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In this paper, we study new algebraic and analyt
on the real line when finite modifications of 
called co-polynomials on the real line, are cons
of their zeros, mainly interlacing and monotonic
transfer matrix approach we obtain new structu
and computational advantages. Finally, a conne
polynomials on the unit circle is pointed out.

1. Introduction

Let dμ be a non-trivial probability measure with an infinity support on s∫
A

x2ndμ(x) < ∞, n ≥ 0.

The application of Gram–Schmidt’s orthogonalization procedure to {xn}n≥
monic polynomials {Pn}n≥0,

Pn(x) = xn + (lower degree terms),

and a sequence, {γn}n≥0, of positive real numbers such that∫
A

PnPmdμ = γnδn,m, m ≥ 0,



where δn,m is the Kronecker delta. These polynomials are known in the literature as orthogonal polynomials
on the real line (OPRL, in short), also known as Chebyshev polynomials before the book of Szegő [26] when 
the terminology was reserved for four special cases of trigonometric OPRL [26, Sec. 1.12].

It is very well known that the zeros of Pn, {xn,k}nk=1, are real, simple and are located in the interior of
the convex hull of the support A of the measure dμ and the zeros of Pn and Pn+1 strictly interlace. The
notation for zeros is

xn,n < xn,n−1 < · · · < xn,2 < xn,1.

We suggest the reader to consult [2,7,13,20,21,26], where a complete presentation of the classical theory of 
OPRL can be found.

Associated with any sequence of OPRL there exist sequences {an}n≥1 and {bn}n≥1 of positive real
numbers and real numbers, respectively, such that

Pn+1(x) = (x− bn+1)Pn(x) − anPn−1(x), a0 := 1, n ≥ 0, (1.2)

 an := bn := 0 for n < 1, then

]
.

(1.3)
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with initial conditions P−1 := 0 and P0 := 1. We set Pn := 0 for n < 0 and
(1.2) holds for every n ∈ Z. Set

Pn+1 := [Pn+1, Pn ]T , An :=
[
x− bn+1 −an

1 0

Notice that from (1.2), we get

Pn+1 = An Pn, P0 := [P0, P−1 ]T ,

as well as

Pn+1 = (An · · ·A0)P0.

An is said to be the transfer matrix. This representation will be the central o
of the previous result is the so-called Favard’s theorem or Spectral Theorem
words, given a sequence of polynomials, {Pn}n≥0, generated by (1.2) with 
positive real and {bn}n≥1 real numbers, then there exists a nontrivial proba
the real line so that the orthogonality conditions (1.1) hold. Moreover, if {an
sequences, then dμ is unique. From now on, we will assume that the recurr
the hypothesis of Favard’s theorem.

The theory of OPRL has attracted an increasing interest from the pion
Jacobi, Chebyshev, Christoffel, Stieltjes and Markov, among others. The co
OPRL by modifying the original sequence is a powerful tool, with many 
applied problems, such as asymptotic analysis, zero behavior, integrable sys
quadrature, and quantum mechanics, among others. In particular, the stud
quences of OPRL with respect to finite modifications (by changing or shifti
is a classical topic. For example, associated polynomials appear in Stieltje
convergence of certain continued fractions. Given the sequences {an}n≥1 a
fixed positive integer, k, the associated polynomials of order k, {P (k)

n }n≥0, b

P
(k)
n+1(x) = (x− bn+k+1)P (k)

n (x) − an+kP
(k)
n−1(x),



with initial conditions P (k)
−1 := 0 and P (k)

0 := 1. As previously, we set P (k)
n := 0 for n < 0 and an := bn := 0

for n < 1, then (1.4) holds for every n ∈ Z. General results on such associated polynomials can be found 
in [3,27].

On the other hand, OPRL associated with finite perturbations of recurrence coefficients, in what follows 
denoted as co-polynomials on the real line (COPRL, in short), are firstly considered by Allaway [1] and 
Chihara [6], who studied the case when only the first recursion coefficient b1 is perturbed by adding a
constant. This kind of perturbations is not artificial in any sense. We recall that the modification of a finite 
number of the recurrence coefficients corresponding to Chebyshev’s polynomials of second kind leads to 
Bernstein–Szegő’s polynomials [26]. Some results concerning finite perturbations of Chebyshev’s polynomials 
can be found in [19]. The algebraic and analytic properties of general COPRL have been studied mainly by 
Marcellán, Dehesa and Ronveaux [15], Maroni [16], and Peherstorfer [18], see also [1,8]. Some applications 
can be also found in [9,10,14,22].

The goal of our research is to study new properties of the polynomials which satisfy a recurrence relation 
as (1.2) with new recurrence coefficients, perturbed in a (generalized) co-dilated and/or co-recursive way, 
{cn}n≥1 and {dn}n≥1, i.e.,

n ≥ 0,
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un+1(x) = (x− dn+1)un(x) − cnun−1(x), c0 := 1,

with initial conditions u−1 := 0 and u0 := 1. In other words, we consider a
the recurrence coefficients as follows:

cn = λ
δn,k

k an, λk > 0, (co-dila

dn = bn + τk+1δn,k+1, τk+1 ∈ R (co-recu

where k is a fixed non-negative integer number. Moreover, we will conside
above perturbations. In Section 2, we study some new inequalities for the ze
approach presented in [5] for the study of the monotonicity of zeros of a class 
on the unit circle including the Askey hypergeometric polynomials 2F1(−n

Section 3, we obtain a new structural relation based on a transfer matrix ap
for similar perturbations in the theory of orthogonal polynomials on the unit c
in Section 3 we point out the connection with the OPUC.

2. Zeros and inequalities

It is very well-known that the orthonormal version of (1.2), for recurren
parameter ε, can be written in an operator form by using a symmetric Jaco

J(ε) =

⎡⎢⎢⎢⎣
b1 d1
d1 b2 d2

d2 b3 d3
. . . . . . . . .

⎤⎥⎥⎥⎦ ,

where d2
n = an (for simplicity, we omit here the dependence of ε). In a matr

xp = J(ε)p,

where pn = γ
−1/2
n Pn and p = [p0, p1, . . .]T . According to a version of 

[13, Sec. 7.3], if ∂Jn(ε)/∂ε is strictly positive (resp. negative) definite, the
ing OPRL are strictly increasing (resp. decreasing) functions of ε. But for so



we can obtain more information on the behavior of zeros following a different approach recently proposed 
in [5].

In [15], using the theory of difference equations, the authors deduced the explicit expression of the COPRL 
associated with the perturbation (1.5) and/or (1.6) in terms of the initial OPRL and their associated 
polynomials of order k.

Let us define

D(un, vn) :=
∣∣∣∣ un vn
un+1 vn+1

∣∣∣∣ , (2.7)

the Casorati determinant associated with two arbitrary sequences {un}n≥1 and {vn}n≥1. From the theory
of linear difference equations, we know that if the Casorati determinant is different from zero for every n, 
then these two sequences are said to be linearly independent [17]. Notice that {P (k)

n−k}n≥0, is a solution of
the recurrence relation (1.2). It is easy to verify that[

Pn+1 P
(k)
n−k+1

]
= A

[
Pn P

(k)
n−k

]
.

(2.8)

t in C \ X. If we denote by
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Pn P
(k)
n−k

n
Pn−1 P

(k)
n−k−1

Hence,

D(Pn, P
(k)
n−k) = anD(Pn−1, P

(k)
n−k−1).

Let X denote the set of zeros of Pk−1. From the above equalities, we get

D(Pn, P
(k)
n−k) =

⎛⎝ n∏
j=k

aj

⎞⎠Pk−1,

which means that Pn and P (k)
n−k with n > k, are linearly independen

{Pn(·; λm, τm+1; . . . ; λk, τk+1)}n≥0 the COPRL associated with the finite com
and (1.6) from order m to order k, m ≤ k then, after elementary calculation

Theorem 2.1. For x ∈ C \X the following formulas hold:

Pn(x;λk, τk+1) = Pn(x), n ≤

Pn(x;λk, τk+1) = Pn(x) −Qk(x)P (k)
n−k(x), n >

where Qk(x) = τk+1Pk(x) + ak(λk − 1)Pk−1(x).

As a consequence of the last result, we get

Corollary 2.1. Pn(·; λk, τk+1) and Pn share at most the zeros of Qk and Pk−

Proof. Suppose that Pn(·; λk, τk+1) and Pn have a common zero, α, diffe
Pk−1. Let Y denote the set of zeros of Qk. Since α ∈ C \ (X ∪ Y ), Theor
contradiction. �

From the interlacing property of two consecutive OPRL, we can easily de
coprime. But we can go a step further.



Proposition 2.1. Let us assume λk �= 1 and τk+1 �= 0 and define c := (λk − 1)/τk+1. Let {yk,j(c)}kj=1 be the
zeros of Qk. The following statements hold:

i) If c > 0, then

xk−1,j−1 < yk,j(c) < xk,j ; xk−1,0 := −∞.

Moreover, yk,j(c) (for a fixed value of j) is a strictly increasing (resp. decreasing) function of λk

(resp. τk+1).
ii) If c < 0, then

xk,j < yk,j(c) < xk−1,j ; xk−1,k := ∞.

Also, yk,j(c) (for a fixed value of j) is a strictly decreasing (resp. increasing) function of λk (resp. τk+1).

j .

htforward way from [7, Ch. 1, 
 of the interlacing property for 

.
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Furthermore,

lim
λk→1

yk,j(c) = xk−1,j , lim
τk+1→∞

yk,j(c) = xk−1,

Proof. The interlacing in the first part of the theorem follows in a straig
Ex. 5.4]. Furthermore, in the same way, the monotonicity is a consequence
the zeros of Qk and Pk−1. Let

Qk(x; ε) := Pk(x) + (c + ε)akPk−1(x), ε > 0

Hence,

Qk(x; ε) = Qk(x) + εakPk−1(x),

and the expected result on monotonicity follows as previously. The second 
consequence of Hurwitz’s theorem [26, Thm. 1.91.3]. �

We recall that the zeros of the polynomial Qk lie in (a, b), with the e
The location of the extreme zeros with respect to the orthogonality interva
Thm. 3.3.4].

The next theorem has direct consequences in the interlacing and monoto

Theorem 2.2. Let xn,j+1 and xn,j be two consecutive zeros of Pn, then the 
zeros of QkPk in Ij := (xn,j+1, xn,j) that are not zeros of Pn(·; λk, τk+1), t
most an odd number of zeros of Pn(·; λk, τk+1). Moreover, if there are zeros o
of Pn(·; λk, τk+1), then the interval Ij contains at most an even number of z

Proof. With the notation of Proposition 2.1, we can assume c > 0 withou
situation

D(Pn(x), Pn(x;λk, τk+1)) = Pn(x)Pn+1(x;λk, τk+1) − Pn(x;λ

= anD(Pn−1(x), Pn−1(x;λk, τk+1)),



Fig. 1. Graphs of Qk and Pk for c > 0 and k = 4.

(x)Pk(x). (2.9)
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yields

d(x) := D(Pn(x), Pn(x;λk; τk+1)) = −

⎛⎝ n∏
j=k−1

aj

⎞⎠Qk

Obviously, (−1)jPn+1 (xn,j) > 0. Now, there are two cases depending on
Denote by S− the system of intervals indicated by thick solid lines in Fig. 1
and Proposition 2.1, we first consider the case for which d(Ij) > 0, i.e., Ij ⊂

By (2.9), −P (xn,j ; λk, τk+1)Pn+1(xn,j) > 0, which yields

(−1)j+1Pn(xn,j ;λk, τk+1) > 0.

Therefore, in this situation the theorem holds.
On the other hand, a similar result can be obtained for Ij ⊂ S+, where S

indicated by thick solid lines in Fig. 1. The rest of the proof follows directly 

Note that the previous result contains as a particular case the interlacing 
the co-recursive case, that is, λk := 1. In this situation, the system of in
equivalently S+ = {0}. Hence we have the following interlacing property.

Corollary 2.2. Let l < k be the number of no common zeros between Pn

{yn,j(1, τk+1)}lj=1 and {yn,j}lj=1, these zeros. If τk+1 < 0, then

yn,n(1, τk+1) < yn,l < yn,l−1(1, τk+1) < yn,l−1 < · · · < yn,1(1

where the role of the zeros {yn,j(1, τk+1)}lj=1 and {yn,j}lj=1, is reversed whe

Corollary 2.3. The zeros of the polynomial Pn(·; 1, τk+1; 1, τk+2) (for a fixed v
increasing functions of τk+1 and τk+2.

The previous results for the co-recursive case reduce and give more informa
theorem. Notice that the existence of cases for which det(∂Jn(ε)/∂ε) = 0, 
the section, could imply strictly monotonicity of zeros. We recall that Coroll
from the perturbation theory for symmetric matrices.



Fig. 2. Graphs of P (2,1)
5 (continuous line), P (2,1)

5 (·; 1, 0.2; 1, 0.25) (small-dashed line), and P (2,1)
5 (·; 1, 0.3; 1, 0.3) (large-dashed line).

)}n≥0 satisfy for any real value

β)2 ,

 weight (1 −x)α(1 +x)β on the 
ce of Jacobi polynomials associ-
ram Mathematica® 9.01 with the
d shows the polynomials P

(2,1)
5

, 0.3; 1, 0.3) (large-dashed line).
ds, the monotonicity is ‘strict’ 
eorem.

plicated because the zeros have 
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he zeros xn,l and xn,l(λk, τk+1)
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Example 2.1. It is well known [7] that the monic Jacobi polynomials {P (α,β
n

of α and β, the recurrence relation (1.2) where

a(α,β)
n = 4n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β + 1)(2n + α +

b
(α,β)
n+1 = β2 − α2

(2n + α + β)(2n + α + β + 2) .

Furthermore, if α, β > −1 the polynomials are orthogonal with respect to the
interval [−1, 1]. In order to illustrate Corollary 2.3, we consider a new sequen
ated with two consecutive modification (1.6). Fig. 2 is obtained by using Wolf
aid of the function JacobiP[n, α, β,x] and the recurrence relation (1.2), an
(continuous line), P (2,1)

5 (·; 1, 0.2; 1, 0.25) (small-dashed line), and P (2,1)
5 (·; 1

Observe that the zeros behave in accordance with our result. In other wor
and it is not something that can be guaranteed by Hellmann–Feynman’s th

According to Fig. 1, a general result in the previous direction is more com
different behavior depending on the intervals S− and S+ where they are loc
of extreme zeros we can obtain more information.

Theorem 2.3. With the notation of Proposition 2.1, let us define y1 := max{
{xn,j(λk, τk+1)}nj=1 the zeros of the polynomial Pn(·; λk, τk+1). If c > 0, then

xn,l < xn,l(λk, τk+1),

for all the zeros of Pn(·; λk, τk+1) and Pn in R \ [−∞, y1], where the role of t
is reversed when c < 0.

1 Wolfram Mathematica is a registered trademark of Wolfram Research, Inc.



Fig. 3. Graphs of L
(4)
4 (continuous line) and L

(4)
4 (·; 1.4, 4) (dashed line).

m 2.2, c > 0. Hence, y1 = xk,1,

e smallest zero) of OPRL is the 
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real value of α, the recurrence
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4
ith c = 0.1, all the zeros greater
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Proof. Without loss of generality we can assume, as in the proof of Theore
see Fig. 1. By (2.9), P (xn,l; λk, τk+1)Pn+1 (xn,l) > 0, which yields

(−1)jPn(xn,l;λk, τk+1) > 0.

The result can be deduced as above. �
The usual tool dealing with the inequalities concerning the largest (or th

Perron–Frobenius Theorem [13, Thm. 7.4.1]. Notice that the previous result

Example 2.2. The monic Laguerre polynomials {L(α)
n }n≥0, satisfy, for any 

relation (1.2) where

a(α)
n = n(n + α),

b
(α)
n+1 = 2n + 1 + α.

Furthermore, if α > −1 the polynomials are orthogonal with respect to th
[0, ∞). In order to illustrate Theorem 2.3, we consider a new sequence of L
with the modifications (1.5) and (1.6). Fig. 3 is obtained by using Wolfra
aid of the function LaguerreL[n, α,x] and the recurrence relation (1.2), a
(continuous line) and L(4)

4 (·; 1.4, 4) (dashed line). Observe that for this case w
than y1 = 2.7965 behave in accordance with Theorem 2.3. Notice that, the P
guarantee this result only for the largest zero.

3. A transfer matrix approach

Theorem 2.1 has been successfully used in the study of zeros of COPRL bu
First, the structural relation is not useful if we are interested in the finite
mainly from a computational point of view. Second, the structural relation is
plane. The aim of this section is to use a transfer matrix approach to avoid

Using the matrix notation (1.3), we have

Pn+1(x;λk, τk+1) = (An · · ·Ak+1)Ak(λk, τk+1) (Ak−1 ·



where

Ak(λk, τk+1) =
[
x− bk+1 − τk+1 −λkak

1 0

]
.

Combining (1.3) and (3.11), we can deduce that the following formula holds on C

Pn+1(x;λk, τk) = (An · · ·Ak+1)Ak(λk, τk+1)A−1
k (An · · ·Ak+1)−1 Pn+1(x).

The previous equation has some computational advantage as compared to Theorem 2.2 and it holds in C. 
But we can improve this result by using an auxiliary sequence of polynomials.

Of course, the so-called first kind associated polynomials {rn}n≥0 are the unique solution of the recurrence
relation (1.2) with initial conditions r−1 := −1 and r0 := 0 or, equivalently, r0 := 0 and r1 := 1/a1. Note
that rn is a polynomial of degree n − 1. We define Rn := γ−1

n rn = P
(1)
n−1 which is a monic polynomial.

Theorem 3.1. The following formulas hold in C:

n > k,

⎤⎥⎥⎥⎥⎥⎦ ,

(3.12)

f order k. Let us denote by 
ociated with the perturbations
nomials of order k. Since
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⎛⎝ k∏
j=1

aj

⎞⎠[
Pn+1(x;λk, τk+1)
−Rn+1(x;λk, τk+1)

]
= Mk

[
Pn+1(x)
−Rn+1(x)

]
,

where Mk is

Mk =

⎡⎢⎢⎢⎢⎢⎣

⎛⎝ k∏
j=1

aj

⎞⎠ + QkRk QkPk

R̂kRk

⎛⎝ k∏
j=1

aj

⎞⎠ + R̂kPk

with R̂k = −τk+1Rk − (λk − 1)akRk−1.

Proof. Let us introduce the matrix Bn+1, given by

Bn+1 =
[
Pn+1 −Rn+1
Pn −Rn

]
.

Since

D(Pn+1,−Rn+1) = an detBn =
n∏

j=1
aj

then Bn+1 is a nonsingular matrix.
We now apply the previous argument again, in order to obtain

Bn+1 = AnBn = An · · ·A0,

the product of the transfer matrices for the associated polynomials o
Bn+1(·; λk, τk+1) the polynomial matrices corresponding to the COPRL ass
(1.5) and (1.6), and B(k)

n−k the product of transfer matrix for associated poly

B(k)
n−k = An · · ·Ak,



from (3.12), we get

B(k+1)
n−(k+1) = Bn+1B−1

k A−1
k , (3.13)

Bn+1(λk, τk+1) = B(k+1)
n−(k+1)Ak(λk, τk+1)Bk. (3.14)

From (3.13) and (3.14), we get

BT
n+1(λk, τk+1) = (Ak(λk, τk+1)Bk)T (AkBk)−TBT

n+1, (3.15)

where

(Ak(λk, τk+1)Bk)T =
[

Pk+1(x;λk, τk+1) Pk(x)
−Rk+1(x;λk, τk+1) −Rk(x)

]
,⎛⎝ k∏

a

⎞⎠ (A B )−T =
[
−Rk −Pk

]
.

(3.16)

tions (1.6) for k := 0. By (2.8), 

ations of different levels.

k. Then, the following relation 

m+1)
τm+1)

]
, n > k.

s:

j

⎞⎠[
Pn+1(x)
−Rn+1(x)

]
.

ents and the perturbed ak and

10
j=1
j k k

Rk+1 Pk+1

Then it is easy to check that

(Ak(λk, τk+1)Bk)T (AkBk)−T = Mk,

which, after some elementary calculations, proves the theorem. �
Example 3.1. In this case [6], we have COPRL associated with the modifica
Theorem 2.1 and Theorem 3.1 are equivalent. It is easy to check that

Pn+1(x; 1, τ1) = Pn+1(x) − τ1Rn+1(x).

Next we give a relation between the COPRL associated with two modific

Corollary 3.1. Let k, m be two fixed non-negative integer numbers with m <
holds ⎛⎝ k∏

j=m+1
aj

⎞⎠[
Pn+1(x;λk, τk+1)
−Rn+1(x;λk, τk+1)

]
= MkM−1

m

[
Pn+1(x;λm, τ

−Rn+1(x;λm,

Proof. The proof is a straightforward consequence of (3.15) and (3.16). �
For a finite composition of perturbations we have the following result.

Theorem 3.2. For 0 < m ≤ k < ∞ and for n > m the following relation hold⎛⎝ k∏
j=m

j∏
l=0

al

⎞⎠[
Pn+1(x;λm, τm+1; . . . ;λk, τk+1)
−Rn+1(x;λm, τm+1; . . . ;λk, τk+1)

]
=

⎛⎝ k∏
j=m

M

Proof. Since Mk depends only on the first k + 1 original recurrence coeffici
bk+1, we have



⎛⎝ k∏
j=0

aj

⎞⎠BT
n+1(λk, τk+1) = MkBT

n+1, n > k,

⎛⎝k−1∏
j=0

aj

⎞⎠BT
n+1(λk, τk+1, λk−1, τk) = Mk−1BT

n+1(λk, τk+1), n > k − 1,

...

⎛⎝ m∏
j=0

aj

⎞⎠BT
n+1(λk, τk+1, . . . , λm, τm+1) = MmBT

n+1(λk, τk+1, . . . , λm−1, τm), n > m.

Clearly,

BT
n+1(λk, τk+1, . . . , λm, τm+1) = BT

n+1(λm, τm+1, . . . , λk, τk+1).

+1, n > m,

n OPRL on [−1, 1] and some
exterior of the unit circle onto 
 measure of orthogonality. For 

tion

ynomial and the complex num-
ts. The best general references
s denote by ∂D the boundary 
pectral Theorem in the OPUC 
ic orthogonal polynomials with

cients {αn}n≥0 are perturbed

(4.17)

with the perturbed Verblunsky 
in short). In the next result we 
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Thus, ⎛⎝ k∏
j=m

j∏
l=0

al

⎞⎠BT
n+1(λm, τm+1, . . . , λk, τk+1) =

(
k∏

i=m

Mi

)
BT

n

and the result follows. �
4. Connection with the unit circle case

In [25], see also [26, Sec. 11.5], Szegő pointed out the relation betwee
sequences of OPUC, by using the Joukowsky transformation mapping the 
the exterior of the interval [−1, 1] by the modification of the corresponding
more details, see [26].

The monic OPUC, {Φn}n≥0, is generated by the forward recurrence rela

Φn+1(z) = zΦn(z) − αnΦ∗
n(z),

with initial condition Φ0 := 1. Here, Φ∗
n(z) = znΦn(z−1) is the reversed pol

bers {αn}n≥0, αn = −Φn+1(0), are known as Schur or Verblunsky coefficien
on OPUC are the monographs of Geronimus [11,12] and Simon [21]. Let u
of the open unit disk D := {z ∈ C; |z| < 1}. The Verblunsky theorem or S
theory states that when |αn| < 1, n ≥ 0, then {Φn}n≥0 is a sequence of mon
respect to a unique nontrivial probability measure supported on ∂D.

In [5], the author studied the effect on OPRL when the Verblunsky coeffi
in the following way:

βn :=
{
βk ∈ D, n = k,

αn, otherwise.

Here, k is a fixed non-negative integer number. The polynomials associated 
coefficients (4.17) are known as co-polynomials on the unit circle (COPUC, 
consider the inverse situation.



Theorem 4.1. Let {α̂n}n≥0 be the Verblunsky coefficients for the corresponding COPUC, {Φn(·; λk, τk+1)}n≥0,
associated with (1.5) and (1.6) through the Szegő transformation. Let us define Sn := Pn+1/Pn and
Sn(x; λk, τk+1) := Pn+1(x; λk, τk+1)/Pn(x; λk, τk+1). Then,

α̂2n−1 = α2n−1 + cn, α̂2n = α2n + dn,

where

cn = Sn(1) − Sn(−1) + Sn(−1;λk, τk+1) − Sn(1;λk, τk+1),

dn = 2
(

Sn(−1)
α2n−1 + 1 − Sn(−1;λk, τk+1)

α̂2n−1 + 1

)
.

Proof. It is very well-known [26, Sec. 11.5] that

Φ2n(0) = Sn(1) − Sn(−1) − 1, Φ2n+1(0) = Sn(1) + Sn(−1)
Sn(−1) .

1;λk, τk+1) + 1
) + 1 ,

sformation the modification of 
 OPRL, in order to obtain the 
.1.

e homography mapping

12
Sn(1) −

Since,

Sn(1) + Sn(−1) = Φ2n(0) + 2Sn(−1) + 1,

we have

Φ2n+1(0) − Φ2n+1(0;λk, τk+1) = Φ2n(0) + 2Sn(−1) + 1
Φ2n(0) + 1

− Φ2n(0;λk, τk+1) + 2Sn(−
Φ2n(0;λk, τk+1

and thus the theorem is proved. �
Note that the modifications (1.5) and (1.6) imply through the Szegő tran

all the Verblunsky coefficients greater than k. By the properties of zeros of
value of the polynomials Sn(·; λk, τk+1) at −1 and 1, we can use Theorem 2

Remarks 4.1. From now on, we adopt the notation =̇ used in [5], i.e., for th

y = ax + b

cx + d
, ad− bc �= 0,

we will write

y =̇ Ax, A =
[
a b

c d

]
.

The Stieltjes or Cauchy transformation of the orthogonality measure dμ,

mμ(x) =
∫
A

dμ(y)
y − x

, x ∈ C \A

has a particular interest in the theory of OPRL.



By a spectral transformation of the m-function mμ, we mean a new m-function associated with a mea-
sure dσ, a modification of the original measure dμ. We refer to pure rational spectral transformation as a 
transformation of mμ given by

mσ =̇ Amμ, (4.18)

where a, b, c, and d are non-zero polynomials that provide a ‘true’ asymptotic behavior to (4.18), see [28].
Let us denote by mμ(·; λk, τk+1) the m-function associated with the perturbations (1.5) and (1.6).

Theorem 4.2. mμ(·; λk, τk+1) is a pure rational spectral transformation of mμ, given by

mμ(x;λk, τk+1) =̇ (J2MkJ2) mμ(x),

where

J2 =
[

0 1
1 0

]
.

x)
x)
x)
x)

,

formation of mμ given by

mμ(x).

lity measure supported on ∂D,

ogous role to the m-function in 
ponding m–function for OPRL 
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Proof. From Theorem 3.1, we get

−Rn+1(x;λk, τk+1)
Pn+1(x;λk, τk+1)

=
(Mk)2,1 − (Mk)2,2

Rn+1(
Pn+1(

(Mk)1,1 − (Mk)1,2
Rn+1(
Pn+1(

and the theorem follows from Stieltjes’ Theorem [26,21]. �
Note that the previous result was also obtained in [15].

Corollary 4.1. mμ(·; λm, τm+1; . . . ; λk, τk+1) is a pure rational spectral trans

mμ(x;λm, τm+1; . . . ;λk, τk+1) =̇

⎛⎝J2

k∏
j=m

MjJ2

⎞⎠
On the other hand, the Riesz–Herglotz transform of a nontrivial probabi

F (z) =
∫
∂D

y + z

y − z
dσ(y),

is the so-called C-function in the OPUC theory. This function plays an anal
the OPRL theory. We recall that there is also a relation between the corres
in [−1, 1] and C-function, as follows

F (z) = 1 − z2

2z mμ(x),

or, equivalently,

mμ(x) = F (z)√
x2 − 1

,

with 2x = z + z−1 and z = x −
√
x2 − 1.



Theorem 4.3. Let F (·; λm, τm+1; . . . ; λk, τk+1) be the C-function associated with the finite composition of
perturbations (1.5) and (1.6) through the Szegő transformation. Then,

F (z;λm, τm+1; . . . ;λk, τk+1) =̇

⎛⎝J2

k∏
j=m

MjJ2

⎞⎠ F (z),

with 2x = z + z−1.
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