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ABSTRACT

We consider multiple Geronimus transformations and show
that they lead to discrete (non-diagonal) Sobolev type inner
products. Moreover, it is shown that every discrete Sobolev
inner product can be obtained as a multiple Geronimus trans-
formation. A connection with Geronimus spectral transforma-
tions for matrix orthogonal polynomials is also considered.
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1. Introduction

In this paper we basically study one of the classical problems in the theory of orthogo-
nal polynomials that goes back to the work of Fejér [16] and Shohat [26]. It can be stated
as follows. Given a nontrivial probability measure p supported on an interval of the real
line, consider the corresponding sequence of monic orthogonal polynomials { P, (¢)},>o0.
Then the problem is to find out when the sequence {@,, }»>0 of monic polynomials

Qu(t) == Pa(t) + AT Py () + -+ AP P, N (1) (1.1)

with real numbers A[ln], ce AK}], AE:,L] #0,and P_; =0, fori=1,..., N, is a family of
monic orthogonal polynomials with respect to some probability measure v supported on
an interval of the real line.

This problem has not been fully understood up until now and in the present paper
we give the most thorough answer by demonstrating that in the general situation such
families {Qy(¢)}n>0 could lead to Sobolev type orthogonal polynomials, which were
introduced in a general framework in the early nineties; see [22] and [1]. Nevertheless,
few years after the Shohat publication a complete answer to the particular case of the
problem, when

Qu(t) = Pu(t) + AP,y (t),

was given by Geronimus in [17], providing a way to generate new families of orthog-
onal polynomials. Since even nowadays it is not so easy to get access to [17] and it
is only accessible in Russian, the paper by Geronimus remained unnoticed until the
work on discrete-time Toda and Volterra lattices by Spiridonov and Zhedanov [27,28],
where they called the new family of orthogonal polynomials {Q,,(¢)},>0 the Geronimus
transformation of { P, (¢)},>0 (see also [30]). Later on, a more general framework to the
Geronimus transformation and its inverse, the Christoffel transformation, was given in
[2-5,7,18,21,24,25,29]. In this framework both the transformations are called Darboux
transformations because they are related to UL- and LU-factorization of Jacobi matri-
ces and are discrete analogs of the famous Béacklund—Darboux transformations from the
theory of integrable systems.

To get a basic idea about [7,29], let us consider a linear functional o on the linear
space P of polynomials with real coefficients. Next, we denote by (o,p) the image of
p € P by the linear functional 0. We define the moments of such a linear functional
by o, = (o,t"). In addition, for polynomials p and ¢, we can introduce new linear
functionals as (see [29])

(¢a(t),p(t)) = (¢, 0(t)p(t)) and ((t—a) 'o,¢(t)) = <0, w>



The canonical Geronimus transformation of the linear functional o corresponding to
the Geronimus transformation of orthogonal polynomials can be defined as the linear
functional & such that [23]

6= (t—a) o+ 5608t —a). (1.2)

Notice that the constant & is an arbitrary real number. In the particular case (o, f) =
/ ; fduo where 19 is a nontrivial probability measure and a = 0 in (1.2), we have

@.f9) = [ fodu+ (&o— / du)f(O)Q(O)
I

I

where tdu = dug. Unfortunately, this approach doesn’t allow us to deal with our main
problem in the full generality and we have to go on.

In order to move to the next level of understanding of the problem in question and,
so, the Geronimus transformation, we need to reconsider everything in the context of
symmetric bilinear forms [6,8,12,13]. To this end, let us recall that a symmetric bilinear
form B is a mapping B : P x P — R which is linear in each of its arguments and satisfies

B(.fag) = B(Q?f)'

As a consequence, we can associate with every symmetric bilinear form a Gram matrix
(B(t',t7))55%=0 = (11i,j)75=0- If a bilinear form is given by B(f,g) = (0, fg), then the
corresponding Gram matrix is a Hankel matrix.

A symmetric bilinear form is said to be quasi-definite (resp. positive definite) if the
leading principal submatrices of the Gram matrix are nonsingular (resp. with determi-
nant greater than zero). In this case the symmetric bilinear form generates a sequence

of orthogonal polynomials. In fact, these polynomials can be written as follows

Ho,0 T Ho,n
Pn(t) =
Hn—-1,0 “°° Hn—-1n
1 . tn

The interest in considering symmetric bilinear forms in general comes from the circum-
stance that the associated Gram matrix does not have the structure of a Hankel matrix
that appears when you deal with symmetric bilinear forms associated with linear func-
tionals. Thus it allows us to consider some different kinds of orthogonality like the discrete
Sobolev one which has attracted the attention of many authors (see [13,15] to name a
few). In this framework, it is quite natural to define the Geronimus transformation as
follows (see [12,17]). For a nontrivial probability measure po supported on an infinite



subset I of the real line, let us introduce an associated symmetric bilinear form defined
on the linear space of polynomials P as

(f(t /f t)dpo(t).

The Geronimus transformation of (-,-)o is the symmetric bilinear form [-,-]; given by the
formula

lta(0), £()], = [o(t /f (t)dpo ().

Moreover, in [12] the definition of the Geronimus transformation was extended to the
case of the polynomial h(t) = t2, and the corresponding orthogonal polynomials and
band matrices were studied there. In this case the transformation is called the double
Geronimus transformation and it is associated with the family

Qn(t) =P, (t) + AP, (1) + AP, 5 (0).

In this paper we start with an arbitrary polynomial h of degree degh = N. Then
following [12] we define a multiple Geronimus transformation as

[h(t)a(t), (1)), = [9(t). At /f (O)dpo ).

Now we are in a position to pose the following natural question: what can be said about
the symmetric bilinear form [-,-];, and related orthogonal polynomials, which turn out
to be of the form (1.1)? This problem is also motivated by Durén in [13], where general
results are given for symmetric bilinear forms such that the operator of multiplication
by h is symmetric with respect to the bilinear form, i.e. B(hf, g) = B(f,gh). Note that
our Proposition 2 is a specific case of Lemma 3 given in [13].

In a word, the main idea of the present paper is to show that [-,/], is a discrete
Sobolev inner product and to explain the structure of the band matrices generated by
the recurrence relations for Sobolev type orthogonal polynomials. At the same time,
taking into account [14] our results can be considered as results for a special case of
matrix orthogonal polynomials. Briefly speaking, in [14] it was shown that Sobolev type
orthogonal polynomials are strongly related to matrix orthogonal polynomials.

The structure of the paper is as follows. In Section 2 some basic background and nota-
tions are presented. Section 3 deals with an extension of the Geronimus transformation
to the case of arbitrary polynomials h. More precisely, we obtain the symmetric bilinear
forms such that the operator of multiplication by h is a symmetric operator with an
extra condition. In Section 4 we study the corresponding sequences of monic orthogo-
nal polynomials. Section 5 is focused on an interpretation of the matrix of the above



multiplication operator based on a Darboux transformation with parameters. Finally, in
Section 6 we establish a connection between such factorizations and block Jacobi matrices
associated with matrix orthogonal polynomials deduced from the Sobolev type orthog-
onal polynomials. Thus we get that multiple Geronimus transformations in the scalar
case yield Geronimus spectral transformations for this special case of matrix orthogonal
polynomials.

2. Preliminaries

Here we give some basic notations and facts. Let us start by considering a symmetric
bilinear form

(f.g)o = / F@B)g(t)duo(t), (2.1)
I

where po is a nontrivial probability measure supported on an infinite subset I of the
real line. In general, if we assume that (-,-)o is quasi-definite, then we know that the
corresponding sequence of monic orthogonal polynomials {P,(t)},>0 satisfies a three
term recurrence relation

tPy(t) = Puy1(t) + DuPo(t) + CoPay(t),

where D,, and C,, are real numbers with C,, # 0 [9].
Using a matrix notation, the above expression reads

tP = JpyonP,
where
Dy 1
Ci D 1
J'mon =

Cs Do

is a monic Jacobi matrix and P = (P, Py, --)T. If we assume that (-,-)o is a positive
definite bilinear form then there is a sequence of orthonormal polynomials { pn}nZO such
that

N PN A A

tPy(t) = Cry1Poy1(t) + Dp Py (t) + CoPu_i(t), n>0.

Notice that in this case CA’TQL =C,>0.
With the above sequence of orthonormal polynomials we can associate a tridiagonal
symmetric Jacobi matrix of the form



Dy G
¢y Dy G,

j: A A
Cy Dy

such that tP = JP, where P = (Py, Py,...)T.
In what follows we will need the n-th reproducing kernel K, (t,y) associated with the
monic orthogonal polynomial sequence {P,(t)},>0 which is defined by the formula

Kolt,y) = i: Py(t) Pe(y)

2 b
2 A2,

where [|P||” = [;|Pk(t)]?duo. At the same time, there is an explicit expression for
K, (z,y), which is the so-called Christoffel-Darboux formula

Poi1(2)Po(y) — Po()Pria(y)

Kn r,Y) = 9
(=) CEIIAR

for  # y. We will also use the following notation for the partial derivatives of K, (z,y):

1,7 aH_j Kn €,y
Kr(L ’3)(:c,y) = W

3. An extension of the Geronimus transformation to the multiple case

Let h(t) be a monic polynomial of degh = N. Let us define a symmetric bilinear form
[,-]n on the linear space P of all polynomials with real coefficients by

nf.gh = bl = [ Fg0dme) (3.1)
I
Clearly, this definition does not determine the bilinear form [-,-];, uniquely. However, the

elements of the symmetric matrix

(1, 1] (1, V1], S0,0 "t So,N-1
= : : : (3.2)

N1, e VLN, SN-1,0 "' SN—1,N—1

@5
Il
|

can be chosen arbitrarily. It should be noted that the operator of multiplication by h
is symmetric with respect to the inner product [-,-],. If we assume that the underly-
ing symmetric bilinear form is quasi-definite then the corresponding sequence of monic
orthogonal polynomials {P}(¢)},>0 satisfies the relation



n+N

-y dip

k=n—N

where CLJ]F Ny = 1, and cn § > 0 for n > N. Thus, we can associate with the sequence

{P}(t)}n>0 & 2N + 1 band matrix of the form

o I R -
cg] 0[11] cg\l,] 1
Tmon = | NI (N AN (3-3)
0 c[1N+1] o . [QJ;IVH] 1

Before dealing with the properties of the symmetric bilinear form [-,-],, we will choose
an appropriate basis in the linear space IP. Namely, let us consider the basis

p={t"h* k>0,0<m<N-1}.
This allows us to express every polynomial f as

1) = > g mt™ R ().

0<m<N-1, k>0

Moreover, if we fix k£ and define the linear operator
Sea(£)(t) = armt™hE(t)

then we have f =3, Skn(f)(t).
Let o, ..., ap be the zeros of h(t) and B; - - - 5, be their corresponding multiplicities,

i.e.

h(t) = (t — 1) (t — )2 - (t — )P with Z’Bi =N

For each «;, the polynomial h(t) can be represented in the form
h(t) = (t — ;)% q;(t) where g;(a;) # 0.

According to the Leibniz product rule for derivatives, we have that

100 =3 () g - ol

k=0



Thus,
h9)(a;) =0 forj=0,---,6; — 1.

If f is a polynomial then using its representation in terms of the basis defined above we
get

As a consequence, for i = 1,...,p, one has

f(al) ao,o
FO () 1 a o af aN-t ao,1
1 20; 302 (N —1alN 2 K
B 2! 6oy (N = 1)(N —2)al¥ 3
FB=2 () Bi — ! Biag -+ ((Ij\yjﬁli);!af.v_ﬂb BixN ao,N-2
f(ﬁ:‘l)(ai) ao,N—1
(3.4)

Introducing the matrices

1 oy 0412 ag’ Oéﬁv_l
1 2q; 3a7 (N—l)ozfv_2
A; = 21 6q; (N—l)(N—Z)aZN_B
N-1) N-B
- (Bi=DV Biar e e BixN

we see that formula (3.4) fori=1,...,p, i.e.

ap,o

ag,N—1



can be gathered as follows:

Fy Ay ap,0 ap,0
=1 : : =A : . (3.5)

Fp Ap NxN LAo,N-1 aog,N -1

By the definition, the above system of linear equations (3.5) has at least a solution

ao70,a071,~--a07N_1]T. Let us assume that there is another one which we denote by
N—
m=

[
[

Zﬁ;é ag,mt™. So, in view of (3.5) we have that for each i =1,...,p,

ab.0,00,15 @y x_1)" - Then we define the polynomials u(t) = 3 éa07mtm and v(t) =

We now define the polynomial ¢(¢) = u(t) — v(t). Notice that dege < N — 1 but, on the
other hand,

D(a;)=0 forj=0,---,5 —1.

This implies that «; is a zero of multiplicity at least 8; for ¢(t) and since this is true for
every i = 1,...,p, then dege > N. So, necessarily ¢(t) = 0, i.e. u(t) = v(t). Therefore the
solution of (3.5) is unique and, as a consequence, A is a nonsingular matrix. In particular,
if the zeros of h(t) are simple then (3.5) takes the form

f(Oél) 1 a1 e O[{Vil CL070

flan) 1 oany - aN '] yen Laon—

In other words, the corresponding matrix A is a Vandermonde matrix.

Proposition 1. Let p be a montrivial probability measure with finite moments of all
nonnegative orders. Consider the measure dpg = hdu. Let f(t) = Y ag.mt™h* and
g(t) = S by t™ ¥ be polynomials. Then |-, can be represented as

G
Fogln = / F@g®du+ [FT - FTJATSATL| & |, (37)
Gp

where Gz = [g(al)’ e ,g(ﬁiil)(ai)]T; Fl = [f(az)a Ty f(Biil)(O‘i)]T and the symmetm’c
matriz S has the form

s0,0 — [ dp soN—1— [N tdp

S — . . .

SN—l,O_fItNildlu “+r SN—1,N—1 _f1t2N72d,U



Proof. To compute [f,g]s for the given polynomials f and g let us observe that the
polynomial

is divisible by h due to the construction. Now, we have

[fa h—[ ZaOm y g

<f(t) - zivﬁ:é aomt™ g@))

N-1

Z aO,mtm7g(t)‘|

m=0

N-1 N-1

Z aO,mtmag(t) - Z bO,m’tm ]
m=0 m’=0

h

h

+

Za()m Z bo i t™ ]

(f O Zncaton™) ),

N-1 N-—-1 N—-1 N-1
m (t)_zm obOm
+/Za0mt ( h d/‘L0+Z ‘ ao bOm’ a }L
T m=0 m=0m’'=0
1 N-1

O,mbO,m’Sm,m’a

N—-1 N-1 , N—
/f(t)g(t)du— > aombom /tm T+ Z
) rt

m=0m’'=0 T

HM

’ . .
where Sy, s = [t",t™ |;. In matrix form the above expression reads

[Foglh = / F)g(t)dp

s0,0 — [, dp soN—1— [, tN " tdp
+[laoo - aoN-1] : : :
sn—10— [;tN dp o syoan—— [N 2dp
bo.o
X
bo,N—1

Next, using (3.5) we get (3.7). O

If we assume that h(t) = ¢, then we have the following result that appears in [12]
for N = 2.



Corollary 1. If pu is a nontrivial probability measure with finite moments of all nonnegative
orders then

9(0)
(fogh = [ FOgOd+ (50) o fS @) (38)
1 gV =1(0)
where M is a symmetric matrix such that
1 1
ol ol
M = S
(N=1)! N-1)!

Since the values s; ; in (3.2) are arbitrary, we can take them in such a way that the
matrix S is diagonal, i.e.

Ao
S:

AN—1

In this case (3.8) reduces to

N—-1 N
[/, 9ln = / F(®)g(t)du + kzo My f®(0)g™(0)  with Mj, = (kS?’
I =

which is a diagonal discrete Sobolev inner product. In other words, we see that N-th
iterated Geronimus transformation of (-,-)o generates discrete Sobolev inner products.

4. Orthogonal polynomials associated to the multiple Geronimus transformation

Next, assuming that the bilinear form [-,-], is quasi-definite, we will represent the
monic polynomials { P} (t) },>0 orthogonal with respect to [-,-], in terms of the sequence
{P,,(t)}n>0 of monic orthogonal polynomials with respect to (-,-)o. Notice that from the
orthogonality of P (t), for the elements of the basis B, we get

[Py t™h*], = [t Pr], =0 for Nk+m<n—1.
So, for n > N, the definition of the bilinear form yields
[P;,tmhk]h = (P;,tmhk_l)o =0 for Nk—1)+m<n—Nand k > 1,
which basically means that

Pr(t) = Pu(t) + AT Py () + -+ A P n (1), (4.1)

1"



At the same time, we also have that
[P:,tm]h =0, form=0,---,N—1,
which can be rewritten as

[P, t™], + AL [Py 7], + -+ AU [P, 7], = 0.

n

The latter relation is equivalent to the system of linear equations

n—1, h n—N» h 7:1—1 s LA
(P, 1,1] [Py, 1] Al P, 1]

: : o= : S (42)
[Pnfla tN_l]h o [Pan7 tN_l]h AE:LEN —[Pn, tN_l}h

Since P}(t) is a monic polynomial of degree n, we know that (4.2) has at least one
solution. If we suppose that it has two different solutions, then there are two monic
polynomials of degree n that satisfy the orthogonality condition. But this contradicts
the uniqueness of the sequence {P;(t)},>0. Moreover, the uniqueness also gives that

[P’I’Lflul]h [Pan,l]h
d,, = : : # 0. (4.3)
[Poe1, tN 7 oo [Poen, tN 1,

Further, according to Cramer’s rule, the polynomials PX(t) can be presented as

Pn<t) [Pml]h [PnatN_l]h
Pr(t) = di* Pnf.i(t) [Pnf.zvl]h [Pn—i’.tN_l]h
Pn,.N(t) [Pn,z.v, 1 - [Pn,N,.tN_l]h

Now for 0 < ¢ < N — 1 and S ,(P;)(t) = Son o cont®, we get

[Pj, 9], = [P;(t) — So.n(P;)(t) + Son(Pi)(t), 1],

S, — So,n(Pj }

Z cont®, tQ]
m>0

(Zm (Pj)(t) — So’h(Pj)(t)’tq) + i: C0,kSk,q
0 k=0

h

N-1

Sm
/ ’h tqduo + Z €0,k Sk,q-

m>17 k=0

12



Let us stress that the above analysis was done for n > N. However, it is clear that for
n < N the polynomial P} has the form

Pr(t) = Po(t) + AL Py (1) + -+ ARy (1),

where we put P, (t) = 0 for m < 0. So if we use similar arguments as above we have
that for n < N it is true that

Pn(t) [an]-]h [Pnatn_l]h
Py(t) = di* Pn;i(t) [Pnf'ia 1]p [Pnfia'tnil]h .
Po.(t) [Po;l]h [Po,t.”*l]h

As a last remark, let us notice that if n < N then d}, is the determinant of a matrix of
size n x n, which does depend on n, while in the other cases d;, is the determinant of a
matrix of size N x N.

Thus, we can deduce the following.

Proposition 2. Let (-,-)o be a quasi-definite bilinear form and let {P,(t)}n>0 be the cor-
responding sequence of monic orthogonal polynomials. Then the symmetric bilinear form
[,-]n is quasi-definite if and only if d¥, # 0 for all n € N. Moreover, in the quasi-definite
case, the sequence of the monic polynomials { P (t)}n>0 orthogonal with respect to [-,-]
admits the representation

Pn(t) [Pnal]h [PnatNil}h
Pr(t) = di* Pn_.z-(t) [Pn_'i, 1]n [Pn_i,;fol]h , (4.4)
Pn—.N (t) [Pn—J'Va l]h [Pn—Na.tN_l]h

where d}, is defined by (4.3) and

N—1
Sm.h(P)(t
ptt], = X [ 23 s
m>1" k=0
If we assume that p is a nontrivial probability measure such that hdy = dug, then
f,qlu = [ ; fgdu is a positive definite bilinear form and we can state the following
corollary.

Corollary 2. If {R,,(t)}n>0 is the sequence of monic polynomials orthogonal with respect
to [-,-]., then the sequence of polynomials { P} (t)}n>0 satisfies the connection formula

13



()P () = Rugn(8) + By Rosn 1) + -+ BY R n (),
as well as
(Prin(t), Re(t)), =0, ifk<n. (4.5)
Proof. Notice that h(t)P,(t) can be written as

n+N

h()Pa(t) = > bl Ri(t)
k=0
where

b =

[h’P’ﬂka]p _ (PTL)Rk:)O o {07 k' < n,

- (anRk)O
In other words, we have that

n+N
B Pat) = Y O R(2).
k=n

Combining this with (4.1) immediately yields

h(#) P (8) = Rupn (8) + By vy Ry v-1(t) + -+ By Ry (8),

where
B7L+N—m = Z b]:fl-s—n—mAr:lk'
k=0
At the same time, we have that
N+n
* . (Rka P;)O
i@mwzzg%m)mmW:mﬂT
k=0 s

According to (4.4), we get that CE:] =0for0<k<n—-—N-1, and cEﬁN # 0. Finally,
taking into account that the representation of AP in terms of the sequence {R,,},>0 is
unique, we conclude that (4.5) holds. O

Example 1. Let us assume that h(t) = tV, dug = t*Ne~tdt, and define (-,-)y as

(f.9)0 = / FOgEe N etdt, o> -1,
0

14



We know that the monic orthogonal polynomials associated with the above bilinear
form are the Laguerre polynomials { Lo+ }n>0 with parameter o + N. Let us now take
du = t*e~*dt. Then

0 N-1
[t / FOg(treetdt+ Y M 9 (0)g9) (0). (4.6)
0 k,j=0

As a straightforward consequence, the sequence of polynomials orthogonal with respect
o0 (4.6) can be written as

LN;L)((t) — L;‘{+N ZA[”] La-i-N

The above bilinear form with their orthogonal polynomials is very well known in the
literature. Indeed, the diagonal case was introduced in [20]. Let us notice that, in par-
ticular, if My ; = 0 for (k,j) # (0,0) we get the so-called Laguerre-Krall orthogonal
polynomials [19].

The previous corollary shows a connection formula between the polynomials
{P}(t)}n>0 and the polynomials {R,,(¢)},>0. We now focus on finding necessary and
sufficient conditions for the existence of the sequence of polynomials { P (¢)},>0. To this
end, let us notice that in the case when P exists it can be represented as

n—1 *
Pi(t) = Ra(t) + 3 7[P|’}éf’;]“Rk(t). (4.7)
k=0 H

In order to get some information out of this relation, note that (3.7) can be rewritten as

p Bi—1Bw—1

[f> fa h_ZZ ZAzjlwf( al)g(J( )

lLbw 1=0 35=0

Using the orthogonality [PF, Ri]p, = 0, k = 0,...,n — 1, and substituting the latter
formula in (4.7) we arrive at the following:

Bi—1Bw—1

Pi(t) = +z 33 S A (P (0 R ()

k=0 l,w=1 =0 j7=0

P Bi—1B,—1 n=1 5»(j)
@) Ry (o) Ri(t)
ZE: jg: ZE: i (Pr)" (eu) ( EE: 1Rk )

l,w=1 i=0 7=0 k=0

Z Z_: al)Di,g(t), (4.8)

Ry (t)
| B2

15



where

p Bw—l1

= Z Z by i Lwk ]_701) Ozw,t).

w=1 5=0

In particular, for 1 < ¢ <pand 1 <k < 3, — 1, we have

B

Rglk)(aq) )+ Z O‘l)Di,l(O‘q)-

=11

I
-

I
=]

If we define the vector

k k k -
k(q)_{[ DG (o), 1+ D (ag), -, D) (el i j =,
J

Ui X k k o
DS (a), -+, DI Nay), - DY (ay)]l, ifj#q

then for each ¢ = 1,...,p, we have that

R ()
Rq:
RS%ﬁQil)(aq)
- (PO ()
Dg) B - ) (P2)BD(ay)
B @ BT @] e | BDO)
L (P5)D(a,) ]

=V P (4.9)
Now we are in a position to state the following result.

Proposition 3. Let pu be a nontrivial probability measure and {R,,(t)}n>0 be the sequence
of orthogonal polynomials with respect to the bilinear form [f, g, = fl fgdu. Let [-,]n
be the symmetric bilinear form defined by

p Bi—1Bw—

/fgd/H—ZZ Z Xi g f P (ar)g"? ()

Lw =0 5=0

With A\ j 1w = Ajiwi. A necessary and sufficient condition for the existence of a sequence

of monic polynomials {P}(t)}n>0 orthogonal with respect to [-,-]n is that the system of
linear equations

16



=|:|P (4.10)

has a unique solution.

As a next step, a natural question can be posed: when is the bilinear form [-,-],, positive
definite? It is clear that if we suppose that the matrix S given by (3.7) is a positive
semidefinite matrix and p is a positive measure, then [-,-], is also positive definite (for
some non-regular cases see [10,11]). Indeed, for any polynomial ¢(¢) we have that

(g, qln = /qzdu +v7Sv >0
I

where
o =[QT - QT]ATT.

Alternatively, in order to analyze the positivity of [P}, PX];, we need to consider two
cases: when n =m+ Nk and n < N.

Case 1. If n = m + Nk with k£ # 0 then

[Py t™hY], = / PitmhFdy = / Prt™h*Ldpug

7 T
f Pntmhk_lduo [Pn, 1]h ce- [Pn, tN_l]h
_ 1 : : :
| [ Poonat™h Mo [Paonin, n oo [Paengn, N1
[ Po_nt™h*dpg (Poon A o [Poen, N7,

(4.11)

But taking into account that m + N(k — 1) = n — N, the above expression becomes

0 [Pnyl]h [antNil]h
_ 1 : : :
dy, 0 [Poontt,1n oo [Poony1, N7,
[ Poont™B*Ydpe  [Poon, 1) 0 [Paen, YT,

Thus

dr d*
(P08, = (DN [ Pyt o = (1Y P2 )

17



Case 2. If n < N then we have

[ant”]h [P’rul]h [Pn;tn_l]h
« an 1 . . .
[Py, t"], = T : : :
[P()utn] [P071]h [P()utn_l]h
Thus
Ay e
i . -t if n is odd,
[Pn(t),t ]h =19 4 1" . . (4.12)
gj , if n is even.

As a summary we can state the following.

Proposition 4. Let (-,-)o be a positive definite bilinear form. Then [-,]n s a positive
definite bilinear form if and only if d}, # 0 and

d*
(—)N2tL S0 forn >N

dy,
2:1 >0 forn < N, with n even (4.13)
n
d*
—Zl*ﬂ <0 forn < N, with n odd.

5. Matrix representation of the multiple Geronimus transformation

Let us assume that [-,-]p, is a positive definite bilinear form. We define the symmetric
matrix

* IS A 0

T* = ([hBr (0, PL®]) 1 o

where the corresponding orthonormal polynomials { P*(t)},>¢ are related to the monic
ones in the following way:

1
Bit) = Pi0), () =[P5 P, b0
n
For the classical Geronimus transformation (i.e. h(t) = t) there are two important
facts concerning the matrix factorizations [12,29].

(1) J* can be decomposed as J* = CCT with C a lower triangular matrix (Cholesky
factorization).

(2) If P,(0) # 0 forn =0,1,2,... then there exist U, an upper triangular matrix, and L,
a lower triangular matrix, such that

18



Jmon =UL and J = LU,

mon

where Jpon, Joon are monic Jacobi matrices associated with the corresponding
monic orthogonal polynomials.

Next, it is natural to ask if it is possible to extend these two results to the generalized
Geronimus transformations analyzed in the previous sections. The answer to this ques-
tion can be given by mimicking the idea of [12]. Namely, from (4.1) we know that the
polynomials P*(t) can be written in terms of the monic orthogonal polynomials P, (t),
which are orthogonal with respect to (-,)g. From this we get

N
(P Ph)y = A Al (P, P 10+AWIZA Pot, Poi)o +

=0
+A[n] ZA[m] n— ]aPm—i)O ZA[m] n— N7 m— 1)0
=0
>res 'rzl«:tt kAEZit Whe g fm=n+t, 0<t <N, (5.1)
S, A ARz ifm=n—t 0<t<N,

where Agc] =1 and A% = 0 if m < 0. Notice that (P, Pr)o is zero for [n —m| > N
and, therefore, the matrix

= ([WP30): Pr®)] ) o = (B Pr)o) o

0/ n,m=0

isa (2N + 1) x (2N + 1) diagonal matrix.

Proposition 5. Let us assume that (-,-)o and [-,/|n are positive definite bilinear forms and
{P.(t)}n>0, {Pr(t)}n>0 are, respectively, the corresponding sequences of monic orthogo-
nal polynomials. Then the symmetric matrix J* corresponding to P} can be represented
as

J*=coT,

where C' is a lower triangular matrixz with positive diagonal entries,

- hg -
h{
Al ko hy
hi hi
APy APn ha
h3 3 h3
C: 2 2
0 AN A A
hivs1 Nt PN i1
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Proof. According to the definition of J* we have

1 1

o U [hB;, Piln  [hPg, Piln =
* 1
JT = hE

[Py, Pyl [hPF, P,

Taking into account the definition of [-,-], we have that [hP}, P} ]
(5.1) we get that

(P2 PRl
n? = m/0oln,m=0
2 2 2 2 N 2
h? Aln2 Al2n? ANIp2
Afng Z:’:‘)(A[ll]k)th k i, Ag“],\ALZ]khi k Tiin 1 AR AR WPy
ARy o alPhalhong o Sl o),

N2 N N 1 2 N N 272
AR S, AR AN g T, alhore

0 AlN+Rp2

It is easy to see that this can be written as

ho
Ak, hy
ABhy APy oy

0o ANty AN by
Tho Alhe AR, 0
h o AP AN,
ha :
X .
A hy
hn1
If we set
w0
c=|o0o X

h

TN Al Al

ANF1R2

2
N+1 kANt kN1 e
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C by ]
AlMng hy
ABhy  APny oy
x| . : . , (5.2)
0o ANMTUR o ATy hy

then we get the desired result. Also, notice that
* 2 * * * *
( n+N) = [Pn+N (t)v Pn+N(t)] = [hpn (t)7 n+N (t)] h

* * +N]
= (P;(t), Py on(t ZAZLJFN k E?j—N—kh?H-N—k

= AltNIR2.

Hence the diagonal entries of C' can be given in terms of the coefficients A as

hn+N _ hn+N
hin Al+N

In addition, if m < N then
(h7)" = [P Pl

ZA["‘]P ZA[’”]P
iiA[m]A[m]P Pyl

k=0 j3=0

From the above relation we can see that (h?,)? is a combination of the free parameters
given by the matrix S (see (3.2)). O

Let L,on be the matrix associated with the recurrence formula given in (4.1), that is

-1 -
AR
AP AR g

Lmon = : : - - (5.3)
A A A
0 A[lNH] A%\“Fl] 1



It is clear that the relation (4.1) reads as P* = Ly, P, where P* = (P} (t), Py (t),-- )T
and P = (Py(t), Pi(t),---)T. On the other hand, we have

[th,P;}]h = (PT“P’;;L)O =0, form=0,...,n—1.

Then we can write
N4+n
h(t)Pa(t) = Y BNTPH(t),  where BNt £ 0. (5.4)

i=n

Thus we can associate with the above relation the matrix

Umon
N N N -
B([)] ?E]] B[J[\/'—]l] [1 |
N+1 N+1 N+1
B! Byl Bl 1
+N +N +N
By B, BT 1

Here hP = U,,0, P* where P and P* are the vectors defined as above. Finally, we can
state the following.

Proposition 6. If h(t) = ZZ:O b t™, then
N
h(Jmon) = Z bmJ;);Lon = Umoanon (55)
m=0
as well as
J:;lon = LmonUmon7 (56)
where J7, ... is the band matriz corresponding to the monic Sobolev orthogonal polynomials

generated by [-,]n (see (3.3)).
Proof. By definition, we have

hP = UponP* = UnmonLmonP.
Next, observing that

t"P = Jpont™ 'P == J7 P

mon
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we arrive at
N N
hP =3 byt"P =3 by, P = h(Jmon)P.
m=0 m=0

From this relation and due to the uniqueness of coefficients in recurrence relations we
obtain (5.5). To prove (5.6), notice that
hP* = LpmonhP = LponUpmon P*.
Since we have
hP* =J:

mon

P,
the relation (5.6) is rather obvious. O
6. Discrete Sobolev inner products as multiple Geronimus transformations

In this section we summarize all the previous findings together with the results of [14]
and present the main results of the present paper for a special class of polynomials.
Consider the discrete Sobolev inner product

(f.9) = / FOadnt) + 35 A FP(00)g (),
i=1 j=0

where f, g are polynomials and ); ; are real numbers. We also suppose that the inner
product (-,-) is symmetric, i.e. (f,g) = (g, f). Then the following result holds true.

Theorem 1. The discrete Sobolev inner product {-,-) is a multiple Geronimus transfor-
mation of a bilinear form generated by the measure dug(t) = h(t)du(t), where

M
(o) = T [t = e,
i=1
that is

<.f7g> = [f:g]h

Proof. This statement is a straightforward combination of Proposition 1 and [14, Sec-
tion 3.1]. O

This result together with Proposition 6 gives us an understanding of the structure of
the band matrices associated with the recurrence relations generated by Sobolev orthog-
onal polynomials.
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Theorem 2. Let us consider a discrete Sobolev inner product (-,-). Then the band matriz
J*

»on generated by the recurrence relations for the corresponding orthogonal polynomials

can be obtained as
h(']mon) = Umoanon — J:;wn = LmonUmona (61)
where Jmon s the monic Jacobi matrix associated with dy.

Let p(t) = >/ S ag jt*hI(t) be a polynomial of degree nN +m, 0 < m < N,
where we assume ay, = 0 if & > m. For 0 < k < N — 1, let us consider the linear
operator Ry 5 (p)(t) = >0, ay,jt’, i.e. it takes from p the terms of the form ay ;t*h7 (t)
and then removes the common factor t* and changes h(t) to t. Notice that in such a way
plt) = SN 5 Ry (p) (1)) (see [14)).

Using the previous notation, Theorem 2 can be seen as a result for matrix orthogonal
polynomials due to [14]. Indeed, the matrix h(Jyon) generates matrix polynomials

Ro,n(pnan)(t) . Ry _1,n(pan)(t)
Rin(pan+1)(1) v Ry n(Pant1)(1)
Po(t) = . .
Ry_1n(Pan+n—1)t) ... Rn—1n(Pan+n—1)(t)

orthogonal with respect to the measure dMq(h~'), where

dpio(t) tdpo(t) ... tN"duo(t)
tduo(t)  tduo(t) ... tNdpuo(t)
AMy(t) = | tPduo(t)  tduo(t) ... tNTduo(t)

tN"Ydpug(t) tNduo(t) ... 2N "2dug(t)

and p, are monic polynomials orthogonal with respect to the measure dug. At the same

time, the matrix J¥  corresponds to Sobolev type orthogonal polynomials which, in

mon
turn, yield a sequence of matrix orthogonal polynomials with respect to the measure [14]

dM (h™'(t)) + L5(t), (6.2)

where §(¢) is the Dirac delta at t = 0, dM has the form

du(t) tdu(t) ... tN"tdu(t)
tdpu(t) 2du(t) ... tNdu(t)
dM(t) = Bdu(t)  Bdut) ... tNdu(t) |
tV *1.du(t) tV d.u(t) U *édu(t)
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and L is the matrix

> AL, )
i=1 j=0
with L(4,7) the N x N matrix
0
0
j! A .
L(i,j) = E (0...0 jlo. e ™ e ).
k! k—
F=ci
(N—l)!. N—1—j

(N—1—j)1%i

In other words, we see that, according to (6.1), the matrix measure (6.2) is actually a
simple matrix Geronimus transformation of the matrix measure dMj. In fact, introducing
y = h™1(t) we see that the spectral transformation

dMo(y) = ydM (y) — dM(y) + Li(y)
corresponds to one step of the block LR-algorithm based on the block U L-factorization
h(Jmon) = Umoanon = J:non = LmonUmon-

Thus, a multiple Geronimus transformation is a simple Geronimus transformation for
matrix inner products. So, all our findings can be considered from the point of view
of Darboux transformations for matrix orthogonal polynomials, which will be carefully
analyzed in a forthcoming paper.
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