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We study the asymptotic behavior of multiple Meixner polynomials of first and second 
kind, respectively [6]. We use an algebraic function formulation for the solution of the 
equilibrium problem with constraint to describe their zero distribution. Moreover, analyz-
ing the limiting behavior of the coefficients of the recurrence relations for Multiple Meixner 
polynomials we obtain the main term of their asymptotics.

1. Introduction

This paper deals with the asymptotics of polynomial sequences (Pn) defined by orthogonality relations with respect to a
discrete measure μ (with finite moments)

μ =
N∑

k=0

ρ(x)δxk , ρ(xk) = ρk > 0, xk ∈R, N ∈ N∪ {+∞}, (1.1)

which is a linear combination of Dirac measures at the points x0, . . . , xN . By N we denote the set of all nonnegative inte-
gers.

The asymptotic theory of orthogonal polynomials with respect to discrete measures is not so widely developed as for
absolutely continuous measures of orthogonality. It can be explained because the distribution of zeros of the polynomials
orthogonal with respect to a discrete measure has an extra constraint. Indeed, between two neighboring mass points of the
measure of orthogonality it cannot be situated more than one zero of the orthogonal polynomials (this fact follows from
the interlacing property of orthogonal polynomials). This constraint plays an important role in the logarithmic potential
description of the limiting zero distribution measure as well as of the main term of asymptotics.
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The logarithmic potential

Pν(z) = −
∫

ln |z − t|dν(t),

for probability measure νPn (t) (zero counting measure), equally distributed in the zeros of polynomial Pn , is given by

PνPn = −1

n
ln |Pn|.

Thus, the potential of a limiting (when n → ∞) zero distribution measure λ defines an exponent of the main term of the
asymptotics for the polynomial sequence (Pn). Such type of asymptotics are also called weak asymptotics. For the description
of this limiting measure it is useful to formulate a minimization problem for the energy of the logarithmic potential. It
is clear, that the constraint of the zero counting measure (which we pointed out above) leads to a problem of energy
minimization in the class of probabilistic measures constrained by the weak limit of the mass points of the zero counting
measure. For discrete orthogonal polynomials such an approach was suggested by Rakhmanov in [21] and extended later by
Dragnev and Saff in [9]. For more details on the topic we refer to monographs [20] and [22] for extremal and equilibrium
problem of logarithmic potential with application to the weak asymptotics of polynomial sequences as well as to monograph
[7] for discrete orthogonality and constrained equilibrium.

The content of this paper starts with the study of weak asymptotics for monic polynomial sequences (Pn) orthogonal
with respect to discrete measures (1.1). In particular, the polynomial sequence orthogonal with respect to negative binomial
distribution (Pascal distribution) on N, i.e.

ρk = (β)k

k! ck (β > 0, 0 < c < 1), xk = k, k ∈ N, (1.2)

is considered. These orthogonal polynomials (denoted by Mn(x;β, c)) are called classical Meixner polynomials [17]. They
satisfy the orthogonality conditions

+∞∑
k=0

Mn(k;β, c)(−k) j
(β)k

k! ck = 0, j = 0,1, . . . ,n − 1, (1.3)

where (−k) j = −k(1−k) · · · ( j −k−1), j ∈ N, and (k)0 = 1, is the Pochhammer symbol (for the asymptotics of these classical
polynomials Mn(x;β, c), we refer to [27] and [29]). However, our main goal is the asymptotic analysis of multiple Meixner
polynomials, which constitute a generalization of the aforementioned classical Meixner polynomials. For these polynomials
the orthogonality conditions are considered with respect to a collection of Meixner weights (1.2) with different parameters
β or c. The study of these polynomials (among others classical discrete multiple orthogonal polynomials) was initiated
in [6].

The structure of the paper is as follows. Section 1 introduces the context and the background materials compressed
in four subsections. Indeed, Section 1.1 is devoted to the notion of multiple orthogonal polynomials. In Section 1.2, some
general information about recurrence relations for multiple orthogonal polynomials is given. The last two subsections are
devoted to some formal properties of the multiple Meixner polynomials obtained in [6]. We recall that there are two kinds
of multiple Meixner polynomials. The first kind corresponds (see Section 1.3) to simultaneous orthogonality conditions with
respect to discrete weights formed by (1.2) with various ci , i = 1, . . . , r. The second kind polynomials (see Section 1.4)
appear when the collection of discrete weights is formed by (1.2) with various βi , i = 1, . . . , r. The explicit expressions for
the coefficients of the recurrence relations of multiple Meixner polynomials are the main outcome from Sections 1.3 and 1.4
– used in the sequel.

In Section 2, we state the logarithmic potential equilibrium problems for the description of the weak asymptotics of
Meixner and multiple Meixner polynomials. Moreover, the solutions of these problems by means of certain algebraic func-
tions are found. The procedure for solving such type of equilibrium problems is inspired in [2] (see also earlier references
therein).

Lastly, in Section 3, by starting from the coefficient of the recurrence relations, we obtain the main term of the asymp-
totics of multiple Meixner polynomials (the weak asymptotics) and then we check the connection of this term with the
equilibrium problem from Section 2. Indeed, Theorems 3.2 and 3.3 are the main results of the present paper. Furthermore,
the spectral curves for the multiple Meixner polynomials (of the first and second kind) and their connection with the re-
currence relations and vector potential equilibrium with external field and constraint constitute the main outcome of the
present approach.

Finally, we would like to highlight that in [23] the weak asymptotics of multiple Meixner polynomials of the second kind
were studied, but using a different approach in which the integral representation for the polynomials and the saddle point
method were applied as main techniques.

1.1. Multiple orthogonal polynomials (type II)

Below we summarize some results needed for the sequel.
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Assume one has r positive measures μ1, . . . ,μr on R, where for each i = 1,2, . . . , r

supp(μi) = {
x ∈R: ∀ε > 0, μi

(
(x − ε, x + ε)

)
> 0

}
,

denotes the support of μi . By �i we denote the smallest interval that contains supp(μi).
We introduce a multi-index �n = (n1,n2, . . . ,nr) ∈ N

r and its length |�n| = n1 + n2 + · · · + nr . Multiple orthogonal polyno-
mials (of type II) can be defined as follows [20, Chapter 4.3], [1] and [28].

Definition 1.1. A type II multiple orthogonal polynomial P �n , corresponding to the multi-index �n ∈ N
r , is a polynomial of

degree � |�n| which satisfies the orthogonality conditions∫
�i

P �n(x)xk dμi(x) = 0, k = 0,1, . . . ,ni − 1, i = 1,2, . . . , r.

Here one has a linear system of |�n| homogeneous relations for the |�n| + 1 unknown coefficients of P �n . Notice that the
solution P �n which is unique up to a multiplicative factor and also that this polynomial solution has exactly degree |�n| (then
the monic multiple orthogonal polynomial exists and will be unique). When this happens �n is said to be a normal index for
type II (see [20, second definition on p. 132]).

Suppose that the above r positive measures on R are discrete, i.e.

μi =
Ni∑

k=0

ρi,kδxi,k , ρi,k > 0, xi,k ∈R, Ni ∈N∪ {+∞}, i = 1, . . . , r,

with all the xi,k , k = 0, . . . , Ni , different and this for each i. In this case we have that supp(μi) is the closure of {xi,k}Ni
k=0

and that �i is the smallest closed interval on R which contains {xi,k}Ni
k=0. The corresponding polynomials are then discrete

multiple orthogonal polynomials [6]. The discrete measures in this paper will be supported on N or a subset, which is
achieved by taking xi,k = k for i = 1, . . . , r. The orthogonality conditions are then more conveniently expressed in terms of
the polynomials (−x) j .

Definition 1.2. A discrete multiple orthogonal polynomial of type II on the linear lattice, corresponding to the multi-index
�n ∈ N

r , is a polynomial P �n of degree � |�n| that satisfies the orthogonality conditions

Ni∑
k=0

P �n(k)(−k) jρi,k = 0, j = 0,1, . . . ,ni − 1, i = 1,2, . . . , r.

In what follows we will focus on a system of measures

μi =
N∑

k=0

ρi,kδxk , ρi,k > 0, xk ∈R, N ∈N∪ {+∞}, i = 1, . . . , r,

where supp(μi) is the closure of {xk}N
k=0 and �i = � for each i = 1, . . . , r, for which every multi-index is normal, namely

an AT system (see Nikishin and Sorokin [20, p. 140] as well as Arvesú et al. [6, p. 26]). An interesting property related to the
location of the zeros of the discrete multiple orthogonal polynomials is given by the following theorem.

Theorem 1.1. (See [6, p. 26].) Suppose we have an AT system of r positive discrete measures. Then every discrete multiple orthogonal
polynomial P �n of type II, corresponding to the multi-index �n with |�n| < N + 1, has exactly |�n| different zeros on �.

Observe that in an AT system every multi-index �n, with |�n| < N + 1, is normal. We refer to [6, p. 26] for the following
two examples of Chebyshev systems:

Example 1.1. (See [20, Example 3 on p. 138].) The functions

v(x)cx
1, v(x)xcx

1, . . . , v(x)xn1−1cx
1,

...

v(x)cx
r , v(x)xcx

r , . . . , v(x)xnr−1cx
r ,

with all the ci > 0, i = 1, . . . , r, different and v a function which has no zeros on R
+ , form a Chebyshev system on R

+ for
every �n = (n1, . . . ,nr) ∈ N

r .
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Example 1.2. The functions

v(x)Γ (x + β1), v(x)xΓ (x + β1), . . . , v(x)xn1−1Γ (x + β1),

...

v(x)Γ (x + βr), v(x)xΓ (x + βr), . . . , v(x)xnr−1Γ (x + βr),

with βi > 0 and βi − β j /∈ Z whenever i 	= j and v a function with no zeros on R
+ , form a Chebyshev system on R

+ for
every �n = (n1, . . . ,nr) ∈ N

r . If βi − β j /∈ {0,1, . . . , N − 1} then this still gives a Chebyshev system for every �n = (n1, . . . ,nr)

for which ni < N + 1, i = 1,2, . . . , r.

1.2. Recurrence relation

Suppose that all the multi-indices are normal for the r measures μ1, . . . ,μr . Then there exists an interesting recurrence
relation of order r + 1 for the monic multiple orthogonal polynomials of type II with nearly diagonal multi-indices [28].
Here the nearly diagonal multi-index, corresponding to n, is given by

�s(n) = (k + 1,k + 1, . . . ,k + 1︸ ︷︷ ︸
s times

,k,k, . . . ,k︸ ︷︷ ︸
r−s times

),

with n = kr + s, 0 � s < r. If we write Pn(x) = P�s(n)(x), then the following recurrence relation holds:

xPn(x) = Pn+1(x) +
r∑

j=0

an, j Pn− j(x), (1.4)

with initial conditions P0 = 1 and P j = 0, j = −1,−2, . . . ,−r.
A more general form of this recurrence relation is given by

xP �n(x) = P �n+�e1
(x) + b�n,0 P �n(x) +

r∑
j=1

b�n, j P �n−�v j
(x), (1.5)

where �ei is the ith standard unit vector in R
r and �v j = ∑ j−1

k=0 �er−k . In the case r = 2 the recurrence relation for the poly-
nomials with nearly diagonal multi-indices (1.4) gives the relations (n + 1,n) → (n,n) → (n,n − 1) → (n − 1,n − 1) and
(n + 1,n + 1) → (n + 1,n) → (n,n) → (n,n − 1). The first relation follows from the general case (n1 + 1,n2) → (n1,n2) →
(n1,n2 −1) → (n1 −1,n2 −1) by setting n1 = n2 = n. To obtain the second one we set n1 = n and n2 = n +1 and interchange
the measures μ1 and μ2.

1.3. Multiple Meixner polynomials (first kind)

Let μ1, . . . ,μr be defined as

μi =
+∞∑
k=0

(β)kck
i

k! δk, 0 < ci < 1, i = 1, . . . , r, (1.6)

with all the parameters ci different. The support of these measures is N and we have �1 = · · · = �r = R
+ . If β /∈ N \ {0},

we define the functions wβ

i , i = 1, . . . , r, in C∞(R \ {−β,−β − 1, . . .}) as

wβ

i (x) =
{

Γ (β+x)
Γ (β)

cx
i

Γ (x+1)
if x ∈R \ ({−1,−2,−3, . . .} ∪ {−β,−β − 1,−β − 2, . . .}),

0 if x ∈ {−1,−2,−3, . . .},
(1.7)

with simple poles at −β,−β − 1,−β − 2, . . . . If β ∈N \ {0} we define

wβ

i (x) = (x + 1)β−1

(β − 1)! cx
i ,

which are functions in C∞ . These functions can be written as wβ

i (k) = (β)kck
i /k!, k ∈ N, i = 1, . . . , r. By Example 1.1 we

know that the measures μ1, . . . ,μr form an AT system, which guarantees that every multi-index �n = (n1, . . . ,nr) is normal
for these measures.

The monic multiple Meixner polynomials of first kind, corresponding to the multi-index �n = (n1, . . . ,nr) and the param-

eters β , �c = (c1, . . . , cr), is the unique monic polynomial Mβ;�c of degree |�n| which satisfies the orthogonality conditions
�n
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+∞∑
k=0

Mβ;�c
�n (k)(−k) j wβ

i (k) = 0, j = 0, . . . ,ni − 1, i = 1,2, . . . , r.

In [6] the following Rodrigues formula was found

Mβ;�c
�n (x) =

r∏
k=1

(
ck

ck − 1

)nk

(β)|�n|
Γ (β)Γ (x + 1)

Γ (β + x)

r∏
i=1

(
1

cx
i

∇ni cx
i

)
Γ (β + |�n| + x)

Γ (β + |�n|)Γ (x + 1)
.

In particular, for r = 2, some straightforward calculations yield

Mβ;c1,c2
n1,n2 (x) =

(
c1

c1 − 1

)n1( c2

c2 − 1

)n2

(β)n1+n2 F1

(
−x,−n1,−n2;β;1 − 1

c1
,1 − 1

c2

)

= cn1
1 cn2

2 (β)n1+n2

(c1 − 1)n1(c2 − 1)n2

n1+n2∑
j=0

j∑
k=0

(−n1)k(−n2) j−k

(β) j

( c1−1
c1

)k

k!
( c2−1

c2
) j−k

( j − k)! (−x) j,

where

F1
(
α,β,β ′;γ ; x, y

) =
+∞∑
m=0

+∞∑
n=0

(α)m+n(β)m(β ′)n

(γ )m+nm!n! xm yn

is the first of Appell’s hypergeometric functions of two variables [10]. From this explicit expression can be found the coeffi-
cients of the recurrence relation.

Theorem 1.2. (See [6].) Multiple Meixner polynomials (first kind) Mβ; c1,c2
n1,n2 satisfy the following recurrence relations

xMβ; c1,c2
n1,n2 (x) = Mβ; c1,c2

n1+1,n2
(x) + bn1,n2 Mβ; c1,c2

n1,n2 (x) + cn1,n2 Mβ; c1,c2
n1,n2−1(x) + dn1,n2 Mβ; c1,c2

n1−1,n2−1(x),

where coefficients are

bn1,n2 = n1(2a1 + 1) + n2(a1 + a2 + 1) + a1β,

cn1,n2 = (
n1

(
a2

1 + a1
) + n2

(
a2

2 + a2
))

(n1 + n2 + β − 1),

dn1,n2 = (β + n1 + n2 − 1)(β + n1 + n2 − 2)(a1 + 1)(a1 − a2)a1n1, (1.8)

with a1 = c1
1−c1

and a2 = c2
1−c2

.

1.4. Multiple Meixner polynomials (second kind)

Assume that the measures μ1, . . . ,μ2 are given by

μi =
+∞∑
k=0

(βi)kck

k! δk, βi > 0, i = 1, . . . , r, (1.9)

with 0 < c < 1 and all the βi different. The support of these measures is N. In [6] was found that every multi-index
�n = (n1, . . . ,nr) is normal for the above system of measures μ1, . . . ,μr , whenever βi − β j /∈ Z for all i 	= j.

Here

wβi (x) =
{

Γ (βi+x)
Γ (βi)

cx

Γ (x+1)
if x ∈ R \ ({−1,−2,−3, . . .} ∪ {−β,−β − 1,−β − 2, . . .}),

0 if x ∈ {−1,−2,−3, . . .}. (1.10)

The monic multiple Meixner polynomials of second kind, corresponding to the multi-index �n and the parameters �β =
(β1, . . . , βr), βi > 0 (βi − β j /∈ Z for all i 	= j) and 0 < c < 1, is the unique monic polynomial M

�β;c
�n of degree |�n| that satisfies

the orthogonality conditions

+∞∑
k=0

M
�β;c
�n (k)(−k) j wβi (k) = 0, j = 0, . . . ,ni − 1, i = 1,2, . . . , r.

For this multiple orthogonal polynomial the Rodrigues formula is (see [6])

M
�β;c
�n (x) =

(
c

c − 1

)|�n| r∏
(βi)ni

Γ (x + 1)

cx

r∏(
Γ (βi)

Γ (βi + x)
∇ni

Γ (βi + ni + x)

Γ (βi + ni)

)
cx

Γ (x + 1)
.

k=1 i=1
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In particular, for r = 2 one gets

Mβ1,β2;c
n1,n2 (x) =

(
c

c − 1

)n1+n2

(β2)n2(β1)n1 F 1:1;2
1:0;1

(
(−x) : (−n1); (−n2, β1 + n1);

(β1) : −; (β2);
c−1

c , c−1
c

)

=
(

c

c − 1

)n1+n2

(β2)n2(β1)n1

n1+n2∑
j=0

j∑
k=0

(−n1)k(−n2) j−k(β1 + n1) j−k

k!( j − k)!(β2) j−k

( c−1
c ) j

(β1) j
(−x) j,

where

F p:q;k
l:m;n

( �a : �b; �c;
�α : �β; �γ ;

x, y

)
=

+∞∑
r,s=0

∏p
j=1(a j)r+s

∏q
j=1(b j)r

∏k
j=1(c j)s∏l

j=1(α j)r+s
∏m

j=1(β j)r
∏n

j=1(γ j)s

xr

r!
ys

s! ,

with �a = (a1, . . . ,ap), �b = (b1, . . . ,bq), �c = (c1, . . . , ck), �α = (α1, . . . ,αl), �β = (β1, . . . , βm), �γ = (γ1, . . . , γn) are the general-
izations of the Kampé de Fériet’s series [24] which are a generalization of the four Appell series in two variables. From this
explicit expression can be found the coefficients of the recurrence relation.

Theorem 1.3. (See [6].) Multiple Meixner polynomials (second kind) Mβ1,β2; c
n1,n2 satisfy the following recurrence relations

xMβ1,β2; c
n1,n2 (x) = Mβ1,β2; c

n1+1,n2
(x) + bn1,n2 Mβ1,β2; c

n1,n2 (x) + cn1,n2 Mβ1,β2; c
n1,n2−1(x) + dn1,n2 Mβ1,β2; c

n1−1,n2−1(x),

where coefficients are

bn1,n2 = n1(2a + 1) + n2(a + 1) + aβ1,

cn1,n2 = a(a + 1)
(
n1n2 + n1(n1 + β1 − 1) + n2(n2 + β2 − 1)

)
,

dn1,n2 = a2(a + 1)n1(n1 + β1 − 1)(n1 + β1 − β2), (1.11)

with a = c
1−c .

2. Equilibrium relations and algebraic functions

Here, inspired in [21] and [9] we introduce the main notions of the approach (based on potential theory) to the weak
asymptotics of the polynomials Pn(x), orthogonal with respect to a discrete measure (1.1). Usually one starts with scaling of
the problem, i.e.

x → t: x = x(t,n)

(for example, x = tn) such that the zeros of the polynomial sequence P̃ (t) := Pn(x(t,n)), remain in a compact set t ∈ K �C

when n → ∞. This scaling produces a dependence of the orthogonality weight on the parameter n (varying weight):

ρn(t) = ρ
(
x(t,n)

) =: exp
{−2nV (t) + O (1)

}
.

Accordingly, a dependence on n also occurs for its discrete support

{tk,n}: xk = xk(tk,n,n), k ∈N,

for which one can define a counting measure for the mass points of the support

τn(t) := 1

n

∑
k

δ(t − tk,n),

with the weak limit of this measure

τ (t) = lim
n

τn(t).

Under some technical conditions (for details see [9] and [21]) the limiting measure

νPn

(
x(t,n)

) → λ(t),

minimizes the following energy functional (with external field V )

E(μ) :=
∫ (

Pμ(t) + 2V (t)
)

dμ(t), (2.1)
6



among measures from the class

μ: |μ| = 1, μ� τ . (2.2)

The condition of boundedness of the measure μ by measure τ reflects an interesting peculiarity of the discrete orthogonality
– due to the interlacing of masses of the discrete measure and zeros of the polynomials.

The potential of the extremal measure λ satisfies the equilibrium relations with the presence of the external field

Pλ(t) + V (t)

⎧⎨⎩
� κ, t ∈ suppλ,

= κ, t ∈ supp(τ − λ) ∩ supp(λ) := Σ,

� κ, t ∈ supp(τ − λ).

(2.3)

Set Σ , where the combination of the potential and the external field, is equal to a constant is called equilibrium zone.
A set where the equilibrium measure λ touches its constraint, i.e. measure τ , is called saturation zone. As it follows from
equilibrium relations (2.3) in the saturation zone the combination of the potential and the external field is strictly less than
the equilibrium constant κ .

To describe the weak asymptotics of multiple orthogonal polynomials an important notion of vector potential equilibrium
was introduced by Gonchar and Rakhmanov in [11] and [12].

Let �� := {�1, . . . ,�r} be a collection of compact sets in C and let

D = (di, j)
r
i, j=1

be a real symmetric nonsingular positive definite matrix. An additional condition on D to be compatible with (�1, . . . ,�r)

is that di, j � 0 whenever �i ∩ � j 	= ∅.
For a vector of measures

�μ = (μ1, . . . ,μr), suppμ j ⊂ � j, j = 1, . . . , r,

the energy functional I( �μ) is defined as

I( �μ) =
r∑

i=1

r∑
j=1

di, j I(μi,μ j), (2.4)

where I(μi,μ j) is the mutual energy of two scalar measures

I(μi,μ j) =
∫
�i

∫
� j

ln
1

|x − t| dμi(x)dμ j(t).

The extremal vector measure �λ, minimizing the energy functional (2.4) among all �μ (with fixed masses of the coordinates)
possesses the equilibrium properties

U
�λ
j (x) =

r∑
i=1

dijPλi (x)

{= κ j, x ∈ suppλ j = �∗
j ,

� κ j, x ∈ � j \ �∗
j .

for j = 1, . . . , r. (2.5)

Here the vector �U �λ = (U �λ
1 , . . . , U �λ

r ) is called vector potential of the vector valued measure �λ with respect to the interaction matrix D .
External fields �V = (V 1, . . . , Vr) such that V j(t) is a function on t ∈ � j , j = 1, . . . , r, and constraining for �μ measures as

follows

�τ = (τ1, . . . , τr): μ j � τ j, suppτ j ⊂ � j, j = 1, . . . , r,

can be incorporated in the vector equilibrium problem in order to develop an approach for multiple orthogonality with
respect to varying weights or (and) with respect to discrete weights (in a similar fashion that [21] and [9]). Thus, the
energy functional (2.1) of vector measure with external fields becomes (see (2.4))

E( �μ) := I( �μ) + 2
r∑

j=1

∫
V j(t)dμ j(t),

and extremal vector measure �λ, minimizing this energy functional possesses the equilibrium properties (see (2.5)) for j =
1, . . . , r

U
�λ
j (x) + V j(x)

⎧⎨⎩
� κ j, x ∈ suppλ j,

= κ j, x ∈ supp(τ j − λ j) ∩ suppλ j = Σ j,

� κ , x ∈ supp(τ − λ ).

(2.6)

j j j
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A saddle point extremal problem for functional (2.6) is considered in some applications (when positions of the compo-
nents of �� are not known). In such a situation one performs the minimization of the energy functional by measure �μ and
maximizes it by vector ��. As a result the support of the equilibrium measure possesses the following symmetry relations

∂(U j + V j)

∂n+
= ∂(U j + V j)

∂n−
, on Σ j, j = 1, . . . , r, (2.7)

where ∂/∂n± denotes the normal derivatives on the respective contours. This property is called S-symmetry after Stahl, who
introduced it in [25] and [26].

To conclude this short survey on the logarithmic potential approach to the weak asymptotics we recall one general class
of multiple orthogonal polynomials introduced by Nikishin in [18]. Such systems are defined as follows. Let σ1, σ2 be two
finite Borel measures with constant sign, whose supports suppσ1, suppσ2 are contained in nonintersecting intervals �1,�2,
respectively, of the real line R. Set

d〈σ1,σ2〉(x) =
∫

dσ2(t)

x − t
dσ1(x).

This expression defines a new measure whose support coincides with that of σ1. In general, let �σ = (σ1, . . . , σr) be a system
of finite Borel measures on the real line with constant sign and compact support. Let �k = [ak,bk] denote the smallest
interval which contains the support of σk . Assume that �k ∩�k+1 = ∅, k = 1, . . . ,m−1. We say that �S = (s1, . . . , sr) =N (�σ)

is the Nikishin system generated by �σ , when

s1 = σ1, s2 = 〈σ1,σ2〉, . . . , sr = 〈
σ1, 〈σ2, . . . , σr〉

〉
. (2.8)

In what follows (without loss of generality) we assume r = 2. So if we introduce the following notation for the Markov
function (Cauchy transform)

ŝ(z) :=
∫

ds(x)

z − x
,

then Nikishin system of two measures is: s1 = σ1, s2 = σ̂2σ1. These measures have the same support. The Nikishin system is
a useful model for multiple orthogonal polynomials with respect to a collection of measures (μ1,μ2) with the same support
(� := suppμ1 = suppμ2). For such type of systems an important role plays the analytic continuation of the function

F := μ̂2+ − μ̂2−
μ̂1+ − μ̂1−

, on �. (2.9)

For the pair (μ1,μ2) forming a Nikishin system (2.8), (μ1,μ2) := (s1, s2) we have

F = σ̂2 ∈ H(C̄ \ �2).

The limiting zero counting measure for multiple orthogonal polynomial P �n , �n := (n,n) with respect to a Nikishin system of
measures (s1, s2)

νPn → λ,

is described by equilibrium problem (2.5) with the matrix of interaction

D :=
(

2 −1
−1 2

)
, (2.10)

and λ = λ1, where |λ1| = 2, suppλ1 ∈ �1 and |λ2| = 1, supp λ2 ∈ �2. Here the measure λ2 is the limiting zero counting
measure

ν
R( j)

n
→ λ2, j = 1,2,

for the functions of the second kind

R( j)
n :=

∫
Pn(x)ds j(x)

z − x
, j = 1,2.

Since the original contribution [19] by Nikishin there have been published numerous papers devoted to the asymptotics
of multiple orthogonal polynomial with respect to a Nikishin system of measures (for most general results and latest surveys
see [4] and [3]).

In this section, starting from the fact that components of the vector of discrete Meixner weights have the same support
we assume that these measures inherit properties of the Nikishin system of continuous measures with the same support
(which is not developed for the discrete measures yet). This assumption allows us heuristically to state an ad hoc vector
8



equilibrium problem with Nikishin matrix of interaction, with external field (because of unbounded set of orthogonality)
and constraint (due to discrete weight). Accordingly, at this stage we look for the solutions of this equilibrium problem in
a form of spectral curve (among the simplest candidates satisfying the necessary conditions following from the equilibrium
problem). Thus, as a result of the first stage of our analysis we have heuristically got equations of the algebraic curves (2.27)
and (2.41) and have related their logarithms (rigorously) with certain vector equilibrium problems (see Propositions 2.1
and 2.2). We highlight that at this point spectral curves and equilibrium problems are not formally related to the multiple
Meixner orthogonal polynomials.

In Section 3 we derive the same spectral curves from the recurrence coefficients of the multiple Meixner orthogonal
polynomials. Consequently, it then rigorously relates Nikishin type equilibrium with constraints to Meixner discrete orthog-
onality.

2.1. Potential problem and its solution for classical Meixner polynomials

It this subsection, aimed to illustrate our approach in connection with the above discussed techniques, we take (as
example) the classical Meixner polynomials (1.3). First, we state the equilibrium problem for the limiting zero counting
measure. Then, we show our approach, which is based on an algebraic function formulation, by solving this equilibrium
problem in a quite direct way.

The scaling of variable x in (1.2)

x =: nt

stabilizes the zeros of the polynomials (i.e. when n → ∞, the zeros stay in a compact)

P̃n(t) := Mn(x),

which one considers now as a polynomial of variable t . Indeed, it is orthogonal to {tk}n−1
k=0 with respect to the varying weight

(depending on n)

ρ̃n(t) := Γ (β + tn)

(tn)! ctn,

concentrated in the points { k
n }k∈N . Taking the limit

lim
n→∞

∣∣ρ̃n(t)
∣∣1/n = ct = exp

{
−t ln

1

c

}
,

we see that the external field V (t) involved in the energy functional (2.1) and in the equilibrium relations (2.3) has the
following form

V (t) = ln
1

c
Re t. (2.11)

We also have

1

n

∞∑
k=0

δ

(
t − k

n

)
∗−→ l(t) =: τ (t), t ∈R+, (2.12)

where l(t) is the Lebesgue measure with unit density (dt) on the semiaxis R+ .
Thus, the limiting measure λ(t) of zero distributions of polynomials P̃n(t)

ν P̃n(t)
∗−→ λ(t),

satisfy the relations (2.1)–(2.2) as well as the conditions of equilibrium (2.3) with external field (2.11) and constraint (2.12).
Let us show our approach for finding the explicit representation of the measure λ(t). We look for the Cauchy transform

of measure λ (or Markov function)

h(z) := λ̂(z) =
∫

dλ(t)

z − t
, z ∈C\ suppλ, (2.13)

as function h(z), which be analytic on some two sheeted Riemann surface R := (C(0),C(1)). The possibility of analytic
continuation of the function h(z) to another sheet of the Riemann surface through the compact Σ can be seen from the
second relation in (2.3) after it “complexification” and differentiation. Thus, the function h := (h0,h1) on R has some natural
condition for its values at ∞. For the main branch h0, because of (2.13) (and normalization of measure |λ| = 1)

h(z) := 1 + · · · , z → ∞(0), (2.14)

z
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and for its continuation h1 (taking into account derivative of the “complexification” of external field (2.11))

h(z) := ln
1

c
− 1

z
+ · · · , z → ∞(1). (2.15)

The density of the measure λ′(t) is proportional to the jump of imaginary part of the function h(z) along R+ . Moreover, it
is clear from electrostatic consideration of the relations (2.1)–(2.2) that at the neighborhood of the left end point of supp λ,
i.e. to the right from the origin, this jump has to be a constant – here the measure λ reaches its constraint by the Lebesgue
measure l(t). Such behavior can be modelled by representing the function h(z) as logarithm of some other function, say
E(z), which on this part of the support of the measure λ (i.e. in the saturation zone) takes negative real values. Hence, we
are looking for h(z) in the form

h(z) = ln E(z), (2.16)

where E(z) is a rational function on R with one zero and one pole (at the points on the different sheets of Riemann
surface R with the same projection point 0)

E(z) =
{

0, z = 0(0),

∞, z = 0(1).
(2.17)

We have chosen the position of these points in order to provide holomorphicity of branches h – Eq. (2.16) in C\R+ . The
conditions (2.14) and (2.15) give the following behavior for E(z) in the neighborhood of infinity on both sheets of R

E(z) ∼
{

E0(z) = 1 + 1
z , z → ∞(0),

E1(z) = 1
c (1 − 1

z ), z → ∞(1).
(2.18)

Observe that it is enough to have conditions (2.17) and (2.18) for determining E(z) as well as the equation of its Riemann
surface. Moreover, the product E0(z)E1(z) behaves like 1/c at infinity, then by Liouville’s theorem this product is precisely
1/c (since no singularities). In addition, E0(z) + E1(z) will behave like α/z + β , which is the simplest form of a function
that has a pole at 0 (here β = −c−1 − 1 and α = c−1 − 1). Indeed, the Vieta relations give

E2 +
[

1

z

(
1

c
− 1

)
−

(
1

c
+ 1

)]
E + 1

c
= 0.

From here it follows that Riemann surface of the function E(z) has branch points

e1 = 1 − √
c

1 + √
c
, e2 = 1

e1
.

Moreover, both branches of the function E(z) are negative on [0, e1] and positive on [e2,∞]. Therefore, the jump of the
imaginary part of the function h(z) – see Eq. (2.16) – is a constant on [0, e1] and equal zero on [e2,∞]. Thus, suppλ =
[0, e2], the interval [0, e1] is a saturation zone, the interval [e1, e2] = Σ corresponds to the equilibrium zone, and [e2,∞]
is a zone free from zeros of the scaled classical Meixner polynomials. Measure λ obtained by this procedure satisfies the
equilibrium condition (2.3). Furthermore, after integration one can obtain an explicit value of the equilibrium constant
in (2.3)

κ = 1 + ln
1 − c

c
.

2.2. Potential problem and its solution for multiple Meixner polynomials (first kind)

Assume r = 2, and �n = (n,n). We rewrite weights (1.7) as follows

wβ

j (x) = Γ (β + x)

x! ex ln c j , j = 1,2.

Here the supports of both discrete orthogonality measures coincide. Therefore, we pose an equilibrium problem for the
weak asymptotics in a similar way to the Nikishin case. Indeed, we consider the equilibrium problem associated with the
weights wβ

1 (x), and u(x)wβ

1 (x), where

u(x) = wβ

2 (x)

wβ

1 (x)
= e

x ln
c2
c1 = 1

2π i

∫
Γ

e
t ln

c2
c1

t − x
dt, c2 < c1.

The integral representation in the right hand side is due to the Cauchy integral formula with a contour of integration Γ

encircling R+ , i.e. it comes from infinity through the upper half plane along the positive semiaxis turning counterclockwise
10



around zero in the left half plane and returning to infinity along the positive semiaxis through the lower half plane. In
addition, the contour Γ serves as a boundary of holomorphicity region of an analog of the function (2.9).

Now we do a scaling of the problem in order to compactify zeros of multiple Meixner polynomials (first kind). Let

M̃β;�c
2n (t) = n−2n Mβ;�c

n,n (tn) = t2n + · · · . (2.19)

Recall that the function of the second kind associated with the multiple Meixner polynomials of first kind is given by

R( j)
n (y) =

∫
Mβ;�c

n,n (x)

x − y
dμ j(x), j = 1,2,

where μ j is the discrete orthogonality measure (1.6). Let us denote R̃( j)
n (z) = R( j)

n (nz). General feature of the Nikishin
systems is that the functions of the second kind have n-zeros on a compact of the complex plane outside of the support
of the orthogonality measures. For the classical Nikishin system (see (2.8)) they accumulate along interval �2. For the case
under consideration we expect that the function R̃( j)

n (z) has n-zeros accumulated along an analytic arc γ in the complex
plane. We assume that contour Γ contains this analytic arc γ .

For the formulation of the equilibrium problem, we follow the Nikishin system model, in which the zeros accumulate
along an open contour γ ⊂ C (for the functions of the second kind) and in R+ (for the multiple orthogonal polynomials).

Since the mass points xk are uniformly distributed over a subset of R, then the zero counting measure ν
M̃β;�c

2n

∗−→ λ, where

|λ| = 2, and λ � l, being dl(t) = dt the Lebesgue measure, and supp(λ) ⊂ R+ . On the other hand, ν
R̃( j)

n

∗−→ μ, and its

magnitude is equal to 1 with supp(μ) ⊂ γ . Accordingly,{
λ: |λ| = 2, λ� l, supp(λ) ⊂ R+,

μ: |μ| = 1, supp(μ) =: γ ⊂ Γ.
(2.20)

Now we write the equilibrium problem for these measures (λ,μ) := �λ as (2.6), where:

• The matrix of interaction D in the definition (2.5) of the vector potential U �λ
j has the Nikishin’s form (2.10).

• Scaling of the weights wβ

1 and u brings external fields V 1 := (− ln c1)Re t on R+ and V 2 := (− ln c2
c1

)Re t on Γ , respec-
tively.

Thus, we have the equilibrium relations:⎧⎪⎪⎨⎪⎪⎩
W1 := 2Pλ(t) −Pμ(t) − (ln c1)Re t

{
� κ1, on supp(λ) ⊂ R+,

� κ1, on R+ ∩ supp(l \ λ),

W2 := 2Pμ(t) −Pλ(t) − (ln c2
c1

)Re t

{= κ2, on supp(μ) =: γ ⊂ Γ,

� κ2, on Γ.

(2.21)

We also have to add to this system the S-symmetry property (2.7) for the second plate Γ of our condenser (R+,Γ ):

∂W2

∂n+
= ∂W2

∂n−
, on γ . (2.22)

Now we look for a solution of the equilibrium problem (2.20), (2.21), (2.22). In accordance with our approach (by
differentiating) we pass from (2.21) to the following relations for the real part of the Cauchy transforms of the measures λ

and μ,

Re{2λ̂ − μ̂ + ln c1} = 0, on supp(λ) ∩ supp(l \ λ) =: Σ,

Re{2μ̂ − λ̂ + ln c2 − ln c1} = 0, on supp(μ) := γ ,

respectively. From these expressions one rewrites

λ̂ = μ̂ − λ̂ − ln c1, on Σ,

μ̂ + ln c2 = λ̂ − μ̂ + ln c1, on γ . (2.23)

Notice that if we define on the three sheeted Riemann surface

R := (R0,R1,R2):
⎧⎨⎩R0 := C̄ \ Σ,

R1 := C̄ \ {Σ ∪ γ },
R2 := C̄ \ γ ,

a function
11



H(z) :=
⎧⎨⎩ λ̂, in R0,

μ̂ − λ̂ − ln c1, in R1,

−μ̂ − ln c2, in R2,

which has a jump on supp(λ) ∩R0, then due to (2.23) and (2.22) the branches of this function have analytic continuation
one to another through the cuts joining the sheets (R0,R1,R2) of the Riemann surface R. Observe that from (2.20) follows
that H(z) behaves near infinity as

H(z) =
⎧⎨⎩2z−1 + · · · , as z → ∞ in R0,

− ln c1 − z−1 + · · · , as z → ∞ in R1,

− ln c2 − z−1 + · · · , as z → ∞ in R2.

Similarly, like we proceeded for the classical Meixner polynomials we model the constraint condition λ � l and dl(t) = dt
on R+ , representing the function H(z) as logarithm of a meromorphic function φ(z) on R, i.e.

H(z) = lnφ(z), φ ∈ M(R). (2.24)

To have the jump for the function H along R+ lifted to sheet R0 we force the function φ(z) to take values φ = ∞, and
φ = 0 at the points from the two sheets (R0,R1) which have on C projection point z = 0

φ(z) =
{

0, as z → 0 in R0,

∞, as z → 0 in R1.
(2.25)

Thus, H ∈M(R \ {R(0)
+ ∪R

(1)
+ }). From the behavior of H at infinity we conclude that

φ(z) =
⎧⎨⎩

1 + 2z−1 + · · · , as z → ∞ in R0,

c−1
1 (1 − z−1) + · · · , as z → ∞ in R1,

c−1
2 (1 − z−1) + · · · , as z → ∞ in R2.

(2.26)

If Σ and γ are connected then the genus of the Riemann surface R is equal to zero (we assume that it is true). The simplest
meromorphic function φ (i.e. see (2.25) – one pole and one zero) that maps R to the Riemann sphere and therefore the
inverse function z(φ) is just a rational function. From (2.26) we know the poles z as a function of φ and moreover we know
its residues in the poles. Taking into account also (2.25) one gets that the algebraic function φ(z) is defined by the equation

φ(z): z = 2

φ − 1
− 1

c1φ − 1
− 1

c2φ − 1
. (2.27)

This algebraic function has four branch points. In order to construct (for the condenser with two plates (R+,Γ ), Γ ⊂C\R+)
a solution of the equilibrium problem (2.21)–(2.22) we need to have the case when:

• φ has two complex conjugated branch points e, ē, and two real e1, e2 (0 < e1 < e2);
• the analytic arc γ joining points (e, ē), chosen by means of (2.22), does not cross R+;
• values φ(ζ ) ∈R− , when ζ ∈ [0, e1](0) ⊂R0.

The first item can be checked by analyzing the critical values c1, c2 when the branch points of the function φ coincide –
the transition of two conjugate branch points to the case of two real branch points. For this purpose we take consequently
two times the discriminant of the curve (2.27) – first time in the variable φ and second time in the variable z. Hence, we
get a polynomial of two variables c1 and c2 with rational coefficients. Factorization of this polynomial gives a factor of high
degree (maximal degree in each variable c j is 6 and maximal degree of the monomials is 9). It defines an algebraic curve
T (c1, c2) = 0, which has genus equal 1. Thus, this curve is rather complicated. However, taking into account the symmetry
of this curve with respect to (c1, c2), and changing variables{

c1 + c2 =: s,

c1c2 =: p,

yields the algebraic curve

T̃ (s, p) := T
(
c1(s, p), c2(s, p)

) = 0, (2.28)

which has genus equal 0. Therefore, curve T̃ (s, p) admits a rational uniformization. Using Gröbner basis technique we arrive
to the following simple parametrization of this curve⎧⎪⎪⎨⎪⎪⎩

s = − (τ 2 + 8τ + 18)(τ + 2)2

2τ
,

p = − (τ + 3)3(τ + 2)3

3
.

τ
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Fig. 1. (A) – on the left. Domain GN . If (c1, c2) ∈ GN , then φ has two complex and two real branch points; (B) – on the right. Domain N ⊂ GN . If
(c1, c2) ∈ N then γ ∩R+ =∅.

An analysis of this curve shows that c1, c2 ∈R when τ ∈ [−∞,−2]∩[0,∞]. In Fig. 1(A) for τ ∈ [−4.73,−3] we see branches
of the critical curve (2.28) which belong to the interesting for us quadrate (c1, c2) ∈ {(0,1) × (0,1)}. If parameters (c1, c2)

are inside of the domain bounded by these branches and axes {c1 = 0, c2 ∈ (0,0.5)} and {c2 = 0, c1 ∈ (0,0.5)} then function
φ has two complex conjugated branch points e, ē, and two real e1, e2 (0 < e1 < e2). We denote this domain GN . On the
critical lines the conjugate branch points e, ē coincide on the real axes and when (c1, c2) ∈ {(0,1) × (0,1)} \ GN =: A, the
function φ has four real branch points.

The second item, i.e. condition on the parameters (c1, c2) implying γ ∩ R+ = ∅ can be clarified using an equivalent
(constructive) definition of the S-curve γ (see (2.22)). It is known (see [15,25]) that S-property condition (2.22) means that
the analytic curve γ belongs to the union of the critical (orthogonal) trajectories of the quadratic differentials

Re
∫

(H j − Hk)dz = 0 ⇐⇒ (H j − Hk)
2(dz)2 < 0. (2.29)

Using uniformization (2.24), (2.27) we perform integration by parts∫
H(z)dz = z ln φ −

∫
z

φ
dφ = z ln φ + (φ − 1)2

(φ − σ1)(φ − σ2)
, σ j := 1/c j, j = 1,2.

Thus condition (2.29) is equivalent to∣∣∣∣exp

{∫
(H j − Hk)dz

}∣∣∣∣ = 1 ⇐⇒
∣∣∣∣(φ j

φk

)z
(φ j − 1)2(φk − σ1)(φk − σ2)

(φk − 1)2(φ j − σ1)(φ j − σ2)

∣∣∣∣ = 1. (2.30)

Now we obtain the critical values of the parameters such that curve γ is crossing the origin. Substituting in (2.30) j = 1,
k = 2, z = 0 and taking from (2.25), (2.27) value of φ(0) we have∣∣∣∣ (φ2(0) − σ1)(φ2(0) − σ2)

(φ2(0) − 1)2

∣∣∣∣ = 1, and φ2(0) = 2σ1σ2 − σ1 − σ2

σ1 + σ2 − 2
.

Therefore, taking into account that σ1, σ2 ∈R we arrive to∣∣∣∣ (σ1 − 1)(σ2 − 1)

(σ1 − σ2)2

∣∣∣∣ = 1

4
, or

(σ1 + σ2 − 2)2 − (σ1 − σ2)
2

(σ1 − σ2)2
= ±1.

A branch of the critical curve corresponding to sign (−) in the right hand side lies out of the admissible range for c1, c2 (or
σ1, σ2). Finally, considering in the right hand side sign (+) we get

(σ1 + σ2 − 2)2 = 2(σ1 − σ2)
2. (2.31)

In Fig. 1(B) the branches of the critical curve (2.31) forms the boundary of the domain N . In this domain (c1, c2) ∈ N the
analytic arc γ does not intersect R+ (see Fig. 2(A)). On the boundary of this domain γ is passing trough the origin (see
Fig. 2(B)).
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Fig. 2. The sets γ = supp(μ) and [0, e2] = supp(λ) as well as the branch points (circles) are depicted for the cases: (A) – on the left. (c1, c2) =
(0.5,0.25) ∈ N ; (B) – on the right. (c1, c2) = (0.5,0.146445649) is critical.

The cut joining the logarithmic singularities of the function H starts at point 0 on sheet R0, goes along R+ to branch
point e1, passing to sheet R1 and goes there back to point 0. Along this cut (for all (c1, c2) ∈ {(0,1) × (0,1)}) values φ are
negative. Thus we have, indeed

H ∈ M
(
R \ {[0, e1](0) ∪ [e1,0](1)

})
.

Summarizing we have that for the parameters belonging to the domain

N :=
{
(c1, c2) ∈ {

(0,1) × (0,1)
}: c2(1 − √

2 )

2c2 − 1 − √
2

< c1 <
c2(1 + √

2 )

2c2 − 1 + √
2

}
, (2.32)

the density of measure λ is determined by the limiting values at the points [0, e2] of the imaginary part of ln φ(z)/π or
equivalently,

dλ(t)

dt
= lim

z̃→0

1

π
Im H(t + i z̃), t ∈ [0, e2] in R0. (2.33)

The interval [0, e2] is the support of the measure λ. Since the function φ is negative on [0, e1] in R0 we have that the
density of the measure λ is equal to unity there. Therefore, the interval [0, e1] corresponds to the saturation zone and the
interval Σ = [e1, e2] is the equilibrium zone. The support of measure μ is the analytic arc γ . Thus, we have proved the
following result.

Proposition 2.1. The density of an absolutely continuous measure λ, solving equilibrium problem (2.20), (2.21), (2.22) for
(c1, c2) ∈N , is equal to (2.33), where the function H is defined by (2.24) and (2.27).

Notice that the present paper addresses the existence of a solution of vector equilibrium problem with constraint while
the uniqueness remains out of the scope of this paper. We refer to [8] and [13] on this question for some specific vector
equilibrium problem with constraint.

Remark 2.1. We recall that for classical Nikishin system (on two disjoint intervals in R) the asymptotic zero distribution of
the polynomials is recovered as one component of the solution of the corresponding vector equilibrium problem. In general,
for Nikishin system formed with two disjoint contours in the complex plane satisfying S-symmetry, it is not proved yet.
Though, for special Nikishin systems in the complex plane it can be proved by performing an ‘ad hoc’ analysis (as it is done
in [15,16], and in this paper).

Remark 2.2. In Section 3.2, we prove that the logarithmic potential of the measure λ defined in (2.33) is equal to the
exponent of the main term of the asymptotics of the multiple Meixner polynomials for all values of parameters (c1, c2) ∈
{(0,1)× (0,1)} (see Theorem 3.3). Therefore, for all values of the parameters, the zero counting measure of the polynomials
converges to λ

ν
M̃β;�c

2n

∗−→ λ,

and the interval between the origin and the smallest real branch point will be the saturation zone. However, for (c1, c2) ∈
{(0,1)× (0,1)}\N the measure λ is not any more a solution of the equilibrium problem (2.20), (2.21), (2.22) with Nikishin’s
14



matrix of interaction. Without going into details, we just mention that measure λ from (2.33) for (c1, c2) ∈ A can be
presented as a solution of an equilibrium problem with Angeleso matrix of interaction (see [11]). For (c1, c2) ∈ GN \ N
it will be more sophisticated equilibrium problem for the condenser with three plates (see examples in [3] and [4]). It is
interesting to mention, that if we take the multiple Laguerre polynomials considered in [15,16] as the direct continuous
analogue of the multiple Miexner polynomials we will see a complete correspondence of these three asymptotical regimes
(N ,A and GN \N ) between the continuous and discrete case.

2.3. Potential problem and its solution for multiple Meixner polynomials (second kind)

The algebraic equations and the equilibrium problems studied here for the multiple Meixner polynomials of the second
kind were already addressed in [23], but using another approach.

Let r = 2 and 0 < β2 < β1 < β2 + 1 in the representation (1.10) for weights of the discrete orthogonality measures. Now
writing the measures of orthogonality for multiple Meixner polynomials (second kind) in form of a Nikishin system, we
consider the ratio of the weights

û(x) = wβ2(x)

wβ1(x)
=

∞∑
k=0

νk

x − xk
, νk = 1

Γ (β1 − β2)

(β2 − β1 + 1)k

k! , xk = −β2 − k.

This meromorphic function can be understood as the Cauchy transform of a discrete measure u with support belonging
to R− . Thus orthogonality measures of multiple Meixner polynomials (second kind) form a Nikishin system generated by
two discrete measures: μ1 (see (1.9)) with support in R+ and u with support in R− . Since the mass points for both
measures are uniformly distributed over a subset of R+ and R− , respectively, then the limiting zero counting measures in
the equilibrium problem will be constrained by dl(x) = dx the Lebesgue measure.

Doing a scaling

M̃β1,β2;c
2n (t) := Mβ1,β2;c

n,n (nt), R̃(β1,β2;c), j
n (z) = R(β1,β2;c), j

n (nz), j = 1,2, (2.34)

we get the varying weight of orthogonality which defines an external field on R+ .
Thus, we expect that the zero counting measures associated with the scaled multiple orthogonal polynomial and the

functions of the second kind weakly converge

ν
M̃

β1,β2;c
2n

∗−→ λ, ν
R̃

(β1,β2;c), j
n

∗−→ μ, j = 1,2,

to measures (λ,μ) := �λ{ |λ| = 2, λ � l, supp(λ) ⊂R+,

|μ| = 1, μ� l, supp(μ) ⊂ R−.
(2.35)

Now we write the equilibrium problem for these measures �λ = (λ,μ) as (2.6), where:

• Matrix of interaction D in the definition (2.5) of the vector potential U �λ
j has the Nikishin’s form (2.10).

• Scaling of the weights wβ1 brings external fields V 1 := (− ln c)Re t on R+ .

Thus, we have the equilibrium relations:⎧⎪⎪⎨⎪⎪⎩
W1 := 2Pλ −Pμ − ln c Re t

{
� κ1, on supp(λ) ⊂ R+,

� κ1, on R+ ∩ supp(l \ λ),

W2 := 2Pμ −Pλ

{
� κ2, on supp(μ) ⊂ R−,

� κ2, on R− ∩ supp(l \ μ).

(2.36)

Now we look for a solution of the equilibrium problem (2.35), (2.36). In accordance with our approach (by differentiating)
we pass from (2.36) to the following relations for the Cauchy transforms of the measures λ and μ,

λ̂ = μ̂ − λ̂ − ln c, on supp(λ) ∩ supp(l \ λ) =: Σλ,

μ̂ = λ̂ − μ̂, on supp(μ) ∩ supp(l \ μ) =: Σμ. (2.37)

We point out that if we define on the three sheeted Riemann surface

R := (R0,R1,R2):
⎧⎨⎩
R0 := C̄ \ Σλ,

R1 := C̄ \ {Σλ ∪ Σμ},
R := C̄ \ Σ
2 μ
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a function

H(z) :=
⎧⎨⎩ λ̂, in R0,

μ̂ − λ̂ − ln c, in R1,

−μ̂ − ln c, in R2,

then due to (2.37) the branches of this function have analytic continuation one to another throw the cuts joining the sheets
(R0,R1,R2) of the Riemann surface R. Observe that from (2.35) follows that H(z) behaves near infinity as

H(z) =
{

2
z + · · · , as z → ∞ in R0,

− ln c − 1
z + · · · , as z → ∞ in R1 and R2.

In the same way like we did it in the previous subsections we model the constraint condition (λ � l on R+ and μ � l
on R− , dl(x) = dx) representing the function H(z) as logarithm of a meromorphic function φ(z) on R, i.e.

H(z) = lnφ(z), φ ∈ M(R). (2.38)

To have a jump for the function H along R+ lifted to sheet R0 and along R− lifted to sheet R1 we force the function φ(z)
to have pole φ = ∞ of order 2 at the point z = 0 on the sheet R1, and zeros φ = 0 of order 1 at the points z = 0 on the
two sheets R0 and R2

φ(z) =
⎧⎨⎩

0, as z → 0 in R0,

∞2, as z → 0 in R1,

0 as z → 0 in R2.

(2.39)

Hence, H ∈M(R \ {R(0)
+ ∪R

(1) ∪R
(2)
− }). From the behavior of H at infinity we conclude

φ(z) =
{

1 + 2
z + · · · , as z → ∞ in R0,

1
c (1 − 1

z ) + · · · , as z → ∞ in R1 and R2.
(2.40)

Now we obtain an equation for the algebraic function φ. We write expansions of branches φ up to O(1/z3)

φ0(z) = 1 + 2

z
+ A

z2
+O

(
z−3),

φ1(z) = σ − σ

z
+ B

z2
+O

(
z−3), where σ = c−1,

φ2(z) = σ − σ

z
+ D

z2
+O

(
z−3).

Since φ is a rational function on the Riemann surface R and all its zeros and poles are shown in (2.39), we consider the
Vieta relations for the product and for the pairwise products of these expansions and obtain the following linear system for
unknown A and B + D:{

(B + D) + 3σ + σ A = 0

(1 + σ)(B + D) + 4σ − σ 2 + 2σ A = 0
⇒ A := −4σ − 1

σ − 1
, B + D := σ 2 + 2σ

σ − 1
.

Hence, we obtain

φ3 − (2x2 − 2x − 1)σ + (x + 1)2

x2
φ2 + σ

(x − 2)σ + 2(x + 1)

x
φ − σ 2 = 0. (2.41)

This algebraic function has four branch points, namely infinity point ∞ and three real points e−, e1, e2 (e− < 0 < e1 < e2).
The cut joining the logarithmic singularities of the function H starts at point 0 on sheet R0 goes along R+ to the branch
point e1, passing to sheet R1 goes there back via point 0 to the branch point e− and then again passing to sheet R2 goes
there back to point 0. Thus we have, indeed

H ∈ M
(
R \ {[0, e1](0) ∪ [e1, e−](1) ∪ [e−,0](2)

})
.

Recall that the density of the measure λ is determined by the limiting values at the points [0, e2] of the imaginary part of
the lnφ(z)/π or equivalently,

dλ(t)

dt
= lim

y→0

1

π
Im H(t + iy), t ∈ [0, e2] in R0. (2.42)

Since function φ is negative on [0, e1] in R0 we have that density of the measure λ is equal unity there. Therefore, [0, e1]
corresponds to the saturation zone and Σ = [e1, e2] is the equilibrium zone. Thus, we have proved the following result.

Proposition 2.2. The density of the absolutely continuous measure λ, solving equilibrium problem (2.35), (2.36) is equal to (2.42),
where the function H is defined by (2.38) and (2.41).
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3. The nth-root asymptotic from recurrence relations and equilibrium problem

In this section, starting from the coefficients of the recurrence relations, we obtain the main term of the asymptotics of
multiple Meixner polynomials and then we check the connection of this term with the equilibrium problem studied in the
previous section.

An important ingredient of this approach is the expression of the main term of the asymptotics for the solutions of the
difference equation which coefficients depending on a parameter, i.e. recurrence relation with ‘varying’ coefficients. For the
three-term recurrence relations with varying coefficients such an expression has been obtained by Kuijlaars and Van Assche
in [14]. The multiple Meixner polynomials (studied in this paper) satisfy a four-term recurrence relation (1.8), (1.11) with
varying coefficients after the scaling (2.19), (2.34). An asymptotic expression for the multiple orthogonal polynomial solu-
tions of the four-term recurrence relation with varying coefficients (similar to those of [14]) has been recently given in [5].
Below we apply this asymptotic formula for the multiple Meixner polynomials.

The main steps of our approach here are the following.

1) We begin by forming a transition matrix for our recursion. We consider vectors �V 1, �V 2 and �V 3 with coordinates

Mn1,n2(x)

n1!n2! , (3.1)

taken for the following values of the multi-index (n1,n2):[
(n,n); (n,n − 1); (n − 1,n − 1)

]T −→ �V 1,[
(n + 1,n); (n,n); (n,n − 1)

]T −→ �V 2,[
(n + 1,n + 1); (n + 1,n); (n,n)

]T −→ �V 3.

We define transition matrices A( j)
n , j = 1,2, by means of relations:

A(1)
n �V 1 = �V 2, A(2)

n �V 2 = �V 3.

To obtain the coefficients of these transition matrices we need two types of recurrence relations for Mn1,n2 , which connects
the following indices{

I) (n,n) and (n + 1,n), (n,n), (n,n − 1), (n − 1,n − 1),

II) (n + 1,n) and (n + 1,n + 1), (n + 1,n), (n,n), (n,n − 1),
(3.2)

as it was already indicated in (1.5). Indeed, the first type of the recursions we already have. They follow from (1.8) and (1.11)
if we set (n1,n2) = (n,n). To get the recursions of the second type we substitute (n1,n2) = (n,n + 1) in (1.8) and (1.11) and
then interchange a1 with a2 and β1 with β2, respectively.

2) The analysis of recursions for polynomials (3.1) with indices (3.2) (these recursions follows from (1.8) and (1.11))
shows that if we change the variable there as

t̃ := x

n
,

then we get the recurrence relations with coefficients having limits when n → ∞. It gives us a regime{n → ∞,

t̃ ∈ K �C,
(3.3)

for the investigation of asymptotics starting from the recurrence relations. Thus we form a limiting transition matrix

A(t) = lim
n→∞ A(2)

n A(1)
n , t ∈ K �C, (3.4)

and find eigenvalues of this matrix. We fix the following order for these eigenvalues∣∣L1(t̃)
∣∣� ∣∣L2(t̃)

∣∣� ∣∣L3(t̃)
∣∣, t̃ ∈C.

3) Then, nth root asymptotics for polynomials (3.1) can be obtained by means of the following formula proven in [5] (we
remark that our notation L1(t̃) corresponds to the notation λ1(t) from [5] as follows L1(t̃) = λ1(t) and t̃ = 1

t ).

Proposition 3.1. (See [5, Theorem 3.1].) There holds the following asymptotic formula (when n → ∞)

1

n
ln

∣∣∣∣ Mn,n(x)

(n!)2

∣∣∣∣ = 1

n

n∫
0

ln

∣∣∣∣L1

(
x

ñ

)∣∣∣∣dñ + o(1), (3.5)

uniformly for x ∈ K �Ω , where Ω is a domain containing ∞-point and bounded by a curve Γ := {t̃: |L1(t̃)| = |L2(t̃)|}.
n
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We note that function L(t̃) is an algebraic function since it is a root of the polynomials in L with rational coefficients in t̃
(which is the characteristic polynomial of the matrix A(t̃)). This observation allows us to use uniformization of the algebraic
curve L(t̃)⎧⎨⎩

L = F1(s),

n = x

F2(s)
,

where s is the parameter of uniformization,

to evaluate explicitly the integral in the right hand side of (3.5).
4) Finally we check that the obtained explicit expression for the right hand side of (3.5) is the logarithmic potential of

measure λ, which is a solution of the corresponding vector equilibrium problem from the previous section

1

n

n∫
0

ln

∣∣∣∣L1

(
x

ñ

)∣∣∣∣dñ = Pλ(t).

For this purpose we differentiate

d

dt

[
1

n

n∫
0

ln

(
L1

(
x

ñ

))
dñ

]∣∣∣∣∣
n= x

t

=: H(t), (3.6)

and we verify that

H(t) = lnφ0(t) =
∫

dλ(ξ)

t − ξ
,

where φ(t) is the algebraic function from the previous section, which gives an explicit solution of the equilibrium problem.
Notice that (3.6) relates the largest eigenvalue L1 to the branch φ0 of the algebraic function φ (see below its alge-

braic equations (3.8) and (3.9), for multiple Meixner polynomials of the second and first kind, respectively). Similarly, the
eigenvalues L2 and L3 are related to branches φ1 and φ2, respectively.

Remark 3.1. In what follows, the parameter a involved in A(1) (multiple Meixner polynomials of the second kind) and
the parameters a1, a2 involved in A(1) , A(2) (multiple Meixner polynomials of the first kind) come from (1.8) and (1.11)
respectively.

3.1. Asymptotics for multiple Meixner polynomials of the second kind

We start with the polynomials of the second kind since the calculations for obtaining the asymptotics look simplest.
Indeed, the following result is valid.

Theorem 3.2. The main term of asymptotics for multiple Meixner orthogonal polynomials of the second kind has the form

1

n
ln

∣∣∣∣ Mβ1,β2,c
n,n (x)

(n!)2

∣∣∣∣ = Pλ

(
n

x

)
+ o(1),

as n → ∞, uniformly for n
x ∈ K � C, where at the right hand side stands the logarithmic potential of the equilibrium measure λ for

the equilibrium problem (2.35), (2.36). Furthermore, the Cauchy transform of measure λ has the form

λ̂(t) = H(t) = lnφ0(t), t ∈ C\[0, e2],
where φ0(t) = 1 + 2

t , t → ∞ is branch (2.40) of the algebraic function φ , defined by Eq. (2.41), and e2 is the maximal positive branch
points of the function φ .

Proof. Following the step 1) of our approach (see description at the beginning of this section) we compute the transition
matrices A(1)

n and A(2)
n , and we consider them in the limit regime (3.3). Doing it we note that the obtained limits coincide.

This circumstance allows us to use the matrix

A(1)(t) = lim
n→∞ A(1)

n , t ∈ K �C,

instead of the transition matrix A(t) from (3.4). We just have to multiply by 2 the right hand side of formula (3.5). Hence,
we have
18



A(1)(t) =
⎛⎝ 1

2 t − 3
2 a − 1 − 3

4 a(a + 1) − 1
8 a2(a + 1)

1 0 0
0 1 0

⎠ .

The characteristic polynomial P (L, t) of the matrix A(1)(t) has the form:

P = L3 − 1

2
L2t + 3

2
L2a + 3

4
a2L + 3

4
aL + 1

8
a3 + 1

8
a2.

The equation P (L, t) = 0 defines an algebraic function L(t) of genus zero, therefore this function allows a rational uni-
formization. Moreover, taking into account the linear appearance of t in P (L, t) we immediately obtain this uniformization
if we take L as the uniformization parameter:⎧⎪⎨⎪⎩

L = L,

t = P (L, t) + 1
2 L2t

1
2 L2

= 1

4

(2L + b + b2)(2L − b + b2)(2L − 1 + b2)

L2
,

where a is changed (a := b2 − 1). From here, since t = x
n , we have

n = 4L2x

(2L + b + b2)(2L − b + b2)(2L − 1 + b2)
. (3.7)

Now we can integrate by parts the right hand side of (3.5), i.e.

2

(∫
ln(L)dn

)
= 2n ln(L) + x ln

(
2L + b + b2) + x ln

(
2L − b + b2) − 2x ln

(
2L − 1 + b2).

Then, we substitute x(n) from (3.7) into the obtained expression and multiplying it by 1/n, as a result we obtain the right
hand side of (3.5)

2

n

∫
ln(L)dn = 2 ln(L) + 1

4

1

L2

((
2L + b + b2)(2L − 1 + b2) ln

(
(2L + b + b2)(2L − b + b2)

(2L − 1 + b2)2

)(
2L − b + b2))

=: F (L).

It remains to check, that the real part of F (L) is indeed the logarithmic potential of the equilibrium measure λ of the
problem (2.35), (2.36). It will be true if the derivative of F (L) with respect to t coincides with the function H(t) = ln φ(t),
where φ(t) is the algebraic function (2.41). To differentiate F we use the uniformization variable L. Thus,

d

dt
F
(
L(t)

) =
d

dL F (L)

d
dL t(L)

= ln

(
(2L + b + b2)(2L − b + b2)

(2L − 1 + b2)2

)
=: H .

Finally, substituting

φ := eH = (2L + b + b2)(2L − b + b2)

(2L − 1 + b2)2
;

z := t = 1

4

(2L + b + b2)(2L − b + b2)(2L − 1 + b2)2

L2
;

b := 1√
1 − 1/σ

, σ = c−1,

we get an equation for the function φ(z), i.e.

z2φ3 − φ2(2σ z2 + z2 − 2zσ + 2z − σ + 1
) + zσ(zσ + 2z − 2σ + 2)φ − σ 2z2 = 0, (3.8)

which coincide with (2.41). Theorem is completely proved. �
3.2. Asymptotics for multiple Meixner polynomials of the first kind

Finally, we consider the Meixner multiple orthogonal polynomials of the first kind.

Theorem 3.3. The main term of asymptotics for the multiple Meixner orthogonal polynomials of first kind has the form

1
ln

∣∣∣∣ Mβ;�c
n,n (x)

2

∣∣∣∣ = Pλ

(
n
)

+ o(1),

n (n!) x
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being the convergence uniformly for n
x ∈ K �C and n → ∞, where at the right hand side stands the logarithmic potential of a measure

λ defined by its Cauchy transform which has the form

λ̂(t) = H(t) = lnφ0(t), t ∈ C\[0, e2],
where φ0(t) = 1 + 2

t , t → ∞ is branch (2.40) of the algebraic function φ , defined by Eq. (2.27), and e2 is the maximal positive branch
points of the function φ .

For parameters (c1, c2) ∈N (see (2.32)) the measure λ is the solution of the equilibrium problem (2.20), (2.21), (2.22).

Proof. Firstly, we compute the transition matrices A(1)
n and A(2)

n , and we consider them in the limit regime (3.3)

A( j)(t) = lim
n→∞ A( j)

n , t := x

n
∈ K �C.

For the case of the Meixner multiple orthogonal polynomials of first kind these limiting matrices are different. We have

A(1) =
⎛⎝ 1

2 t − 3
2 a1 − 1

2 a2 − 1 − 1
2 a1(a1 + 1) − 1

2 a2(a2 + 1) − 1
2 a1(a1 + 1)(a1 − a2)

1 0 0
0 1 0

⎞⎠ ,

and

A(2) =
⎛⎝ 1

2 t − 3
2 a2 − 1

2 a1 − 1 − 1
2 a1(a1 + 1) − 1

2 a2(a2 + 1) − 1
2 a2(a2 + 1)(a2 − a1)

1 0 0
0 1 0

⎞⎠ .

Then we compute the characteristic polynomial P (L, t) of the transition matrix – product A(2) A(1)(t). Like in Theorem 3.2
the equation P (L, t) = 0 defines an algebraic function L(t) of genus zero. Rational uniformization of this algebraic curve has
the following form⎧⎪⎪⎨⎪⎪⎩

L = (s − a2(a2 + 1)(a1 − a2))(s + a1(a1 + 1)(a1 − a2))

(a1(a1 + 1) + a2(a2 + 1))2
,

t = ((s + a2
1(a1 + 1) + a2

2(a2 + 1))(s + a1(a1 + 1)2 + a2(a2 + 1)2)(2s + (a2 + a1 + 1)(a1 − a2)
2))

((a1(a1 + 1) + a2(a2 + 1))(s + a1(a1 + 1)(a1 − a2))(s − a2(a2 + 1)(a1 − a2)))
,

with s as a parameter of the uniformization. From here, since n = tx, we integrate by parts the right hand side of (3.5)∫
ln(L)dn = n ln(L) − ln

(
s + a2

1 + a3
1 + a2

2 + a3
2

s + a1 + 2a2
1 + a3

1 + a2 + 2a2
2 + a3

2

)
x.

Hence, multiplying it by 1
n we obtain the right hand side of (3.5)

1

n

∫
ln(L)dn = ln

(
L(s)

) + ln

(
s + a2

1 + a3
1 + a2

2 + a3
2

s + a1 + 2a2
1 + a3

1 + a2 + 2a2
2 + a3

2

)
t(s) =: F (s).

It remains to check, that the real part of F is indeed the logarithmic potential of the equilibrium measure λ of the problem
(2.20), (2.21), (2.22). Thus, we differentiate F using the uniformization variable s. Accordingly, we have

H := ln(φ) := d

dt
F =

d
ds F
d
ds t

= − ln

(
s + a2

1 + a3
1 + a2

2 + a3
2

s + a1 + 2a2
1 + a3

1 + a2 + 2a2
2 + a3

2

)
=: ln

(
r(s)

)
.

From here we get a rational uniformization of the curve

φ(z): φ = r(s), z = t(s),

which bring us an equation for the function φ(z):

a2a1zφ3 + (−3a2a1z − za1 + a1 − za2 + a2)φ
2 + (z − 2 − a2 − a1 + 2za2 + 2za1 + 3a2a1z)φ

− z(a2 + 1)(a1 + 1) = 0, (3.9)

or equivalently

z − 2

φ − 1
+ a1 + 1

a1φ − 1 − a1
+ a2 + 1

a2φ − a2 − 1
= 0,

which after substitution a1 = c1
1−c1

and a2 = c2
1−c2

coincides with (2.27). It remains to apply Proposition 2.1. The theorem is
proved. �
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4. Conclusions and future directions

In this paper we have investigated the nth root asymptotic behavior of the multiple Meixner polynomials of the first
and second kind, respectively (see Theorems 3.2, 3.3). We have developed an approach based on an algebraic function 
formulation in connection with some available techniques from logarithmic potential theory. Indeed, for each polynomial 
sequence we have posed the corresponding equilibrium problem for the limiting zero counting measure and then we solved 
it in a quite direct way. An analysis of the asymptotic distribution of zeros of multiple Meixner polynomials was given.

Finally, other systems of discrete multiple orthogonal polynomials (for r = 2) might be asymptotically analyzed using the 
approach presented here (up to some adaptations) to produce similar outcomes.
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