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ABSTRACT

In this paper we consider sequences of polynomials orthogonal with respect to the discrete
Sobolev inner product

f,8)s = /:f(x)g(x)x“e *dx + F(0)AG(c), o> 1,

where f and g are polynomials with real coefficients, A € R*? and the vectors F(c), G(c)
are

A= (' N FO=(FELF©) and 6(c) (g(c).&/c)) respectively.
with M, N € R, and the mass point c is located inside the oscillatory region for the classical
Laguerre polynomials. We focus our attention on the representation of these polynomials
in terms of classical Laguerre polynomials and we analyze the behavior of the coefficients
of the corresponding five term recurrence relation when the degree of the polynomials is
large enough. Also, the outer relative asymptotics of the Laguerre Sobolev type with re
spect to the Laguerre polynomials is analyzed.

Keywords: Orthogonal polynomials, Discrete Sobolev polynomials, Laguerre polynomials, Asymptotics.

1. Introduction

The study of asymptotic properties for general orthogonal polynomials is an important challenge in approximation theory
and their applications permeate many fields in science and engineering [30,32,40,41]. Although it may seem as an old subject
from the point of view of standard orthogonality [5,41], this is not the case neither in the general setting (cf. [16,17,30,
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36 38,40]) nor from the viewpoint of Sobolev orthogonality, where it remains like a partially explored subject [3]. In fact, in
the last ten years this topic has attracted the interest of many researchers [4,7 10,12,13,19,22 24,26,33 35].

A Sobolev type or discrete Sobolev type inner product on the linear space P of polynomials with real coefficients is de
fined by

d

.85 [ Fesdi@ + > FeAG(), deZ. 1)
k0
where (1, is a nontrivial finite and positive Borel measure supported on the real line, f,g € P,and fork 0,...,d, d € Z,, the

matrices Ay (ag‘)) e RITNII+N) - are positive semi definite. We denote by F(c,) and G(c,) the vectors F(c)
(fcr).fr(cr), .-, fN(ck)) and G(ck)  (g(ck),&'(ck),---,8MNK (ck)), respectively, with ¢, € R, Ny € Z, and, as usual, 2* denotes
the transpose of the vector ». This notion was initially introduced in [11] for diagonal matrices A, in order to study recurrence
relations for sequences of polynomials orthogonal with respect to (1).

The study of asymptotic properties of the sequences of orthogonal polynomials with respect to particular cases of the inner
product (1) has been done by considering separately the cases ‘mass points inside’ or ‘mass points outside’ of supp u,,
respectively, being supp 1, a bounded interval of R or, more recently, an unbounded interval of the real line (see, for instance
[7 10,12,19,26]). The first results in the literature about asymptotic properties of orthogonal polynomials with respect to a
Sobolev type inner product like (1) appear in [27], where the authors consideredd 0, No 1, a9 49 & o0, d) 7
with /4 > 0. Therein, such asymptotic properties when there is only one mass point supporting the derivatives either inside or
outside [ 1,1] and u is a measure in the Nevai class M(0, 1) are studied.

In [17], using an approach based on the theory of Padé approximants, the authors obtain the outer relative asymptotics for
orthogonal polynomials with respect to the Sobolev type inner product (1) assuming that y, belongs to Nevai class M(0, 1)
and the mass points ¢, belong to C \ supp p. The same problem with the mass points in suppu [ 1, 1] was solved in [39],
provided that ¢/(x) > 0a.e.x € [ 1, 1] and A, being diagonal matrices with a}i") non negative constants. The pointwise conver
gence of the Fourier series associated to such an inner product was studied when g, is the Jacobi measure (see also [20,21]).
On the other hand, the asymptotics for orthogonal polynomials with respect to the Sobolev type inner product (1) with
Uo € M(0,1), ¢ belong tosuppu\ [ 1, 1], and A, are complex diagonal matrices such that agklNk_HNk # 0, was solved in [2].

Another results about the asymptotic behavior of orthogonal polynomials associated with diagonal (resp. non diagonal)
Sobolev inner products with respect to measures supported on the complex plane can be found in [1,4,7,28]. On the other
hand, results concerning asymptotics for extremal polynomials associated to non diagonal Sobolev norms may be seen in
(29,33 35].

In this paper we deal with sequences of polynomials orthogonal with respect to a particular case of (1). Indeed, 1, is the
Laguerre classical measure

f,8)s '/Omf(x)g(x)x“e *dx + F(OAG(c)', a> 1, 2)

f,g € P. The matrix A and the vectors F(c), G(c) are

A <I\.§1 1(\)]>7 F(c) (f(c),f'(c)) and G(c) (g(c),g'(c)), respectively,
M, N € R,, and the mass point c is located inside the oscillatory region for the classical Laguerre polynomials, i.e., c > 0. Fol
lowing the methodology given in [7 10,19,26] we focus our attention on the representation of these polynomials in terms of
the classical Laguerre polynomials. Their asymptotic behavior will be discussed.

More precisely, as it was mentioned above, recent works like [7 10,19,26] have focused the attention on the study of
asymptotic properties of the sequences of orthogonal polynomials with respect to specific cases of the inner product (1) with
‘mass points outside’ of supp u,, being supp 1, an unbounded interval of the real line. However, to the best of our knowledge,
asymptotic properties of the sequences of orthogonal polynomials associated to (2) are not available in the literature.

The structure of the manuscript is as follows. Section 2 contains the basic background about Laguerre polynomials and
some other auxiliary results which will be used throughout the paper. In Section 3 we prove our main result, namely the
outer relative asymptotic of the Laguerre Sobolev type orthogonal polynomials modified into the positive real semiaxis. Fi
nally, in Section 4 we deduce the coefficients of the corresponding five term recurrence relation as well as their asymptotic
behavior when the degree of the polynomials is large enough.

Throughout this manuscript, the notation u, ~ v, means that the sequence {32}, converges to 1asn — co. Any other stan
dard notation will be properly introduced whenever needed.

2. Background and previous results
Laguerre orthogonal polynomials are defined as the polynomials orthogonal with respect to the inner product

f,8)y /Oxf(x)g(x)x“e dx, o> 1, f,gecP. (3)



The expression of these polynomials as an {F; hypergeometric function is very well known in the literature (see for in
stance, [15,31,41]). The connection between these two facts follows from a characterization of such orthogonal polynomials
as eigenfunctions of a second order linear differential operator with polynomial coefficients. The following proposition
will be useful in the sequel and it summarizes some structural and asymptotic properties of Laguerre polynomials involving
two different normalizations [5,18,41].

Proposition 2.1. Let {fﬁ(x)}n>0 be the sequence of monic Laguerre orthogonal polynomials. Then the following statements hold.
(1) Three term recurrence relation. For every n > 1

XLE(x) L2, (%) + BuL2(x) + 7L (%) 4)

with initial conditions Zg(x) 1, Zq‘(x) x (u+1),and B, 2n+o+1,7y, nn+o).
(2) For every ne N,

LI T+ DT+ o+ 1), (5)
(3) Hahn'’s condition. For every n € N,
Lyl nLi o). (6)
(4) The nth Dirichlet kernel K, (x,y), given by
N To(y\To
Kixy) > HWLHD), @)
o LRI

satisfies the Christoffel Darboux formula (cf. [41] [Theorem 3.2.2]):

L%, (x)L*(y) L*(x)L*
Kn(x,y) ,\1 . n+1 (X) n(y> n(x) n+1 (.V) . n> 0 (8)
L2, x )
(5) The so called confluent form of the above kernel is given by
1 To 1\ To Toy ()T
Ko s {lialWhie L@} >0 (9)
(6) Let {L™ (%)}, be the sequence of Laguerre orthogonal polynomials with leading coefficient ¢ n]!>", then
(D'~
L (x) o Ln®). (10)
(7) [41, Theorem 8.22.3]. Outer strong asymptotics or Perron asymptotics formula on C \ R,. Let a € R, then
p 1
L (x) %n 1242 x) #/2 VApa/2 1/4 exp <2( nx)1/2> x {ch(a;x)n k2 L o ”/2)}. (11)
ko

Here Cy(a; x) is independent of n. This relation holds for x in the complex plane with a cut along the positive real semiaxis, and it
also holds if x is in the cut plane mentioned. ( x) > V* and ( x)'*> must be taken real and positive if x < 0. The bound for the
remainder holds uniformly in every compact subset of the complex plane with empty intersection with R..

(8) [41, Theorem 8.22.2]. Perron generalization of Fejér formula on R.. Let o € R. Then for x > 0 we have

p1
LP(x) m 2e¥2x %2 VAp*2 Vicos{2(nx)'*  am/2 m/4}- {ZAk(x)n k2 L On P/z)}
k 0

p1
+ 1 12e2x @2 VA2 Vasin(2(nx)'? am/2  m/4}- {ZBk(x)n K2 1 On P/z)}, (12)
k 0

where A (x) and By (x) are certain functions of x independent of n and regular for x > 0. The bound for the remainder holds uni
formly in [e,w]. For k 0 we have Ag(x) 1 and By(x) O.

Next, we summarize some results about the so called k iterated Christoffel perturbed Laguerre orthogonal polynomials.
They are orthogonal with respect to the inner product

Foh [ Sweex o%erdx a> 1, fgep. (13)



and we will denote by {fﬁ‘“‘] (%)}, the corresponding monic sequence and by
LM (LiM@), XMy

the norm of the nth degree polynomial in the sequence. Note that the modified Laguerre measure (x c)*x*e *dx is positive
definite when either k is an even integer or k is an odd number and c is outside the interval [0, +o0). It is very well known
that, when k 1 and c is outside the support of the classical Laguerre measure, i.e., when it is assumed that c is not a zero of
Zﬁ(x), these polynomials are actually the monic Laguerre kernels (8) (see [5], [Sec. 1.7]).

We introduce the following standard notation for the partial derivatives of the nth Dirichlet kernel K,(x,y)

aHkKn (X,y) (ji.k)

axfﬁyk n (X7y)7 0 < i7 ] <n.

Taking derivatives with respect to y in (7) and considering x y ¢ we get

, 10, L' © Lok ]
Ko 3 e 14
On the other hand,
R e Er R U RGN R R CIANC I O CRETHICTENC) (15)

Remark 2.1. The local character of the Taylor expansions means (14) and (15) hold for every c € R. However, we are only
interested in the case ¢ > 0 in order to study the asymptotic behavior of sequences of polynomials orthogonal with respect to
the Sobolev type inner product (2).

The first technical step required for the proof of our main result is the following lemma, concerning the asymptotic behav
ior as n — oo of the above Laguerre kernels at x c,c € R,, that is, within the oscillatory regime of the classical Laguerre
orthogonal polynomials.

Lemma 2.1. For every c > 0, we have
K, 1(c,c) ~m 'e‘c 2 *n'/?,
1 4
K%Y (c,c) ~ 1 Tecc  *n'/?,

n1

1
K"V (c,c) ~3T lece 3 2p3/2,

Proof. Takingp 1in(12),wehaveAo(x) 1andBy(x) 0.Thus, we obtain the behavior of Iy (x) for n large enough, when

xe Ry

[%x) ( 1)'T(n+1)m V2e¥2x #2 VAn#2 V4 cos(2(nx)'?  am/2 m/4}-(1+0(n V/?)).

We can rewrite the above expression as

Lxx)  ( 1)'T(n+ 1)k ia*(x) cos pi(x)(1 + O(n /2)) (16)
where

oc 12 AU T

gix) 2w’ ZE 7
and

aot(x) T 1/Zex/2x /2 1/4 (]7)

being a function independent of n. Combining (6) with (16), we get

I'in+1) , )
Ky 1(c,c) ~mn 0, (c;a),
where
On(c;a)  a%(c)a™(c)[cos @ 1 (c) cos @i 4 (c)  cos @ ;(c) cos pi(c)]. (18)



Let us examine the above expression. Using the trigonometric identity

cos(a+b)+cos(a b)

cos(a) cos(b) 3

we have

On(c;) 1 1 1 7
rEOLEI) 5os (4\/C(n 1) 7o n) 5 €S (2\/nc e w42+/c(n 2)> 5Cos (2\/C(n 2) 2vnc 5)'
(19)

The last term on the right hand side is
1 I 1 .
- cos (2\/(n 2)c 2vnc E) 5 sin (2\/nc 2/(n 2)c)
which behaves with n as follows

Vn

%LI’I;IOTSin(Z\/nC 2V/(n 2)c) limﬂsin(Z\/nc 2V/(n_2))

n—eo 2 2ync 2y/(n 2)c

(2v/nc 2y/(n 2)c) Ve
and, therefore,

1. [«
5 sin (2\/(n 2)c 2\/nc) ~ \/ﬁ‘ (20)
Next we study

%cos(ﬁl\/c(n 1) 7o n) %cos(z\/nc o T+ 24/c(n 2)) (21)

in (19). Using

. {fa+b\ . f/a b
cosa cosh Zsm( 3 )sm (T)’

we get that (21) becomes

sin(\/cn o m+2/cn 1)++/cn 2))~sin(2\/c(n 1) Ven +/c(n 2)),

where the first factor is bounded, and the second verifies

lim/nsin (2\/c(n 1) ven e 2)) 0. (22)
From (20) and (22), we conclude

Ou(c;o) ~ 1 lecc 2 *n 12,
On the other hand, from the Stirling’s formula for the Gamma function, we deduce

rmn+1) .,
Tara) ™" " 23)

under the above assumptions we get
Ko 1(c,c) ~ 7 'efc 2 *n'?, ceR,.
Next, we can proceed as above and we obtain the asymptotic behavior given in (14). For n large enough, we get

1T(n+1)

©.1) ~—
K, (c,c) 3T+ a)

n

n* W, (c; ), (24)

where
Wa(c;r)  0*(c)a™2(c)[cos pi(c) cos p213(c)  cos @i 4 (c) cos P (c)].

The expression in square brackets can be rewritten as
sin <\/cn oL %n +vem 1 ++/c(n 2)++/chn 3)) -sin (x/cn Ven 1) Ve 2)++/cen 3)>
sin (77: +ven4++/cn 1) e@m 2) en 3)) -sin <\/cn Vem D4++cn 2) e 3)),



where

lim{ nsin(\/cn oL %n+\/c(n 1)++/cn 2)++/c(n 3)>-sin<\/cn Ve 1) ye(n 2)+/cn 3))] 0

and
H{l@[ nsin(x/cn Ven 1) ++/cn 2) Jcn 3)>-sin<n+\/cn+\/c(n 1) em 2) en 3))] 2c.

As a consequence, taking into account (17), we get
W, (c;o) ~ lec *3.2cn !
Replacing the above expression in (24), and using again (23), we conclude

1
K%V(c,c) ~ 7 le‘c 3 *n'/2.

Finally,
) I'n+1) 1 1
11) N a1 1 . - .
K7 (c,c) 7““ y n <3! Aqn(c;00) + 2!/\2,,1(67 oc)>7 (25)
where
Ain(c;2)  0%(c)a*"(c)[cos @3 (c) cos @y 1(c)  cos @5 (c) cos @y (c)], (26)
Azn(c;o) 0™ ()™ (c) [cos @75 (c) cos @5 (c)  cos ¢y (c) cos @i (c)]. (27)

The two expressions in square brackets of (26) and (27) can be rewritten respectively, as follows
sin (\/nc o 2m++/cm 1) +y/e(n 3)++/en 4)) sin <\/c(n 1) Vnc+y/em 3) /e 4))
sin <\/¢:(n 3) Vvnc e@n 1) %TC+ Ve(n 4)> -sin (\/nc Ven 1) ++/cn 3) Jen 4)),

sin <\/c(n 1) 7w 2m+2yc(n 2)+/cn 3)) -sin (2\/C(n 2) Ve 1) e 3))
%cos (2\/c(n 3) 2yc(m 1) %n),
where the terms of each sumand in the above expressions have the following behavior

lim[ n%sin(\/nc e 2m4++/c(n 1)++/c(n 3)++/c(n 4))-sin<\/c(n 1) Vnc++/cn 3) +/cn 4))} 0,

’!Lr?o{ n%sin<\/c(n 3) Vvnac e 1) %n+\/c(n 4)>-sin<\/nc Ve D++cen 3) en 4))} Ve,
,!Lrg[ n%sin(w:(n 1) ma 2m+2y/c(n 2)++/cn 3)>-sin(2\/c(n 2) Ve 1) (e 3))} 0

and
,liglo<n%< %cos<2\/c(n 3) 2yc(n 1) %n))) Ve.

Hence, using again (17), we have

An(c;o) ~ m lec 2 */en V2,

Agn(c;00) ~ T tefc 2 *y/en 12,

Therefore
1 1 1
<§A1,n(c%0‘) +ZAz<n(C;oc)) ~3T lefc % in 12,
Replacing in (25) we conclude,

1
K"V (c, ) ~3T Tece 3 232,



3. Outer relative asymptotics for c on R,

The main result of this section will be the outer relative asymptotics for the Laguerre Sobolev type polynomials §${’~N (x),
orthogonal with respect to (2), when ¢ € R... The proof will naturally fall in several parts, which will be established through
an appropriate sequence of Lemmas.

First, we will present a well known expansion of the monic polynomials §9{”N (x) in terms of classical Laguerre polynomials
ff;(x). The most common way to represent the Laguerre Sobolev type orthogonal polynomials §n""‘” (x) is using the Laguerre
kernel and its derivatives as follows (see [25] and Theorem 5.1 in [14]).

(x ¢)*SMNx)  A(m;x)L%(x) + B(n; X)L | (x), (28)
where
Amx)  (x o+ ((x OAi(n;c) +A(n;c), 29)
B(n;x) (x ¢)Bi(n;c) + Bo(n;c)
with
Ar(n:0) MST (oL 1) NSy (©IL7 4] ©
[EE 1L 411
pome)  NEMOL©
LT 4112 0
B MSEMOL) N [SM~N] L )
HLn 1||a< HLn 1”0(
bome (84 ) ze)
n;c —_—.
’ IE; 412
Notice that
I*c)  NK“V(c,c)
S L © 1+NKV(c.0) (31)
" 1+MK, 1(c,c)  NK®V(c )
MK (c,c)  1+NK!"V(c,c)
1+ MK, 1(c,c) Z“(c)
[/S\ﬁ\l/I,N]/(c) MK’(,I]‘?)(Q C) [L“] (C) (32)

'1+MK,, 1(c,0) NK?V(c,c)
MK (c,c) 1+NK!"V(c,c)

We will analyze the polynomial coefficients in the above expansion in order to obtain the desired results. If we replace (31)
and (32) in (30), we obtain

MZ“ L(OL%(c) MNP ( AL ()K" (c, c) +MNnE,°; J(c )Z“H( )1<<° (c,c)
(

Ai(n;c)

n

Yiec
) ( Nn? Lg+;(c)Lg+}(c) MNn? L;@(c)LM(c)KH 1(c, ) +MNnL““( L2 (KM

||Lx lui(l + MK, 1(c,c) + NK'")(c,c) + MNK, 1(c,c)K\")(c,c) MNK'"Y
NnL# | (c)L**}(c) MNnL* ,(c)L*"}(c)Ky 1(c,c) +MNL% (c)L%(c)K""

+
Ao(n; ) =5 0 o
| 1\|a( + MKy, 1(c,c) + NK™(c,c) + MNK, 1(c,)K""V(c,c) MNK'
L
1

gyl
ML3(c)L3(c) + MNL() L2 (0K} Y (c.)  MNnL2(0)Li*} (0K} (c.¢)
||Lx 1\|i(l + MK, 1(c,c) + NK'"V(c,c) + MNK, 1(c,c)K\"V(c,c)  MNKV(c,c)k\"Vc, c))
Nn?L*1(c)L**}(c) + MNn L““(c)i YKy 1(c,c)  MNnLZ ()L (c)K"9(c, c)
Iz 12 (1 + MK, 1(c,c) + NK'")(c,c) + MNK, 1(c,c)K\"V(c,c) MNK'")(c,c)K'"9(c, c))
NnL“( o)L (c )+MNnL°‘( )L (0)Ky 1(c,0) MNL“( c)L* (c)K“?(c, c)

By (n;c)

Bo(n;c)




Using (16) and the estimates in Lemma 2.1, we can compute the asymptotic behavior of the previous expressions as follows.
1
A:0) ~ g MO8 @i 1(€) oS Bi() + oS 1 (€) os () + 2/ 1 cos 9} 4(6) cos 93 (c)
P
Ma*(c)o*(c)
1
Mco*(c)o*+3(c)

n 12 cos i} (c) cos @} (c) + cos i3 (c) cos @i (c) +2n V2 cos g} () cos @ji(c),

Ao(1;¢) ~ n Tcos@? (c)cos *l(c) c"*n Y2 cos@? (c)cos @*tl(c) 2n 'cos@? (c)cos p%(c),

1 ) )
B (150) ~ Negmmiiergrre €05 9h(€) <05 @3(€) + mcos 7€) cos 97 (c) + 2ven'? cos 9} (c) cos g (0

1
nl/2

+ Mo#(C)07(C) cos @**1(c) cos **1(c) + ncos %1 (c) cos p**1(c) + 2n'/2 cos p**1(c) cos p*(c),

Bo(n;c) ~ cos @%(c) cos > 1(c)  c2n'"? cos p%(c) cos >l (c) 2 cos ¢*(c) cos p%(c).

Mco*(c)a*+3(c)
(33)

Due to the oscillatory behavior of the cosines functions appearing in the preceding formulas, there are no real numbers S,
and g, such that

Ao(n;¢) ~ Cono,
Bo(n;c) ~ Cinh1,
for some Cy and C;.

However, we can describe the asymptotic behavior of our coefficients functions in the following way:

Proposition 3.1. Let Ayg(n;c), A;(n;c), Bo(n;c) and B;(n;c) the functions defined by (30). Then, we have

) 0 ifp<i
0) PAo(n; i
A] (n7 C) 17 r1ll—>n;n Ao(n, C) { ﬂ lfﬁ > %7
‘ 0 ifp< 1
0) ~ PBy(n; 4
Bi(n;c) ~n,  limn’By(n;c) { 3 ifp> 1.

Proof. The asymptotic behavior of Ag(n;c) and By(n;c) is an immediate consequence of the estimates in (33).

In order to obtain the asymptotics for A; (n;c) and By (n;c), we joint up the terms
cos @* ,(c) cos @(c) + cos **1(x) cos p**1(c) cos (2 ven 1) +ven++/cn 2) oarn n)
Ty 1
X €OS (\/cn Ven  2) +§) +5 cos (2\/c(n 1) 2\/cn>
+% cos (2\/c(n 2) 2y/c(n 1))

and
T
2

Taking into account that the previous expressions tend to 1 as n tends to infinity, we obtain the desired result. O
We can now formulate our main result.

cos 2 (c) cos ¢%(c) 4 cos %1 (c) cos p**1(c) cos<2\/cn+2\/c(n 1) om n)cos(z\/cn 2/cn 1)+ )+1.

Theorem 3.1. The outer relative asymptotics for Laguerre Sobolev type polynomials §’,\,/"N (x), orthogonal with respect to the
discrete Sobolev inner product (2), is

TMN
lim M
L)

uniformly on compact subsets of C \ R,.

Proof. Replacing (29) in (28)
SN () {1 Ao Aom;c)} . {Bl (n;0) +Bo<n;c)}iz (®)

L%(x) x o x o

: (34)



From the Perron’s formula (11) (for more details we refer the reader to [6]) we get

L | oV ox
1 1 — h.
e Jn rom
For monic polynomials (10) the above relation becomes
Afl
L, 1 (1 Y XL om 1)). (35)
Ly 1 vn

By using (35) we can rewrite (34) as

wwww%+mm@+mmw} ﬂ%w+wm}_

L(x) x o (x ¢ X 0 (x ¢

n

Then, in order to conclude our proof, we only need to check that

gijzlo<A1(n;c) w> 0, (36)
rllrg(Ao(n;c) w> 0. (37)

By applying Proposition 3.1, we obtain (36). From (33), we get
Bo(n;0) N 1
n Mca®(c)o*+3(c)
c'2n 12(cos @2 1(c) cos p%ti(c) cos ¥(c)cos @rti(c))2n !
x (cos @} 1(c)cos @i(c) cos@y(c)cos pi(c)).

Since this expression tend to zero as n tends to infinity, then (37) hold. O

Ao(n;€) n '(cos g} 1(c)cos i (c)  cos pj(c) cos i (c))

4. The five-term recurrence relation

This section is focused on the five term recurrence relation that the sequence of discrete Laguerre Sobolev orthogonal
polynomials {SMN (X)}n50 satisfies. Next, we will estimate the coefficients of such a recurrence relation for n large enough
and c € R,. To this end, we will use the remarkable fact, which is a straightforward consequence of (2), that the multiplica
tion operator by (x c¢)? is a symmetric operator with respect to such a discrete Sobolev inner product. Indeed, for any
f), g ep

(x o’f(0), g)s  (FX), X ©)’gX)s. (38)
Notice that

(x O’fX), )5 (0, X))y (39)
An equivalent formulation of (39) is

(x OfX), gW)s  ((x *f(x), &KX, (40)

We will need some preliminary results that will be stated as Lemmas 4.1 and 4.2.

Lemma 4.1. For every n > 1 and initial conditions Z‘L(x) 0, Zg(x) 1, i‘%(x) x (oo+ 1), the connection formula (28)
reads as

(X CSMN(x)  LZ,(%) +baL?,;(x) + EaL%(X) +dul? {(x) + L% 5(X),

where

bn  Buir + By 2¢+Ai(nic) ~ 4n,
G Vaa TVt By O+ MMOB, ]+ Ao(n;0) + Bi(nic) ~ 61,
di ValBu+Ba 1 20)+7,A1(0)+ (By 1 ©)Bi(n;C) + Bo(n;c) ~ 4n?,

€ Yn¥n1t+Vn 1Bl (n;c) ~nt



Proof. We begin with the expression

(X O’LAX)  LZ,5(%) +bal¥ (%) + caL¥(X) + daL? | (%) +eaL? 5(x), (41)
where
bn ﬁn+1 + ﬁn 2c~ 4n7 Cn Vn+l + V0t (ﬁn C)z ~ 6112, dn yn(.Bn + ﬁn 1 26) ~ 4n37 €n Yaln 1~ n47

according to (4) and the definition of 8, and y, in (4). N
__ From the expression of A(n; x) in (29), the next step is to expand the polynomial [A; (n;X)(x  ¢) +Ao(1;%)|Lj; (x) in terms of
{L}},>0- Indeed, from (4)

Amx)(x  ©) +Ao(mX)ILAX)  Ai(mX)LE (%) +[(By OAI(M;x) + Ao(m; X)|LE(x) + Ay (5 x)7,L2 | (x).

n+1

Adding these coefficients to those of (41), we obtain

AM;X)LE(x)  L%5(X) +bul? (%) + CaL?(x) + dnl? (%) + enl? 5(x)
with
by by +Ai(n;¢0) ~4n, ¢, o +AIMCO)(B, ©) +Ad(mc)~6n% dy  dy+y,A(n0) ~4n3, e, e, ~nt
where we have used Proposition 3.1. In a similar way, for B(n;x) in (29) we get
BImx)Ly (%) CaLZ(X) + daly 4 (%) + &L 5(x),
where
G Bi(m;c) ~n,
dv (Bu1  C)Bi(m;c) +Bo(n;c) ~ 202,
én 7, Bi(m;c) ~ 1.

As a conclusion,

(x ©)’SMN(x)  AMX)LAX)+BMX)LY (%) L% 5(%)+bal% 5 (X) + (Cn+ Ca)LEX) + (dn + ) L7 1 (X) + (€n+8n)L% 5(X).

This completes the proof. O

Lemma 4.2. For every o> 1,n > 1, and c € R, the norm of the Laguerre Sobolev type polynomials §n’V’~N, orthogonal with
respect to (2) is

ISMN12 ILZ2 + Bi(m; ©)l[LZ 12 ~ T(n+ 1)I(n+ e+ 1).

where By (n;c) is the polynomial coefficient defined in (30).

Proof. First, we notice that
[SMNE (SMV(X), (x 0) T 2(X)s,
for every monic polynomial 1, » of degree n 2 . From (40)
SHNE), (M 2(0)s (X P SHN), T 5(0)s (X ¢ SEN(x), Ty 5(x)),.

Next we use the connection formula (28). Taking into account that A(n;x) is a monic quadratic polynomial and B(n;x) is a
linear polynomial with leading coefficient B;(n;c),

SN2 ((x  ©)*SMN(x), Ty 2(x), (AMmXLAX), Ty (X)), + B 0)LE | (x), T, 2(x),
(L#(x),x"), + Bi(n; o) (LZ 1(x), x" 1)

o

The first term in the above expression is the norm of the monic Laguerre polynomial of degree n and the second one is the
norm of the Laguerre polynomial of degree n 1 times B;(n;c), which is given in (30). This means

SMN| 2 a2 To |2
ISa™ls L7115 + Ba(m O)ILY 4[5
Using the estimates (5) and Proposition 3.1, we obtain

SN2 ~ T(n+ 1) (n+ o+ 1),
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which completes the proof. O

We are ready to find the five term recurrence relation satisfied by §n""~” (x), and the asymptotic behavior of the correspond
ing coefficients. Next, we will focus our attention on its proof. R
Let consider the Fourier expansion of (x ¢)*S¥N(x) in terms of {S¥N(x)},_,

n+2

(x oSMNx) S SN )
k O
where
((x  c)’SMN(x), SN (x))s

TMN |2 ’
1S ls

Ik k 0,....n+2. (42)

Thus, 4,y Ofork 0,...,n 3.We are dealing with monic polynomials, so the leading coefficient /,,.>» 1. To obtain
Jnns1, We use the connection formula (28), with coefficients A(n;x) and B(n;x) as in (29). Thus,

Jnnit ! — e (A X)L (%), SN ()5 + —— (B X)LZ (), SYY(x)s
Hsn+1||5 HSn+1HS
L 0T, SM)s + Minic).
ISYNII3

Let us study the discrete Sobolev inner product ((x c)zfz(x), A’,‘]”H( X))s above. Applying (38), (40), (5) and Lemma 4.1, we
obtain

((x  ©’L4x), SN (x)s  (L2(x), (x  *SMN (X)), duat L2
From (23), Lemma 4.2 and Proposition 3.1

dnia [[L2][2 + Ai (m;0)

TMN
1Snsals

~4n.

}~n,n+l

In order to compute A,,, from (28) and (29) we get

((x 0)L3x), SN (x))s ((x  O)LXx), SN (x))s

TMN /|2 TM,N |2
lISn™"ls [1Sn™ "l

Ann +Aq(n;c) +Ao(n; ) + Bi(n;0).

But, according to (38) and (40) and Lemma 4.1, the first term is

(xO"Li00, SPNX)s o LA
1S3 1S3

After some algebraic manipulations, from (4) we get

x OLXx) x OLXy(x) (Bo1 O OLL (%) 7, 1(x OL (),

Using this expression, we obtain

T TMN T 2CMN <L P
(x 0o ’1(3)», 25n (*x)s (L7 1(x), (fMNC)2 Sp (X))y B, 0 dnHA"M;,H"Z‘ B, o
1N [1Sn "I [1Sn "l

As a consequence, we get

Gal L2112 + dnl| L2 |12+ (B 1 €) +Ao(n;c) + Bi(n;0)

= ~ 6n2.
M.N |2
1N

Ann

A similar analysis yields

T 1T 2 < 2

dnl|L7 1Ha+/\1( LolISy™s
H n IHS

N 2

||SIJ¥I"NH5 ot

1533115

We can summarize the results of this Section in the following theorem.

~4n3,

)Ln.n 1

‘nn 2
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Theorem 4.1 (Five term recurrence relation). For everyn > 1, o > 1 and ¢ € Ry, the monic Laguerre Sobolev type polynomials
{§ LN }us o OTthogonal with respect to (2) satisfy the following five term recurrence relation

2¢7M, -~ ~ -~ —~
(x O S TN ) 4 ST M N () £ 2 M A AN ey g, ST MV ()

+ 1 nn 2 p
with
o P I |
inney el a4 Ar(ni) g CalfL gyl L ol (o OxAdmos
' [ ‘ By(n:c) || "]
B} , -
W A LU s g g, S
[ Se] l|s™ M
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