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1 Introduction

We denote byP:=C[z]the linear space of polynomials with complex coefficients
andPnthe linear subspace of polynomials of degree, at most,n, whileP−1≡{0}
is the trivial subspace. Letdμbe a nontrivial (i.e., with infinite support) probability
measure supported on the unit circle∂D={z∈C;|z|=1}parametrized byz=eiθ,
θ∈[0,2π). By using the Gram–Schmidt orthogonalization procedure we obtain a
sequence of orthonormal polynomials,{ϕn}n≥0, with respect todμ, that is, satisfying

ϕn(z)ϕm(z)dμ(z)=δn,m,

whereϕn∈Pn\Pn−1is given by

ϕn(z):=κnz
n+lower degree terms, κn>0.

Hereδn,mdenotes the Kronecker delta. The orthogonality conditions determine the
orthonormal sequence up to an unimodular factor and, finally, the conditionsκn>0
uniquely determine the sequence. The associated monic orthogonal polynomials are

n(z)=κ
−1
n ϕn(z)=z

n+lower degree terms.

Note thatkn:= n
2=κ−2n ,where·is the L

2
dμ–norm. For obvious reasons, the

above polynomials are known asorthogonal polynomials on the unit circle(OPUC,
in short); see [23,25,40,42,43].
One of the most important algebraic properties of the OPUC,{n}n≥0,isthe

Szeg̋o forward recurrence formula (named after [43, Thm. 11.4.2]). This means that

0:≡1, n+1(z)=zn(z)−αn
∗
n(z), n≥0, (1)

where{αn}n≥0∈D,αn=− n+1(0),D:= {z∈C;|z|<1}, are the so–called
Verblunsky coefficients (comments about this notation can be found in [40]) and for
f∈Pn\Pn−1,f

∗(z):=znf(z−1).
The polynomials

Kn(z, ζ ):=

n

k=0

ϕk(z)ϕk(ζ ), n≥0,

are the reproducing kernels associated with the orthogonality measuredμ.Fromthe
Szeg̋o recurrence (1), one obtains the Christoffel–Darboux formula (named after [13,
14]), i.e.,

Kn(z, ζ )=
∗
n+1(z)

∗
n+1(ζ )− n+1(z)n+1(ζ )

kn+1(1−ζz)
. (2)

In the last years, a weakened form of orthogonality, called para–orthogonality, has
been introduced in the literature in the framework of quadrature rules with nodes
on the unit circle. We say that the polynomials{n(·,βn)}n≥0are invariantpara–
orthogonal polynomials on the unit circle(POPUC, in short) associated with the
sequence of OPUC{n}n≥0, if there exist complex numbersηn∈Candβn∈∂D
such that

n(z, βn):=ηn(n(z)+βn
∗
n(z)).
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This definition is supported by the characterization of the POPUC (see [31,Thm.
6.1]). Notice that the zeros of the polynomial defined by (3) are located on∂D.
According to our definition the POPUC are not necessarily monic. Since we
are interested only in the behavior of the zeros, henceforth we will assume that
ηn≡1.
The earliest reference to the existence of invariant POPUC is found in a paper

by Geronimus [24, Thm. III]. In a more general setting the POPUC (not necessarily
invariant) were introduced by Jones, Nj̊astad, and Thron at the end of the 1980’s.
From now on, we will consider only invariant POPUC, although we refer to them as
POPUC.
After their formal introduction, the para–orthogonality theory was significantly

enriched from both, the theoretical and practical points of view. The essential role
in the development of quadrature formulas (see [31,38] among others), their rela-
tion with discrete systems analysis, digital signal processing and linear least-squares
estimation (see [17–20]), the use of their zeros instead of zeros of OPUC in fre-
quency analysis problems (see [16]) and their appearance as in the isometric Arnoldi
minimization problem (see [29]) represent some of the best known applications
of POPUC. On the other hand, the works of Cantero, Moral, and Veĺazquez (see
[8]), and Golinskii (see [28]) reveal the similarity between the behavior of zeros
of POPUC and zeros oforthogonal polynomials on the real line(OPRL, in short),
see also [44]. In the previous results, the basic tool is the Christoffel–Darboux for-
mula (2). Some of these results are studied by Simon (see [41]) using the connection
of POPUC with CMV matrices and the theory of rank one perturbation of unitary
matrices.
The main aim of this contribution is to show that under some perturbations of the

measure, the similarities between the behavior of zeros of certain POPUC and zeros
of OPRL do not always hold. More specifically, the zeros of POPUC associated with
the Uvarov and Christoffel transformations are not necessarily interlacing with the
zeros of the original sequence of POPUC. In this contribution, we obtain conditions
in order to preserve the interlacing of zeros. One of the motivations for studying the
interlacing property under transformations of the measure concerns the fact that given
two monic consecutive polynomials n(z)and n+1(z)whose zeros are simple and
strictly interlacing on∂D, there exists a measuredμsupported on∂Dfor which
they are POPUC (see [9]). Moreover, if these polynomials have at most one zero
in common, the previous statement is also true. All such measures have the same
{j}

n
j=0. In particular, any polynomial nwith distinct zeros on∂Dis a POPUC

for some measuredμand n−1(z), n−2(z), . . .are not determined uniquely. In the
context of the works of Delsarte and Genin [17–20], the interlacing property says that
we can obtain a new sequence ofsingular predictor polynomials(special POPUC
given by a three term recurrence relation) using the perturbed and original POPUC.
The singular predictor polynomials are used to replace the OPUC in several signal
problems and provide new techniques for the interpolation problem, the retrieval of
harmonics problem and Toeplitz systems. Moreover, these polynomials are related
with unitary Hessenberg matrices and, therefore, our interlacing conditions could be
used also to obtain new results in the perturbation and interlace theory of unitary
eigenvalues problems (see [4,22
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The manuscript is organized as follows. Section2presents some preliminaries and
basic background concerning POPUC. In Section3we proceed with the study of
the Uvarov transformation. Section4is devoted to the study of some special cases
of para–orthogonal polynomials associated with the Christoffel transformation. We
have included some numerical examples associated with the Bernstein–Szeg̋o mea-
sure and rational modifications of the Lebesgue measure in order to illustrate our
results.

2 Preliminary results

First, we need to define what we mean by ’zeros interlace on∂Dand, hence, to intro-
duce the concept of ordered cycle for a set of points on the unit circle. Ifωis a fixed
real number, then a vector of different complex numbers on∂D,(eiθ1,...,eiθn),is
said to becyclicly orderedif

ω<θ1<···<θn<ω+2π.

This means that for two different points on∂D,eiθ1andeiθ2withθ1,θ2∈[ω,
ω+2π), we have an order relation such that

eiθ1≺eiθ2 if and only ifθ1<θ2.

Let(eiθn,1,...,eiθn,n)and(eiψn,1,...,eiψn,n)be two cyclicly ordered sets of zeros
corresponding to the polynomialsfn(z)andgn(z), respectively. We say that the zeros
offn(z)andgn(z)strictly interlaceon∂Dif they can be numbered such that there
exists a numberω,sothat

ω<θn,1<ψn,1<···<θn,n<ψn,n<ω+2π. (4)

Note that the previous definition also includes the case when the role ofθn,kand
ψn,k,k=1,2,...,n, is reversed. This definition can be naturally extended to two
cyclicly ordered sets of zeros with different number of elements.
Let us now state and prove the main results to be used in the sequel.

Lemma 1Letfn(z)be an arbitrary polynomial with simple zeros on∂D,thenfn(z)
is a POPUC with respect to some nontrivial probability measure supported on∂D.

Proof As the zeros offn(z)lie on∂D,thenfn(z)=σz
nfn(1/z),σ∈∂D.By

differentiation, we get

fn(z)=
1

n
zfn(z)+σ

1

n
zn−1fn(1/z).

Sethn−1(z)=(1/n)fn(z), the above expression can be written as

fn(z)=zhn−1(z)+σh
∗
n−1(z).

Combining the Gauss–Lucas theorem [36, Thm. 2.1.1] and the Bonsall–Marden
lemma [3], we conclude that the zeros ofhn−1(z)lie onD

4
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theorem [24,Thm.I.],hn−1(z)is a OPUC with respect to some nontrivial probabil-
ity measure supported on∂D, and, consequently,fn(z)is the corresponding POPUC
[31,Thm.6.1].

Lemma 2Letfn(z)andgn(z)be two polynomials of exact degreenwhose zeros
strictly interlace on∂D. If the polynomial

fn(z)+cgn(z), c∈R\{0}, (5)

hasnzeros on∂D, then they are strictly interlacing with the zeros offn(z)andgn(z).

Proof As we are interested in the zeros, there is no loss of generality if we consider
an appropriated normalization of the polynomialsfn(z)andgn(z). From Lemma
1,fn(z)andgn(z)are POPUC with respect to two different nontrivial probability
measures supported on∂D. Hence, we can assume that

fn(z)=βPn(z)−βP
∗
n(z), β∈C\{0},

gn(z)=αQn(z)−αQ
∗
n(z), α∈C\{0},

wherePn(z)andQn(z)are the OPUC associated withfn(z)andgn(z), respectively.
That is, we consider sequences of normalized to (-1)-invariant POPUC, i.e.,f∗n(z)=
−fn(z)andg

∗
n(z)=−gn(z). Note thatfn(z)andgn(z)are not just “any polynomial

with simple zeros on the unit circle”.
Let us introduce two auxiliary functions

fn(θ):=
fn(z)

izn/2
, gn(θ):=

gn(z)

izn/2
,

where(reiθ)1/2=
√
reiθ/2,r>0, andθ∈(ω,ω+2π). Clearly,fn(θ)andgn(θ)

are real–valuedC∞ functions defined on(ω,ω+2π)and, by definition they have
the same number of zeros on(ω,ω+2π)asfn(z)andgn(z)on∂D, respectively.
Moreover, if one denotes the zeros offn(θ)(resp.gn(θ))byxn,k(resp.yn,k), on the
account of the interlacing property of the zeros offn(z)andgn(z)on∂D,wehave
that the zeros offn(θ)andgn(θ)satisfy

ω<yn,n<xn,n<···<yn,1<xn,1<ω+2π, (6)

or in the reverse order.
Now, let us define a functionhn(θ)as follows

hn(θ):=
fn(z)+cgn(z)

izn/2
=fn(θ)+cgn(θ),

where its zeros are denoted bytn,k,k=1,2,...,n. Notice thatfn(z)+cgn(z)is a
polynomial of degree at mostnand the number of their zeros on∂Dis exactly the
same as the number of zeros ofhn(θ)in(ω,ω+2π).Sincefn(z)+cgn(z)cannot
have more thannzeros, the number of zeros ofhn(θ)in(ω,ω+2π)cannot exceed
n. Without restriction of generality we can also assume

fn(ω+2π) >0, gn(ω+2π) >0, c>0

5
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Thus, if (6) holds,

sgnhn(yn,k)=sgnfn(yn,k)=(−1)
k,

sgnhn(xn,k)=sgngn(xn,k)=(−1)
k+1,

and the lemma is proved.

Remark 1An illustration of the comments about the normalization in the proof of
Lemma 2 can be shown through a simple example. Setf2(z)=(z−1)(z−i),a
(-i)-invariant polynomial, i.e.,f∗2(z)=−if2(z). It is clear thatf2(θ)is not a real-
valued function. Since we are interested in the zeros, there is no loss of generality if
we consider the polynomialf2(z)normalized to (-1)-invariant as

f2(z)=(1−i)
−1f2(z).

There holds

f2(θ)=
f2(e

iθ)
ieiθ

=sinθ+cosθ−1,

which is real-valued. Hence, an appropriated normalization offn(z)is found so that
fn(θ)is real-valued. Notice that for any other possible example of a polynomial with
simple zeros on the unit circle, the same process as above can be applied.

For polynomials with real zeros, the previous lemma is closely related to the
Hermite-Kakeya theorem [36, Thm. 6.3.8] and sometimes called Obrechkoff’s theo-
rem [37]. Extensions of this idea are mainly consider by Driver and coauthors (see
among others [1,2,21]).

Lemma 3Setζ∈∂Dand letaandbbe arbitrary nonzero complex numbers. Then,

aKn−1(z, ζ )+bzK
∗
n−1(z, ζ )=r(z)n(z, ωn),

wherer(z)andωnare given by

r(z)=−
1

kn

a+bζn−1z

1−ζz
n(ζ ), ωn=−

n(ζ )
∗
n(ζ )
.

Proof From [40, Lemma 2.2.8], we have

K∗n−1(z, ζ )=ζ
n−1Kn−1(z, ζ ),

where the∗-transform is assumed to operate only on the variablez. The result follows
after an elementary calculation.

An immediate consequence of the above lemma is the following.

Corollary 1Under the hypothesis of Lemma 3, the polynomial

aKn−1(z, ζ )+bzK
∗
n−1(z, ζ )

is an invariant POPUC of exact degreenassociated with the measuredμif and only
if

a=−bζn, ζ∈∂D

6
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From the above results, it is natural to expect that the interlacing properties of
zeros of OPRL under modifications of the orthogonality measure do not always hold
for arbitrary POPUC. In the next section we will study when these similarities still
hold for the Uvarov transformation.

3 The Uvarov transformation

The so–called canonical Uvarov transformation of a nontrivial probability measure,
dμ,supported on the unit circle appears by the addition to such a measure of a
positive mass point on the support of the orthogonality measure, i.e,

dμ(z)+mδα, α∈∂D. (7)

In order to (7) be positive definite (see [15, Prop. 4.1]), we will consider real numbers
msuch that

1+mKn−1(α, α) >0,

for everyn≥1. Note that form>0, the previous inequality always holds.
The Uvarov transformation has been investigated by both, the mathematical

physics and the orthogonal polynomials communities. An early reference is due to
Von Neumann and Wigner (see [39]). The name of Uvarov transformation, frequently
used by the orthogonal polynomials communities, as well as with the Christoffel and
Geronimus transformations, is probably due to Zhedanov (see [46]). Nevertheless, in
the theory of orthogonal polynomials, this transformation has a long history whose
origins can be traced back to Geronimus (see [23,25]). For a more recent contribution
with historical references the reader may consult [45].
The following result was first obtained by Geronimus (see for example [23,Eq.

3.30]), and rediscovered and extended by Cachafeiro and Marcelĺan (see [5–7],
among others). Furthermore, for OPRL it was rediscovered by Nevai (see [35]).

Theorem 1([25])Let{Un}n≥0be the sequence of polynomials associated with the
Uvarov transformation(7). Then,

Un(z)= n(z)−MnKn−1(z, α),

where

Mn=
m n(α)

1+mKn−1(α, α)
.

Taking into account their potential applications, the relation between the POPUC
associated with the Uvarov transformation and the unperturbed ones deserves
attention, especially regarding their zeros.
Let us define by

Un(z, βn):=Un(z)+βnU
∗
n(z), (8)

the POPUC associated with the Uvarov transformation (7). Using the previous the-
orem one can obtain an analog result for POPUC. Note that the POPUC (3)and(8

7
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Proposition 1The following relation holds:

Un(z, βn)= n(z, βn)+sn(z)n(z, τn),

where

sn(z)=
1

kn

Mn+βnMnα
n−1z

1−αz
n(α), τn=−

n(α)
∗
n(α)
. (9)

Proof This result follows from (8), Theorem 1 and Lemma 3.

From the above proposition and Lemma 2 it is clear that for arbitrary parameters
βn, the zeros ofUn(z, βn)and n(z, βn)do not necessarily interlace.

Theorem 2Let n(z, βn),sn(z), and n(z, τn)be given as in Proposition 1. Let
(eiθ1,...,eiθn)be the cyclicly ordered set of zeros of the POPUC n(z, βn)such that

ω<θ1<···<θn<ω+2π,

and letlbe a positive integer number such that

θl<arg(α) < θl+1.

Then, the zeros of the polynomials n(z, βn)andsn(z)n(z, τn),βn=τn, strictly
interlace on∂Dif and only if

θl<argα
τn

βn
<θl+1 (mod(ω, ω+2π]). (10)

Proof Sinceβn=τn,then n(z, βn)and n(z, τn)interlace zeros on∂D(see for
example [41, Thm. 1.3]). Note thatαis a zero of n(z, τn). It is easy to check that
the zeros of n(z, βn)strictly interlace with the zeros ofsn(z)n(z, τn)if and only
if (10) holds.

Now, we are in a position to state our first results related to the interlacing
properties.

Theorem 3The zeros ofUn(z, βn)strictly interlace on∂D with the zeros of

n(z, βn)and n(z, τn)if and only if the conditions of Theorem 2 hold.

Proof Since we assume that n(z, βn)and n(z, τn)interlace zeros on∂Dand the
zeros ofUn(z, β)are on∂D, then the theorem follows as a direct consequence of
Lemma 2.

For discrete Sobolev OPRL, analogous results are proved in [11,33

8
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ing orthogonality on the unit circle, namely on the distribution of zeros of OPUC,
these results naturally move to the corresponding POPUC. To the best of the authors’
knowledge, the present contribution is the first one to be devoted to the study of
interlacing of zeros of POPUC under spectral transformations of the correspond-
ing para-orthogonality measure. Theorem 2 states unknown differences between the



behavior of zeros of OPRL and POPUC, while Theorem 3 shows that under certain
conditions such differences can be avoided.

3.1 Bernstein–Szeg̋ocase

Let us consider the following modification of the Bernstein–Szeg̋o measure (see
[40]),

1−|λ|2

|eiθ−λ|2
dθ

2π
+mδα, λ∈D, α∈∂D. (11)

It is well known that n(z)=z
n−λzn−1is the OPUC of degreenwith respect

to the Bernstein–Szeg̋o measure, thus,

n(z, τn)=z
n−λzn−1+τn(−λz+1), (12)

where

τn=−
α−λ

α−λ
αn−2. (13)

Moreover,sn(z)is given as in (9) withk0=1,kn=1/(1−|λ|
2)for everyn≥1, and

Mn=m
αn−1(α−λ)

1+n
|α−λ|

1−|λ|2

.

In order to illustrate Theorem 3, we consider forn=7 and the following choices
of the parameters:λ=−1/2i,m=1,α=−1andβ7=−i. In this case, (13)
yieldsτ7=3/5−4/5i. In order to check the interlacing stated in Theorem 3, we
compute the zeros of the polynomial 7(z,−i)=z

7+1/2iz6−1/2z−i, which are
−i,−0.995218+0.0976748i,−0.686236−0.727379i,−0.475521+0.879704i,
0.475521+0.879704i,0.686236−0.727379iand 0.995218+0.0976748i. It is easy
to see that

−0.995218+0.0976748i≺−1≺−0.686236−0.727379i. (14)

Finally, sinceατn/βn=4/5+3/5iand

−0.995218+0.0976748i≺−
4

5
−
3

5
i≺−0.686236−0.727379i, (15)

according to Theorem 2, 7(z,−i)andsn(z)7(z,3/5−4/5i)interlace zeros on∂D.
Thus, from Theorem 3,U7(z,−i), 7(z,−i)andsn(z)7(z,3/5−4/5i)interlace
zeros on∂D. Similarly, it is an easy exercise to check that for the same values of the
parameter andβ7=i, we do not have interlacing.
Figure1is obtained by usingWolfram Mathematica 9.01and shows the interlac-

ing property of the zeros ofU7(z,−i)(blue discs), 7(z,−i)(purple squares) and
sn(z)7(z,3/5−4/5i)(yellow diamonds). Figure2shows the behavior of the zeros
whenβ7=i.

1Wolfram Mathematica

9
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Fig. 1 Zeros of POPUC associated with the Uvarov transformation forβ7=−i

4 Further results

Notice that from (3) the difference between POPUC and OPUC is that they have
the same orthogonality conditions except that POPUC are not orthogonal to the con-
stants while this fact holds for OPUC. This one–dimension lowered condition makes
possible to get good properties for the zeros of POPUC in comparison with OPUC.
The counterpart to the deficiency of this one less orthogonality condition is the fact
that POPUC are not unique, and basically depend on a unimodular free parameter.
In the previous section, we have deduced conditions in order to find para–orthogonal
polynomials related to the same parameter such that their zeros under the Uvarov
transformation strictly interlace on∂D

10

. In this section, we will see how our approach
apply to other kind of transformations when the para–orthogonality parameters are
not necessarily the same.
Let us consider the so–called Christoffel transformation on the unit circle. This

transformation has the effect of multiply the orthogonality measure by a Laurent



Fig. 2 Zeros of POPUC associated with the Uvarov transformation forβ7=i

polynomial that is nonnegative on∂D. In this section, we will consider a class of
Christoffel transformation of the form

|z−α|2dμ(z), α∈∂D. (16)

Notice that (16) is always positive definite (see for example [15, Prop. 2.4]).
The Christoffel transformation (16) was defined for OPRL by Szeg̋o in his clas-

sical monograph (see [43]). This transformation leads to kernel polynomials (see
[12, Ch. 1, Sec. 7] and [43, Thm. 3.1.4]) playing an important role in the spectral the-
ory of orthogonal polynomials. For OPUC, the Christoffel transformation and their
extensions are mainly considered by Marcelĺan and co–authors (see, among others,
[10,15,26,32,34]). Fast algorithms to compute the QR step corresponding to the
Hessenberg matrices associated with Christoffel transformations have been recently
presented in [30

11
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Theorem 4([26])Let{Cn}n≥0be the sequence of orthogonal polynomials associ-
ated with the Christoffel transformation(16),then

(z−α)Cn−1(z)= n(z)−NnKn−1(z, α),

where

Nn=
n(α)

Kn−1(α, α)
.

Let us define by

Cn−1(z, βn−1):=Cn−1(z)+βn−1C
∗
n−1(z), βn−1∈∂D. (17)

the POPUC associated with the Christoffel transformation (16). Now, we can obtain
the analog of Proposition 1.

Proposition 2The following relation holds:

(z−α)Cn−1(z, βn−1)= n(z,−αβn−1)+tn(z)n(z, τn),

where

tn(z)=
1

kn

Nn−βn−1Nnα
nz

1−αz
n(α), (18)

andτngiven in(9).

Proof From (17), we get

(1−αz)Cn−1(z, βn)=(z−α)Cn−1(z)+βn(1−αz)C
∗
n−1(z).

Since,
((z−α)Cn−1(z))

∗=(1−αz)C∗n−1(z),

the rest of the proof follows as in the proof of Proposition 1.

Now, we can state without proof analogous results to those presented in Theorem
2 and Theorem 3.

Theorem 5Let n(z,−αβn−1),tn(z), and n(z, τn)be given as in Proposition 1.
Let(eiθ1,...,eiθn)be the cyclicly ordered set of zeros of the POPUC n(z,−αβn−1)
such that

ω<θ1<···<θn<ω+2π,

and letlbe a positive integer number such that

θl<arg(α) < θl+1.

Then, the zeros of the polynomials n(z,−αβn−1)andtn(z)n(z, τn),−αβn−1=
τn, strictly interlace on∂Dif and only if

θl<arg−
τn

βn−1
<θl+1 (mod(ω, ω+2π]). (19)

Theorem 6The zeros of(z−α)Cn−1(z, βn−1)strictly interlace on∂Dwith the zeros
of n(z,−αβn−1)and n(z, τn)

12
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The previous result for OPRL are contained in [12, Ch. 1, Sec. 7].

4.1 Rational case

Let us consider the following Christoffel transformation of the Bernstein-Szeg̋o
measure(see[27,40]),

|eiθ−α|2

|eiθ−λ|2
dθ

2π
, λ∈D, α∈∂D. (20)

Notice that in this case, as in the Bernstein–Szeg̋o case, n(z)=z
n−λzn−1is the

OPUC of degreen, thus, n(z, τn)andτnare given by (12)and(13), respectively.
On the other hand,tn(z)isgivenasin(18) withk0=1/(1−|λ|

2),kn=1for
everyn≥1, and

Nn=
αn−1(α−λ)

1+|λ|2+n|α−λ|2
.

Fig. 3 Zeros of POPUC associated with the Christoffel transformation forβ7=−
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Comparing (10)and(19), we can see that for the same values of the param-
eters the result shown in Figures1and2also holds for this case. In order to
illustrate Theorem 3, we consider forn= 7 and the same parameters as in the
Bernstein-Szeg̋o case. Hence,τ7and 7(z,−i)are the same as in the Bernstein–
Szeg̋o case. Finally, asτn/βn−1 = 4/5+3/5i,(14)and(15) hold. According
to Theorem 2, 7(z,−i)andtn(z)7(z,3/5−4/5i)interlace zeros on∂D.
Thus, from Theorem 3,C7(z,−i), 7(z,−i)andtn(z)7(z,3/5−4/5i)inter-
lace zeros on∂D. Similarly, it is a straightforward exercise to check that for the
same values of the parameter andβ7= i, we do not have interlacing for their
zeros.
Figure3is obtained by usingWolfram Mathematica 9.0and shows the interlac-

ing property of the zeros ofC7(z,−i)(blue discs), 7(z,−i)(purple squares) and
tn(z)7(z,3/5−4/5i)(yellow diamonds). In Fig.4, we consider the case in which
β7=i.

Fig. 4 Zeros of POPUC associated with the Christoffel transformation forβ7=
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15. Daruis, L., Herńandez, J., Marcelĺan, F.: Spectral transformations for Hermitian Toeplitz matrices. J.
Comput. Appl. Math.202, 155–176 (2007)

16. Daruis, L., Nj̊astad, O., Van Assche, W.: Para-orthogonal polynomials in frequency analysis. Rocky
Mountain. J. Math.33, 629–645 (2003)

17. Delsarte, P., Genin, Y.: The split Levinson algorithm. IEEE Trans. Acoust. Speech Signal Process34,
470–478 (1986)

18. Delsarte, P., Genin, Y.: The tridiagonal approach to Szeg̋o’s orthogonal polynomials, Toeplitz
linear systems, and related interpolation problems. SIAM J. Math. Anal.19, 718–735
(1988)

19. Delsarte, P., Genin, Y.: Tridiagonal approach to the algebraic environment of Toeplitz matrices, Part
I: Basic results. SIAM J. Matrix Anal. Appl.12, 220–238 (1991)

20. Delsarte, P., Genin, Y.: Tridiagonal approach to the algebraic environment of Toeplitz matrices, Part
II: Zeros and eigenvalues problems. SIAM J. Matrix Anal. Appl.12

15

, 432–448 (1991)



21. Driver, K., Jordaan, K.: Interlacing of zeros of shifted sequences of one-parameter orthogonal
polynomials. Numer. Math.107, 615–624 (2007)

22. Elsner, L., He, C.: Perturbation and interlace theorems for the unitary eigenvalue problem. Lineal
Algebra Appl.188/189, 207–230 (1993)

23. Geronimus, Ya.L.: Polynomials orthogonal on a circle and their applications. Amer. Math. Soc.
Translation104, 1–79 (1954). Translation of the Russian original 1948

24. Geronimus, J.(.aka.Ya.L.).: On the trigonometric moment problem. Ann. Math.47, 742–761 (1946)
25. Geronimus, Ya.L.: Orthogonal polynomials: Estimates, asymptotic formulas, and series of polyno-
mials orthogonal on the unit circle and on an interval. Authorized translation from the Russian
Consultants Bureau, New York (1961)
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