
This is a postprint version of the following published document: 

Marcellán, M.; Shayanfar, N. (2015). "OPUC, CMV matrices and perturbations of 
measures supported on the unit circle". Linear Algebra and its Applications, v. 485, 
November, pp. 305-344.
DOI: 10.1016/j.laa.2015.07.026

© Elsevier 2015 

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

Proyecto MTM2012-36732-C03-01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44311473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2015.07.026


OPUC, CMV matrices and perturbations of 
measures supported on the unit circle

Francisco Marcellána, Nikta Shayanfarb, ∗

a Instituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas, 
Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
b Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 
Leganés, Madrid, Spain

a b s t r a c t

n the linear space of Laurent polynomials 
spectral transformations of this functional are 
ations of Hermitian linear functionals 
 the unit circle. Some algebraic properties of 
ive way. We discuss the corresponding 
nnection between the associated Verblunsky 
he perturbed linear functionals, which is the 
MV matrices, is deeply analyzed.
, other families of perturbed Verblunsky 
trix, named Fundamental matrix, that is a 
c information about the family of orthogonal 
o another family of orthogonal polynomials 

n), nikta.shayanfar@gmail.com (N. Shayanfar).

1

Keywords:
Orthogonal polynomials on the unit 
circle
GGT matrix
CMV matrix
Fundamental matrix
Canonical linear spectral 
transformations

Let us consider a Hermitian linear functional defined o
with complex coefficients. In the literature, canonical 
studied. The aim of this research is focused on perturb
associated with a positive Borel measure supported on
the perturbed measure are pointed out in a construct
sequences of orthogonal polynomials as well as the co
coefficients. Then, the structure of the Θ matrices of t
main tool for the comparison of their corresponding C
From the comparison between different CMV matrices
coefficients will be considered. We introduce a new ma
tridiagonal symmetric unitary matrix, containing basi
polynomials. However, we show that it is connected t
through the Takagi decomposition.

* Corresponding author.
E-mail addresses: pacomarc@ing.uc3m.es (F. Marcellá



1. Introduction

The Jacobi matrices come from the representation of the multiplication operator in
terms of orthogonal polynomials on the real line (OPRL), taking into account the three 
term recurrence relation they satisfy. The spectral analysis of these matrices yields an 
accurate information about the zeros of OPRL. In the case of orthogonal polynomials 
on the unit circle (OPUC) the representation of the multiplication operator in terms of 
the OPUC yields a Hessenberg matrix, that is known in the literature as GGT matrix. 
The GGT representation has several limitations, in particular, the matrix is not unitary. 
Moreover, its complicated structure yields some difficulties in the study of the spectral 
theory [30]. By using Laurent orthogonal polynomials instead of orthogonal polynomi-
als, the representation of the multiplication operator gives a five-diagonal matrix, called 
CMV matrix. From a linear algebraic point of view, it is a remarkable simplification 
that the eigenvalue problem for certain Hessenberg matrices reduces to the eigenvalue 
problem of a five-diagonal matrix [55]. In fact, the CMV matrices in the theory of or-
thogonal polynomials on the unit circle constitute a unitary analogue of Jacobi matrices 
for orthogonal polynomials on the real line.

To begin with, let L be a positive definite Hermitian linear functional, and let us define 
ls, while for a quasi-definite Hermitian 
ic orthogonal polynomials. Throughout 
plicitly specified, we assume it is a pos-
 the GGT matrix and CMV matrix for 
e unit circle. Their entries are given in 

They provide a qualitative information 

ent perturbations of the measure on the 
ls as well as the relation between their 
or the Verblunsky sequence {Φn(0)}n�1
and {Φ̃n(0)}n�1 the CMV matrix and

erturbed measure. Since C includes 2 ×2
of C̃ we will need the connection between

 several equivalence relations, generally 
he situation for the unitary matrix case 

 unitary *congruence, which is the finest
bases in a linear pace, and it is shown
of unitary matrices, which provides the
es, can be obtained by using the spectral
some particular families of Verblunsky
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its associated family of orthonormal polynomia
linear functional we will have a family of mon
this paper, when the linear functional is not ex
itive definite linear functional. We characterize
nontrivial probability measures supported on th
terms of the so-called Verblunsky coefficients. 
about the family of orthogonal polynomials.

Our first goal is to analyze the effect of differ
corresponding families of orthogonal polynomia
CMV matrices. Suppose C is the CMV matrix f
associated with a measure. We will denote by C̃
the sequence of Verblunsky coefficients for the p
block matrices, called Θ matrices, for the study 
the corresponding Θ matrices as an initial step.

The relation of Θ matrices can be done via
called congruence relations. Roughly speaking, t
is as follows.

• On one hand, we focus our attention on the
unitary relation for changing orthonormal 
to be equivalent to *congruence. A family 
unitary similarity relation between Θ matric
decomposition and it is shown to hold for 
coefficients.



• On the other hand, the simplified relation of congruence is applied for general
Verblunsky coefficients which is gained by the Takagi decomposition. The families of
unitary matrices are among those that are likely to play, in the case of congruence,
the role of the *congruence for the unitary similarity relation.

Later on, we indicate how the change of the Verblunsky sequence can affect the CMV 
matrix, and finally, we analyze the canonical linear spectral transformations and their 
corresponding CMV matrices.

Our next goal is to introduce a new perturbed measure by putting gaps between 
Verblunsky coefficients. This family yields a novel matrix, named Fundamental matrix. 
It includes all the information about the Verblunsky coefficients. The novelty of this 
matrix allows us to make the connection with the CMV matrix. At this point, the study 
of the measure of the Fundamental matrix remains an open problem, as far as we know.

The structure of this paper is as follows. In Section 2, after providing a basic back-
ground of matrix analysis, we will deal with CMV matrices in the framework of the 
theory of orthogonal polynomials on the unit circle. The aim of Section 3 is to begin the 
development of the structural formulas for the unitary similarities. In Section 4, the basic 
role of equivalence relations for Θ matrices is established. From these facts, in Section 5

ponding CMV matrices. In Section 6, we 
pectral transformations. The effect of a 
efficients yields a new structured Funda-
. We guess that the Fundamental matrix 
, an important role in the same way as 
olynomial basis. Some properties of this 
een also studied in Section 7. Particular 
s are given in Section 8 in order to ana-
eflected by the canonical linear spectral 
re of the Fundamental matrix under the 
 Eventually, the analysis of the spectral 
trix remains an open problem and it is 
zed the main results of our contribution.

UC

 matrices, it is necessary to give some 
omplete description of what follows, the 

atrices. Note that a complex symmetric
of real symmetric or complex Hermitian 
atrix is similar to a complex symmetric 
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we deal with the relationship between the corres
analyze the above results for canonical linear s
particular perturbed sequence of Verblunsky co
mental matrix, which is introduced in Section 7
will play, with an undetermined different basis
the CMV matrix in the Laurent orthonormal p
new matrix in terms of the CMV matrix have b
examples of sequences of Verblunsky coefficient
lyze how CMV and Fundamental matrices are r
transformations. The preservation of the structu
Takagi decomposition is discussed in Section 9.
measure for the corresponding Fundamental ma
explained in Section 10, where we have summari

2. Basic background on matrix analysis and OP

2.1. Matrix analysis

To explain the origin of similarities of CMV
background from matrix analysis. For a more c
reader should turn to [32].

Let Mn(C) denote the set of n ×n complex m
matrix does not retain the desirable properties 
matrices. In fact any real or complex square m



matrix [23], but there exist several equivalence relations between complex square matri-
ces. The most important relations related to similarity transformations of matrices are 
as follows.

First, we consider the *congruence equivalence relation, A = SBS∗ for some non-
singular matrix S (note that S∗ denotes the complex conjugate transpose of S), and 
the finer relation unitary *congruence (unitary similar) A = UBU∗ for some unitary 
matrix U . Next, we restrict ourself to the congruence relation, A = SBST for some 
nonsingular matrix S, and the finer relation unitary congruence A = UBUT for some 
unitary matrix U . It is easy to check that the above mentioned relations are equivalence 
relations, and canonical forms for the square complex matrices are given in [33,34].

Similarity relation defines similar matrices that correspond to the same linear trans-
formation in different bases, whereas congruent matrices, which have been obtained 
by congruent relation, correspond to equivalent bilinear forms. The last decade has wit-
nessed a growing interest in the field of congruence, see [3,4,16,17,37–39] in the literature.

2.1.1. Unitary *congruence and *congruence
Unitary similarity is a natural equivalence relation in the study of normal matrices: 

al. Our consistent point of view is that 
gruence, rather than a special kind of 
ith methods from the general theory of 
larity, one can use the classical Specht’s

 similar if and only if trW (A, A∗) =
 noncommutating variables s and t.

of conditions must be verified in terms of 
s the sum of the diagonal elements of the 
 an effective criterion [56]. Particularly, 
ces to check three trace identities, for 

re unitary similar if and only if tr(A) =
).

ay be removed if it is known in advance 
int of view, we state the following lemma.

re similar if and only if they are unitary 
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UAU∗ is normal if U is unitary and A is norm
unitary *congruence is a special kind of *con
similarity A = SBS−1, that is to be analyzed w
*congruence. In order to verify the unitary simi
Theorem [32].

Theorem 2.1. Matrices A and B are unitary
trW (B, B∗), for every monomial W (s, t) in the

Specht’s theorem requires that an infinite set 
the trace of the matrices, reminding that tr(A) i
matrix A. However, Pearcy made this theorem
a refinement of Pearcy idea ensures that it suffi
2 × 2 matrices [40,42].

Lemma 2.2. Let A, B ∈ M2(C). Then A and B a
tr(B), tr(A2) = tr(B2), and tr(A∗A) = tr(B∗B

Note that the condition tr(A∗A) = tr(B∗B) m
that A and B are normal. From the similarity po

Lemma 2.3. Two normal matrices of any size a
similar.



Since Θ matrices have symmetric unitary structure, intertwining identities involving 
unitary matrices lead to characterizations for unitary *congruences and *congruences as 
follows.

Theorem 2.4. (See [35].) Let A and B be both unitary complex matrices, then A and B
are unitary *congruent if and only if they are *congruent.

The preceding argument shows that for Θ matrices, the study of unitary *congruent 
reduces to *congruent, for which the following lemma is applicable.

Lemma 2.5. Two normal matrices in Mn(C) are *congruent if and only if they have the
same rank and the same number of eigenvalues on each ray {reiθ : r > 0} from the 
origin.

Before proceeding to the congruence, we present one of the most fundamental facts 
about the normal matrices, Spectral Theorem, which will be used for obtaining *congru-
ence relation.

 and only if there exists a unitary matrix
tion

∗, (2.1)

pectral decomposition of A.

n size is closed under unitary similarity.

on in the study of complex symmetric 
nd A is symmetric. In a parallel devel-
gruence as a special kind of congruence, 
= SBS̄−1, where S̄ denotes the complex
for congruence, we have:

atrices are unitary congruent if and only 

 us that the study of unitary congruent 
ollowing lemma guarantees its existence.

ze are unitarily congruent if and only if 
e square roots of eigenvalues of A∗A and 
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Theorem 2.6. A matrix N ∈ Mn(C) is normal if
U such that U∗NU is diagonal. The representa

A = UDU

for unitary U and diagonal matrix D is called S

That is, the class of normal matrices of a give

2.1.2. Unitary congruence and congruence
Unitary congruence is an equivalence relati

matrices: UAUT is symmetric if U is unitary a
opment of *congruent, we deal with unitary con
rather than as a special kind of consimilarity, A 
conjugate of S. Comparatively to Theorem 2.4

Lemma 2.7. (See [35].) Two unitary complex m
if they are congruent.

The unitary structure of Θ matrices assures
relation is identical to congruent, for which the f

Lemma 2.8. Two symmetric matrices of any si
they have the same singular values (i.e. the sam
AA∗).



Remark 2.9. The singular values of a unitary matrix are equal to unity. Indeed, the 
eigenvalues are unimodular.

Noticing Remark 2.9 together with Lemma 2.8, as an immediate corollary, we get the 
desired criterion for the congruence between two complex matrices.

Corollary 2.10. Two symmetric unitary matrices in Mn(C) are unitary congruent.

In order to compute the unitary congruence factors, we need to introduce the Takagi 
decomposition which is a less known diagonalization method for complex symmetric 
matrices. It is an analog of the eigenvalue decomposition of Hermitian matrices. Actually, 
it combines the concepts of singular values and exploitation of structure with respect to 
complex bilinear forms. The symmetry of A is exploited by choosing unitary factors for 
the singular value decomposition.

Theorem 2.11 (Takagi decomposition). Let A ∈ Mn(C). If A is symmetric, there is a
unitary U ∈ Mn(C) such that

, (2.2)

whose diagonals are the singular values 

s of A and the diagonal elements of Σ are 
 values [32]. Since UT = Ū∗, the Takagi 
r value decomposition (SVD), that is the 
symmetric singular value decomposition
r computing the Takagi decomposition 
m, which applies to complex symmetric 
 Furthermore, the Takagi decomposition 
as been developed in [50]. Finally, if a 

o unitary, then its Takagi decomposition 
ratic radicals [36].

entity matrix, and the Takagi decompo-
orm

, (2.3)

e Takagi decomposition of Θ matrices 
od demonstrates how to get the Takagi 
 A ∈ M2(C).
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A = UΣUT

in which Σ is a nonnegative diagonal matrix, 
of A, in any desired order.

The columns of U are called the Takagi vector
its Takagi values, which are exactly its singular
decomposition is a symmetric form of the singula
reason why Takagi decomposition is also called 
(SSVD) in some contexts [5]. An algorithm fo
has been introduced in [5], and another algorith
tridiagonal matrices, has been presented in [65].
for that provides the Jordan canonical forms, h
complex matrix is not only symmetric but is als
can be found by arithmetic operations and quad

According to Remark 2.9, Σ in (2.2) is the id
sition of unitary symmetric matrices, take the f

A = UUT

for unitary matrix U .
Recently, an effective way for computing th

has been proposed in [36]. The following meth
decomposition of the unitary symmetric matrix



Lemma 2.12. For unitary symmetric matrix A ∈ M2(C), assume that the nonzero nor-
malized vector y ∈ C2 satisfies Aȳ = y. This vector can be chosen as

y = Ax̄ + x,

for an arbitrary nonzero unit vector x ∈ C2. Let V1 ∈ M2(C) be a unitary matrix that has
the vector y as its first column, and let V2 = Diag[1, υ] for some entry υ of modulus 1.
Then U = V1V2 is the desired Takagi decomposition of (2.3).

In attention to the Takagi decomposition, determination of the unitary congruence 
relation can be done as follows.

Theorem 2.13. Let A, B ∈ Mn(C) be unitary symmetric matrices. There exist unitary
matrices UA and UB such that U = UAU

∗
B makes the unitary congruence relation

UBUT = A. (2.4)

Proof. Consider the Takagi decomposition (2.3) for unitary symmetric matrices A and B. 
hat

= UBU
T
B .

n (2.4). The congruence obviously holds 
pletes the proof. �

lynomials on the unit circle, for a more 
er may refer to quiet prominent mono-

be a Hermitian linear functional in the 
{zn}n∈Z with complex coefficients such

c−n, n ∈ Z.

the linear space P of polynomials with 
,43]

〉
, p, q ∈ P.

ional with respect to the canonical basis 
trix [29]:

7

There exist unitary matrices UA and UB such t

A = UAU
T
A , B

Then we can substitute the above relations i
if we choose U satisfying UUB = UA. This com

2.2. Orthogonal polynomials on the unit circle

We begin with an overview of orthogonal po
complete description of what follows, the read
graphs and papers such as [24,25,59,60,64]. Let L
linear space of Laurent polynomials Λ := span
that

cn =
〈
L, zn

〉
=

〈
L, z−n

〉
=

A bilinear functional associated with L in 
complex coefficients is introduced as follows [24

〈
p, q

〉
L =

〈
L, p(z)q(z−1)

The Gram matrix of the above bilinear funct
{zn}n�0 is the following Hermitian Toeplitz ma



T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cn · · ·
c−1 c0 · · · cn−1 · · ·
...

...
. . .

...
c−n c−n+1 · · · c0 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

If the principal leading n ×n submatrices Tn of T are nonsingular for every n � 1, the
linear functional L is said to be quasi-definite. Then a unique family of monic orthogonal 
polynomials {Φn(z)}n�0 can be introduced such that〈

Φn,Φm

〉
L = knδn,m, (2.5)

where kn �= 0 for every n � 0. The linear functional L is called positive definite if all
Tn, n � 1, have positive determinant. If c0 = 1, then L has an integral presentation

〈
L, f

〉
=

∫
T

f(z)dμ(z), f ∈ P, (2.6)

T. In such a case, there exists a family 

κn > 0,

m, m, n � 0, (2.7)

al polynomials is Φn(z) = ϕn(z)
κn

.
znΦn(z−1), monic orthogonal polyno-

d recurrence relations due to Szegő [24,

n � 0, (2.8)

+1(0)Φ∗
n+1(z), n � 0, (2.9)

(0)|2, n � 1,
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for a unique nontrivial probability measure on 
{ϕn(z)}n�0 of orthonormal polynomials

ϕn(z) = κnz
n + · · · ,

such that ∫
T

ϕn(z)ϕm(z)dμ(z) = δn,

and its relation to the family of monic orthogon
Considering the reversed polynomial Φ∗

n(z) =
mials satisfy the following forward and backwar
59,64]:

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗
n(z),

Φn+1(z) = (1 − |Φn+1(0)|2)zΦn(z) + Φn

where Φ0(z) = 1.

Remark 2.14. Since we have〈
Φn,Φn

〉
L〈

Φn−1,Φn−1
〉
L

= 1 − |Φn



the so-called Verblunsky coefficients {Φn(0)}n�1 satisfy

• quasi-definite linear functionals: |Φn(0)| �= 1, n � 1,
• positive definite linear functionals: |Φn(0)| < 1, n � 1.

These coefficients characterize the corresponding family of orthogonal polynomials. In 
fact, there is a one-to-one correspondence between a linear functional and its sequence 
of Verblunsky coefficients [59]. More precisely:

Remark 2.15. For any sequence of Verblunsky coefficients {Φn(0)}n�1 where |Φn(0)| < 1,
n � 1, the relation (2.8) gives a family of orthonormal polynomials on T and the associ-
ated measure dμ is unique. The same holds for quasi-definite linear functionals.

Throughout this paper, in the positive definite case the Verblunsky coefficient 
Φn(0), n � 1, is always accompanied by a real number

ρn :=
(
1 − |Φn(0)|2

) 1
2 , (2.10)

.

sociated with dμ are defined as

t /∈ T, j � 0,

t /∈ T, j � 0.

la). For any n � 0 and y, z ∈ C with
ciated with {Φn(z)}n�0 is defined as

)Φ∗
n+1(z) − Φn+1(y)Φn+1(z)
kn+1(1 − yz) ,

n, it satisfies the so-called reproducing 

z) = p(y).
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where the square root is assumed to be positive

Definition 2.16. The functions of second kind as

qj(t) =
∫
T

ϕj(z)
t− z

dμ(z),

and we denote

Qj(t) =
∫
T

Φj(z)
t− z

dμ(z),

Theorem 2.17 (The Christoffel–Darboux Formu
yz �= 1, the nth polynomial kernel Kn(z, y) asso

Kn(z, y) =
n∑

j=0

Φj(y)Φj(z)
kj

=
Φ∗

n+1(y

and for every polynomial p of degree at most 
property ∫

T

Kn(z, y)p(z)dμ(



Remark 2.18. It can be easily observed that the Christoffel–Darboux Formula for a family 
of orthonormal polynomials becomes

Kn(z, y) =
ϕ∗
n+1(y)ϕ∗

n+1(z) − ϕn+1(y)ϕn+1(z)
1 − yz

.

For |α| �= 1, the confluent Christoffel–Darboux Formula is

Kn(α, α) = |Φ∗
n(α)|2 − |α|2|Φn(α)|2

kn(1 − |α|2) .

Moreover, for the reversed polynomial we get

Φ∗
n(z) = knKn(z, 0). (2.11)

2.2.1. GGT Matrix
The GGT matrix, from the initials of Geronimus, Gragg and Teplyaev, is one of the 

 [59]. It was studied by several authors, 
tribution of zeros of the nth orthogonal 
s on the unit circle [14,43], the frequency
s related to the complex semi-discrete 

 [1,51,62], among others.
ociated with a probability measure and 

 terms of their QR factorization instead 
5,20,49]. More precisely, in [21], explicit 
ect to the perturbed measure have been 

ls with respect to the initial probability 

nctions on the unit circle such that the

iθ)|2dμ,

ear operator g : P → P has a matrix rep-
ection, we consider first the orthonormal 
is the GGT matrix.

jϕj(z),

10
most interesting topics in the theory of OPUC
taking into account some applications as the dis
polynomial Φn(z) [18,27,59], quadrature formula
analysis problem [44,54], and integrable system
modified KdV equation, namely, the Schur flow

The connection between the GGT matrix ass
the perturbed linear functional, respectively, in
of the LU factorization has been analyzed in [1
expressions for polynomials orthogonal with resp
obtained in terms of the orthogonal polynomia
measure.

Let H = L2(T, dμ) be the Hilbert space of fu
norm associated with the inner product (2.6) as

‖ f ‖2
2,μ=

∫
T

|f(e

is finite. If we choose a basis for P, then every lin
resentation in terms of such a basis. In this subs
basis {ϕn(z)}n�0, whose matrix representation 

From (2.9) and (2.11), one gets

zϕi(z) =
i+1∑
j=0

Hi,



which shows the multiplication operator h : P → P on H, (h(p))(z) = zp(z), with respect 
to {ϕn(z)}n�0. The matrix representation is given by zϕ(z) = Hϕ(z), where

ϕ(z) = [ϕ0(z), ϕ1(z), · · ·]T . (2.12)

The entries of the matrix H can be obtained via

Hi,j :=
〈
zϕi, ϕj

〉
L, i, j � 0,

and therefore H is a semi-infinite irreducible lower Hessenberg matrix whose entries are 
given in terms of the Verblunsky coefficients {Φn(0)}n�1 as follows:

Hi,j =

⎧⎪⎨⎪⎩
−κj

κi
Φi+1(0)Φj(0), j � i,

κi

κi+1
, j = i + 1,

0, j > i + 1.
(2.13)

The characteristic polynomial of the principal leading n ×n submatrix Hn of H is the
nth monic orthogonal polynomial [18,27]. That is, the zeros of Φn(z) are the eigenvalues

vide useful relations between the zeros
coefficients. The increasing attention to 
 their extensive applications, makes the 
special interest. The recurrence relation 
unlike the scalar case) does not conclude 
such a representation can be obtained by 
tiplication operator in the linear space of 
ials are chosen as a basis, but the result 
 much more complicated structure than 

mportant class of measures characterized 

ity measure, the following statements are 

z) is the Christoffel function associated

e in H, i.e. the OPUC orthonormal se-
normal system in H.

s to S, the matrix H is not unitary, but 
y, in the sense that

11
of Hn. Hence, the spectral theory of H can pro
of orthogonal polynomials and the Verblunsky 
the analysis of the zeros of OPUC, according to
spectral study of the multiplication operator of 
of the orthogonal polynomials on the unit circle (
a spectral representation for their zeros. In fact, 
computing the matrix corresponding to the mul
complex polynomials when orthogonal polynom
is the irreducible Hessenberg matrix (2.13) with
the Jacobi matrix on the real line.

We now revisit the Szegő class S, which is an i
in [59].

Proposition 2.19. Let dμ be a nontrivial probabil
equivalent:

i. The measure belongs to the Szegő class S.
ii.

∑∞
n=0 |Φn(0)|2 < ∞.

iii. λ∞(0) > 0, where λ∞(z) = limn→∞
1

Kn(z,
with dμ.

iv. The linear space of polynomials is not dens
quence does not constitute a complete ortho

We can deduce that if the measure dμ belong
has orthonormal rows. It is called almost unitar



HH∗ = I, H∗H = I − λ∞(0)Φ(0)Φ(0)T ,

where I is the semi-infinite identity matrix, λ∞(0) was introduced in Proposition 2.19, 
Φ(0) = [Φ0(0), Φ1(0), · · ·]T .

Thus, the matrix H is unitary if and only if the measure does not belong to the Szegő 
class. This constraint is one of the main deficiencies of the GGT representation. Taking 
into account the linear space of Laurent polynomials Λ is dense in H independently of 
the measure μ, then it is natural to work with orthogonal Laurent polynomials instead 
of OPUC. The matrix representation of the multiplication operator in terms of the 
orthonormal Laurent polynomial basis given in [12] yields a five-diagonal matrix, called 
CMV matrix. It shows more convenient spectral representations for OPUC, and will be 
explained in the following subsection.

2.2.2. CMV Matrix
According to the latter description, GGT matrix does not seem a promising way to 

study properties of orthogonal polynomials on the unit circle. A more pertinent presen-
tation of orthogonal polynomials on the unit circle is through CMV matrix. This matrix 

or the zeros of orthogonal polynomials 
e GGT matrices according to its special 
oral and Velázquez [12], and hence the 

thogonal polynomials on the unit circle 
hogonal polynomials on the real line. In 
ltiplication operator in the linear space 
normal basis related to the orthogonal 
similar role among unitary matrices as 
for instance, see [45,61]. This analogy is 
andom matrix theory and integrable sys-
roblem [53] and scattering problem [58]. 
so attracted much attention in the last 

thonormalization of the basis {1, z, z−1,

itian functional L on Λ, we denote by 
polynomials defined by

n � 0,

n � 0,

e of orthonormal polynomials [12].

12
representation gives a spectral interpretation f
which is much simpler than the one given by th
structure. The initials CMV honor Cantero, M
name of the special unitary matrices.

The CMV matrices came to the theory of or
as a unitary analogue of Jacobi matrices for ort
fact, it comes from the representation of the mu
of Laurent polynomials, when a suitable ortho
polynomials is chosen. These matrices play a 
Jacobi matrices among all Hermitian matrices, 
illustrated in many fields of application such as r
tems [52], Dirichlet data of a circular periodic p
The spectral analysis of CMV matrices has al
years [2,12,13,31,60].

The CMV basis {χn(z)}n�0 is obtained by or
z2, z−2, · · ·} using the Gram–Schmidt process.

Definition 2.20. Given a positive definite Herm
{χn(z)}n�0 the sequence of orthonormal CMV 

χ2n(z) = z−nϕ∗
2n(z),

χ2n+1(z) = z−nϕ2n+1(z),

where {ϕn(z)}n�0 is the corresponding sequenc



The entries of the matrix representation of the multiplication operator in terms of the 
basis {χn(z)}n�0 of Λ (the CMV matrix) are

Ci,j :=
〈
zχi, χj

〉
L,

see [59,61] for more details. Taking into account the above sequence of orthonormal CMV 
polynomials satisfies a five-term recurrence relation that follows in a straightforward way 
from the recurrence relations for the corresponding orthonormal OPUC sequence, we get 
(see [59,61])

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Φ1(0) ρ1 0 0 0 · · ·
−Φ2(0)ρ1 −Φ2(0)Φ1(0) −Φ3(0)ρ2 ρ3ρ2 0 · · ·

ρ2ρ1 Φ1(0)ρ2 −Φ3(0)Φ2(0) Φ2(0)ρ3 0 · · ·
0 0 −Φ4(0)ρ3 −Φ4(0)Φ3(0) −Φ5(0)ρ4 · · ·
0 0 ρ4ρ3 Φ3(0)ρ4 −Φ5(0)Φ4(0) · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus,

ormal basis {χn(z)}n�0 of L2(dμ), the
ear space of Laurent polynomials is rep-
n in terms of the Verblunsky coefficients 

s useful for computational purposes.

ρn+1
Φn+1(0)

)
, (2.14)

, (2.15)

 1 × 1 block, denoted by 1, followed by 
 × 2 blocks, as follows:

⊕ Θ5 ⊕ · · · (2.16)

4 ⊕ · · · (2.17)

 of Θ factorization. The CMV matrix is 
0), Θ matrices are unitary which cause 
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Theorem 2.21. (See [12].) For the CMV orthon
multiplication operator f(z) → zf(z) in the lin
resented by the matrix C whose entries are give
of the measure dμ.

There is an efficient way of writing C which i

Definition 2.22. If

Θn :=
(
−Φn+1(0)

ρn+1

then the Θ factorization of the CMV matrix is

C = ML

where M is a tridiagonal matrix with a single
2 × 2 blocks, and L is a tridiagonal matrix of 2

M := 1 ⊕ Θ1 ⊕ Θ3

L := Θ0 ⊕ Θ2 ⊕ Θ

This definition reveals the appropriate name
a para-tridiagonal matrix and according to (2.1
the CMV matrix (2.15) to be unitary.



3. Congruence for Θ matrices

We have now completed all the steps required to get the relations of the matrices
Θn and Θ̃n under unitary *congruence and unitary congruence. It is worth stressing the
importance of viewing Θ matrices as the basic feature of CMV matrices.

3.1. *Congruence

To ensure that a unitary similarity relation exists for Θ matrices, some conditions 
have to be imposed on the complex Verblunsky coefficients.

Theorem 3.1. Let Θn and Θ̃n be the Θ matrices defined in (2.14), corresponding to
the Verblunsky coefficients {Φn(0)}n�1 and {Φ̃n(0)}n�1, respectively. Θn is unitarily
*congruent to Θ̃n if and only if

Im(Φn(0)) = Im(Φ̃n(0)), n � 1. (3.1)

Proof. The proof proceeds through four different approaches, depending on various prop-
erties of unitary similar matrices.

itarily *congruent to Θ̃n if and only if
directly to the condition (3.1).

unitary similarity as a particular case of 
ry *congruent to Θ̃n if and only if they
ave the same eigenvalues, which satisfy

− 1 = 0, (3.2)

− 1 = 0, (3.3)

o be hold.

y similarity is identical to *congruence. 
 Θn and Θ̃n, the necessary and sufficient
e eigenvalues which follows immediately 
ame rank is the clear characteristic of 

is problem can be given from a geometri-
values are the zeros of the characteristic
π
2 , such that λ1 = eiα and λ2 = −λ1.
< π

2 , then λ2 = ei(π−α). Following the
 that the eigenvalues of Θ̃n are ϑ1 = eiβ

α � β < π − α. (3.4)
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First approach: Applying Lemma 2.2, Θn is un
tr(Θn) = tr(Θ̃n), tr(Θ2

n) = tr(Θ̃2
n) which leads 

Second approach: We deal with the problem of 
similarity. Considering Lemma 2.3, Θn is unita
are similar. We already know similar matrices h

t2 + 2iIm(Φn(0))t

t2 + 2iIm(Φ̃n(0))t

and it is obvious to see that equality (3.1) has t

Third approach: Theorem 2.4 shows that unitar
On the other hand, Lemma 2.5 acclaims that for
condition for the unitary *congruent is the sam
from the second approach. In this case, the s
invertible Θ matrices.

Fourth approach: An alternative approach to th
cal point of view. For the Θ matrix Θn, its eigen
polynomial (3.2). Then, there exists 0 < α �=
Without loss of generality, suppose that 0 < α

same process for Θ̃n, there exists 0 < β < π
2 such

and ϑ2 = ei(π−β). β can be chosen as

α < β � π − α,



The following figure shows the location of the eigenvalues on the thick arc.

x

y

απ − α

π − α′ α′

λ1 = eiαλ2 = ei(π−α)

λ′
2 = ei(π−α′) λ′

1 = eiα
′

(−1, 0) (1, 0)

(0, 1)

 of the matrices, we have the same plot
of view

� α < π − β, (3.5)

), yields simultaneously

< β � α <
π

2 ,

 done for eigenvalues below the vertical 
genvalue. This proves that the matrices 
�
itary *congruence is equivalent to *con-

uation XA −AX = 0 to be solved. This 
ation AX − XB = C called Sylvester’s 
 matrix identity AX = XB is known as 

 solves a Sylvester’s equation in the case 
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(0,−1)

Next, we turn to Θ̃n, and changing the role
with β replaced by α. From an algebraic point 

β < α � π − β, β

and combining the inequalities of (3.4) and (3.5

0 < α � β <
π

2 , 0

which gives β = α. The same procedure can be
axis, namely α′ for the argument of the first ei
are constrained to have the same eigenvalues.

According to Theorem 2.4, for Θ matrices, un
gruence. Obtaining these relations needs the eq
equation is a special case of linear matrix equ
equation, which is well-studied in [23]. Besides, a
an intertwining relation. The following theorem
of unitary similarity of Θ matrices.



Theorem 3.2. For the Verblunsky coefficients {Φn(0)}n�1 and {Φ̃n(0)}n�1, let us assume
that condition (3.1) holds. Then there exist unitary matrices Un such that

Θn = UnΘ̃nU
∗
n, n � 0. (3.6)

Proof. For fixed n, (3.6) can be written as

ΘU = UΘ̃, (3.7)

which is a kind of Sylvester’s equation. One may be able to discover the special structure 
by replacing Θ and Θ̃ by canonical forms and studying the resulting intertwining relation
involving the canonical forms and a transformed U . Since Θ matrices are normal, the 
spectral decomposition (2.1) gives

Θ := UΘDΘU
∗
Θ, Θ̃ := UΘ̃DΘ̃U

∗
Θ̃, (3.8)

for unitary matrices UΘ and UΘ̃. Note that the distinct eigenvalues of Θ (which are equal
to eigenvalues of Θ̃) occur with modulus one on the diagonal of DΘ = DΘ̃. Replacing

ansformed Sylvester’s equation

Θ̃, (3.9)

 intertwining relation (3.9) is the identity

1, (3.10)

�
ent and *congruent can be presented for 
aightforward observation is that unitary 
of a special type. Indeed, it corresponds 
her. It is worthy to mention that (3.10)

 unitary congruence which, according to 
with any sequence of Verblunsky coeffi-
itary congruence and congruence for Θ
equired to be imposed on the Verblunsky 
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(3.8) in (3.7) and some manipulation get the tr

DΘŨ = ŨD

for Ũ := U∗
ΘUUΘ̃. The trivial commutator of the

matrix. Afterward

U = UΘU
−
Θ̃

is the desired unitary matrix displayed in (3.6).

We have already proved that unitary *congru
the Θ matrices under the condition (3.1). A str
similarity corresponds to a change of basis, but 
to a change from an orthonormal basis to anot
shows the matrix of change of basis.

3.2. Congruence

The remaining natural equivalence relation is
Corollary 2.10 holds for Θ matrices associated 
cients. Lemma 2.7 yields the equivalence of un
matrices. In this case, the condition (3.1) is not r
coefficients.



Corollary 3.3. For the Verblunsky coefficients {Φn(0)}n�1 and {Φ̃n(0)}n�1, there exist
unitary matrices Un such that

Θn = UnΘ̃nU
T
n . (3.11)

Proof. Ignoring the index n in the Takagi decomposition of Θn and Θ̃n, we have

Θ = UΘU
T
Θ , Θ̃ = UΘ̃U

T
Θ̃ , (3.12)

for unitary matrices UΘ and UΘ̃. Then Theorem 2.13 gives

U = UΘU
∗
Θ̃, (3.13)

for the congruence relation (3.11). �
Remark 3.4. It is surprising to note that, according to Theorem 3.2 and Corollary 3.3, 
both unitary *congruence and unitary congruence factor of Θn and Θ̃n is UΘU

∗
Θ̃

, look at
formulas (3.10) and (3.13), respectively. Aside from the fact that the unitary matrices of 
unitary *congruence in (3.8) have been obtained from the Spectral decomposition (2.1), 

ve been given by Takagi decomposition 

atisfy the condition (3.1), using Theo-
elation. Concerning any pair of complex 
}n�1, Corollary 3.3 connects the Θ ma-

licit formula how, given a pair of real 
)}n�1, unitary factors can be obtained.
nitary matrix in (3.6) by Δn.

ts {Φn(0)}n�1 and {Φ̃n(0)}n�1, the Θn

Δ∗
n, (4.1)

σn+1

1 μn+1

)
, (4.2)
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while for unitary congruent in (3.12), they ha
(2.2).

4. Computation of Θ matrices congruence

Since real Verblunsky coefficients trivially s
rem 3.2, we can obtain the unitary similarity r
Verblunsky coefficients {Φn(0)}n�1 and {Φ̃n(0)
trices by a unitary congruent relation.

4.1. Real Verblunsky coefficients

The following theorem describes in an exp
Verblunsky coefficients {Φn(0)}n�1 and {Φ̃n(0
To distinguish the real case, let us denote the u

Theorem 4.1. For the real Verblunsky coefficien
matrices satisfy

Θn = ΔnΘ̃n

where the unitary matrix Δn is defined as

Δn = 1
γn+1

(
μn+1
−σn+



and

μn := (Φn(0) + 1)(Φ̃n(0) + 1) + ρnρ̃n, (4.3)

σn := ρn(Φ̃n(0) + 1) − ρ̃n(Φn(0) + 1), (4.4)

γ2
n := 4(Φn(0) + 1)(Φ̃n(0) + 1). (4.5)

Proof. The matrix Θn for {Φn(0)}n�1 is spectrally decomposed, see (3.8), by the diag-
onal matrix of eigenvalues 1, −1 and the unitary matrix:

UΘ =
(Φn+1(0) + 1

2
) 1

2

( ρn+1
Φn+1(0)+1 1

1 − ρn+1
Φn+1(0)+1

)
.

The final statement (4.1) follows from (3.10) by some tedious calculations. �
Since the Verblunsky coefficients are real, the unitary matrix Δn can be simplified as

follows:

Corollary 4.2. Let ωn,i,j for i, j = 0, 1, be defined as follows

1 + (−1)jΦ̃n(0)
)
, (4.6)

n := ωn,1,0 − ωn,0,1. (4.7)

βn+1
ηn+1

)
. (4.8)

tion for Θ matrices that condenses for-

ns, deals with the unitary congruence of 
ients {Φn(0)}n�1 and {Φ̃n(0)}n�1.

be two sequences of Verblunsky coeffi-

T
n , (4.9)

d as
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ω2
n,i,j :=

(
1 + (−1)iΦn(0)

)(
and

ηn := ωn,0,0 + ωn,1,1, β

Then

Δn = 1
2

(
ηn+1
−βn+1

The latter corollary invokes a similarity rela
mulas (4.3)–(4.5).

4.2. Complex Verblunsky coefficients

Our final result, discussing congruence relatio
general sequences of complex Verblunsky coeffic

Theorem 4.3. Let {Φn(0)}n�1 and {Φ̃n(0)}n�1
cients. The congruence relation

Θn = UnΘ̃nU

holds for the unitary matrix Un, which is define



Un = 1
λn+1

(
τn+1 ξn+1
−ξn+1 τn+1

)
, (4.10)

where

τn := (Φn(0) − 1)(Φ̃n(0) − 1) + ρnρ̃n, (4.11)

ξn := ρn(Φ̃n(0) − 1) − ρ̃n(Φn(0) − 1), (4.12)

λ2
n := 4

(
1 −Re(Φn(0))

)(
1 −Re(Φ̃n(0))

)
. (4.13)

Proof. To begin with, let us first compute the Takagi decomposition of Θn as formula
(2.3). Following Lemma 2.12, let us deal with the most trivial choice for x = [1, 0]T , then 
y = Θnx̄ + x = [1 − Φn+1(0), ρn+1]T . After normalizing, y takes the form

yn = 1
ln+1

(
1 − Φn+1(0)

ρn+1

)
,

where ln is the 2-norm of y as l2n = |1 −Φn(0)|2 + ρ2
n = 2

(
1 −Re(Φn(0))

)
. The structure

of V1 shows that (
ρn+1

Φn+1(0) − 1

)
,

)
.

T
Θ . (4.14)

itary matrix. Simultaneously, Θ̃n is de-

ρ̃n+1

+1(0) − 1

)(
1 0
0 i

)
,

ain Un from (3.13). Some simple manip-

)(
1 − Φ̃n+1(0) ρ̃n+1

−iρ̃n+1 −i(Φ̃n+1(0) − 1)

)
.

in (4.10) is the desired congruence fac-
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V1 = 1
ln+1

1 − Φn+1(0)
ρn+1

and put

V2 =
(

1 0
0 i

Then UΘ := V1V2 satisfies

Θn = UΘU

The essential observation is that UΘ is a un
composed as Θ̃n = UΘ̃U

T
Θ̃

, where

UΘ̃ = 1
l̃n+1

( 1 − Φ̃n+1(0)
ρ̃n+1 Φ̃n

coupled with l̃2n = 2
(
1 −Re(Φ̃n(0))

)
.

It only remains to follow Corollary 3.3 to obt
ulation yields:

Un = 1
ln+1 l̃n+1

(
1 − Φn+1(0) iρn+1

ρn+1 i(Φn+1(0) − 1)

All things considered, the unitary matrix Un

tor. �



As a summary, Theorem 4.3 establishes a beautiful and substantial decomposition 
(4.14) for Θ matrices, and (4.9) is the most pleasant relation that can connect Θ ma-
trices, Θn and Θ̃n corresponding to complex Verblunsky coefficients {Φn(0)}n�1 and
{Φ̃n(0)}n�1.

The results motivated the adoption of two conventions:

• For real Verblunsky coefficients, we follow Theorem 4.1 to get unitary *congruence
(4.1) for Θ matrices.

• Once the Verblunsky coefficients are complex, we bring the unitary congruence (4.9)
from Theorem 4.3 into play.

A subtle point worth mentioning is that *congruence can be also a successful relation 
for the complex Verblunsky coefficients with identical imaginary parts.

5. Characterization of CMV matrices

The results of the previous section enable us to characterize the relation between
CMV matrices. Considering two families of Verblunsky coefficients {Φn(0)}n�1 and

elation.

f Verblunsky sequences {Φn(0)}n�1 and
atrices V and W such that

, (5.1)

⊕ V3 ⊕ · · ·
W2 ⊕ · · ·

Wn := Θ−1
2n Θ̃2n. (5.2)

atrices

= L−1L̃,

t. �
for any class of {Φ̃n(0)}n�1, the formula
e congruence notions of Θ matrices are
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{Φ̃n(0)}n�1, the following theorem shows this r

Theorem 5.1. Let C and C̃ be CMV matrices o
{Φ̃n(0)}n�1, respectively. There exist unitary m

V CW = C̃

where

V := 1 ⊕ V1 ⊕ V2

W := W0 ⊕W1 ⊕

and Vn and Wn are 2 × 2 matrices

Vn := Θ̃2n−1Θ−1
2n−1,

Proof. Given C̃ := M̃L̃ similar to (2.15), the m

V = M̃M−1, W

present an instructive approach to get the resul

The above theorem shows that, knowing Θ̃n

(5.1) yields the relation between C and C̃, so th
crucial in the investigation of CMV matrices.



To conclude this section, let us consider the sequence of Verblunsky coefficients 
{Φn(0)}n�1 and its associated CMV matrix, C, likely to C̃ for {Φ̃n(0)}n�1. We are now
in a position to summarize the relation between CMV matrices. Half of this assertion is 
characterized by the relation of Θ matrices which is studied in Section 4. The foregoing 
observations suggest that if one thinks of unitary to be preserved, then it is wise to sup-
pose that the Verblunsky coefficients lie on the real line. Theorem 4.1 provides unitary 
similarity relation (4.1) and Theorem 4.3 presents unitary congruence (4.9). The other 
half relies on Theorem 5.1 which augmented with identities that yield the relation of 
CMV matrices.

6. Perturbed measures

Let D = {z ∈ C : |z| < 1} denote the open unit disc on the complex plane and let dμ
be a non-trivial probability measure supported on the unit circle T = {z ∈ C : |z| = 1}. 
For a class of perturbations of the measure dμ, algebraic and analytic properties of the 
sequences of polynomials orthogonal with respect to the perturbed measure dμ̃ have 
been extensively studied, see [9–11,15,19–21,26,28,41,46,48,49] among others. We will 
focus our attention on three examples of perturbations:

), |z| = 1, |α| > 1, m ∈ C�{0}.

ristoffel (FC), Uvarov (FU ), and Geron-

ear spectral transformations (see [21]). 
tions for Hermitian Toeplitz matrices are 
 in [15,22], among others. The canonical 
een investigated by several authors. The 
s of a Jacobi matrix (the representation 
hogonal basis of polynomials in the real 
the family of linear and rational spectral 
66,67].
he corresponding families of orthogonal 
ars as a perturbation of the nontrivial 
 case of quasi-definite linear functionals, 
definite character of the perturbed linear 
 of the families of Verblunsky coefficients 
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(1) dμ̃C = |z − α|2dμ, α ∈ C, |z| = 1,
(2) dμ̃U = dμ + mδ(z − α), |α| = 1, m ∈ R+,
(3) dμ̃G = 1

|z−α|2 dμ + mδ(z − α) + mδ(z − ᾱ−1

They are known in the literature as canonical Ch
imus (FG) transformations. They are related by

• FC ◦ FG = I (identity transformation).
• FG ◦ FC = FU .

The above perturbations are examples of lin
On the other hand, rational spectral transforma
introduced in [57] and they have been analyzed
spectral transformations on the real line have b
matrix approach to the canonical transformation
of the multiplication operator in terms of an ort
line) as well as the analysis of the generators of 
functions, respectively, have been done in [7,63,

In this section, first, the relations between t
polynomials of the new measure dμ̃, that appe
probability measure dμ will be presented. In the
necessary and sufficient conditions for the quasi-
functional will be explained. Then, the behavior



of the perturbed family will be studied for each of the canonical linear transformations 
(Christoffel, Uvarov, and Geronimus). We particularly point out the unitary similarity 
relation of CMV matrices according to the perturbation of the measure.

6.1. Christoffel transformation

For α ∈ C, a Hermitian bilinear functional is defined as〈
p, q

〉
LC

=
〈
(z − α)p, (z − α)q

〉
L, p, q ∈ P.

In [15,48] the connection between the associated Hessenberg matrices using the QR 
factorization has been studied. In the real case, the iteration of the canonical Christoffel 
transformation yields a connection between the corresponding Jacobi matrices, and using 
the QR factorization of the Jacobi associated matrix, it has been analyzed in several 
papers [6,8,26,41,46].

Since the Verblunsky coefficients are the values of monic orthogonal polynomials at 
z = 0, one of the most important results about the perturbed measure is the explicit 
formula of the corresponding family of orthogonal polynomials for Christoffel transfor-

l polynomials with respect to LC is given

(α)
, α)Kn(z, α)

)
, n � 0.

e the family of orthogonal polynomials, 

nts for the Christoffel transformation is

BC(α, n), n � 1, (6.1)

2 − |Φ∗
n(α)|2

)
|α|2|Φn(α)|2 , (6.2)

α)(1 − |α|2)
|α|2|Φn(α)|2 . (6.3)

ation preserves positive definiteness of 
ive definite, dμ̃ is also positive definite, 
�= 0, n � 1.
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mation [48].

Proposition 6.1. The family of monic orthogona
by

Φ̃n(z) = 1
z − α

(
Φn+1(z) −

Φn+1

Kn(α

Since the Verblunsky coefficients characteriz
the following lemma illustrates them [21].

Lemma 6.2. The sequence of Verblunsky coefficie

Φ̃C,n(0) = AC(α, n)Φn+1(0) +

where

AC(α, n) =
α
(
|Φn(α)|

|Φ∗
n(α)|2 −

BC(α, n) = Φn(α)Φ∗
n(

|Φ∗
n(α)|2 −

Remark 6.3. The Christoffel canonical transform
the measure. That is, assuming dμ to be posit
but LC is quasi-definite if and only if Kn(α, α) 



For convenient references, we restate the Θ matrix for this measure:

Θ̃C,n :=
(−Φ̃C,n+1(0) ρ̃C,n+1

ρ̃C,n+1 Φ̃C,n+1(0)

)
, (6.4)

where ρ̃ 2
C,n := 1 − |Φ̃C,n(0)|2. Note that the index C changes to U and G for the Uvarov

and Geronimus measure, respectively, in the next two subsections.

6.2. The Uvarov transformation

In this section, we focus our attention on the Uvarov transformation. Consider the 
Hermitian bilinear functional

〈
p, q

〉
LU

=
〈
p, q

〉
L + mp(α)q(α), |α| = 1, m ∈ R+, p, q ∈ P.

In [15], the connection between the corresponding sequences of monic orthogonal poly-
nomials as well as the associated Hessenberg matrices using the LU and QR factorization 

ation has been discussed in [24,46], and 
ily of orthogonal polynomials have been 

l polynomials with respect to LU is given

α)
1(α, α)Kn−1(z, α).

culate Verblunsky coefficients.

ents

0) + BU (α, n), (6.5)

Φ∗
n−1(α)|2
mKn−1(α, α)

) , (6.6)

α)Φ∗
n−1(α)

n−1(α, α)
) , (6.7)

als with Uvarov perturbed measure.
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has been studied. The iteration of this transform
asymptotic properties for the corresponding fam
analyzed in [68].

Proposition 6.4. The family of monic orthogona
by

Φ̃n(z) = Φn(z) − mΦn(
1 + mKn−

We make use of the above proposition to cal

Lemma 6.5. The sequence of Verblunsky coeffici

Φ̃U,n(0) = AU (α, n)Φn(

with

AU (α, n) = 1 − m|
kn−1

(
1 +

BU (α, n) =
−mαΦn−1(

kn−1
(
1 + mK

characterizes the family of orthogonal polynomi



Remark 6.6. For fixed α, the necessary and sufficient conditions about the choices of 
m ∈ R+ such that the linear functional LU is quasi-definite have been obtained in [21,
48], which is 1 +mKn−1(α, α) �= 0, n � 1, in contrast to the fact that it is unconditionally
true for positive definite measures.

6.3. Geronimus transformation

There are many solutions to the inverse problem of Christoffel transformation〈
(z − α)p, (z − α)q

〉
LG

=
〈
p, q

〉
L, p, q ∈ P,

which are defined up to the addition of a trivial linear functional mδ(z−α) +mδ(z−ᾱ−1).
Here for m ∈ C\{0}, |α| > 1, we consider

〈
p, q

〉
LG

=
∫
T

1
|z − α|2 p(z)q(z)dμ + mp(α)q(ᾱ−1) + mp(ᾱ−1)q(α),

where LG is called the Geronimus transformation of L. The relation between the corre-
s and the associated Hessenberg matrices 
resented in [28]. Besides, a special case 

yzed in [20].

c orthogonal polynomials with respect to 

1 + (z − α)
n−1∑
j=0

Aj

kj
Φj(z)

)
,

ᾱ−1), 0 � j � n, (6.8)

(ᾱ− α−1)ϕj(ᾱ−1)|2, (6.9)

ents associated with LG is given by:

, k)Φk(0), n � 1, (6.10)
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sponding family of monic orthogonal polynomial
is stated in [47]. A more general framework is p
of the Geronimus transformation has been anal

Proposition 6.7. (See [20].) The family of moni
LG is

Φ̃n+1(z) = (z − α)Φn(z) + An

εn−1(α)

(
where

Aj = Qj(α) + m(ᾱ− α−1)Φj(

and

εn(α) := ‖μG‖ −
n∑

j=0
|qj(α) + m

where ‖μG‖ =
∫
T

dμ
|z−α|2 + m + m.

Lemma 6.8. The sequence of Verblunsky coeffici

Φ̃G,n(0) = An−1

εn−2(α) +
n−1∑
k=0

D(n



where

D(n, k) :=
{

− An−1Ak

εn−2(α)kk
α, 0 � k � n− 2,

−α, k = n− 1.
(6.11)

Remark 6.9. The linear functional LG is quasi-definite if and only if εn(α) �= 0, n � 0.

6.4. CMV matrices corresponding to the canonical spectral transformations

Let us remind that our aim is to study the unitary similarity relation between CMV 
matrices. First, the matrix (4.8) characterizes the unitary relation of Θ matrices Θn

and Θ̃C,n, introduced in (2.14) and (6.4), respectively. (The same relation is required for
Uvarov and Geronimus measure, when the index C changes to U and G, respectively.) We 
remark that the comparison has been made for real Verblunsky coefficients by applying 
Theorem 4.1, and for complex Verblunsky parameters, Theorem 4.3 gives the desired 
relation, although the complicated structure of the transformed Verblunsky coefficients 
does not let us simplify the unitary matrix (4.10). Then formula (5.2) uses the relation 
of Θ matrices, and finally, (5.1) shows the explicit relation between C and C̃.

ces reduces to the computation of ωn,i,j

n explicit formula of ωn,i,j for the above

toffel, Uvarov and Geronimus transfor-

(−1)jBC(α, n)
AC(α, n) + (−1)jΦn+1(0)

)
,

(−1)jBU (α, n)
AU (α, n) + (−1)jΦn(0)

)
,

n−1

α) +
n−1∑
k=0

(−1)jD(n, k)Φk(0)
)
.

 (6.1), (6.5) and (6.10) being substituted 
 making the technical relationship for Θ

ress the main novel issue of this paper,
n developed by making some periodic 
e put zeros between every two consec-
en we have a new family of Verblunsky
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In short, the desired relation of CMV matri
in (4.6). In the following theorem, we indicate a
mentioned transformations.

Theorem 6.10. The coefficients ω2
n,i,j for Chris

mations are respectively given by:

ω2
n,i,j(C) :=

(
1 + (−1)iΦn(0)

)
AC(α, n)

(1 +

ω2
n,i,j(U) :=

(
1 + (−1)iΦn(0)

)
AU (α, n)

(1 +

ω2
n,i,j(G) :=

(
1 + (−1)iΦn(0)

)(
1 + (−1)jA

εn−2(

The proof is the matter of computation from
in (4.6). In fact, ωn,i,j gives a useful formula for
matrices.

7. The Fundamental matrix

In this section, we are in a position to add
called Fundamental matrix. The idea has bee
gaps between the Verblunsky coefficients. If w
utive Verblunsky coefficients in {Φn(0)}n�1, th



coefficients {Φ̃n(0)}n�1, and deriving the Θ factorization of the new family introduces a
new linear functional. Let us consider the general case of this special perturbation, for 
which we interrupt the Verblunsky coefficients by putting k− 1 zeros between every two 
consecutive Verblunsky coefficients.

Definition 7.1. Let {Φn(0)}n�1 be the Verblunsky coefficients associated with orthogo-
nal polynomials {Φn(z)}n�0. Assume k a positive integer, k-Verblunsky coefficients are
defined as:

Φ̃k,n(0) :=
{

Φn
k
(0), k |n,

0, k � |n. (7.1)

Since Θ matrices play an important role in C̃, first let us compute Θ̃k,n in terms of
Θn.

Proposition 7.2. The Θ matrices associated with the Verblunsky coefficients {Φ̃k,n(0)}n�1
are given by

˜ n ≥ 0, (7.2)

j ∈ Z,

j /∈ Z,
(7.3)

)
. (7.4)

�1 similar to (2.14),

ρk,n+1
Φk,n+1(0)

)
.

k,n+1

n+1
k

(0)

)
= Θn+1

k −1.

ives Θ̃k,n = J .

roof. �
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Θk,n := Λn+1
k

,

where

Λj :=
{

Θj−1,

J,

and

J :=
(

0 1
1 0

Proof. Let us define the Θ matrix of {Φ̃k,n(0)}n

Θ̃k,n :=
(
−Φk,n+1(0)

ρk,n+1

We will consider two cases:

i. If k |n + 1, then (7.1) gives

Θ̃k,n :=
(−Φn+1

k
(0) ρ

ρk,n+1 Φ

ii. If k � |n + 1, then Φ̃k,n+1(0) = 0 and (2.10) g

Taking Λj as in (7.3) thus we complete the p



Particularly, we obtain the CMV matrix of k-Verblunsky coefficients for k = 2.

Theorem 7.3. Let us consider the family of orthogonal polynomials corresponding to the 
2-Verblunsky coefficients defined in (7.1). The Θ factorization of the CMV matrix can 
be given as:

M̃ := 1 ⊕ Θ0 ⊕ Θ1 ⊕ Θ2 ⊕ Θ3 ⊕ · · · (7.5)

L̃ := J ⊕ J ⊕ J ⊕ J ⊕ · · · (7.6)

Proof. By definition, we have

M̃ := 1 ⊕ Θ̃2,1 ⊕ Θ̃2,3 ⊕ Θ̃2,5 ⊕ Θ̃2,7 ⊕ · · ·

L̃ := Θ̃2,0 ⊕ Θ̃2,2 ⊕ Θ̃2,4 ⊕ Θ̃2,6 ⊕ · · ·

Formulas (7.2) and (7.3) show that

Θ̃2,n =
{

Θn−1
2

, n : odd,
n : even.

(7.7)

e above formulas. �
ce. Actually, looking carefully at relation 
ing a new matrix namely Fundamental 

2 ⊕ Θ3 ⊕ · · · (7.8)

d with the sequence of Verblunsky coef-
ollowed by 2 × 2 block Θ matrices.

about the family of orthogonal polyno-
is noticed that the Fundamental matrix 
 in (7.5).
al matrix, and now we are ready to in-
se of the relation can be seen through 

ndamental matrix F are related by

(7.9)
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J,

(7.5) and (7.6) are the direct conclusion of th

This observation has an important consequen
(7.5), Theorem 7.3 is the motivation for defin
matrix.

Definition 7.4. The matrix

F := 1 ⊕ Θ0 ⊕ Θ1 ⊕ Θ

is said to be the Fundamental matrix associate
ficients {Φn(0)}n�1, where 1 is a 1 × 1 matrix f

Since Θ matrices give extensive information 
mials, it is wise to collect all these matrices. It 
is not only one of the factors of Θ factorization

We have already introduced the Fundament
voke its connection with CMV matrix. The ea
uncomplicated calculations.

Proposition 7.5. The CMV matrix C and the Fu

C = FT ,



where T can be decomposed as T = SL

S := 1 ⊕ S0 ⊕ S1 ⊕ S2 ⊕ S3 ⊕ · · · (7.10)

where

Sn = Θ−1
n Θ2n+1, n � 0, (7.11)

and L is introduced in (2.17).

The connection of Fundamental matrices for a pair of Verblunsky coefficients 
{Φn(0)}n�1 and {Φ̃n(0)}n�1 is stated as follows.

Theorem 7.6. Let us assume that {Φn(0)}n�1 and {Φ̃n(0)}n�1 have F and F̃ , respec-
tively, as Fundamental matrices. Let

P := 1 ⊕ P0 ⊕ I ⊕ P1 ⊕ I ⊕ P2 ⊕ I ⊕ · · ·

Q := 1 ⊕ I ⊕Q ⊕ I ⊕Q2 ⊕ I ⊕Q3 · · ·

= Θ−1
2n−1Θ̃2n−1. (7.12)

. (7.13)

ed as F = F+F−, where

I ⊕ Θ4 ⊕ I ⊕ · · ·

3 ⊕ I ⊕ Θ5 ⊕ · · ·

imilar arguments to those given for the 

e transformed Verblunsky coefficients 
rblunsky coefficients {Φn(0)}n�1.

and Fundamental matrix of {Φn(0)}n�1

(7.14)
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1

where Pn and Qn are block matrices:

Pn := Θ̃2nΘ−1
2n , Qn :

Then

PFQ = F̃

Proof. The matrix F in (7.8) can be decompos

F+ := 1 ⊕ Θ0 ⊕ I ⊕ Θ2 ⊕

F− := 1 ⊕ I ⊕ Θ1 ⊕ I ⊕ Θ

To verify our claim, it is enough to follow s
CMV matrices in the proof of Theorem 5.1. �

Now, we compare the CMV matrix of th
{Φ̃n(0)}n�1 with the Fundamental matrix of Ve

Theorem 7.7. The CMV matrix of {Φ̃n(0)}n�1
are connected through

C̃ = F T̃ ,



where T̃ can be decomposed as T̃ = S̃L̃, in which S̃ := 1 ⊕ S̃0 ⊕ S̃1 ⊕ S̃2 ⊕ · · · where the
blocks are

S̃n = Θ−1
n Θ̃2n+1, (7.15)

and L̃ is (2.17) for {Φ̃n(0)}.

Proof. The matrices M, L become M̃, L̃ for the transformed Verblunsky coefficients.
Proposition 7.5 shows that by choosing S̃n as (7.15) and L̃n = Θ̃n, we complete the
proof. �

The relation between the matrices C̃ and F̃ , the CMV and Fundamental matrices
of the transformed Verblunsky coefficients, can be shown in a very similar way as in 
Proposition 7.5.

Corollary 7.8. Let T̃ := S̃L̃, and S̃ be defined likely to the matrix (7.10) with entries

S̃n = Θ̃−1
n Θ̃2n+1, (7.16)

. The CMV and Fundamental matrices

(7.17)

t, knowing Θ̃n for any family of trans-
(7.13), (7.9), (7.14), and (7.17) give the 
C̃, respectively.

d Fundamental matrices of Verblunsky
fficients {Φ̃k,n(0)}n�1 defined in (7.1),

2 ⊕ · · ·
)

= C̃,

Wn := Θ−1
2n Λ 2n+1

k
.

· · ·
)(

L̃0, L̃1, L̃2, · · ·
)
,

L̃n = Λ 2n+1
k

.

 ⊕ I ⊕Q1 ⊕ I ⊕Q2 ⊕ I ⊕Q3 · · ·
)

= F̃ ,

Qn := Θ−1
2n−1Λ 2n

k
.
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and L̃ contains even Θ matrices of {Φ̃n(0)}n�1
are connected through

C̃ = F̃ T̃ .

Remark 7.9. The above computation shows tha
ferred orthogonal polynomials, formulas (5.1), 
relations C ∼ C̃, F ∼ F̃ , F ∼ C, F ∼ C̃ and F̃ ∼

Corollary 7.10. Let C, F and C̃, F̃ be CMV an
sequences of {Φn(0)}n�1 and k-Verblunsky coe
respectively. The following relations hold

(i).
(
1 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ · · ·

)
C
(
W0 ⊕W1 ⊕W

Vn := Λ 2n
k

Θ−1
2n−1,

(ii). C̃ = F T̃ , where T̃ =
(
1 ⊕ S̃0 ⊕ S̃1 ⊕ S̃2 ⊕

S̃n = Θ−1
n Λ 2n+2

k
,

(iii).
(
1 ⊕ P0 ⊕ I ⊕ P1 ⊕ I ⊕ P2 ⊕ I ⊕ · · ·

)
F
(
1

Pn := Λ 2n+1
k

Θ−1
2n ,



8. Examples

In this section, we will show how the behavior of the Verblunsky coefficients can affect
the CMV matrices. The examples are meant to illustrate the behavior of the CMV and 
Fundamental matrices.

8.1. Example 1

The first example corresponds to the trivial sequence of Verblunsky coefficients 
{Φn(0)}n�1 = {0}. Since it satisfies the second condition of Proposition 2.19, the corre-
sponding measure belongs to the Szegő class.

Observe that the Θ matrix of this family is equal to (7.4) and, consequently the CMV 
and Fundamental matrices are obtained as follows:

C = E1,2 +
∑

i:even
Ei,i+2 +

∑
3�i:odd

Ei,i−2,

F = E1,1 +
∑

Ei,i+1 +
∑

3�i:odd

Ei,i−1,

) equal to 1, and all other entries equal

erblunsky coefficients {Φn(0)}n�1 = {0}
atrix Θ̃n can be written as

η2
n+1 − β2

n+1
2βn+1ηn+1

)
, (8.1)

(
1 − Φ̃n(0)

) 1
2 , (8.2)(

1 − Φ̃n(0)
) 1

2 . (8.3)

+ Φ̃n(0)
) 1

2 ,

− Φ̃n(0)
) 1

2 .

t satisfies the unitary similarity relation
 the unitary matrix Θ̃n. �
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i:even

where Ei,j stands for the matrix with entry (i, j
to zero.

Proposition 8.1. If we perturb the sequence of V
to get the transformed one {Φ̃n(0)}n�1, the Θ m

Θ̃n = 1
4

(
−2βn+1ηn+1
η2
n+1 − β2

n+1

where

ηn :=
(
1 + Φ̃n(0)

) 1
2 +

βn :=
(
1 + Φ̃n(0)

) 1
2 −

Proof. From Corollary 4.2, we get:

ωn,0,0 = ωn,1,0 =
(
1

ωn,0,1 = ωn,1,1 =
(
1

Formula (4.8) gives the unitary matrix Δn tha
(4.1). The rest of the proof is a simplification of



Remark 8.2. It is easy to prove that Θ̃n presented in (8.1) is equal to

Θ̃n =
(−Φ̃n+1(0) ρ̃n+1

ρ̃n+1 Φ̃n+1(0)

)
. (8.4)

It will be advantageous to work with (8.1), since it is computed with direct substitution 
of Φ̃n(0), without calculation of ρ̃n. The computation here is both simpler and more
insightful.

Now, let Γn denote the following matrix associated with Θ̃n

Γn = 1
4

(
η2
n+1 − β2

n+1 2βn+1ηn+1
−2βn+1ηn+1 η2

n+1 − β2
n+1

)
=

(
ρ̃n+1 Φ̃n+1(0)

−Φ̃n+1(0) ρ̃n+1

)
. (8.5)

It can be checked that

JΘ̃n = Γn, Θ̃nJ = ΓT
n . (8.6)

We are now in a position to make the similarity relation of CMV and Fundamental 
nd considering (8.6), we have

n = Γ2n,

= Γ2n−1.

undamental matrices of Verblunsky coef-
Verblunsky coefficients {Φ̃n(0)}n�1, and

Γ4 ⊕ · · ·
)
,(

1 ⊕ I ⊕ Γ1 ⊕ I ⊕ Γ3 ⊕ I ⊕ Γ5 · · ·
)
,

trices and Fundamental matrices of the 
re corresponding to the Verblunsky co-
the transformed Verblunsky coefficients
βn, respectively. Then, following Corol-

t, we only need to present the Verblun-
measure, from Lemmas 6.2, 6.5 and 6.8
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matrices. According to formulas (5.2), (7.12), a

Vn = ΓT
2n−1, W

Pn = ΓT
2n, Qn

As a conclusion, we get

Corollary 8.3. Let C, F and C̃, F̃ be CMV and F
ficients of {Φn(0)}n�1 = {0} and transformed 
put Γn from (8.5). The following relations

C̃ =
(
1 ⊕ Γ1 ⊕ Γ3 ⊕ Γ5 ⊕ · · ·

)T

C
(
Γ0 ⊕ Γ2 ⊕

F̃ =
(
1 ⊕ Γ0 ⊕ I ⊕ Γ2 ⊕ I ⊕ Γ4 ⊕ I ⊕ · · ·

)T

F

connect C, C̃ and F , F̃ , respectively.

Our remaining task is to make the CMV ma
canonical spectral transformation of the measu
efficients {Φn(0)}n�1 = {0}. By substituting 
{Φ̃n(0)}n�1 in (8.2) and (8.3), we get ηn and 
lary 8.3 we get the desired matrices.

Since ηn and βn require Φ̃n(0), at this poin
sky coefficients {Φ̃n(0)}n�1 of the transformed 
respectively.



Proposition 8.4. The Verblunsky coefficients for Christoffel, Uvarov and Geronimus 
transformations of {Φn(0)}n�1 = {0} are respectively given by

Φ̃n,C(0) = BC(α, n),

Φ̃n,U (0) = BU (α, n),

Φ̃n,G(0) = An−1

εn−2(α) ,

for the introduced values of (6.3), (6.7), (6.8), and (6.9).

8.2. Example 2

Consider the sequence of Verblunsky coefficients {Φn(0)}n�1 = {a} where a is a
constant complex number satisfying 0 < |a| < 1. The divergence of the series of part ii of 
Proposition 2.19 shows that the measure corresponding to {Φn(0)}n�1 does not belong
to the Szegő class.

The Θ matrix of this family is

r

a

)
, (8.7)

ntal matrices are obtained via formulas

cients Φn(0) = a, n � 1, Theorem 4.3
y matrix Θ̃n can be obtained from (4.9),
y substituting Φn(0) = a and ρn = r as

1) + rρ̃n,

n(a− 1),

Re(Φ̃n(0))
)
.

ion of CMV and Fundamental matrices 

n = Υ2n,

= Υ2n−1,

tn+1
sn+1

)
, (8.8)

32
Θn =
(
−a

r

where r = (1 − |a|2) 1
2 . The CMV and Fundame

(2.15) and (7.8).
Note that for the constant Verblunsky coeffi

gives the unitary congruent relation. The unitar
while the formulas (4.11)–(4.13) are simplified b
follows:

τn = (a− 1)(Φ̃n(0) −

ξn = r(Φ̃n(0) − 1) − ρ̃

λ2
n = 4

(
1 −Re(a)

)(
1 −

Proposition 8.5. The similarity factors of relat
are

Vn = ΥT
2n−1, W

Pn = ΥT
2n, Qn

where

Υn =
(

sn+1
−tn+1



and

sn := Φ̃n(0)a + rρ̃n, (8.9)

tn := Φ̃n(0)r − ρ̃na. (8.10)

Proof. Define Υn := Θ−1
n Θ̃n. According to (8.4) and (8.7), we have

Θ−1
n Θ̃n = (Θ̃nΘ−1

n )T =
(

Φ̃n+1(0)a + rρ̃n+1 Φ̃n+1(0)r − ρ̃n+1a

ρ̃n+1a− Φ̃n+1(0)r Φ̃n+1(0)a + rρ̃n+1

)
,

and relations (5.2) and (7.12) complete the proof. �
Corollary 8.6. Let C, F be CMV and Fundamental matrices of Verblunsky sequences of 
{Φn(0)}n�1 = {a}, for the complex number a with 0 < |a| < 1, respectively. Consider
Υn as (8.8) for the defined values of (8.9) and (8.10). We have

C̃ =
(
1 ⊕ Υ1 ⊕ Υ3 ⊕ Υ5 ⊕ · · ·

)T

C
(
Υ0 ⊕ Υ2 ⊕ Υ4 ⊕ · · ·

)
,(

1 ⊕ I ⊕ Υ1 ⊕ I ⊕ Υ3 ⊕ I ⊕ Υ5 · · ·
)
,

es of the transformed Verblunsky coeffi-

undamental matrices of the canonical 
ponding to the Verblunsky coefficients 
 Verblunsky coefficients {Φ̃n(0)}n�1 in
.5 to get the congruence factors. There-
Φ̃n(0)}n�1 of the transformed measure,
undamental matrices.

or Christoffel, Uvarov and Geronimus 
n(0)}n�1 = {a} are respectively given

+ BC(α, n),

+ BU (α, n),

a
n−1∑
k=0

D(n, k),

.7) and (6.11), by considering (6.8) and 
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F̃ =
(
1 ⊕ Υ0 ⊕ I ⊕ Υ2 ⊕ I ⊕ Υ4 ⊕ I ⊕ · · ·

)T

F

where C̃, F̃ are CMV and Fundamental matric
cients {Φ̃n(0)}n�1.

Now, we study the CMV matrices and F
spectral transformation of the measure corres
{Φn(0)}n�1 = {a}. We replace the transformed
(8.9) and (8.10). Then, we follow Proposition 8
fore, if we present the Verblunsky coefficients {
Corollary 8.6 shows the relation of CMV and F

Proposition 8.7. The Verblunsky coefficients f
transformations of the Verblunsky sequence {Φ
by:

Φ̃n,C(0) = AC(α, n)a

Φ̃n,U (0) = BU (α, n)a

Φ̃n,G(0) = An−1

εn−2(α) +

for the introduced values of (6.2)–(6.3), (6.6)–(6
(6.9).



8.3. Forward and backward Verblunsky coefficients

In this section, we introduce two groups of transformed Verblunsky coefficients, based 
on the sequence of Verblunsky coefficients {Φn(0)}n�1:

• forward-Verblunsky coefficients

Φ̃n,f (0) := Φn+1(0), n � 1, (8.11)

• backward-Verblunsky coefficients

Φ̃n,b(0) := Φn−1(0), n > 1, Φ̃1(0) := c. (8.12)

Since the backward coefficients push the Verblunsky coefficients back, the first trans-
formed Verblunsky coefficient is needed to be imposed to the problem, where c is a 
constant complex 0 < |c| < 1.

Remark 8.8. Notice that these two families of Verblunsky coefficients have the same 

1, in the sense that if the measure dμ
oes too. We have an invariance property 
 to the Szegő class.

is to find the expression of Θ̃n in terms
e easily seen that

n ≥ 0, (8.13)

n ≥ 1. (8.14)

ing to the constant complex c in (8.12).

ds the matrices V and W for each class 
ntioned classes, we have

n � 1,

, n � 0,

1,

1, Wb,0 := Θ−1
0 Θ̃b,0.

aking into account (8.13)–(8.14), (7.12)
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behavior as Verblunsky coefficients {Φn(0)}n�
belongs to the Szegő class, it is obvious that dμ̃ d
that also holds for measures that do not belong

Since Θ̃n appears in C̃ and F̃ , the first step 
of Θn. For the above mentioned classes, it can b

Θ̃f,n := Θn+1,

Θ̃b,n := Θn−1,

Note that Θ̃b,0 :=
(
−c ρ

ρ c̄

)
is defined accord

Similar to the other cases, formula (5.2) yiel
of the Verblunsky coefficients. For the above me

Vf,n := Θ2nΘ−1
2n−1,

Wf,n := Θ−1
2n Θ2n+1

and

Vb,n := Θ2n−2Θ−1
2n−1, n �

Wb,n := Θ−1
2n Θ2n−1, n �

We also compare the Fundamental matrices. T
gives



Pf,n := Θ2n+1Θ−1
2n , n � 0,

Qf,n := Θ−1
2n−1Θ2n, n � 1,

and similarly

Pb,n := Θ2n−1Θ−1
2n , n � 1, Pb,0 := Θ̃b,0Θ−1

0 ,

Qb,n := Θ−1
2n−1Θ2n−2, n � 1.

Finding the connection of CMV and Fundamental matrices is formally the same as 
previous examples.

9. A decomposition for Fundamental matrix

Notice that the Fundamental matrix F is associated with the sequence of Verblunsky
coefficients {Φn(0)}n�1 that characterizes the family of orthogonal polynomials. This
matrix has to give comprehensive information about properties of the family of orthog-
onal polynomials. More precisely, knowing the Fundamental matrix, we should be able 

lynomials through the Szegő recurrence 

the matrix interpretation of the polyno-
 is given in terms of the LU factorization, 
olynomial perturbation is given in terms 
ablished a relation between the Hessen-
he perturbed functionals using LU and 
tral transformation of the real line, the 
ith the respective functionals should be 

e Fundamental matrix associated with 
presents a tridiagonal block matrix, but

matrices. On the other hand, since Θ
make sense. In this section, an important 
trix is captured by its Takagi decompo-
e Fundamental matrix such that it can 
how how to obtain such a factorization 

undamental matrix associated with the 
y is coupled with the Verblunsky coeffi-

(0)) − 1
)

+ 1
0)) − 1 . (9.1)
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to establish the family of monic orthogonal po
relation (2.8).

For orthogonal polynomials on the real line, 
mial perturbation with a first degree polynomial
and the matrix interpretation of a second order p
of the QR factorization. In [8], the authors est
berg matrices associated with the initial and t
QR factorizations. Similar to the so-called spec
tridiagonal Fundamental matrices associated w
decomposed to unitary matrices.

In the case that the LU factorization of th
{Φn(0)}n�1 is considered, although UL matrix 
the blocks do not follow the structure of the Θ
matrices are unitary, QR factorization does not 
aspect of the structure of the Fundamental ma
sition. Our aim is to find a factorization for th
simultaneously present another measure. We s
such that it can provide the same structure.

Theorem 9.1. Let F defined in (7.8) be the F
Verblunsky coefficients {Φn(0)}n�1. This famil
cients

Φ̃n(0) =
Φn(0)

(
iIm(Φn

Re(Φn(



Proof. For convenience of the reader, we begin by recalling the Takagi decomposition

UΘ = 1
ln+1

(
1 − Φn+1(0) ρn+1

ρn+1 Φn+1(0) − 1

)(
1 0
0 i

)
,

with ln
2 = 2

(
1 − Re(Φn(0))

)
, obtained in the proof of Theorem 4.3. Observe that Θn

satisfies (4.14). The classical approach to the spectral theory suggests us to consider 
replacement of UTU , which gives

Θ̃n = UTU =
(−Φ̃n+1(0) ρn+1

ρn+1 Φ̃n+1(0)

)
,

where Φ̃n(0) is defined in (9.1). �
Remark 9.2. An intrinsic limitation of Theorem 9.1 is that it does not give information 
for real Verblunsky coefficients. Here, the situation is different. The unitary matrix U
that satisfies UUT = Θn with real Verblunsky coefficients, it turns out to(

0
1

)
.

t carries the trouble of Φn(0) = 1, which

unsky coefficients {Φn(0)}n�1 is positive
functional corresponding to {Φ̃n(0)}n�1
e).

ce of the fact that Φn(0) = Re(Φn(0)) +

roposition 9.3 has a brilliant impact on 
emark 2.15 guarantees the existence of 

)}n�1. Moreover, due to the structure of
uestion to characterize the measures dμ
blem to obtain the family of orthogonal 
ssociated with the Fundamental matrix.

ween the CMV matrices associated with 
ectively. The main relation we have used 
he structure of the CMV matrix. Using 
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UTU = 1
0 −

Although it has the Θ matrix structure, but i
does not obey Remark 2.14.

Proposition 9.3. The linear functional with Verbl
definite (quasi-definite) if and only if the linear 
defined in (9.1) is positive definite (quasi-definit

Proof. The proof is a straightforward consequen
iIm(Φn(0)) and hence will be omitted. �

The seemingly minor observation made in P
the perturbed measure dμ̃ to be well-defined. R
another family of Verblunsky coefficients {Φ̃n(0
the Fundamental matrix, it arises as a natural q
corresponding to this matrix. It is an open pro
polynomials deduced from the spectral measure a

10. Summary and open problems

In this paper, we have stated a connection bet
a positive measure and a perturbation of it, resp
is the relation for the Θ matrices, appeared in t



Verblunsky coefficients to find the relation, we observe that all the formulas can work 
directly for different classes of measures, requiring only substitution of formulas.

We have emphasized the analysis of connecting Θ matrices, whose explicit expressions 
have been derived using the Verblunsky coefficients. The main results of the equivalence 
relations can be summarized in the following:

A *congruence relation has been obtained using a kind of eigenvalue decomposition 
which happens to be hold for special sequences of Verblunsky coefficients with the equal 
imaginary parts. Specifically, for real Verblunsky sequences, we have constructed the uni-
tary similarity relation and we have compared the CMV matrices of the known canonical 
transformed measures, Christoffel, Uvarov and Geronimus. In the general case of complex 
Verblunsky coefficients, there exists a congruence relation which has been established ex-
plicitly with combination of eigenvalue and singular value decompositions.

We have followed the results for different classes of Verblunsky coefficients, and one 
of the considered classes has motivated us to present a new unitary symmetric matrix 
which contains all the necessary information of the family of orthogonal polynomials. 
We have tried to solve the spectral problem of the Fundamental matrix. In particular, 
the following question is open: What is the spectral measure of the Fundamental matrix?

 Bernhard Beckermann and Professor 
ions about congruence relations. We also 
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