)(0)

)
M

⎛⎜⎝ g(0)
...

⎞⎟⎠ (3.8)

ay that the

that N -th
products.

ation

present the
he sequence
at from the

≥ 1,

(4.1)
I g(N−1)(0)

where M is a symmetric matrix such that

M =

⎡⎢⎣
1
0!

. . .
1

(N−1)!

⎤⎥⎦S
⎡⎢⎣

1
0!

. . .
1

(N−1)!

⎤⎥⎦ .
Since the values si,j in (3.2) are arbitrary, we can take them in such a w

matrix S is diagonal, i.e.

S =

⎡⎢⎣λ0
. . .

λN−1

⎤⎥⎦ .
In this case (3.8) reduces to

[f, g]h =
∫
I

f(t)g(t)dμ +
N−1∑
k=0

Mkf
(k)(0)g(k)(0) with Mk = λk

(k!)2 ,

which is a diagonal discrete Sobolev inner product. In other words, we see
iterated Geronimus transformation of (·,·)0 generates discrete Sobolev inner

4. Orthogonal polynomials associated to the multiple Geronimus transform

Next, assuming that the bilinear form [·,·]h is quasi-definite, we will re
monic polynomials {P ∗

n(t)}n≥0 orthogonal with respect to [·,·]h, in terms of t
{Pn(t)}n≥0 of monic orthogonal polynomials with respect to (·,·)0. Notice th
orthogonality of P ∗

n(t), for the elements of the basis Bh we get[
P ∗
n , t

mhk
]
h

=
[
tmhk, P ∗

n

]
h

= 0 for Nk + m ≤ n− 1.

So, for n > N , the definition of the bilinear form yields[
P ∗
n , t

mhk
]
h

=
(
P ∗
n , t

mhk−1)
0 = 0 for N(k − 1) + m < n−N and k

which basically means that

P ∗
n(t) = Pn(t) + A

[n]
n−1Pn−1(t) + · · · + A

[n]
n−NPn−N (t).
11



At the same time, we also have that[
P ∗
n , t

m
]
h

= 0, for m = 0, · · · , N − 1,

which can be rewritten as

. (4.2)

t least one
two monic
contradicts
ives that

(4.3)

as

h

[
Pn, t

m
]
h

+ A
[n]
n−1
[
Pn−1, t

m
]
h

+ · · · + A
[n]
n−N

[
Pn−N , tm

]
h

= 0.

The latter relation is equivalent to the system of linear equations⎡⎢⎣ [Pn−1, 1]h · · · [Pn−N , 1]h
...

...
[Pn−1, t

N−1]h · · · [Pn−N , tN−1]h

⎤⎥⎦
⎡⎢⎣ A

[n]
n−1
...

A
[n]
n−N

⎤⎥⎦ =

⎡⎢⎣ −[Pn, 1]h
...

−[Pn, t
N−1]h

⎤⎥⎦
Since P ∗

n(t) is a monic polynomial of degree n, we know that (4.2) has a
solution. If we suppose that it has two different solutions, then there are
polynomials of degree n that satisfy the orthogonality condition. But this
the uniqueness of the sequence {P ∗

n(t)}n≥0. Moreover, the uniqueness also g

d∗n =

∣∣∣∣∣∣∣
[Pn−1, 1]h · · · [Pn−N , 1]h

...
...

[Pn−1, t
N−1]h · · · [Pn−N , tN−1]h

∣∣∣∣∣∣∣ �= 0.

Further, according to Cramer’s rule, the polynomials P ∗
n(t) can be presented

P ∗
n(t) = 1

d∗n

∣∣∣∣∣∣∣∣∣∣∣∣

Pn(t) [Pn, 1]h · · · [Pn, t
N−1]h

...
... · · ·

...
Pn−i(t) [Pn−i, 1]h · · · [Pn−i, t

N−1]h
...

... · · ·
...

Pn−N (t) [Pn−N , 1]h · · · [Pn−N , tN−1]h

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now for 0 ≤ q ≤ N − 1 and S0,h(Pj)(t) =
∑N−1

k=0 c0,kt
k, we get[

Pj , t
q
]
h

=
[
Pj(t) − S0,h(Pj)(t) + S0,h(Pj)(t), tq

]
h

=
[ ∑
m≥0

Sm,h(Pj)(t) − S0,h(Pj)(t), tq
]
h

+
[
N−1∑
k=0

c0,kt
k, tq

]

=
(∑

m≥0 Sm,h(Pj)(t) − S0,h(Pj)(t)
h

, tq
)

0
+

N−1∑
k=0

c0,ksk,q

=
∑
m≥1

∫
I

Sm,h(Pj)(t)
h

tqdμ0 +
N−1∑
k=0

c0,ksk,q.
12



Let us stress that the above analysis was done for n ≥ N . However, it is clear that for
n ≤ N the polynomial P ∗

n has the form

P ∗
n(t) = Pn(t) + A

[n]
n−1Pn−1(t) + · · · + A

[n]
0 P0(t),

ve we have

a matrix of
minant of a

be the cor-
ilinear form
asi-definite

pect to [·,·]h

(4.4)

dμ0, then
e following

with respect
n formula
where we put Pm(t) = 0 for m < 0. So if we use similar arguments as abo
that for n ≤ N it is true that

P ∗
n(t) = 1

d∗n

∣∣∣∣∣∣∣∣∣∣∣∣

Pn(t) [Pn, 1]h · · · [Pn, t
n−1]h

...
... · · ·

...
Pn−i(t) [Pn−i, 1]h · · · [Pn−i, t

n−1]h
...

... · · ·
...

P0(t) [P0, 1]h · · · [P0, t
n−1]h

∣∣∣∣∣∣∣∣∣∣∣∣
.

As a last remark, let us notice that if n < N then d∗n is the determinant of
size n× n, which does depend on n, while in the other cases d∗n is the deter
matrix of size N ×N .

Thus, we can deduce the following.

Proposition 2. Let (·,·)0 be a quasi-definite bilinear form and let {Pn(t)}n≥0
responding sequence of monic orthogonal polynomials. Then the symmetric b
[·,·]h is quasi-definite if and only if d∗n �= 0 for all n ∈ N. Moreover, in the qu
case, the sequence of the monic polynomials {P ∗

n(t)}n≥0 orthogonal with res
admits the representation

P ∗
n(t) = 1

d∗n

∣∣∣∣∣∣∣∣∣∣∣∣

Pn(t) [Pn, 1]h · · · [Pn, t
N−1]h

...
... · · ·

...
Pn−i(t) [Pn−i, 1]h · · · [Pn−i, t

N−1]h
...

... · · ·
...

Pn−N (t) [Pn−N , 1]h · · · [Pn−N , tN−1]h

∣∣∣∣∣∣∣∣∣∣∣∣
,

where d∗n is defined by (4.3) and

[
Pj , t

q
]
h

=
∑
m≥1

∫
I

Sm,h(Pj)(t)
h

tqdμ0 +
N−1∑
k=0

c0,ksk,q.

If we assume that μ is a nontrivial probability measure such that hdμ =
[f, g]μ =

∫
I
fgdμ is a positive definite bilinear form and we can state th

corollary.

Corollary 2. If {Rn(t)}n≥0 is the sequence of monic polynomials orthogonal
to [·,·]μ, then the sequence of polynomials {P ∗

n(t)}n≥0 satisfies the connectio
13



h(t)P ∗
n(t) = Rn+N (t) + B

[n]
n+N−1Rn+N−1(t) + · · · + B

[n]
n−NRn−N (t),

as well as (
P ∗
n+N (t), Rk(t)

)
0 = 0, if k < n. (4.5)

,

0. Finally,
{Rn}n≥0 is

0 as
Proof. Notice that h(t)Pn(t) can be written as

h(t)Pn(t) =
n+N∑
k=0

b
[n]
k Rk(t)

where

b
[n]
k = [hPn, Rk]μ

‖Rk‖2
μ

= (Pn, Rk)0
‖Rk‖2

μ

=
{

0, k < n,
(Pn,Rk)0
‖Rk‖2

μ
, k ≥ n.

In other words, we have that

h(t)Pn(t) =
n+N∑
k=n

b
[n]
k Rk(t).

Combining this with (4.1) immediately yields

h(t)P ∗
n(t) = Rn+N (t) + B

[n]
n+N−1Rn+N−1(t) + · · · + B

[n]
n−NRn−N (t)

where

Bn+N−m =
min{m,N}∑

k=0

b
[n−k]
N+n−mA

[n]
n−k.

At the same time, we have that

h(t)P ∗
n(t) =

N+n∑
k=0

c
[n]
k Rk(t) with c

[n]
k = (Rk, P

∗
n)0

‖Rk‖2
μ

.

According to (4.4), we get that c
[n]
k = 0 for 0 ≤ k ≤ n−N − 1, and c

[n]
n−N �=

taking into account that the representation of hP ∗
n in terms of the sequence

unique, we conclude that (4.5) holds. �
Example 1. Let us assume that h(t) = tN , dμ0 = tα+Ne−tdt, and define (·,·)

(f, g)0 =
∞∫
0

f(t)g(t)tα+Ne−tdt, α > −1.
14



We know that the monic orthogonal polynomials associated with the above bilinear
form are the Laguerre polynomials {Lα+N

n }n≥0 with parameter α+N . Let us now take
dμ = tαe−tdt. Then

[ ] ∞∫ N−1∑
(4.6)

ith respect

own in the
hat, in par-
orthogonal

olynomials
cessary and
n≥0. To this

(4.7)

ewritten as

g the latter

k(t)
k‖2

μ

)
)

(4.8)
f(t), g(t)
h

=
0

f(t)g(t)tαe−tdt +
k,j=0

Mk,jf
(k)(0)g(j)(0).

As a straightforward consequence, the sequence of polynomials orthogonal w
to (4.6) can be written as

L̃α
n(t) = Lα+N

n (t) +
N∑

k=1

A
[n]
n−kL

α+N
n−k (t).

The above bilinear form with their orthogonal polynomials is very well kn
literature. Indeed, the diagonal case was introduced in [20]. Let us notice t
ticular, if Mk,j = 0 for (k, j) �= (0, 0) we get the so-called Laguerre–Krall
polynomials [19].

The previous corollary shows a connection formula between the p
{P ∗

n(t)}n≥0 and the polynomials {Rn(t)}n≥0. We now focus on finding ne
sufficient conditions for the existence of the sequence of polynomials {P ∗

n(t)}
end, let us notice that in the case when P ∗

n exists it can be represented as

P ∗
n(t) = Rn(t) +

n−1∑
k=0

[P ∗
n , Rk]μ
‖Rk‖2

μ

Rk(t).

In order to get some information out of this relation, note that (3.7) can be r

[f, g]μ = [f, g]h −
p∑
l,w

βl−1∑
i=0

βw−1∑
j=0

λi,j,l,wf
(i)(αl)g(j)(αw).

Using the orthogonality [P ∗
n , Rk]h = 0, k = 0, . . . , n − 1, and substitutin

formula in (4.7) we arrive at the following:

P ∗
n(t) = Rn(t) +

n−1∑
k=0

[
−

p∑
l,w=1

βl−1∑
i=0

βw−1∑
j=0

λi,j,l,w

(
P ∗
n

)(i)(αl)R(j)
k (αw)

]
R

‖R

= Rn(t) −
p∑

l,w=1

βl−1∑
i=0

βw−1∑
j=0

λi,j,l,w

(
P ∗
n

)(i)(αl)
(

n−1∑
k=0

R
(j)
k (αw)Rk(t
‖Rk‖2

μ

= Rn(t) −
p∑

l=1

βl−1∑
i=0

(
P ∗
n

)(i)(αl)Di,l(t),
15



where

Di,l(t) =
p∑

w=1

βw−1∑
j=0

λi,j,l,wK
(j,0)
n−1 (αw, t).

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

he sequence
μ. Let [·,·]h

f a sequence
e system of
In particular, for 1 ≤ q ≤ p and 1 ≤ k ≤ βq − 1, we have

R(k)
n (αq) =

(
P ∗
n

)(k)(αq) +
p∑

l=1

βl−1∑
i=0

(
P ∗
n

)(i)(αl)Di,l(αq).

If we define the vector

vkj (q) =
{

[D(k)
0,j (αj), · · · , 1 + D

(k)
k,j (αj), · · · , D(k)

βk−1,j(αj)], if j = q,

[D(k)
0,j (αj), · · · , D(k)

k,j (αj), · · · , D(k)
βk−1,j(αj)], if j �= q

then for each q = 1, . . . , p, we have that

Rq =

⎡⎢⎣ Rn(αq)
...

R
(βq−1)
n (αq)

⎤⎥⎦

=

⎡⎢⎣ v0
1(q) v0

2(q) · · · v0
p(q)

...
...

...
v
βq−1
1 (q) v

βq−1
2 (q) v

βq−1
p (q)

⎤⎥⎦
βq×N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(P ∗
n)(0)(α1)

...
(P ∗

n)(β1−1)(α1)
...

(P ∗
n)(0)(αp)

...
(P ∗

n)(βp−1)(αp)
= VqP

∗.

Now we are in a position to state the following result.

Proposition 3. Let μ be a nontrivial probability measure and {Rn(t)}n≥0 be t
of orthogonal polynomials with respect to the bilinear form [f, g]μ :=

∫
I
fgd

be the symmetric bilinear form defined by

[f, g]h =
∫
I

fgdμ +
p∑
l,w

βl−1∑
i=0

βw−1∑
j=0

λi,j,l,wf
(i)(αl)g(j)(αw)

with λi,j,l,w = λj,i,w,l. A necessary and sufficient condition for the existence o
of monic polynomials {P ∗

n(t)}n≥0 orthogonal with respect to [·,·]h is that th
linear equations
16



⎡⎢⎣R1
...
Rp

⎤⎥⎦ =

⎡⎢⎣V1
...
Vp

⎤⎥⎦P∗ (4.10)

has a unique solution.

,·]h positive
s a positive
definite (for
that

onsider two

1]h

N−1]h
−1]h

∣∣∣∣∣∣∣∣∣ .
(4.11)

becomes

.

(t)dμ0.
As a next step, a natural question can be posed: when is the bilinear form [·
definite? It is clear that if we suppose that the matrix S given by (3.7) i
semidefinite matrix and μ is a positive measure, then [·,·]h is also positive
some non-regular cases see [10,11]). Indeed, for any polynomial q(t) we have

[q, q]h =
∫
I

q2dμ + vTSv ≥ 0

where

vT =
[
QT

1 · · · QT
p

]
A−T .

Alternatively, in order to analyze the positivity of [P ∗
n , P

∗
n ]h, we need to c

cases: when n = m + Nk and n < N .

Case 1. If n = m + Nk with k �= 0 then

[
P ∗
n , t

mhk
]
h

=
∫
I

P ∗
nt

mhkdμ =
∫
I

P ∗
nt

mhk−1dμ0

= 1
d∗n

∣∣∣∣∣∣∣∣∣

∫
Pnt

mhk−1dμ0 [Pn, 1]h · · · [Pn, t
N−

...
...

...∫
Pn−N+1t

mhk−1dμ0 [Pn−N+1, 1]h · · · [Pn−N+1, t∫
Pn−N tmhk−1dμ0 [Pn−N , 1]h · · · [Pn−N , tN

But taking into account that m + N(k − 1) = n−N , the above expression

= 1
d∗n

∣∣∣∣∣∣∣∣∣
0 [Pn, 1]h · · · [Pn, t

N−1]h
...

...
...

0 [Pn−N+1, 1]h · · · [Pn−N+1, t
N−1]h∫

Pn−N tmhk−1dμ0 [Pn−N , 1]h · · · [Pn−N , tN−1]h

∣∣∣∣∣∣∣∣∣
Thus

[
P ∗
n(t), tmhk

]
h

= (−1)N
d∗n+1
d∗n

∫
Pn−N tmhk−1dμ0 = (−1)N

d∗n+1
d∗n

∫
P 2
n−N
17



Case 2. If n < N then we have

[
P ∗
n , t

n
]
h

= 1
d∗n

∣∣∣∣∣∣∣
[Pn, t

n]h [Pn, 1]h · · · [Pn, t
n−1]h

...
...

...
[P , tn] [P , 1] · · · [P , tn−1]

∣∣∣∣∣∣∣ .

(4.12)

s a positive

(4.13)

symmetric

o the monic

important

(Cholesky

trix, and L,
0 0 h 0 h

Thus

[
P ∗
n(t), tn

]
h

=

⎧⎨⎩−d∗
n+1
d∗
n

if n is odd,
d∗
n+1
d∗
n

, if n is even.

As a summary we can state the following.

Proposition 4. Let (·,·)0 be a positive definite bilinear form. Then [·,·]h i
definite bilinear form if and only if d∗n �= 0 and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)N
d∗n+1
d∗n

> 0 for n ≥ N

d∗n+1
d∗n

> 0 for n < N, with n even

d∗n+1
d∗n

< 0 for n < N, with n odd.

5. Matrix representation of the multiple Geronimus transformation

Let us assume that [·,·]h is a positive definite bilinear form. We define the
matrix

J∗ =
([
hP̂ ∗

n(t), P̂ ∗
m(t)

]
h

)∞
n,m=0,

where the corresponding orthonormal polynomials {P̂ ∗
n(t)}n≥0 are related t

ones in the following way:

P̂ ∗
n(t) = 1

h∗
n

P ∗
n(t),

(
h∗
n

)2 =
[
P ∗
n , P

∗
n

]
, h∗

n > 0.

For the classical Geronimus transformation (i.e. h(t) = t) there are two
facts concerning the matrix factorizations [12,29].

(1) J∗ can be decomposed as J∗ = CCT with C a lower triangular matrix
factorization).

(2) If Pn(0) �= 0 for n = 0, 1, 2, . . . then there exist U , an upper triangular ma
a lower triangular matrix, such that
18



Jmon = UL and J∗
mon = LU,

where Jmon, J∗
mon are monic Jacobi matrices associated with the corresponding

monic orthogonal polynomials.

generalized
o this ques-
ow that the

ials Pn(t),

· ·

N , Pm−i)0

(5.1)

− m| ≥ N

r forms and
ic orthogo-
represented
Next, it is natural to ask if it is possible to extend these two results to the
Geronimus transformations analyzed in the previous sections. The answer t
tion can be given by mimicking the idea of [12]. Namely, from (4.1) we kn
polynomials P ∗

n(t) can be written in terms of the monic orthogonal polynom
which are orthogonal with respect to (·,·)0. From this we get

(
P ∗
n , P

∗
m

)
0 = A[n]

n

N∑
i=0

A
[m]
m−i(Pn, Pm−i)0 + A

[n]
n−1

N∑
i=0

A
[m]
m−i(Pn−1, Pm−i)0 + ·

+ A
[n]
n−j

N∑
i=0

A
[m]
m−i(Pn−j , Pm−i)0 + · · · + A

[n]
n−N

N∑
i=0

A
[m]
m−i(Pn−

=
{∑N

k=t A
[n+t]
n+t−kA

[n]
n+t−kh

2
n−k+t, if m = n + t, 0 ≤ t ≤ N,∑N

k=t A
[n]
n−kA

[n−t]
n−k h2

n−k, if m = n− t, 0 ≤ t ≤ N,

where A
[k]
k = 1 and A

[k]
m = 0 if m < 0. Notice that (P ∗

n , P
∗
m)0 is zero for |n

and, therefore, the matrix

J∗ =
([
hP̂ ∗

n(t), P̂ ∗
m(t)

]
h

)∞
n,m=0 =

((
P̂ ∗
n , P̂

∗
m

)
0

)∞
n,m=0

is a (2N + 1) × (2N + 1) diagonal matrix.

Proposition 5. Let us assume that (·,·)0 and [·,·]h are positive definite bilinea
{Pn(t)}n≥0, {P ∗

n(t)}n≥0 are, respectively, the corresponding sequences of mon
nal polynomials. Then the symmetric matrix J∗ corresponding to P̂ ∗

n can be
as

J∗ = CCT ,

where C is a lower triangular matrix with positive diagonal entries,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0
h∗
0

A
[1]
0 h0
h∗
1

h1
h∗
1

A
[2]
0 h0
h∗
2

A
[2]
1 h1
h∗
2

h2
h∗
2

...
...

. . . . . .
0 A

[N+1]
1 h1
h∗
N+1

· · · A
[N+1]
N hN

h∗
N+1

hN+1
h∗
N+1

...
...

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Proof. According to the definition of J∗ we have

J∗ =

⎡⎢⎢⎣
1
h∗
1

0

1
h∗
2

. . .

⎤⎥⎥⎦
⎡⎢⎢⎣

[hP ∗
0 , P

∗
0 ]h [hP ∗

0 , P
∗
1 ]h

[hP ∗
1 , P

∗
0 ]h [hP ∗

1 , P
∗
1 ]h

. . .

⎤⎥⎥⎦
⎡⎢⎢⎣

1
h∗
1

0

1
h∗
2

. . .
. . .

⎤⎥⎥⎦ .
P ∗
m)0. From

1]h2
1

·

[N]
N+1 kh

2
N+1 k

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

. . . . . .
. . . . . . . . .

Taking into account the definition of [·,·]h we have that [hP ∗
n , P

∗
m]h = (P ∗

n ,

(5.1) we get that

[(
P ∗
n , P

∗
m

)
0

]∞
n,m=0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2
0 A[1]

0 h2
0 A[2]

0 h2
0 · · · A[N]

0 h2
0 0

A[1]
0 h2

0
∑N

k=0(A
[1]
1 k)

2h2
1 k

∑N
k=0 A

[3]
3 kA

[2]
3 kh

2
3 k

· · ·
∑N

k=N 1 A
[N]
N kA

[2]
N kh

2
N k

A[N+
1

A[2]
0 h2

0
∑N

k=1 A
[2]
2 kA

[1]
2 kh

2
2 k

∑N
k=0(A

[2]
2 k)

2h2
2 k

· · · · · · · ·

.

.

.
.
.
.

. . . · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
A[N]

0 h2
0

∑N
k=N 1 A

[N]
N kA

[1]
N kh

2
N k

· · · · · ·
∑N

k=0(A
[N]
N k)

2h2
N k

∑N
k=1 A

[N+1]
N+1 kA

0 A[N+1]
1 h2

1

. . .
. . .

. . .
. .

It is easy to see that this can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0

A
[1]
0 h0 h1

A
[2]
0 h0 A

[2]
1 h1 h2

...
...

. . . . . .
0 A

[N+1]
1 h1 · · · A

[N+1]
N hN hN+1

...
...

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 A
[1]
0 h0 A

[2]
0 h0 · · · · · · 0 · · ·

h1 A
[2]
1 h1 · · · · · · A

[N+1]
1 h1 · · ·

h2
. . .

...
. . . . . .

...
. . . A

[N+1]
N hN · · ·
hN+1 · · ·

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we set

C =

⎡⎢⎢⎣
1
h∗
1

0

0 1
h∗
2

. . .

. . . . . .

⎤⎥⎥⎦
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×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢

h0

A
[1]
0 h0 h1

A
[2]
0 h0 A

[2]
1 h1 h2

...
...

. . . . . .
0 A

[N+1]
h · · · A

[N+1]
h h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥ (5.2)

] as

parameters

4.1), that is

(5.3)
⎣ 1 1 N N N+1
...

...
. . . . . .

⎦
then we get the desired result. Also, notice that

(
h∗
n+N

)2 =
[
P ∗
n+N (t), P ∗

n+N (t)
]
h

=
[
hP ∗

n(t), P ∗
n+N (t)

]
h

=
(
P ∗
n(t), P ∗

n+N (t)
)
0 =

N∑
k=N

A
[n+N ]
n+N−kA

[n]
n+N−kh

2
n+N−k

= A[n+N ]
n h2

n.

Hence the diagonal entries of C can be given in terms of the coefficients A
[k
n

hn+N

h∗
n+N

= hn+N√
A

[n+N ]
n hn

.

In addition, if m < N then

(
h∗
m

)2 =
[
P ∗
m, P ∗

m

]
h

=
[

m∑
k=0

A
[m]
k Pk,

m∑
j=0

A
[m]
k Pj

]
h

=
m∑

k=0

m∑
j=0

A
[m]
k A

[m]
k [Pk, Pj ]h.

From the above relation we can see that (h∗
m)2 is a combination of the free

given by the matrix Ŝ (see (3.2)). �
Let Lmon be the matrix associated with the recurrence formula given in (

Lmon =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A

[1]
0 1

A
[2]
0 A

[2]
1 1

...
...

. . . . . .
A

[N ]
0 A

[N ]
1 · · · A

[N ]
N−1 1

0 A
[N+1]
1 · · · · · · A

[N+1]
N 1

...
...

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It is clear that the relation (4.1) reads as P ∗ = LmonP , where P ∗ = (P ∗
0 (t), P ∗

1 (t), · · ·)T
and P = (P0(t), P1(t), · · ·)T . On the other hand, we have

[
hPn, P

∗
m

]
h

=
(
Pn, P

∗
m

)
0 = 0, for m = 0, . . . , n− 1.

(5.4)

1
. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

ally, we can

(5.5)

(5.6)

polynomials
Then we can write

h(t)Pn(t) =
N+n∑
i=n

B
[N+n]
i P ∗

i (t), where B[N+n]
n �= 0.

Thus we can associate with the above relation the matrix

Umon

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B
[N ]
0 B

[N ]
1 · · · · · · B

[N ]
N−1 1

B
[N+1]
1 · · · · · · B

[N+1]
N−1 B

[N+1]
N 1

. . . . . . . . . . . .
B

[n+N ]
n B

[n+N ]
n+N−2 B

[n+N ]
n+N−1

. . . . . .

Here hP = UmonP
∗ where P and P ∗ are the vectors defined as above. Fin

state the following.

Proposition 6. If h(t) =
∑N

m=0 bmtm, then

h(Jmon) =
N∑

m=0
bmJm

mon = UmonLmon

as well as

J∗
mon = LmonUmon,

where J∗
mon is the band matrix corresponding to the monic Sobolev orthogonal

generated by [·,·]h (see (3.3)).

Proof. By definition, we have

hP = UmonP
∗ = UmonLmonP.

Next, observing that

tmP = Jmont
m−1P = · · · = Jm

monP
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we arrive at

hP =
N∑

m=0
bmtmP =

N∑
m=0

bmJm
monP = h(Jmon)P.

elations we

sults of [14]
omials.

t the inner
s true.

us transfor-
e

d [14, Sec-

structure of
lev orthog-
From this relation and due to the uniqueness of coefficients in recurrence r
obtain (5.5). To prove (5.6), notice that

hP ∗ = LmonhP = LmonUmonP
∗.

Since we have

hP ∗ = J∗
monP

∗,

the relation (5.6) is rather obvious. �
6. Discrete Sobolev inner products as multiple Geronimus transformations

In this section we summarize all the previous findings together with the re
and present the main results of the present paper for a special class of polyn

Consider the discrete Sobolev inner product

〈f, g〉 =
∫

f(t)g(t)dμ(t) +
M∑
i=1

Mi∑
j=0

λi,jf
(j)(αi)g(j)(αi),

where f , g are polynomials and λi,j are real numbers. We also suppose tha
product 〈·,·〉 is symmetric, i.e. 〈f, g〉 = 〈g, f〉. Then the following result hold

Theorem 1. The discrete Sobolev inner product 〈·,·〉 is a multiple Geronim
mation of a bilinear form generated by the measure dμ0(t) = h(t)dμ(t), wher

h(t) =
M∏
i=1

(t− αi)Mi+1 ,

that is

〈f, g〉 ≡ [f, g]h.

Proof. This statement is a straightforward combination of Proposition 1 an
tion 3.1]. �

This result together with Proposition 6 gives us an understanding of the
the band matrices associated with the recurrence relations generated by Sobo
onal polynomials.
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Theorem 2. Let us consider a discrete Sobolev inner product 〈·,·〉. Then the band matrix
J∗
mon generated by the recurrence relations for the corresponding orthogonal polynomials

can be obtained as

h(J ) = U L �→ J∗ = L U , (6.1)

≤ m < N ,
r the linear
ak,jt

khj(t)
such a way

orthogonal
omials

t the same
ls which, in
easure [14]

(6.2)
mon mon mon mon mon mon

where Jmon is the monic Jacobi matrix associated with dμ0.

Let p(t) =
∑n

j=0
∑N−1

k=0 ak,jt
khj(t) be a polynomial of degree nN + m, 0

where we assume ak,n = 0 if k > m. For 0 ≤ k < N − 1, let us conside
operator Rk,h(p)(t) =

∑n
j=0 ak,jt

j , i.e. it takes from p the terms of the form
and then removes the common factor tk and changes h(t) to t. Notice that in
p(t) =

∑N−1
k=0 tkRk,h(p)(h(t)) (see [14]).

Using the previous notation, Theorem 2 can be seen as a result for matrix
polynomials due to [14]. Indeed, the matrix h(Jmon) generates matrix polyn

Pn(t) =

⎛⎜⎜⎜⎝
R0,h(pnN )(t) . . . RN−1,h(pnN )(t)

R1,h(pnN+1)(t) . . . RN−1,h(pnN+1)(t)
...

...
RN−1,h(pnN+N−1)(t) . . . RN−1,h(pnN+N−1)(t)

⎞⎟⎟⎟⎠
orthogonal with respect to the measure dM0(h−1), where

dM0(t) =

⎛⎜⎜⎜⎜⎜⎝
dμ0(t) tdμ0(t) . . . tN−1dμ0(t)
tdμ0(t) t2dμ0(t) . . . tNdμ0(t)
t2dμ0(t) t3dμ0(t) . . . tN+1dμ0(t)

...
...

...
tN−1dμ0(t) tNdμ0(t) . . . t2N−2dμ0(t)

⎞⎟⎟⎟⎟⎟⎠
and pn are monic polynomials orthogonal with respect to the measure dμ0. A
time, the matrix J∗

mon corresponds to Sobolev type orthogonal polynomia
turn, yield a sequence of matrix orthogonal polynomials with respect to the m

dM
(
h−1(t)

)
+ Lδ(t),

where δ(t) is the Dirac delta at t = 0, dM has the form

dM(t) =

⎛⎜⎜⎜⎜⎜⎝
dμ(t) tdμ(t) . . . tN−1dμ(t)
tdμ(t) t2dμ(t) . . . tNdμ(t)
t2dμ(t) t3dμ(t) . . . tN+1dμ(t)

...
...

...
tN−1dμ(t) tNdμ(t) . . . t2N−2dμ(t)

⎞⎟⎟⎟⎟⎟⎠ ,
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and L is the matrix

M∑
i=1

Mi∑
j=0

λi,jL(i, j)

1−j ).

s actually a
introducing

actorization

rmation for
int of view
be carefully

t G.0934.13
Marcellán

ación, Min-
-01.

Sobolev type:
with L(i, j) the N ×N matrix

L(i, j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
j!
...

k!
(k−j)!c

k−j
i

...
(N−1)!

(N−1−j)!c
N−1−j
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
0 . . . 0 j! . . . k!

(k−j)!c
k−j
i . . . (N−1)!

(N−1−j)!c
N−
i

In other words, we see that, according to (6.1), the matrix measure (6.2) i
simple matrix Geronimus transformation of the matrix measure dM0. In fact,
y = h−1(t) we see that the spectral transformation

dM0(y) = ydM(y) �→ dM(y) + Lδ(y)

corresponds to one step of the block LR-algorithm based on the block UL-f

h(Jmon) = UmonLmon �→ J∗
mon = LmonUmon.

Thus, a multiple Geronimus transformation is a simple Geronimus transfo
matrix inner products. So, all our findings can be considered from the po
of Darboux transformations for matrix orthogonal polynomials, which will
analyzed in a forthcoming paper.
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