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A DUAL MAXIMUM PRINCIPLE FOR DISCRETE-TIME LINEAR SYSTEMS
WITH ECONOMIC APPLICATIONS

C. Duncan MacRae

Abstract - A discrete-time linear optimal control problem with given initial

and terminal times, state-control constraints, and variable end points is set

forth. Corresponding to this primal control problem, or maximization problem,

is a dual linear control problem, or minimization problem. The fundamental

properties of duality are stated. A dual maximum principle is proved with

the aid of the duality theory of linear programming, where the dual of the

Hamlltonian of the primal control problem is the Hamiltonian of the dual control

problem. A discrete-time analogue of the Kami 1ton-Jacob 1 equation is derived;

and economic applications are discussed.





INTRODUCTION

One of the major developments in modern control theory Is the maximum

principle. Although it was developed by Pontryagin [1] for continuous-time

problems, it has been extended to discrete-time problems by Halkin [2,3],

Holtzman [4,5] Jordan and Polak [6] through a geometric approach, and by

Pearson and Sridhar [7], Mangasarian and Fromovitz [8], and Arimoto [9] with

mathematical programming theory.

Another development of importance is the concept of duality in optimal

control problems. The notion of duality was first discussed in modern control

theory by Bellman [10] in the analysis of a continuous-time bottleneck process.

He formulated a dual process both to verify a proposed solution to the al-

location problem and to analyze the nature of the optimal process. His re-

sults have been extended by Tyndall [11] and Levinson [12] for a class of

continuous linear programming problems. Kalman [13,14] observed duality in a

different context. He recognized that the linear filtering problem is the

dual of the linear regulator problem. Observability and controllability are

dual concepts. His analysis has been generalized by Pearson [15] for con-

tinuous-time systems. Pearson [16], Hanson [17], and Ringlee [18] have

exploited the idea of duality to derive a lower bound for a convex variational

programming problem. Following the formulation of necessary conditions for the

solution of the problem by Berkovitz [19], they derive a dual problem which

yields the lower bound given a feasible solution to the primal problem. The
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knowledge of the lower bound Is helpful In the computation of the solution.

Pearson [20] and Kreindler [21] have analyzed reciprocity and duality in control

programming problems. The reciprocal or dual of a primal control problem is

obtained by interchanging the role of the state and co-state variables along the

extremal of the primal. The statement of the reciprocal problem contains both

state and co-state variables. Pearson distinguishes the dual problem from the

reciprocal problem by the condition that the extremal of the primal problem is

an extremal of the dual problem. Kreindler refers to the dual problem only as

a reciprocal problem, since the reciprocal of the reciprocal Is not the primal.

He shows that along an extremal the Hamiltonian of the primal problem with

inequality constraints is equal to the Hamiltonian of a reciprocal problem

without inequality constraints. Pearson [22], Pallu de la Barriere [23], Mond

and Hanson [24] have further discussed duality in continuous-time systems.

With the exception of Kalman's work the discussion of duality in modern control

theory has been limited to continuous-time systems. Moreover, with the ex-

ception of Kreindler's result there has been no examination of the relationship

between the Hamiltonian of the primal control problem and the Hamiltonian of

the reciprocal or dual control problem.

The primary contribution of this paper is a dual maximum principle for

discrete-time linear systems. This theorem expresses the relationship between

duality and the maximum principle in linear control problems and provides

necessary and sufficient conditions for an optimal solution. Moreover, it has

an immediate economic Interpretation in terms of allocation and valuation of

resources over time. The proof of the theorem follows from the complementary

slackness theorem and the duality theory of linear programming.

The application of linear programming to optimal control problems is not new.
See Zadeh [25], Whalen [26], Dantzig [27], and Rosen [28].





DUALITY THEORY

In this section we examine duality in linear control problems. Consider

a discrete-time linear control problem with given initial and terminal times,

state-control constraints, and variable end points.

Primal Linear Control Problem

Choose s- - and u(k) ^ for k = 0, 1,...,N - 1, so as to maximize

t N-1 t

J - if.3^ + E [a'(k)x(k) + b'(k)u(k)] + f^x(N) (1)
" " k-0

"

subject to GqSq + x(0) = hQ, (2)

D(k)u(k) - F(k)x(k) < d(k), k = 0, 1, . . . ,N - 1 (3)

Ax(k) - A(k)x(k) + B(k)u(k) + c(k+l), k = 0, 1, . . . ,N - 1 (A)

and G^x(N) < hj^, (5)

where s^ is a vector of primal pre-control variables, x(k) is a vector of primal

state variables, u(k) is a vector of primal control variables, f^., f„, a(k),

b(k), c(k+l), d(k), hp, and h are given vectors, A(k) , B(k) , D(k), F(k) , Gq,

and G are given matrices, Ax(k) = x(k+l) - x(k), is the given primal initial

time, N is the given primal terminal time, and x(k) is taken as given in (3).

The general formulation of the discrete-time linear control problem given

in (1) - (5) allows for fixed or free end points, equalities in the constraints,

and pure control or state constraints. Although x(k) is taken as given in (3),

we can allow for primal state constraints of the form

M(k)x(k) S n(k) k - 1, 2,...,N - 1 (6)





by substituting (4) into (6) to obtain

{M(k+l)B(k)}u(k) - {-M(lcfl)[I + A(k)]}x(k) < {n(k+l) - M(k+l)c(k+l)}

k = 0, 1,..., N - 2 (7)

which is of the form given by (3) . Note that state constraints from period 1

to period N - 1 imply constraints on the control variables only up through

period N - 2. If the constraints on the initial primal state are of the form

(6) rather than (2) , they can be represented by beginning the primal problem at

k - -1 with a free state.

A feasible solution to the primal linear control problem is a sequence

{x(k), u(k); Sq} satisfying (2) - (5) with u(k) and s^ I 0. Let J{x(k) , u(k);

Sq} be the value of J for the feasible solution {x(k), u(k); s^}. An optimal

solution to the primal control problem is a feasible solution {x(k), u(k);

s-} such that _ -

J{x(k), u(k); Sq} > J{x(k), u(k); s^} (8)

for all feasible solutions {x(k), u(k); s-}

.

The primal linear control problem can be reformulated as a linear pro-

gramming problem.

Primal Linear Programming Problem

Find 8q > 0, x(k) unrestricted for k - 0, 1,...,N, and u(k) ^0 for

k - 0, 1,,..,N - 1 which maximize

N-1
J - f_8. + Z [a'(k)x(k) + b'Ck)u(k)] + fAxCN) (9)

k-0
"

subject to GqSq + x(0) - h^, (10)





-F(k)x(k) + D(k)u(k) < d(k) k = 0, 1,. . . ,N - 1, (11)

-[I + A(k)]x(k) - B(k)u(k) + x(k+l) = c(k+l) k - 0, 1,...,N - 1, (12)

and Gj^x(N) - l^- ^^^^

Tucker Diagram

The structure of the primal linear programming problem can be seen more

clearly with the aid of the detached coefficient array developed by A. W. Tucker '

[29], The primal variables are listed across the top of the diagram along

with their sign restrictions. Each row of the matrix gives the coefficients of

one of the constraints, while the rightmost column gives the constants of the

right-hand side of each constraint. The bottom row gives the coefficients of the

primal variables in the objective function.

Corresponding to the primal linear programming problem is a dual linear

programming problem. The dual variables are listed in the left-most column

and the dual constraints are read down the columns of the matrix. The right-

most column gives the coefficients of the dual objective function.

Dual Linear Programming Problem

Find Yjj - 0, H'(k) unrestricted for k «» N, N-1, . . . ,0,and X(k) ^ for

k «» N-1, N-2,...,0, which minimize '

f

$ - hjjYjj + I [d'(k)X(k) + c'(k+l)4'(k+l)] + hQV(O) (14)

k"N 1

subject to Gj^Yf, + 'i'(N) = f^, (15)

D'(k)X(k) - B'(k)Y(kfl) > b(k) k = N-1, N-2,...,0, (16)
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VCk) - F'(k)X(k) - [I + A'(k)]S'(k+l) = a(k) k - N-1, N-2 0, (17)

and Gq^CO) > f^. (18)

The dual linear programming problem can be reformulated as a dual linear

control problem with given initial and terminal times, state-control constraints,

and variable end points.

Dual Linear Control Problem

Choose YjT - and X(k) - for k = N-1, N-2,...,0 so as to minimize

* " Vn + ^ [c'(k+l)V(k+l) + d'(k)A(k)] + h.H'(O) (19)
k-N-1

'

^'"'^'""
. G;y^ + Wf, (20)

D'(k)X(k) - B'(k)H'(k+l) ^ b(k) k = N-1, N-2,...,0, (21)

A4'(k+1) - A'(k)4'(k+1) + F'(k)A(k) + a(k) k - N-1, N-2,..., 0, (22)

and G^H'(O) > f^, (23)

where H'(k+1) is a vector of dual state variables, X(k) is a vector of dual

control variables, y is the vector, of dual pre-control variables, A4'(k+1) =

4'(k) - ^(k+l), N is the dual initial time, is the dual terminal time, and

4'(k+l) is taken as given in (22).^

2
Note that the statement of the dual linear control problem contains only dual

variables. In general, this will not be true for nonlinear control problems.
See Pearson [20] and Krelndler [21].





A feasible solution to the dual linear control problem is a sequence

{Ydc+D, X(k); Yjj} satisfying (20) - (23). Let ^{^(k+l), X(k); Yj^} be the

value of <J> for the feasible solution {4'(k+l) , X(k); Yjj}« An optimal solution

to the dual linear control problem is a feasible solution {^(k+l), X(k); y^i

such that

*{?(k+l), X(k); Yjj} - ^{^(k+l), X(k); y^} (24)

for all feasible solutions {4'(k+l), X(k); Yj,}.

Fundamental Properties of Duality

The primal (dual) problem is a maximization (minimization) problem. The

primal (dual) system moves forward (backward) in time; and the primal initial

3
(terminal) time is the dual terminal (initial) time. Moreover, the dual of the

dual control problem is the primal control problem.

Theorem 1 (Boundedness Theorem). If {x(k), u(k); s_} and {4'(k+l) , X(k);

Y„} are feasible, then
N

J{x(k), u(k); Sq} < (D{H'(k+l), X(k)-, Yjj> • (25)

Theorem 2 (Unboundedness Theorem) . If the primal (dual) linear control

problem is feasible, but the dual (primal) linear control problem is not

feasible, J (<I)) is unbounded from above (below).

Theorem 3 (Existence Theorem) . The primal (dual) linear control problem has

an optimal solution if and only if both control problems have feasible solutions.

3
This property of duality was first observed by R. Bellman [10] in the analysis

of a continuous- time bottleneck process. R. E. Kalman [13,14] also perceived
this property in his study of the linear filtering problem.
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Theorem A (Duality Theorem). A primal (dual) feasible solution {x(k), u(k)

;

8-} ({y(k+l), X(k); Yjj)) is an optimal solution if and only if there exists a

dual (primal) feasible solution {?(k+l) , X(k) ; y^} ({x(k), u(k); Sq}) with

J{x(k), G(k); 8q} = <I>{nk+l), X(k); Yn>- (26)

Theorem 5 (Complementary Slackness Theorem) . A primal (dual) feasible

solution {x(k) , u(k); s.} ({^(k+l) , X(k); Yv,}) is an optimal solution if and

only if there exists a dual (primal) feasible solution {'i'(k+l), X(k); Y«J

({x(k), X(k); Sq}) with

X'(k)[D(k)G(k) - F(k)x(k) - d(k)] =0 k = 0, 1,...,N-1, (27)

G'(k)[D'(k)X(k) - B'(k)$(k+1) - b(k)] - k - N-1, N-2,...,0, (28)

and the transversality conditions

VO " °' <29)

and 9jjSjj = 0, (30)

where Yq " V^°^ - ^0 ^"^ ^N
*= \ - S'^^^^-

^^^^

Theorems 1-5 are derived from the corresponding theorems of linear pro-

gramming [29]

.

Theorem 5 is a statement of thir* Kuhn-Tucker [30] necessary and sufficient

conditions for an optimum solution. Note that the initial (terminal) trans-

•ersality condition for the primal control problem, (29) ((30)), is the terminal

(initial) transversality condition for the dual control problem.

Theorem 6 (Sensitivity Theorem). If {x(k) , u(k); Sq} and {^(k+l) , X(k);

Y„} are optimal.
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V^^j^jj{x(k)} - 4'(k) k » 0, 1,...,N, (32)

and V^.j^.<I>{¥(k)} - x(k) k = N, N-1,...,0 (33)

where V .. .j{x(k)} Is the gradient of J with respect to x(k) evaluated on

{x(k), u(k); 8^} if the gradient exists, etc.

The proof of (32) and (33) follows immediately from the sensitivity theory

of linear programming [31], In (32) and (33) x(k) and ^(k) are treated as

parameters. Note that the derivatives in (32) and (33) may be one-sided.

Although the sensitivity analysis is in terms of derivatives, we can be

sure for finite changes in the parameters that (32) and (33) describe upper

bounds on the change in J and lower bounds on the change In $ since J is concave

in the parameters and $ is convex.

HAMILTONIAN THEORY

In this section we investigate the relationship between duality in linear

control problems and the corresponding Hamiltonian programming problems.

Consider a sequence of primal linear programming problems for k - 0, 1 N-1,

Primal Hamiltonian Programming Problem

Choose u(k) - so as to maximize

7/(k) - a'(k)x(k) + b'(k)u(k)

+ 'i"(k+l)[A(k)x(k) + B(k)u(k) + c(k+l)] (3A)

I

subject to D(k)u(k) - F(k)x(k) ^ d(k), (35)
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where x(k) and ^(k+l) are given, ^/Ck) is the Hamiltonian of the primal linear

control problem, and (35) describes the state-control constraints of the primal

control problem.

A feasible solution to the primal Hamiltonian programming problem is a

vector u(k) > satisfying (35). Let^[u(k); x(k) , ^(k+l)] be the value of ^
for the feasible solution u(k), given x(k) and V(k+1). An optimal solution

to the primal Hamiltonian program is a feasible solution u(k) such that

[G(k); x(k), 4'(k+l)] > 'Mu(k); x(k), ^(k+l) ] (36)

for all feasible solutions u(k), given x(k) and ^(k+l).

Corresponding to this sequence of primal Hamiltonian programming problems

is a sequence of dual linear programming problems for k *• N-1, N-2,...,0.

Dual Hamiltonian Programming Problem ;.

Choose X(k) - so as to minimize

7({k) « c'(k+l)4'(lcfl) +d'(k)X(k)

+ x'(k)[A'(k)4'(k+l) + F'(k)X(k) + a(k)] (37)

subject to D'(k)X(k) - B'(k)f(k+1) ^ b(k), (38)

where ^(k+l) and x(k) are given, Tftk) is the Hamiltonian of the dual linear

control problem, and (38) describes the state-control constraints of the dual

control problem.

A feasible solution to the dual Hamiltonian programming problem is a

vector X(k) > satisfying (38). Let}^[X(k); ^(k+l), x(k)] be the value of

/^(k) for the feasible solution X(k), given ^(k+l) and x(k). An optimal solution

to the dual Hamiltonian programming problem is a feasible solution X(k) such

that
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]^[\(k)-J(k+l), x(k)] < /('[X(k);Y(k+l), x(k)] (39)

for all feasible solutions X(k), given TCk+l) and x(k).

Dual Maximum Principle

Lemma 1. A feasible solution u(k) (A(k)) to the primal (dual) Hamiltonian

programming problem is an optimal solution if and only if there exists a feasible

solution A(k) (u(k)) to the dual (primal) Hamiltonian problem with

X'(k)[D(k)G(k) - F(k)x(k) - d(k)] " (40)

and G'(k)[D'(k)X(k) - B'(k)H'(k+l) - b(k)] - 0. (41)

Corollary i.

'y[G(k);x(k), 4'(k+l)] = ;^[A(k);Y(k+l), x(k)]. (42)

Lemma 1 and Corollary 1 are direct applications of the complementary

slackness and duality theorems of linear programming [29].

The main result of this paper can now be stated.

Theorem 7 (Dual Maximum Principle). A feasible solution {x(k), u(k); s_}

({Y(k+1), X(k); Y }) to the primal (dual) linear control problem is an

A
optimal solution if and only if there exists a feasible solution {Y(k+1),

X(k); y } ({x(k), u(k) ; s_}) to the dual (primal) control problem with

'\

^lu(k); x(k), <?(k+l)] =;J^[X(k); ?(k+l), x(k)] (43)

and satisfying the primal and dual transversality conditions, (29) and (30),

where Ax(k) - Vy^j^^^j3^a(k) ;x(k) , y(kfl)] (44)





lA

and Ank+1) - 7^^j^j^[X(k);nk+l), x(k)]. (45)

The proof follows from Theorem 5, Lemma 1, and Corollary 1.

Hamllton-Jacobi Inequality -

We can use the dual maximum principle to derive a discrete-time analogue

of the Hamllton-Jacobi partial differential equation for continuous-time

optimal systems.

Theorem 8 (Hamllton-Jacobi Inequality). If {x(k), u(k); s^} and

{^(k+l), X(k); Y„> are optimal solutions to the primal and dual linear control

problems,

J^{x(k)} - Jj^^{x(k)} >'5!/[G(k); x(k), Y(k+1)]

-/^[X(k); nk+1), x(k)] > $j^^j^{?(k+l)} - $j^{nk+l)} (A6)

where J, {x(k)} is the optimal value of J at the beginning of period k with

initial primal state x(k)s, etc., and $, . {'?(k+l)} is the optimal value of $

at the end of period k with an Initial dual state Y(k+1), etc.

The proof of the theorem employs the principle of optimallty [10], the

mean value theorem, and Theorem 7. Applying the principle of optimallty to the

primal and dual linear control problems we obtain

Jj^{x(k)} - a'(k)x(k) + b'(k)G(k) + Jj^j^{x(k+1)} (A7)

or Jjx(k)} - Jj^^j^{x(k)}

- a'(k)x(k) + b'(k)G(k) + J^^j^{x(k+1)} - J^^^{x(k)}, (48)

and *^j^{$(kfl)} - c' (lH-l)Y(k+l) + d'(k)X(k) + ^^{nk)} (49)





15

or *j^^{Y(k+l)} - *j^{y(k+l)}

c'(lrt-l)Y(k+l) + d'(k)X(k) + $j^{Y(k)} - «I>j^{4'(kfl)}. (50)

From the mean value theorem we know there exists a 6(k) and a a(k) subject to

^ e(k) 5 1 and ^ a(k) ^ 1 such that

Vj^^^^jj{x(k+1) - [1 - e(k)]Ax(k)}«Ax(k)

Jj^^{x(k+1)} - Jj^^^{x(k)} (51)

and Vy.j^.*{4'(k) - [1 - o(k) ]A»i'(k+l)}'AY(k+l)

- «I»j^{nk)} - $J$(lcfl)}, (52)

*" V^(j^^jJ{x(k)}'Ax(k)5 J^^j{x(k+1)} - J^^^{x(k)} (53)

and Vy^j^j(D{$(kH-l)}»A?(k+l)^ \{nk)} - *j^{Y(k+l)} (54)

since J is concave in x and * is convex in Y, where V ., . >j{x(k+l) - [l-e(k)]

Ax(k)} is the gradient of J with respect to x(k+l) evaluated at x(k+l) -

[l-e(k)]Ax(k) if it exists, etc.

Substituting (32), (3A), and (53) into (48), and (33), (37), and (54) into

(50), we obtain (46) from (42), (48), and (50). Since time is a discrete

variable, (46) is an Inequality rather than an equality.
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ECONOMIC APPLICATIONS

The problem of allocating goods and services over time can be formulated as

a primal linear control problem with the aid of linear activity analysis [32,33].

The flow of commodities, y(k), is assumed to be a linear function of the activity

levels, u(k):

y(k) - C(k)u(k), (55)

where C(k) is a given matrix describing the technology of the system. The

primal state variables are the stocks of commodities, x(k); and the primal

control variables are the activity levels, u(k) . The primal control problem is

to choose the activity levels over time so as to maximize net present value,
j

(1) , subject to the initial and terminal conditions on the stocks of com-

modities, (2) and (5), the capacity constraints, (3), and the transformation

of stocks, (4).

Corresponding to the allocation problem is a dual problem or valuation

problem. The dual state variables are the imputed prices of the stocks of

commodities, H'(k) ; and the dual control variables are the imputed prices of

capacity, X(k). The dual control problem is to choose the capacity prices

over time so as to minimize the imputed cost of commodities and capacities,

(19), subject to the initial and terminal constraints on commodity prices, (20)

and (23), the no unimputed revenue constraints, (21), and the transformation

of prices, (22).

The economic interpretation of the dual maximum principle, therefore, is

that the long run allocation and valuation problems can be decomposed into a

sequence of short run allocation and valuation problems, or primal and dual

Hamiltonian programming problems. The primal programming problem is to choose

activity levels so as to maximize net income in terms of revenue, (34), subject
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to the capacity constraints, (35), given commodity stocks; and the dual

programming problem Is to choose capacity prices so as to minimize net Income

In terms of Imputed cost, (37), subject to the no unlmouted revenue constraints,

(38), given commodity prices. The Hamilton-Jacobl Inequality, then, shows

the way the allocation sequence moves forward In time describing the Impact of

pricing decisions tomorrow on Imputed cost today and the valuation sequence

moves backward In flme describing the Impact of allocation decisions today on

revenue tomorrow.

There Is an Intimate relation between linear control and linear programming.

Any problem which can be formulated as a discrete-time linear control problem

with a finite horizon also can be formulated as a multi-stage linear programming

problem and vice-versa. Applications Include defense [32], production, '

transportation and investment [3A], regional and national economic planning

[35], education and manpower planning [36], and water resource development [37].

There are, however, a number of advantages to formulating a problem

Involving allocating resources over time as a problem In linear control rather

than as a problem in linear programming. The formulation of dynamic allocation

problems in forms of state and control variables is natural since the variables

have immediate physical interpretation in terms of stocks of commodities and

levels of activities. Moreover, the problem need only be formulated for the'

representative period using a standard format. Alternatives and generalizations,

even to include non-linearities, then can be made more readily. Also the

boundary conditions on the initial and terminal stocks of commodities, which

are Implicit or explicit in every allocation problem are more apparent in the

linear control formulation.

Once the allocation problem is formulated As a linear control problem, there

are a number of ways the dual maximum principle can be applied to the solution

of the problem. The linear control problem can be reformulated as a multi-stage





18

linear programming problem. The simplex algorithm and its variants [38] can,

then, be considered as applications of the dual maximum principle. The dis-

advantage of this approach is that the resulting linear programming problem

may become so large that it is intractable. The problem, however, does have

the special "staircase" structure. Illustrated in Figure 1, to which we can

apply the decomposition principle [38]. The maximum principle for linear

systems may even be considered to be a consequence of the decomposition prin-

ciple of linear programming [27]. The usual approach, however, is to use the

maximum principle to express the optimal control as a function of the state and

co-state vectors. The disadvantage of this approach to the solution of linear

control problems is that the solution to the Hamiltonlan programming problem

may not be unique.

The main limitation to the application of linear control theory is the

assumption of convexity. This assumption excludes economies of mass production

and discrete changes in the state and control variables [38]. There are

situations in which the absence of convexity is too blatent to be ignored.

There are many' situations, however, in which the assumption of convexity is

not unreasonable.
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CONCLUSIONS

The main result of this paper is a dual maximum principle for discrete-

time linear systems. A feasible solution to the primal (dual) linear control

problem is an optimal solution If and only If there exists a feasible solution

to the dual (primal) control problem with the primal and dual Hamiltonians

equal and satisfying the primal and dual transversallty conditions, where the

dual of the Hamlltonlan programming problem associated with the primal linear

control problem is the dual of the Hamlltonlan problem associated with the

dual control problem. The main application of the maximum principle in

modern control theory has been in the solution of optimal control problems.

The dual maximum principle can be helpful, however, not only in the solution

of linear control problems, but also in their formulation, interpretation,

and analysis. This is particularly true for problems Involving allocation

and valuation. '
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