
This is a postprint version of the following published document: 

Durán, A. J.; Arvesú, J. (2016)." Casorati type determinants of some q-classical 
orthogonal polynomials". Journal of the American Mathematical Society, 144, 
pp. 1655-1668.
DOI: 10.1090/proc/12839 

© American Mathematical Society 2016 

Proyectos:
MTM2012-36732-C03-03
FQM-262, FQM-4643, FQM-7276
MTM2012- 36732-C03-01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44311483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1090/proc/12839


CASORATI TYPE DETERMINANTS

OF SOME q-CLASSICAL

ORTHOGONAL POLYNOMIALS

ANTONIO J. DURÁN AND JORGE ARVESÚ

(Communicated by Walter Van Assche)

Abstract. Some symmetries for Casorati determinants
whose entries are q-classical orthogonal polynomials are

studied. Special attention is paid to the symmetry involving
Big q-Jacobi polynomials. Some limiting situations, for other
related q-classical orthogonal polynomial families in the q-
Askey scheme, namely q-Meixner, q-Charlier, and q-Laguerre
polynomials, are considered.

1. Introduction

In the last years, several papers have appeared on identities of Wronskian and
Casorati determinants whose entries are orthogonal polynomials belonging to the
Askey and q-Askey schemes ([2], [3], [13], [14]). In fact, determinants whose en-
tries are orthogonal polynomials is a long-studied subject. One can mention Turán
inequality for Legendre polynomials [15] and its generalizations, especially that
of Karlin and Szegő on Hankel determinants whose entries are ultraspherical, La-
guerre, Hermite, Charlier, Meixner, Krawtchouk, and other families of orthogonal
polynomials [10]. Karlin and Szegő’s strategy was precisely to express these Han-
kel determinants in terms of the Wronskian of certain orthogonal polynomials of
another class (see, also, [1], [4], [5], [6], [7], [8], [9]).

The approach used by S. Odake and R. Sasaki in [13], [14] is based on the
equivalence between eigenstate adding and deleting Darboux transformations for
solvable (discrete) quantum mechanical systems.

On the other hand, the approach used by one of us in [3] is based on certain
purely algebraic transformations of a Wronskian type determinant whose entries
are orthogonal polynomials. These Wronskian type determinants are of the form

(1.1) det
(
T i−1(pm+j−1(x))

)n
i,j=1

,

where m ∈ N, (pn)n is a sequence of orthogonal polynomials with respect to a
measure μ and T is a linear operator acting on the linear space of polynomials P

and satisfying that deg(T (p)) = deg(p)− 1, for all polynomials p (see Theorem 2.1
in Section 2).

Key words and phrases. Orthogonal polynomials, q-classical polynomials, Wronskian 
determinant, Casorati determinant.
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Using this approach, some nice symmetries for Casorati determinants whose
entries are classical discrete orthogonal polynomials have been found. Here is one
of these symmetries for the Hahn polynomials. For α+c−N �= −1,−2, · · · , we write
(hα,c,N

n )n for the sequence of Hahn polynomials normalized by taking its leading
coefficient equal to 1/n! (see [11], p. 204) and Hα,c,N

n,m,x, n,m ≥ 0, for the Casorati
Hahn determinant

Hα,c,N
n,m,x = det

(
hα,c,N
m+j−1(x+ i− 1)

)n
i,j=1

.

Then, for n,m ≥ 0, we have

(1.2) Hα,c−n−m,N+n+m
n,m,x = (−1)nmH−α,2−c,−N

m,n,−x

(see [3], Corollary 5.4). Notice that the determinant in the left-hand side of the
previous identity is of size n× n while the determinant in the right-hand side is of
size m×m.

The purpose of this paper is to find such symmetries for the Big q-Jacobi polyno-
mials and, passing to the limit, for other related q-classical families in the q-Askey
scheme. In the sequel the terms ‘Wronskian type determinant’ and ‘Casorati de-
terminant’ are used indistinctly.

The content of this paper is as follows. The algebraic transformation of a Wron-
skian type determinant of the form (1.1) developed in [3] will be recalled in Section
2. In Section 3, we study it for the particular case of the q-derivative: T = Dq

where

(1.3) Dq(p) =

⎧⎨
⎩

p(x)− p(qx)

x(1− q)
, x �= 0,

p′(0), x = 0,

and q is a real number q �= 1.
In Section 4, we prove the following symmetry for the q-Wronskian type deter-

minant associated with the Big q-Jacobi polynomials. Consider the Big q-Jacobi

polynomials (P a,b,c;q
n )n with leading coefficient equals qn

2

/(q; q)n (see (4.1) below).
Define the q-Casorati Big q-Jacobi determinant

Pa,b,c;q
n,m,x = x(

m
2 ) det

(
P a,b,c;q
m+j−1(x/q

i−1)
)n
i,j=1

.

Then we have the following symmetry.

Theorem 1.1. For n,m ≥ 0 and a �= 0, q �= 1, there holds

(1.4) Pa,b,c;q
n,m,x = (−1)nmq

mn2+nm2−mnPaqn+m,bqn+m,cqn+m;1/q
m,n,x .

Notice that as in (1.2), the determinant in the left-hand side of the previous
identity is of size n × n while the determinant in the right-hand side is of size
m×m.

Finally, in Section 5 we consider the analogous symmetries for other q-classical
orthogonal polynomials which can be reached from the Big q-Jacobi family by
taking limits in the q-Askey scheme.
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2. Preliminaries

Consider a linear operator T acting on the linear space of polynomials P and
satisfying that deg(T (p)) = deg(p) − 1, for all polynomial p. We associate two
sequences of polynomials (rn)n and (sn)n with this operator T . The sequence
(rn)n satisfies that

(2.1)

{
r0 = 1 and the degree of rn is n, n ≥ 0,

T (rn) = rn−1, n ≥ 0 (r−1 = 0).

It is proved in [3], p. 65, that this sequence of polynomials always exists and it is
unique if we fix the values of rn, n ≥ 1, at a given number x0.

The sequence (sn)n is now defined recursively by s0 = 1 and

(2.2)

n∑
j=0

sj(x)rn−j(x) = 0.

It is easy to see that if we write Ψr(x, t), Ψs(x, t) for the (formal) generating
functions of the sequences (rn)n, (sn)n, respectively,

Ψr(x, t) =
∞∑

n=0

rn(x)t
n, Ψs(x, t) =

∞∑
n=0

sn(x)t
n,

we have Ψr(x, t)Ψs(x, t) = 1.
In [3], one of us has proved the following algebraic transformation of a Wronskian

type determinant of the form (1.1).

Theorem 2.1 (Theorem 1.2 of [3]). Consider a linear operator T acting on the
linear space of polynomials P and satisfying that deg(T (p)) = deg(p) − 1, for all
polynomial p. We associate it with the two sequences of polynomials (rn)n and
(sn)n as above. Let μ be a measure and consider a sequence (pn)n of orthogonal
polynomials with respect to μ. For a given sequence of polynomials (ψi)i, ψi of
degree i, we write μi

j, i, j ≥ 0, for the numbers

(2.3) μi
j =

∫
rjψ̄idμ.

We now consider the polynomials qin, i, n ≥ 0, defined by

(2.4) qin(x) =

n∑
j=0

μi
jsn−j(x).

We then have

(2.5) Ωm−1 det
(
T i−1(pm+j−1(x))

)n
i,j=1

= Cn,m det
(
qj−1
n+i−1(x)

)m

i,j=1
,

where Ωm−1 and Cn,m are independent of x,

Ωm−1 = det(μj−1
m−i)

m
i,j=1, Cn,m = (−1)mn+(m2 )

n−1∏
j=0

ξm+j

σm+j
,

and ξn and σn are the coefficients of xn in the power expansion of pn and rn,
respectively.
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Let us note that we have some degrees of freedom in the polynomials qin, n, i ≥ 0.
Indeed, for a given number x0, they depend on the numbers rn(x0), n ≥ 1, and on
the sequence of polynomials (ψi)i.

As explained in [3], p. 62, the determinants Ωm−1 can be computed from the �2

norm of the monic orthogonal polynomials (p̂n)n with respect to μ as follows:

Ωn = (−1)n(n+1)/2
n∏

j=0

σj ῡj‖p̂j‖2,

where υn denotes the leading coefficient of ψn.

Remark 2.2. The strategy that we will follow to prove the symmetry (1.4) is the
following.

First step. In Section 3, we will identify the sequences (rn)n and (sn)n for the
q-derivative operator Dq defined by (1.3). By then taking ψn = rn, n ≥ 0, we find
a useful expression for the polynomials qin, i, n ≥ 0, in terms of the sequence of
numbers (μ0

n)n and the polynomials (rn)n (see (3.26)).

Second step. For the particular case when the orthogonal polynomials (pn)n are
the Big q-Jacobi polynomials, pn = P a,b,c;q

n (x) (see (4.1) below), that expression
(3.26) will allow us (in Section 4) to identify the polynomials qin also as Big q-Jacobi
polynomials but with different parameters, namely

(2.6) qin(x) = (1− q)nq−in+(n2)P aqn+1+i,bqn+1,cqn+1+i;1/q
n (qix)

(see (4.4)).

Third step. Using Theorem 2.1, we will transform the n×nWronskian type determi-
nant associated with the Big q-Jacobi polynomials P a,b,c;q

n in an m×m determinant

whose entries are the Big q-Jacobi polynomials P
aqn+1+i,bqn+1,cqn+1+i;1/q
n . Finally,

the symmetry (1.4) follows by performing suitable combinations of columns and
rows in this m×m determinant (see proof of Theorem 1.1 in Section 4).

3. The role of linear operator T as q-derivative

In this section, we proceed with the first step above.
For a number q �= 1, as linear operator T , we consider the q-derivative (T = Dq)

defined by (1.3).
Recall that for classical q-orthogonal polynomials their q-derivatives constitute

an orthogonal polynomial family [12]. This property, among others, characterizes
the classical q-orthogonal polynomials. Indeed, they satisfy a hypergeometric q-
difference equation; they can be expressed by a Rodrigues-type formula and their
associated orthogonalizing weights satisfy a Pearson-type q-difference equation. As
any other family of orthogonal polynomials they also satisfy a three-term recurrence
relation. In addition, these polynomials can be represented in terms of the basic
hypergeometric series [11, 12]

(3.1) rϕs

(
a1, . . . , ar
b1, . . . , bs

; q , z

)
=

∞∑
k=0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

zk

(q; q)k

[
(−1)kq(

k
2)
]s−r+1

,
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CASORATI DETERMINANTS OF SOME q-CLASSICAL POLYNOMIALS

where (a1, . . . , ar; q)k = (a1; q)k · · · (ar; q)k and

(a; q)0 = 1, (a; q)k =
k−1∏
m=0

(1− aqm), k ∈ N,

denotes the q-analogue of the Pochhammer symbol (also called q-shifted factorial
[11], p. 11). This latter formula implies that

(3.2) (a; q)k =
(a; q)∞
(aqk; q)∞

, 0 < |q| < 1.

Among several interesting possibilities for the sequence of polynomials (rn)n, we
consider

rqn(x) =
(q− 1)n(x; q)n

(q; q)n
,(3.3)

ψi(x) = rqi (x).(3.4)

A simple computation then shows that

sn(x) = (−1)nq(
n
2)rqn(x/q

n−1)(3.5)

= (−1)nr1/qn (x);

see (2.1) and (2.2) for the definition of the polynomials rn, sn, n ≥ 0.

Lemma 3.1. The following relations are valid:

rqi (x) =
i∑

l=0

(1− q)i−lq(
i−l
2 )−ij

[
j

i− l

]
rql (xq

j),(3.6)

min(n,g)∑
j=g−i

(q− 1)i−g+jq(
i−g+j

2 )+(n−j
2 )−ij

[
j

i− g + j

][
g

g − j

]
rqn−j(x/q

n−j−1)(3.7)

= q(
g−i+1

2 )+(n2)−gn

[
g

i

]
rqn−g+i(x/q

n−g−1).

Proof. We first prove (3.6). Indeed, by using (3.3) in the variable xqj as well as
relations (1.8.16) and (1.9.4) given in [11] (for q-shifted factorial and q-binomial
coefficient, respectively) the right-hand term of (3.6) can be rewritten as follows:

i∑
l=0

(1− q)i−lq(
i−l
2 )−ij

[
j

i− l

]
rql (xq

j) =
(1− q)iq(

i
2)

(q; q)i

i∑
l=0

βi
l,jτ

q

i−l,j(x),

where

βi
l,j =

ql(q−i; q)l(q
−j ; q)l

(q; q)l
, l = 0, 1, . . . , i,(3.8)

τqi,j(x) =
i−1∏
k=0

(
x− 1

qj+k

)
= (−1)iq−ij−(i2)(xqj ; q)i, i, j = 0, 1, 2, . . . .(3.9)
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Using the identity

(3.10) τqi,0(x) =

i∑
l=0

βi
l,jτ

q

i−l,j(x),

and expression (3.3), there holds the following relation:

i∑
l=0

(1− q)i−lq(
i−l
2 )−ij

[
j

i− l

]
rql (xq

j) =
(1− q)iq(

i
2)

(q; q)i
τqi,0(x)

= rqi (x),

which proves (3.6).
Observe that (3.10) can be easily proved by induction. Indeed, it holds for i = 1.

Using the induction hypothesis for i ∈ N (formula (3.10)) and relation

(3.11) τqi+1,j(x) = τqi,j(x)

(
x− 1

qi+j

)
,

between two consecutive elements from the basis {τqi+1,j(x), . . . , τ
q

0,j(x)} of the lin-

ear subspace Pi+1, the coefficients in the (formal) series expansion

(3.12) τqi+1,0(x) =
i+1∑
l=0

αi+1
l,j τqi+1−l,j(x),

can be straightforwardly computed, getting αi+1
l,j = βi+1

l,j , l = 0, 1, . . . , i + 1, as
shown below. In fact,

τqi+1,0(x) =
(
x− q

−i
)
τqi,0(x)

=
i∑

l=0

[
(x− q−i+l−j)− q−i(1− ql−j)

]
βi
l,jτ

q

i−l,j(x).(3.13)

Notice that for coefficients (3.8) we have

(3.14)
βi+1
i+1,j = (q−j − q−i)βi

i,j , βi+1
0,j = βi

0,j = 1,

βi+1
l,j =

(
βi
l,j +

(ql−j−1−1)
qi βi

l−1,j

)
, l = 1, . . . , i.
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Hence, taking into account formula (3.11) and relations (3.14), one transforms
expression (3.13) into

τqi+1,0(x) =
i+1∑
l=0

βi+1
l,j τqi+1−l,j(x),

which gives the series expansion (3.12). This completes the proof of (3.6).
Now we proceed with the proof of (3.7), in which identity (3.10) will play a

key factor when we replace parameter q by 1/q. Let us start by performing some
combinatorial operations on equation (3.7). Observe that[

j

i− g + j

][
g

g − j

]
= (−1)jq−(

j
2)+gj (q−g; q)j

(q; q)g−i(q; q)j−g+i
,(3.15) [

g

i

]
=

(q; q)g
(q; q)i(q; q)g−i

(3.16)

(see relation (1.9.4) in [11]). Moreover, from (3.3) and (3.9) we have that

(3.17) rqk+i(x/q
k−1) = q(

k+i
2 ) (1− q)k+i

(q; q)k+i
τqk+i,0(x/q

k−1), i = 0, 1, . . . , k ∈ N.

In addition, from (3.9) we also have the following useful expressions:

τ
1/q
m,0(x) = qm(m−1)τqm,0(x/q

m−1)(3.18)

= q
−αmτ1/qm,α(q

αx),(3.19)

where α denotes any number.
Hence, substituting relations (3.15)-(3.16) into equation (3.7) and using (3.17)-

(3.19) we get that equation (3.7) is equivalent to

(3.20)

m∑
j=g−i

(q−g; q)j
(q; q)j−g+i(q; q)n−j

τ
1/q
n−j,0(x)

=
(−1)g−iq(

n
2)−gn−(n−g+i

2 )(q; q)g
(q; q)i(q; q)n−g+i

τ
1/q
n−g+i,0(q

ix),

where m = min(n, g). Indeed, taking into account again (3.19), the left-hand term
of (3.20) transforms into

(3.21)

m−g+i∑
l=0

q−i(n+i−g−l)(q−g; q)g−i+l

(q; q)l(q; q)n−g+i−l
τ
1/q
n−g+i−l,i(q

ix).

Notice that, by using formulas (1.8.10) and (1.8.16) from [11], we have that

(q−g; q)g−i+l = (q−g; q)g−i(q
−i; q)l,(3.22)

(q; q)n−g+i−l =
(q; q)n

(q−n; q)g−i(qg−i−n; q)l
(−1)g−i+l

q(
g−i+l

2 )−n(g−i+l).(3.23)

Thus, substituting (3.22)-(3.23) into expression (3.21), it is equal to

(−1)g−i(q−g; q)g−i(q
−n; q)g−i

(q; q)n

n−g+i∑
l=0

(−1)l(qg−n−i; q)l(q
−i; q)lτ

1/q
n−g+i−l,i(q

ix)

q
i(n+i−g−l)+(g−i+l

2 )−n(g−i+l)(q; q)l
.
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Finally, if we replace q by 1/q in all q-shifted factorials (a; q)l, but not in polynomials

τ
1/q
n−g+i−l,i(q

ix), and use formula (1.8.7) from [11] as well as identity (3.10), we
obtain

(−1)g−iq(
n
2)−gn−(n−g+i

2 )(q; q)g
(q; q)i(q; q)n−g+i

n−g+i∑
l=0

q−l(qg−n−i; 1/q)l(q
i; 1/q)l

(1/q; 1/q)l
τ
1/q
n−g+i−l,i(q

ix),

which is nothing else than the right-hand term of equation (3.20). �

Two important applications of the above Lemma 3.1 deal with the computations
of the numbers μi

j , i, j ≥ 0 (see formula (2.3)), and the polynomials qin(x), n, i ≥ 0

(see formula (2.6)). First we compute the numbers μi
j . Indeed, using (3.4), (3.6),

and relation (q; q)j(q
ja; q)l = (a; q)j+l, we have

μi
j =

∫
rjψ̄idμ =

∫
rqj r

q

i dμ(3.24)

=
i∑

l=0

(1− q)i−lq(
i−l
2 )−ij

[
j

i− l

] ∫
(q− 1)l+j

(q; q)j(q; q)l
(x; q)l+jdμ

=

i∑
l=0

(1− q)i−l
q(

i−l
2 )−ij

[
j

i− l

][
j + l

l

]
μ0
j+l.(3.25)

Finally, from (3.5) by noticing that

rqi (x/q
i−1) = q

−(i2)r
1/q
i (x),

we rewrite (2.4) as follows:

qin(x) =
n∑

k=0

(−1)kq(
k
2)μi

n−krk(x/q
k−1).

Hence, from (3.6) and (3.25), after cumbersome computation, we get

(3.26) qin(x) = (−1)nq(
n
2)−in

n∑
g=0

(−1)gμ0
g+iq

(g+1
2 )−gn

[
g + i

i

]
rqn−g(x/q

n−g−i−1).

4. Symmetry for q-Casorati Big q-Jacobi determinants

Here we use the normalized Big q-Jacobi polynomials (P a,b,c;q
n )n with leading

coefficient equals qn
2

/(q; q)n defined by

(4.1) P a,b,c;q
n (x) =

qn
2

(aq, cq; q)n
(abqn+1, q; q)n

3ϕ2

(
q−n, abqn+1, x

aq, cq
; q , q

)
.

See (3.1) and [11], pp. 438-443, for some known relations involved Big q-Jacobi
polynomials contained in this section.

According to the strategy explained in Remark 2.2, we have to identify the
polynomials qin in Theorem 2.1 when the orthogonal polynomials (pn)n are the Big
q-Jacobi polynomials. To do that, we first calculate the sequence (μ0

n)n (see (2.3)).
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For 0 < aq < 1, 0 ≤ bq < 1, and c < 0 the polynomial sequence (P a,b,c;q
n )n

verifies the orthogonality relation

(4.2)

∫ aq

cq

P a,b,c;q
n (x)P a,b,c;q

m (x)ωa,b,c;q(x)dqx

=
(1− abq)(−ac)n

(1− abq2n+1)

(aq, bq, cq, abc−1q; q)n
(q, abq; q)n(abqn+1; q)2n

q(
n
2)+2n(n+1)δn,m,

with respect to the normalized weight function

ωa,b,c;q(x) =
(aq, bq, cq, abc−1q; q)∞

aq(1− q)(q, abq2, a−1c, ac−1q; q)∞

(a−1x, c−1x; q)∞
(x, bc−1x; q)∞

.

By using (3.2), the numbers (3.24) associated with this weight function for i = 0
and j = 0, 1, 2, . . . , are given by

μ0
j =

(q− 1)j

(q; q)j

∫ aq

cq

(x; q)jω
a,b,c;q(x)dqx

=
(−1)j(1− q)j−1(aq, bq, cq, abc−1q; q)∞
aqj+1(q; q)j(q, abq2, a−1c, ac−1q; q)∞

∫ ajq

cjq

(a−1
j y, c−1

j y; q)∞

(y, bc−1
j y; q)∞

dqy,

where aj = aqj , cj = cqj , and y = xqj . Hence, from (4.2) we obtain the following
explicit expression:

(4.3) μ0
j =

(q− 1)j(aq, cq; q)j
(abq2, q; q)j

, j = 0, 1, 2, . . . .

We can now show that the polynomials qin, n, i ≥ 0, in Theorem 2.1, formula
(2.4), are up to a change of variable, again Big q-Jacobi polynomials. Indeed, by
substituting (4.3) into (3.26) and expanding the resulting expression in the basis
(x; q)k, k = 0, 1, . . . , n, one gets, after a careful identification of the given coefficients
in such a series expansion and comparing them with those from (4.1), the following
relation:

(4.4) qin(x) = (1− q)nq−in+(n2)μ0
iP

aqn+1+i,bqn+1,cqn+1+i;1/q
n (qix).

In the sequel we will need some formulas involving the Big q-Jacobi polynomials
which will be used in the proof of Theorem 1.1. Let us start with an important
consequence of the orthogonality relation (4.2), namely the three-term recurrence
relation

(4.5) (x− 1)P a,b,c;q
n (x) = AnP

a,b,c;q
n+1 (x)− (Bn + Cn)P

a,b,c;q
n (x)

+A−1
n−1Bn−1CnP

a,b,c;q
n−1 (x),

where

An =
(1− qn+1)

q2n+1
,

Bn := Ba,b,c;q
n =

(1− aqn+1)(1− abqn+1)(1− cqn+1)

(1− abq2n+1)(1− abq2n+2)
,

Cn := Ca,b,c;q
n = −acqn+1 (1− qn)(1− abc−1qn)(1− bqn)

(1− abq2n)(1− abq2n+1)
.
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Among other relations for the Big q-Jacobi polynomials, we have that for the
q-derivative (1.3) there holds

Dq

(
P a,b,c;q
n (x/q)

)
=

qn

(q − 1)
P aq,bq,cq;q
n−1 (x),

or equivalently (see the forward shift operator in [11] p. 439),

(4.6) P a,b,c;q
n (x)− P a,b,c;q

n (x/q) = −qn−1xP aq,bq,cq;q
n−1 (x).

Another useful relation is the following forward shift-type operator for the q-Big
Jacobi polynomials:
(4.7)

qn+1P
a/q,b,c/q;q
n+1 (x/q)− P a,b,c;q

n+1 (x) =
aq3n+2(bqn+1 − 1)(abqn+1 − c)

(abq2n+1; q)2
P a,b,c;q
n (x).

For showing (4.7) we consider the Fourier expansion

P
a/q,b,c/q;q
n+1 (x/q) =

n+1∑
k=0

αa,b,c;q
k P a,b,c;q

k (x),

where

αa,b,c;q
k ‖P a,b,c;q

k ‖2 =

∫ aq

cq

P
a/q,b,c/q;q
n+1 (x/q)P a,b,c;q

k (x)ωa,b,c;q(x)dqx.

By using the relation

(4.8) ωa,b,c;q(x) =
(1− abq)

q(1− a)(1− c)
(1− x/q)ωa/q,b,c/q;q(x/q),

and (4.5), we get that αa,b,c;q
k vanishes for k = 0, . . . , n− 1.

Observe that the leading coefficients of P
a/q,b,c/q;q
n (x/q) and P a,b,c;q

n (x) differ in
a factor q−n; hence, for k = n+ 1 we have

αa,b,c;q
n+1 = ‖P a,b,c;q

n+1 ‖−2

∫ aq

cq

P
a/q,b,c/q;q
n+1 (x/q)P a,b,c;q

n+1 (x)ωa,b,c;q(x)dqx

= q
−n−1.

For k = n we use once more (4.8) and (4.5), i.e.,

αa,b,c;q
n = ‖P a,b,c;q

n ‖−2

∫ aq

cq

P
a/q,b,c/q;q
n+1 (x/q)P a,b,c;q

n (x)ωa,b,c;q(x)dqx

=
‖P a/q,b,c/q;q

n (x/q)‖2

‖P a,b,c;q
n ‖2

qn+1(1− abq)

q(1− a)(1− c)
A−1

n Ba/q,b,c/q;q
n C

a/q,b,c/q;q
n+1

=
q2n+1a(abqn+1 − c)(bqn+1 − 1)

(1− abq2n+1)(1− abq2n+2)
,

which completes the proof of (4.7).
We are now ready to prove the main result of this paper, that is, Theorem 1.1

in the Introduction.

Proof of Theorem 1.1. Consider the q-Casorati Big q-Jacobi determinant

Pa,b,c;q
n,m,x = x(

m
2 ) det

(
P a,b,c;q
m+j−1(x/q

i−1)
)n
i,j=1

.
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We will use Theorem 2.1. We have already identified the polynomials qin, n, i ≥ 0,
as Big q-Jacobi polynomials (4.4) (with different parameters and up to a change of
variable),

(4.9) qin(x) = (1− q)nq−in+(n2)μ0
iP

aqn+1+i,bqn+1,cqn+1+i;1/q
n (qix).

This gives that the determinant in the right-hand side of (2.5) is, except for a
constant depending on n and m but not on x, equal to the determinant of the
matrix

(4.10) (q−ijP
aqn+i+j−1,bqn+i,cqn+i+j−1;1/q
n+i−1 (qj−1x))mi,j=1.

We now start with the matrix

(4.11) (P
aqn+m,bqn+m,cqn+m;1/q
n+i−1 (qj−1x))mi,j=1,

which coincides with the transpose of the matrix in the determinant of the right-
hand side of (1.4). Now, aiming to transform matrix (4.11), we will perform on it
some elementary column operations (summing up columns) and use formula (4.6)
in which we replace q by 1/q, a by aqn+m, b by bqn+m, and c by cqn+m. Thus,
addition of −1 times column m− 1 of (4.11) to column m produces, by using (4.6),
a new column m as follows:

(xq−n+m−iP
aqn+m−1,bqn+m−1,cqn+m−1;1/q
n+i−2 (qm−2x))mi=1.

This is a column replacement operation. Similarly, addition of −1 times column
m− 2 of (4.11) to column m− 1 produces

(xq−n+m−i−1P
aqn+m−1,bqn+m−1,cqn+m−1;1/q
n+i−2 (qm−3x))mi=1.

Then, we continue with column replacement operations from left to right on the
matrix (4.11) ending with the addition of −1 times column 1 of (4.11) to column
2, which produces

(xq−(n+i−2)P
aqn+m−1,bqn+m−1,cqn+m−1;1/q
n+i−2 (x))mi=1.

Now, we repeat the above process of column replacement operations involving
columns m,m−1, . . . , 2, as follows: Add −q times column m−1 to column m, add
−q times column m − 2 to column m − 1, ending with the addition of −q times
column 2 to column 3. After

(
m
2

)
operations we end up with the determinant of

matrix (4.11) equal to (up to a power of q depending on n and m)

(4.12) x(
m
2 ) det(q−ijP

aqn+m−j+1,bqn+m−j+1,cqn+m−j+1;1/q
n+i−j (x))mi,j=1.

The next transformation of (4.12) will consist of a successive use of formula (4.7) and
summing up rows. Similarly to the above process, we perform

(
m
2

)
row replacement

operations. Indeed, we end up with the determinant of matrix (4.12), up to a
constant factor depending on q, n, and m, equal to

det(q−ijP
aqn+2m−i−j+1,bqn+m−j+1,cqn+2m−i−j+1;1/q
n+m−j (xqm−i))mi,j=1.

More precisely, this determinant is, up to a power of q depending on n and m, equal
to

det(q−(m−i+1)(m−j+1)P
aqn+2m−i−j+1,bqn+m−j+1,cqn+2m−i−j+1;1/q
n+m−j (xqm−i))mi,j=1.

The matrix of this last determinant is equal to (4.10) by changing i by m − j + 1
and j by m − i + 1. Up to a sign, this change does not modify the value of the
determinant.
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A careful computation of all aforementioned constant factors yields (1.4), which
completes the proof of Theorem 1.1. �

5. Limit relations

It is well known that under some restrictions on the parameters of the Big q-
Jacobi polynomials we relate these polynomials to other families of classical orthog-
onal polynomials (see [11], pp. 441-443). Thus, analogous symmetry relations to
those given in Theorem 1.1 involving the corresponding q-Casorati determinant can
be obtained. Indeed, if we set b = −a−1cd−1 (with d > 0) in the expression (4.1) of
the Big q-Jacobi polynomials and take the limit c → −∞ we obtain the q-Meixner
polynomials

(5.1) lim
c→−∞

P a,c/ad,c;q
n (q−x) = Ma,d;q

n (q−x).

In particular, the q-Meixner polynomials (see relations in [11], pp. 488-490) are
defined by

(5.2) Ma,d;q
n (x) =

(−d)n

(q; q)n

n∑
j=0

(q−n; q)j(x; q)j
(aq; q)j(q; q)j

(
−qn+1

d

)j

, d > 0.

Define the q-Casorati q-Meixner determinant

Ma,d;q
n,m,x = x(

m
2 ) det

(
Ma,d;q

m+j−1(x/q
i−1)

)n
i,j=1

.

Hence, taking into account (1.4), (5.1), and (5.2) the symmetry property

Ma,d;q
n,m,x = (−1)nmq

mn2+nm2−mnMaqn+m,d/qn+m;1/q
m,n,x , n,m ≥ 0, q �= 1,

holds.
The q-Charlier polynomials (see relations in [11], pp. 530-533) given by

Cd;q
n (x) =

(−d)n

(q; q)n

n∑
j=0

(q−n; q)j(x; q)j
(q; q)j

(−q
n+1/d)j , d > 0,

can easily be obtained from the q-Meixner polynomials as follows:

(5.3) M0,d;q
n (x) = Cd;q

n (x).

Therefore, from the above limit (5.1) and settings in (5.3), we get the following
symmetry,

Cd;q
n,m,x = (−1)nmqmn2+nm2−mnCd/qn+m;1/q

m,n,x , n,m ≥ 0, q �= 1,

for the q-Casorati q-Charlier determinant

Cd;q
n,m,x = x(

m
2 ) det

(
Cd;q

m+j−1(x/q
i−1)

)n
i,j=1

.

Furthermore, the q-Laguerre polynomials (see relations in [11], pp. 522-525)
defined by

Lα;q
n (x) =

(−1)n(qα+1; q)n
qαn(q; q)n

n∑
j=0

(q)(
j
2)(q−n; q)j

(qα+1; q)j(q; q)j
(qn+α+1x)j , α �= −1,−2, · · · ,
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can be obtained from the q-Meixner polynomials by setting a = qα and substituting
q−x by dqαx in relation (5.3) and then taking the limit d → ∞. Hence, under these
settings the following symmetry relation,

Lα;q
n,m,x = (−1)nmqm

2n+mn2−nmL−α−n−m;1/q
m,n,x , n,m ≥ 0, q �= 1,

yields, where

Lα;q
n,m,x = x(

m
2 ) det

(
Lα;q
m+j−1(x/q

i−1)
)n
i,j=1

is the q-Casorati q-Laguerre determinant.
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