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1 Introduction

We denote by IP := C|[z] the linear space of polynomials with complex coefficients
and P, the linear subspace of polynomials of degree, at most, n, while P_; = {0}
is the trivial subspace. Let 4 be a nontrivial (i.e., with infinite support) probability
measure supported on the unit circle 8D = {z € C; |z| = 1} parametrized by z = €',
6 € [0, 2). By using the Gram—Schmidt orthogonalization procedure we obtain a

sequence of orthonormal polynomials, {¢, },>0, With respect to d ., that is, satisfying

j ©On(D)em(2)dp(z) = an,m ,
where ¢, € P, \ P,_, is given by
@ (2) := k,2" + lower degree terms, «, > 0.

Here &, ,, denotes the Kronecker delta. The orthogonality conditions determine the
orthonormal sequence up to an unimodular factor and, finally, the conditions «,, > 0
uniquely determine the sequence. The associated monic orthogonal polynomials are

®,(z) = k; ' gn(z) = 2" + lower degree terms.

Note that k,, := || ®,||* = xn_z, where || - || is the Lﬁ' ,—horm. For obvious reasons, the
above polynomials are known as orthogonal polynomials on the unit circle (OPUC,
in short); see [23, 25, 40, 42, 43].

One of the most important algebraic properties of the OPUC, {®,},>0, is the
Szegd forward recurrence formula (named after [43, Thm. 11.4.2]). This means that

Dp:i=1, @pyi(z2) =2Pn(z) —@P)(z), n>0, 1

where {ap}nz0 € D, a0y = —Dp41(0), D := {z € C; |z] < 1}, are the so—called
Verblunsky coefficients (comments about this notation can be found in [40]) and for
feP,\P,_y, f*(2) := Zﬂf(z_l)-

The polynomials

n
Kn(z.8) =Y _ @oc@ek(@). n>0,
k=0
are the reproducing kernels associated with the orthogonality measure d 1. From the
Szegd recurrence (1), one obtains the Christoffel-Darboux formula (named after [13,
14]), i.e.,

@, 1 (@D, () — Pnt1(D)Prt1 (D)

Kny1(1—£2)

In the last years, a weakened form of orthogonality, called para—orthogonality, has
been introduced in the literature in the framework of quadrature rules with nodes
on the unit circle. We say that the polynomials {®,(-, B,)},>0 are invariant para—
orthogonal polynomials on the unit circle (POPUC, in short) associated with the
sequence of OPUC {®,},>0, if there exist complex numbers n, € C and B, € 4D
such that

Kn(z,§) =

2

D,(2, Bn) = N (Pn(2) + B P, (2))- 3)



This definition is supported by the characterization of the POPUC (see [31, Thm.
6.1]). Notice that the zeros of the polynomial defined by (3) are located on 4D.
According to our definition the POPUC are not necessarily monic. Since we
are interested only in the behavior of the zeros, henceforth we will assume that
M =1

The earliest reference to the existence of invariant POPUC is found in a paper
by Geronimus [24, Thm. III]. In a more general setting the POPUC (not necessarily
invariant) were introduced by Jones, Njastad, and Thron at the end of the 1980’s.
From now on, we will consider only invariant POPUC, although we refer to them as
POPUC.

After their formal introduction, the para—orthogonality theory was significantly
enriched from both, the theoretical and practical points of view. The essential role
in the development of quadrature formulas (see [31, 38] among others), their rela-
tion with discrete systems analysis, digital signal processing and linear least-squares
estimation (see [17-20]), the use of their zeros instead of zeros of OPUC in fre-
quency analysis problems (see [16]) and their appearance as in the isometric Arnoldi
minimization problem (see [29]) represent some of the best known applications
of POPUC. On the other hand, the works of Cantero, Moral, and Veldzquez (see
[8]), and Golinskii (see [28]) reveal the similarity between the behavior of zeros
of POPUC and zeros of orthogonal polynomials on the real line (OPRL, in short),
see also [44]. In the previous results, the basic tool is the Christoffel-Darboux for-
mula (2). Some of these results are studied by Simon (see [41]) using the connection
of POPUC with CMV matrices and the theory of rank one perturbation of unitary
matrices.

The main aim of this contribution is to show that under some perturbations of the
measure, the similarities between the behavior of zeros of certain POPUC and zeros
of OPRL do not always hold. More specifically, the zeros of POPUC associated with
the Uvarov and Christoffel transformations are not necessarily interlacing with the
zeros of the original sequence of POPUC. In this contribution, we obtain conditions
in order to preserve the interlacing of zeros. One of the motivations for studying the
interlacing property under transformations of the measure concerns the fact that given
two monic consecutive polynomials W, (z) and W,(z) whose zeros are simple and
strictly interlacing on 8D, there exists a measure dp supported on 8D for which
they are POPUC (see [9]). Moreover, if these polynomials have at most one zero
in common, the previous statement is also true. All such measures have the same
{¥; }‘; _o- In particular, any polynomial W, with distinct zeros on 3D is a POPUC
for some measure dp and W, _1(z), ¥,_2(z), . .. are not determined uniquely. In the
context of the works of Delsarte and Genin [17-20], the interlacing property says that
we can obtain a new sequence of singular predictor polynomials (special POPUC
given by a three term recurrence relation) using the perturbed and original POPUC.
The singular predictor polynomials are used to replace the OPUC in several signal
problems and provide new techniques for the interpolation problem, the retrieval of
harmonics problem and Toeplitz systems. Moreover, these polynomials are related
with unitary Hessenberg matrices and, therefore, our interlacing conditions could be
used also to obtain new results in the perturbation and interlace theory of unitary
eigenvalues problems (see [4, 22]).



The manuscript is organized as follows. Section 2 presents some preliminaries and
basic background concerning POPUC. In Section 3 we proceed with the study of
the Uvarov transformation. Section 4 is devoted to the study of some special cases
of para—orthogonal polynomials associated with the Christoffel transformation. We
have included some numerical examples associated with the Bernstein—Szeg6 mea-
sure and rational modifications of the Lebesgue measure in order to illustrate our
results.

2 Preliminary results

First, we need to define what we mean by ’zeros interlace on 8D and, hence, to intro-

duce the concept of ordered cycle for a set of points on the unit circle. If  is a fixed
real number, then a vector of different complex numbers on 31D, (e‘el, e, € E5"“), is

said to be cyclicly ordered if
w<b) <<, <w+2m.

This means that for two different points on aD, % and %2 with 0,00 € |w,
w + 2m), we have an order relation such that

% <% ifandonlyif 6, < 6,.

Let (6595,, yeees e"‘gﬂ’") and (ei""",' yeees e""”"’") be two cyclicly ordered sets of zeros
corresponding to the polynomials f;,(z) and g, (z), respectively. We say that the zeros
of fn(z) and g, (z) strictly interlace on 9D if they can be numbered such that there
exists a number @, so that

D <Oy <Y1 <+ <bpp<VUpn<d+2m. @

Note that the previous definition also includes the case when the role of 6, ; and
Ynk. k= 1,2,...,n, is reversed. This definition can be naturally extended to two
cyclicly ordered sets of zeros with different number of elements.

Let us now state and prove the main results to be used in the sequel.

Lemma 1 Let f,(z) be an arbitrary polynomial with simple zeros on dD, then f,(z)
is a POPUC with respect to some nontrivial probability measure supported on 9.

Proof As the zeros of f,(z) lie on aD, then f,(z) = crz”?n(l,z‘z), o € dD. By
differentiation, we get

1 ’ 1 n—17"77
fa@) = ;zfn(z) + o~z fa(1/2).
Set h,_1(z) = (1/n) f,(z), the above expression can be written as

fn(@) = zhu_1(2) + oh}_,(2).

Combining the Gauss—Lucas theorem [36, Thm. 2.1.1] and the Bonsall-Marden
lemma [3], we conclude that the zeros of h,_1(z) lie on ID. Moreover, by Geronimus’



theorem [24, Thm. L], h,_1(z) is a OPUC with respect to some nontrivial probabil-
ity measure supported on 91D, and, consequently, f;(z) is the corresponding POPUC
[31, Thm. 6.1]. O

Lemma 2 Let f,(z) and g,(z) be two polynomials of exact degree n whose zeros
strictly interlace on 9D. If the polynomial

Ja(2) +cgn(2), c eR\ {0}, )

has n zeros on 0D, then they are strictly interlacing with the zeros of f,(z) and gn(z).

Proof As we are interested in the zeros, there is no loss of generality if we consider
an appropriated normalization of the polynomials f,(z) and g,(z). From Lemma
1, fau(z) and gp(z) are POPUC with respect to two different nontrivial probability
measures supported on dID. Hence, we can assume that

fa(z) = BPx(z) — BP}(z), B eC\ {0},
gn(z) = A0n(2) —aQ)(z), aecC\{0},

where P, (z) and Q,(z) are the OPUC associated with f,(z) and g,(z), respectively.
That is, we consider sequences of normalized to (-1)-invariant POPUC, i.e., f;f(z) =
— fn(z) and g} (z) = —gn(z)- Note that f,(z) and g,(z) are not just “any polynomial
with simple zeros on the unit circle”.

Let us introduce two auxiliary functions

s o Jn(2) ~ - 8n(2)
fa(0) = iszz’ gn(0) := !'ZT/Z,

where (re'®)!/2 = \/re'®/2 r = 0,and 0 € (@, ® + 27). Clearly, ,(9) and Z,(6)
are real-valued C* functions defined on (@, ® + 2m) and, by definition they have
the same number of zeros on (@, @ —|—ng1) as f,(z) and g,(z) on 9D, respectively.
Moreover, if one denotes the zeros of f,(8) (resp. 2,(8)) by xu i (resp. yu k), on the
account of the intErlacing property of the zeros of f,(z) and g,(z) on dID, we have
that the zeros of f,(9) and g, (9) satisfy

@ < Ynn <Xnp <" <Ypl<Xnpl<®+2m, (6)

or in the reverse order. -
Now, let us define a function k,(6) as follows

(@) o= 2O D _ F o) 1 ),
1z

where its zeros are denoted by £, ¢, k = 1,2, ..., n. Notice that f,,(z) + cgn(z) is a
polynomial of degree at most n and the number of their zeros on D is exactly the
same as the number of zeros of h,(0) in (@, @ + 2m). Since fy(z) + cgn(z) cannot
have more than n zeros, the number of zeros of h,(8) in (@, @ + 27) cannot exceed

n. Without restriction of generality we can also assume

fa@+27)>0, Fu@+27)>0, c>0.



Thus, if (6) holds,
sgn A (yn k) = 520 fn(np) = (1,
sgn hy(Xn k) = $g0 G (xn k) = (=¥,

and the lemma is proved. O

Remark 1 An illustration of the comments about the normalization in the proof of
Lemma 2 can be shown through a simple example. Set f2(z) = (z — 1)(z — i), a
(-i)-invariant polynomial, i.e., fz"‘(z) = —if2(z). It is clear that f>(@) is not a real-
valued function. Since we are interested in the zeros, there is no loss of generality if
we consider the polynomial f5(z) normalized to (-1)-invariant as

H@) =1 -7 ).
There holds
—~ _ fz(eiﬂ) s .
fr(0) = = sinf +cosf — 1,

vﬂvyhich is real-valued. Hence, an appropriated normalization of f,(z) is found so that
fn(0) is real-valued. Notice that for any other possible example of a polynomial with
simple zeros on the unit circle, the same process as above can be applied.

For polynomials with real zeros, the previous lemma is closely related to the
Hermite-Kakeya theorem [36, Thm. 6.3.8] and sometimes called Obrechkoff’s theo-
rem [37]. Extensions of this idea are mainly consider by Driver and coauthors (see
among others [1, 2, 21]).

Lemma 3 Set { € 9D and let a and b be arbitrary nonzero complex numbers. Then,
aKn 1(z,0)+bz K} 1(z,0) =r(@)®Pnlz, wn),
where r(z) and o, are given by

1 a+be" 1z
kn, 1 —ZZ

_0.(0)
QE(E)

Pp(¢), wp=

r(z) =—

Proof From [40, Lemma 2.2.8], we have
Ky (z.0) =¢""Kn_1(2. ).

where the *-transform is assumed to operate only on the variable z. The result follows
after an elementary calculation. O

An immediate consequence of the above lemma is the following.

Corollary 1 Under the hypothesis of Lemma 3, the polynomial
aKn,_1(z,¢) +bzK}_,(z,¢)

is an invariant POPUC of exact degree n associated with the measure d p if and only
if
a=-b{", ¢ edD.



From the above results, it is natural to expect that the interlacing properties of
zeros of OPRL under modifications of the orthogonality measure do not always hold
for arbitrary POPUC. In the next section we will study when these similarities still
hold for the Uvarov transformation.

3 The Uvarov transformation

The so—called canonical Uvarov transformation of a nontrivial probability measure,
dp, supported on the unit circle appears by the addition to such a measure of a
positive mass point on the support of the orthogonality measure, i.e,

du(z) +méy, «a € dD. (7

In order to (7) be positive definite (see [15, Prop. 4.1]), we will consider real numbers
m such that

1+m Kyp_1(e, @) = 0,

for every n > 1. Note that for m > 0, the previous inequality always holds.

The Uvarov transformation has been investigated by both, the mathematical
physics and the orthogonal polynomials communities. An early reference is due to
Von Neumann and Wigner (see [39]). The name of Uvarov transformation, frequently
used by the orthogonal polynomials communities, as well as with the Christoffel and
Geronimus transformations, is probably due to Zhedanov (see [46]). Nevertheless, in
the theory of orthogonal polynomials, this transformation has a long history whose
origins can be traced back to Geronimus (see [23, 25]). For a more recent contribution
with historical references the reader may consult [45].

The following result was first obtained by Geronimus (see for example [23, Eq.
3.30]), and rediscovered and extended by Cachafeiro and Marcellan (see [5-7],
among others). Furthermore, for OPRL it was rediscovered by Nevai (see [35]).

Theorem 1 ([25]) Let {Up}n>0 be the sequence of polynomials associated with the
Uvarov transformation (7). Then,

Un(z) = ®n(z) — M, Ky_1(z, ),

where
m®, (a)

T 14mKn1(a, )

n

Taking into account their potential applications, the relation between the POPUC
associated with the Uvarov transformation and the unperturbed ones deserves
attention, especially regarding their zeros.

Let us define by

Un(z, Bn) := Un(2) + Bn U: (z), (8)
the POPUC associated with the Uvarov transformation (7). Using the previous the-

orem one can obtain an analog result for POPUC. Note that the POPUC (3) and (8)
are defined by using the same parameter.



Proposition 1 The following relation holds:
Un(z, Bn) = Pn(z, Bn) + 50 (2)Pn(z, ),

where
1 My + BaMpa"~ 'z Dp ()
sp(2) k, 1 —az n(@), T, d): (@) 9)
Proof This result follows from (8), Theorem 1 and Lemma 3. O

From the above proposition and Lemma 2 it is clear that for arbitrary parameters
Bn, the zeros of U, (z, B,) and ®,(z, B,) do not necessarily interlace.

Theorem 2' Let ®,(z, Br), su(z), and ®,(z, t,) be given as in Proposition 1. Let
@, ..., %) bethe cyclicly ordered set of zeros of the POPUC ®,(z, B,) such that

w< <<l <w+2m,
and let | be a positive integer number such that
6 < arg(a) < Bj41.

Then, the zeros of the polynomials ®,(z, B,) and s, (2)Pp(z, Tn), Prn # Ta, Strictly
interlace on 9D if and only if

6 < arg (a ;—”) <01 (mod (@, o+ 27]). (10)

n

Proof Since B, # tp, then ®,(z, 8,) and ®,(z, 7,) interlace zeros on D (see for
example [41, Thm. 1.3]). Note that « is a zero of ®,(z, 7). It is easy to check that
the zeros of ®,(z, B,) strictly interlace with the zeros of s,(z)®,(z, t,) if and only
if (10) holds. O

Now, we are in a position to state our first results related to the interlacing
properties.

Theorem 3 The zeros of U,(z, Bn) Sstrictly inferlace on 91D with the zeros of
@, (z, By) and ©,(z, T,) if and only if the conditions of Theorem 2 hold.

Proof Since we assume that ®,(z, B,) and ®,(z, 7,) interlace zeros on 91D and the
zeros of U,(z, B) are on 9D, then the theorem follows as a direct consequence of
Lemma 2. O

For discrete Sobolev OPRL, analogous results are proved in [11, 33]. Concern-
ing orthogonality on the unit circle, namely on the distribution of zeros of OPUC,
these results naturally move to the corresponding POPUC. To the best of the authors’
knowledge, the present contribution is the first one to be devoted to the study of
interlacing of zeros of POPUC under spectral transformations of the correspond-
ing para-orthogonality measure. Theorem 2 states unknown differences between the



behavior of zeros of OPRL and POPUC, while Theorem 3 shows that under certain
conditions such differences can be avoided.

3.1 Bernstein-Szegé case

Let us consider the following modification of the Bernstein—Szeg6 measure (see

[40]),
1— A% do
mg—'—m&x, ;\.E]D., a c dD. (1])
It is well known that ®,(z) = 7" — Az" ! is the OPUC of degree n with respect
to the Bernstein—Szegd measure, thus,

Oz, ) = 2" — A" (=R + 1), (12)
where
= — LR 2 (13)
o — A
Moreover, s, (z) is given as in (9) withkg = 1, k,, = 1/(1— |JL|2) foreveryn > 1, and
a" o —2)
M, = mHanM.
1—[A]2
In order to illustrate Theorem 3, we consider for n = 7 and the following choices
of the parameters: L = —1/2i,m = 1, @ = —1 and 7 = —i. In this case, (13)

yields 77 = 3/5 — 4/5i. In order to check the interlacing stated in Theorem 3, we
compute the zeros of the polynomial ®7(z, —i) = 2+ 1,1‘2iz'5 —1/2z —i, which are
—i, —0.995218 + 0.0976748i, —0.686236 — 0.727379i, —0.475521 + 0.879704i,
0.4755214-0.879704i, 0.686236 —0.727379: and 0.995218 4-0.0976748:. It is easy
to see that

—0.995218 4 0.0976748i < —1 < —0.686236 — 0.727379i. (14)
Finally, since a1, /B, = 4/5 + 3/5i and

4 3
—0.995218 + 0.0976748i < 5 Ei < —0.686236 — 0.727379i, (15)

according to Theorem 2, ®7(z, —i) and s, (z)®7(z, 3/5—4/51) interlace zeros on 91D.
Thus, from Theorem 3, U7(z, —i), ©7(z, —i) and s,(z)®7(z, 3/5 — 4/5i) interlace
zeros on dD. Similarly, it is an easy exercise to check that for the same values of the
parameter and 7 = i, we do not have interlacing.

Figure 1 is obtained by using Wolfram Mathematica® 9.0! and shows the interlac-
ing property of the zeros of U7(z, —i) (blue discs), ®7(z, —i) (purple squares) and
sp(2)®7(z, 3/5 —4/5i) (yellow diamonds). Figure 2 shows the behavior of the zeros
when 7 =i.

1 Wolfram Mathematica is a registered trademark of Wolfram Research, Inc.
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Fig. 1 Zeros of POPUC associated with the Uvarov transformation for g7 = —i

4 Further results

Notice that from (3) the difference between POPUC and OPUC is that they have
the same orthogonality conditions except that POPUC are not orthogonal to the con-
stants while this fact holds for OPUC. This one—dimension lowered condition makes
possible to get good properties for the zeros of POPUC in comparison with OPUC.
The counterpart to the deficiency of this one less orthogonality condition is the fact
that POPUC are not unique, and basically depend on a unimodular free parameter.
In the previous section, we have deduced conditions in order to find para—orthogonal
polynomials related to the same parameter such that their zeros under the Uvarov
transformation strictly interlace on dID. In this section, we will see how our approach
apply to other kind of transformations when the para—orthogonality parameters are
not necessarily the same.

Let us consider the so—called Christoffel transformation on the unit circle. This
transformation has the effect of multiply the orthogonality measure by a Laurent

10
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Fig. 2 Zeros of POPUC associated with the Uvarov transformation for g7 = i

polynomial that is nonnegative on dID. In this section, we will consider a class of
Christoffel transformation of the form

|z —a’du(z), «caD. (16)

Notice that (16) is always positive definite (see for example [15, Prop. 2.4]).

The Christoffel transformation (16) was defined for OPRL by Szegd in his clas-
sical monograph (see [43]). This transformation leads to kernel polynomials (see
[12, Ch. 1, Sec. 7] and [43, Thm. 3.1.4]) playing an important role in the spectral the-
ory of orthogonal polynomials. For OPUC, the Christoffel transformation and their
extensions are mainly considered by Marcelldn and co—authors (see, among others,
[10, 15, 26, 32, 34]). Fast algorithms to compute the QR step corresponding to the
Hessenberg matrices associated with Christoffel transformations have been recently
presented in [30, Sec. 5].

11



Theorem 4 ([26]) Let {Cy}n>0 be the sequence of orthogonal polynomials associ-
ated with the Christoffel transformation (16), then

(z —a)Cp_1(z) = ®p(z) — Ny Kp_1(z, @),

where
N, = 2@
Ky 1(a,a)
Let us define by
Cn_1(z, Bn—1) :==Cp_1(2) + ﬁn—lC:_l(Z)y Bn—1 € D. )]

the POPUC associated with the Christoffel transformation (16). Now, we can obtain
the analog of Proposition 1.

Proposition 2 The following relation holds:
(z —@)Cn_1(z, Bn—1) = Pn(z, —aBu_1) + ta(2)Pu(z, Tn),

where _
Np — Jgn—ananZ

1
k, 1 -z

th(2) = D, (), (18)

and T, given in (9).

Proof From (17), we get

(1 —@2)Cn1(z, Bn) = (2 — W)Cp_1(2) + (1 —@2)C;s_;(2).
Since,
(z—=a)Cp1(2)* = (1 =@)C_(2),
the rest of the proof follows as in the proof of Proposition 1. O

Now, we can state without proof analogous results to those presented in Theorem
2 and Theorem 3.

Theorem 5 Let ®,(z, —aBy_1), ta(2), and ®,(z, t,) be given as in Proposition 1.
Let (&%, ..., %) be the cyclicly ordered set of zeros of the POPUC @, (z, —afn_1)
such that

w< <<l <w+2m,

and let | be a positive integer number such that
6 < arg(a) < Bj41.

Then, the zeros of the polynomials ®,(z, —af,_1) and t,(2)Pp(z, Tn), —afn_1 #*
Ty, Strictly interlace on 9D if and only if

9 ( n
) < arg [ —
B

n—1

) <641 (mod (0, + 2m]). (19)

Theorem 6 The zeros of (z—a)C,_1(z, Bn—1) strictly interlace on 91D with the zeros
of ©,(z, —aBy_1) and ®,(z, t,) if and only if the conditions of Theorem 2 hold.

12



The previous result for OPRL are contained in [12, Ch. 1, Sec. 7].
4.1 Rational case

Let us consider the following Christoffel transformation of the Bernstein-Szegd

measure (see [27, 40]),
i0 2
— df
le—altdd 5 b acap. (20)
lei® — A2 27

Notice that in this case, as in the Bernstein—Szeg®6 case, ®,(z) = 7" — az" s the
OPUC of degree n, thus, ®,(z, ,) and 7, are given by (12) and (13), respectively.
On the other hand, t,(z) is given as in (18) with kg = 1/(1 — %), k, = 1 for
every n > 1, and
" a—2)
14 A2+ nja — A2

n

Imz
1.0~
*
[ i L |
* L
05
r *
| - f
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Fig. 3 Zeros of POPUC associated with the Christoffel transformation for g7 = —i
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Comparing (10) and (19), we can see that for the same values of the param-
eters the result shown in Figures 1 and 2 also holds for this case. In order to
illustrate Theorem 3, we consider for n = 7 and the same parameters as in the
Bernstein-Szegd case. Hence, 77 and ®7(z, —i) are the same as in the Bernstein—
Szegd case. Finally, as ©,/8,_1 = 4/5 + 3/5i, (14) and (15) hold. According
to Theorem 2, ®7(z, —i) and #,(z)®P7(z,3/5 — 4/5i) interlace zeros on aD.
Thus, from Theorem 3, C7(z, —i), ®7(z, —i) and t,(z)®7(z,3/5 — 4/5i) inter-
lace zeros on dDD. Similarly, it is a straightforward exercise to check that for the
same values of the parameter and f7 = i, we do not have interlacing for their
ZErOS.

Figure 3 is obtained by using Wolfram Mathematica® 9.0 and shows the interlac-
ing property of the zeros of C7(z, —i) (blue discs), ®7(z, —i) (purple squares) and
t, (2)®7(z, 3/5 — 4/51) (yellow diamonds). In Fig. 4, we consider the case in which
pr=i.
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Fig. 4 Zeros of POPUC associated with the Christoffel transformation for g7 = i
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