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A pair (U,V) of Hermitian regular linear functionals on the unit circle is said to be a (1, 1)-coherent pair if their corresponding
sequences of monic orthogonal polynomials {𝜙

𝑛
(𝑥)}
𝑛≥0

and {𝜓
𝑛
(𝑥)}
𝑛≥0

satisfy 𝜙[1]
𝑛

(𝑧) + 𝑎
𝑛
𝜙
[1]

𝑛−1
(𝑧) = 𝜓

𝑛
(𝑧) + 𝑏

𝑛
𝜓
𝑛−1

(𝑧), 𝑎
𝑛

̸= 0, 𝑛 ≥ 1,
where 𝜙[1]

𝑛
(𝑧) = 𝜙

𝑛+1
(𝑧)/(𝑛 + 1). In this contribution, we consider the cases when U is the linear functional associated with the

Lebesgue and Bernstein-Szegő measures, respectively, and we obtain a classification of the situations where V is associated with
either a positive nontrivial measure or its rational spectral transformation.

1. Introduction

Apair (U,V) of regular linear functionals on the linear space
of polynomials with real coefficients P is a (1, 1)-coherent
pair if and only if their corresponding sequences of monic
orthogonal polynomials (SMOP) {𝑃

𝑛
(𝑥)}
𝑛≥0

and {𝑄
𝑛
(𝑥)}
𝑛≥0

satisfy

𝑃


𝑛+1
(𝑥)

𝑛 + 1
+ 𝑎
𝑛

𝑃
𝑛
(𝑥)

𝑛

= 𝑄
𝑛
(𝑥) + 𝑏

𝑛
𝑄
𝑛−1

(𝑥) , 𝑎
𝑛

̸= 0, 𝑛 ≥ 1.

(1)

This concept is a generalization of the notion of coherent pair,
for us (1, 0)-coherent pair, introduced by Iserles et al. in [1],
where 𝑏

𝑛
= 0, for every 𝑛 ≥ 1.

In the work by Delgado and Marcellán [2], the notion
of a generalized coherent pair of measures, in short, (1, 1)-
coherent pair of measures, arose as a necessary and sufficient
condition for the existence of an algebraic relation between
the SMOP {𝑆

𝑛
(𝑥; 𝜆)}

𝑛≥0
associated with the Sobolev inner

product

⟨𝑝 (𝑥) , 𝑟 (𝑥)⟩
𝜆

= ∫
R

𝑝 (𝑥) 𝑟 (𝑥) 𝑑𝜇
0

+ 𝜆∫
R

𝑝


(𝑥) 𝑟


(𝑥) 𝑑𝜇
1
, 𝜆 > 0, 𝑝, 𝑟 ∈ P,

(2)

and the SMOP {𝑃
𝑛
(𝑥)}
𝑛≥0

associated with the positive Borel
measure 𝜇

0
in the real line as follows:

𝑆
𝑛+1

(𝑥; 𝜆) + 𝑐
𝑛
(𝜆) 𝑆
𝑛
(𝑥; 𝜆)

= 𝑃
𝑛+1

(𝑥) +
𝑛 + 1

𝑛
𝑎
𝑛
𝑃
𝑛
(𝑥) , 𝑛 ≥ 1,

(3)

where {𝑐
𝑛
(𝜆)}
𝑛≥1

are rational functions in 𝜆 > 0. Besides,
they obtained the classification of all (1, 1)-coherent pairs
of regular functionals (U,V) and proved that at least one
of them must be semiclassical of class at most 1, and U
and V are related by a rational type expression. This is
a generalization of the results of Meijer [3] for the (1, 0)-
coherence case (when 𝑏

𝑛
= 0, 𝑛 ≥ 1), where either U or V

must be a classical linear functional.
The most general case of the notion of coherent pair was

studied by de Jesus et al. in [4] (see also [5]), the so-called
(𝑀,𝑁)-coherent pairs of order (𝑚, 𝑘), where the derivatives of
order 𝑚 and 𝑘 of two SMOP {𝑃

𝑛
(𝑥)}
𝑛≥0

and {𝑄
𝑛
(𝑥)}
𝑛≥0

with
respect to the regular linear functionalsU andV are related
by

𝑀

∑
𝑖=0

𝑎
𝑛−𝑖,𝑛,𝑚

𝑃
(𝑚)

𝑛+𝑚−𝑖
(𝑥)

=

𝑁

∑
𝑖=0

𝑏
𝑛−𝑖,𝑛,𝑘

𝑄
(𝑘)

𝑛+𝑘−𝑖
(𝑥) , 𝑛 ≥ 0,

(4)
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where 𝑀, 𝑁, 𝑚, 𝑘 ∈ Z+ ∪ {0} and the real numbers
𝑎
𝑛−𝑖,𝑛,𝑚

, 𝑏
𝑛−𝑖,𝑛,𝑘

satisfy some natural conditions. They showed
that the regular linear functionals U and V are related by a
rational factor, and, when 𝑚 ̸= 𝑘, those linear functionals are
semiclassical. Besides, they proved that if (𝜇

0
, 𝜇
1
) is a (𝑀,𝑁)-

coherent pair of order (𝑚, 0) of positive Borelmeasures on the
real line, then

max{𝑀,𝑁}
∑
𝑗=0

𝑐
𝑛−𝑗,𝑛,𝑚

(𝜆) 𝑆
𝑛−𝑗+𝑚,𝑚

(𝑥; 𝜆)

=

𝑀

∑
𝑗=0

𝑎
𝑛−𝑗,𝑛,𝑚

𝑃
𝑛−𝑗+𝑚

(𝑥) , 𝑛 ≥ 0,

(5)

holds, where 𝑐
𝑛−𝑗,𝑛,𝑚

(𝜆), 0 < 𝑗 ≤ max{𝑀,𝑁}, 𝑛 ≥ 0, are
rational functions in 𝜆 such that 𝑐

𝑛−𝑗,𝑛,𝑚
(𝜆) = 0 for 𝑛 < 𝑗 ≤

max{𝑀,𝑁}, and {𝑆
𝑛,𝑚

(𝑥; 𝜆)}
𝑛≥0

is the Sobolev SMOP with
respect to the inner product

⟨𝑝 (𝑥) , 𝑟 (𝑥) ⟩
𝜆,𝑚

= ∫
R

𝑝 (𝑥) 𝑟 (𝑥) 𝑑𝜇
0

+ 𝜆∫
R

𝑝
(𝑚)

(𝑥) 𝑟
(𝑚)

(𝑥) 𝑑𝜇
1
,

𝜆 > 0, 𝑚 ∈ Z
+

,

(6)

𝑝, 𝑟 ∈ P. Also, they showed that (𝑀,max{𝑀,𝑁})-coherence
of order (𝑚, 0) is a necessary condition for the algebraic
relation (5). For a historical summary about coherent pairs
on the real line, see, for example, the introductory sections in
the recent papers of de Jesus et al. [6] and of Marcellán and
Pinzón-Cortés [7].

On the other hand, the notion of coherent pair was
extended to the theory of orthogonal polynomials in a dis-
crete variable by Area et al. in [8–10].They used the difference
operator𝐷

𝜔
as well as the 𝑞-derivative operator𝐷

𝑞
defined by

(𝐷
𝜔
𝑝) (𝑥) =

𝑝 (𝑥 + 𝜔) − 𝑝 (𝑥)

𝜔
, 𝜔 ∈ C \ {0} ,

(𝐷
𝑞
𝑝) (𝑥) =

𝑝 (𝑞𝑥) − 𝑝 (𝑥)

(𝑞 − 1) 𝑥
for 𝑥 ̸= 0,

(𝐷
𝑞
𝑝) (0) = 𝑝



(0) , 𝑞 ∈ C \ {0, 1} ,

(7)

instead of the usual derivative operator 𝐷. In this way,
they obtained similar results to those by Meijer and similar
classification as a limit case when either 𝜔 → 0 or 𝑞 → 1,
respectively. Likewise, Marcellán and Pinzón-Cortés in
[11, 12] studied the analogue of the generalized coher-
ent pairs introduced by Delgado and Marcellán, that is,
(1, 1)-𝐷

𝜔
-coherent pairs and (1, 1)-𝐷

𝑞
-coherent pairs. Finally,

Álvarez-Nodarse et al. [13] analyzed the more general case,
(𝑀,𝑁)-𝐷

𝜔
-coherent pairs of order (𝑚, 𝑘) and (𝑀,𝑁)-𝐷

𝑞
-

coherent pairs of order (𝑚, 𝑘), proving the analogue results to
those in [4].

Furthermore, Branquinho et al. in [14] extended the
concept of coherent pair to Hermitian linear functionals

associated with nontrivial probability measures supported
on the unit circle. They studied (3) in the framework of
orthogonal polynomials on the unit circle (OPUC).Also, they
concluded that if (U,V) is a (1, 0)-coherent pair ofHermitian
regular linear functionals, then {𝑃

𝑛
(𝑧)}
𝑛≥0

is semiclassical and
{𝑄
𝑛
(𝑧)}
𝑛≥0

is quasiorthogonal of order at most 6 with respect
to the functional [𝑧𝐴(𝑧) + (1/𝑧)𝐴(1/𝑧)]U, 𝐴 ∈ P. Besides,
they analyzed the cases when either U or V is the Lebesgue
measure orU is the Bernstein-Szegő measure.

Later on, Branquinho and Rebocho in [15] obtained that
if the sequences {𝑃

𝑛
(𝑧)}
𝑛≥0

and {𝑄
𝑛
(𝑧)}
𝑛≥0

satisfy, for 𝑛 ≥ 0,

𝑀
1

∑
𝑗=0

𝛼
𝑛,𝑗

𝑃
𝑛+1+𝑀

1
−𝑗

(𝑧)

𝑛 + 1 + 𝑀
1
− 𝑗

+

𝑀
2

∑
𝑗=0

𝜂
𝑛,𝑗

(𝑃
∗

𝑛+𝑀
2
−𝑗

(𝑧))


=

𝑁
1

∑
𝑗=0

𝛽
𝑛,𝑗

𝑄
𝑛+𝑁
1
−𝑗

(𝑧) +

𝑁
2

∑
𝑗=0

𝛾
𝑛,𝑗

𝑄
∗

𝑛+𝑁
2
−𝑗

(𝑧) ,

(8)

with 𝑁
1

= 𝑀
1
, max{𝑀

2
, 𝑁
2
} < 𝑁

1
, and some extra con-

ditions, then {𝑃
𝑛
(𝑧)}
𝑛≥0

and {𝑄
𝑛
(𝑧)}
𝑛≥0

are semiclassical
sequences of OPUC. Moreover, when 𝑃

𝑛
(𝑧) = 𝑄

𝑛
(𝑧) for

all 𝑛 and under some extra conditions, (8) is a necessary
condition for the semiclassical character of {𝑃

𝑛
(𝑧)}
𝑛≥0

. Finally,
they analyzed the (0, 1)-coherence case (𝑃

𝑛+1
(𝑧))/(𝑛 + 1) =

𝑄
𝑛
(𝑧) + 𝑏

𝑛
𝑄
𝑛−1

(𝑧), 𝑏
𝑛

̸= 0, 𝑛 ≥ 1, when U is the linear
functional associatedwith either the Lebesguemeasure or the
Bernstein-Szegő measure.

The aim of our contribution is to describe the (1, 1)-
coherence pair (U, V) when U and V are regular linear
functionals, focusing our attention on the cases when U is
either the Lebesgue or the Bernstein-Szegő linear functional.
The structure of this work is as follows. In Section 2, we
state some definitions and basic results which will be useful
in the forthcoming sections. In Section 3, we introduce the
concept of (1, 1)-coherent pair of Hermitian regular linear
functionals, and we obtain some results that will be applied
in the sequel. In Section 4, we analyze (1, 1)-coherent pairs
whenU is the linear functional associated with the Lebesgue
measure on the unit circle. We determine the cases when
the linear functionalV is associated with a positive measure
on the unit circle, or a rational spectral transformation of
it. Finally, in Section 5, we deal with a similar analysis for
the case when U is the linear functional associated with the
Bernstein-Szegő measure.

2. Preliminaries

Let us consider the unit circle T = {𝑧 ∈ C : |𝑧| = 1}, the linear
space of Laurent polynomials with complex coefficients Λ =

span{𝑧𝑛 : 𝑛 ∈ Z}, and a linear functional U : Λ → C. We
can associate withU a sequence of moments {𝑐

𝑛
}
𝑛∈Z defined

by 𝑐
𝑛
= ⟨U, 𝑧𝑛⟩, 𝑛 ∈ Z, and a bilinear form as follows:

⟨𝑝 (𝑧) , 𝑞 (𝑧)⟩ = ⟨U, 𝑝 (𝑧) 𝑞 (
1

𝑧
)⟩ , (9)

where 𝑝, 𝑞 ∈ P, the linear space of polynomials with com-
plex coefficients. Its Gram matrix with respect to {𝑧𝑛}

𝑛≥0
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is an infinite Toeplitz matrix (𝑐
𝑗−𝑘

)
𝑗,𝑘≥0

with leading principal
minors given by Δ

𝑛
= det((𝑐

𝑗−𝑘
)
𝑛

𝑗,𝑘=0
), 𝑛 ∈ Z+ ∪ {0}.

The linear functionalU is said to beHermitian if 𝑐
−𝑛

= 𝑐
𝑛
,

quasidefinite or regular if Δ
𝑛

̸= 0 for all 𝑛 ∈ Z+ ∪ {0}, and
positive definite if Δ

𝑛
> 0 for all 𝑛 ∈ Z+ ∪ {0}. We will denote

byH the set of Hermitian linear functionals defined on Λ.
U ∈ H is regular if and only if there exists a (unique)

sequence of monic orthogonal polynomials on the unit circle
(OPUC) {𝜙

𝑛
(𝑧)}
𝑛≥0

; this is, it satisfies that deg(𝜙
𝑛
(𝑧)) = 𝑛 and

⟨𝜙
𝑚
(𝑧), 𝜙
𝑛
(𝑧)⟩ = 𝜅

𝑛
𝛿
𝑚,𝑛

, with 𝜅
𝑛

̸= 0, for 𝑛, 𝑚 ∈ Z+ ∪ {0}.
Every monic OPUC 𝜙

𝑛
(𝑧) has an explicit representation, the

so-called Heine’s formula, as follows:

𝜙
𝑛
(𝑧) =

1

Δ
𝑛−1



𝑐
0

𝑐
1

⋅ ⋅ ⋅ 𝑐
𝑛

...
...

...
...

𝑐
−(𝑛−1)

𝑐
−(𝑛−2)

⋅ ⋅ ⋅ 𝑐
1

1 𝑧 ⋅ ⋅ ⋅ 𝑧𝑛



,

𝑛 ≥ 1, 𝜙
0
(𝑧) = 1.

(10)

Besides, they satisfy the forward and backward Szegő recur-
rence relations

𝜙
𝑛
(𝑧) = 𝑧𝜙

𝑛−1
(𝑧) + 𝛼

𝑛
𝜙
∗

𝑛−1
(𝑧) ,

𝜙
𝑛
(𝑧) = (1 − 𝛼

𝑛
|
2

) 𝑧𝜙
𝑛−1

(𝑧) + 𝛼
𝑛
𝜙
∗

𝑛
(𝑧) ,

𝑛 ≥ 1, 𝜙
0
(𝑧) = 1,

(11)

where 𝛼
𝑛
= 𝜙
𝑛
(0), 𝑛 ≥ 1, are said to be the Verblunsky (reflec-

tion, Schur, Szegő, or Geronimus) coefficients and 𝜙∗
𝑛
(𝑧) =

𝑧
𝑛𝜙
𝑛
(1/𝑧), 𝑛 ∈ Z+ ∪ {0}, is called the reversed polynomial

of 𝜙
𝑛
(𝑧). Conversely, if {𝜙

𝑛
(𝑧)}
𝑛≥0

is a sequence of monic
polynomials which satisfies (11) and |𝛼

𝑛
| ̸= 1 for 𝑛 ≥ 1, then

{𝜙
𝑛
(𝑧)}
𝑛≥0

is the sequence of monic OPUC with respect to
some Hermitian regular linear functional.

IfU is a Hermitian regular (resp., positive definite) linear
functional, then (see [16–18]) |𝛼

𝑛
| ̸= 1 (resp., |𝛼

𝑛
| < 1), for 𝑛 ≥

1.
A positive definite Hermitian linear functional U has an

integral representation (see [19])

⟨𝑝 (𝑧) , 𝑞 (𝑧)⟩ = ⟨U, 𝑝 (𝑧) 𝑞 (
1

𝑧
)⟩

=
1

2𝜋
∫
2𝜋

0

𝑝 (𝑧) 𝑞 (
1

𝑧
) 𝑑𝜇 (𝜃) ,

𝑧 = 𝑒
𝑖𝜃

, 𝑝, 𝑞 ∈ P,

(12)

where 𝜇 is a nontrivial probability measure supported on an
infinite subset of T . A measure 𝜇 belongs to the Nevai class
(see [20, 21]) if lim

𝑛→∞
|𝜙
𝑛
(0)| = 0.

On the other hand (see [19]), an analytic function 𝐹(𝑧),
defined on D = {𝑧 ∈ C : |𝑧| < 1}, is said to be a Carathéodory
function if and only if 𝐹(0) = 1 and Re𝐹(𝑧) > 0 on D. If 𝜇 is
a probability measure on T , then

𝐹 (𝑧) =
1

2𝜋
∫
2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
𝑑𝜇 (𝜃) (13)

is a Carathéodory function. Conversely, the Herglotz repre-
sentation theorem claims that every Carathéodory function
𝐹(𝑧) has a representation given by (13) for a unique proba-
bility measure 𝜇 on T .

Besides (see [22]), a Carathéodory function (13) admits
the expansions

𝐹 (𝑧) = 𝑐
0
+ 2

∞

∑
𝑛=1

𝑐
−𝑛

𝑧
𝑛

, |𝑧| < 1,

𝐹 (𝑧) = −𝑐
0
− 2

∞

∑
𝑛=1

𝑐
𝑛
𝑧
−𝑛

, |𝑧| > 1,

(14)

where {𝑐
𝑛
}
𝑛≥0

are themoments of themeasure associated with
𝐹(𝑧).

To complete this section, we state the following defini-
tions. Let {𝜙

𝑛
(𝑧)}
𝑛≥0

be a sequence of monic OPUC with
corresponding Verblunsky coefficients {𝛼

𝑛
}
𝑛≥1

, and let 𝑁 ∈

Z+ ∪ {0}. The polynomials defined by

𝜙
(𝑁)

𝑛
(𝑧) = 𝑧𝜙

𝑛−1
(𝑧) + 𝛼

𝑛+𝑁
𝜙
∗

𝑛−1
(𝑧) ,

𝑛 ≥ 1, 𝜙
(𝑁)

0
(𝑧) = 1,

(15)

are called the associated polynomials of {𝜙
𝑛
(𝑧)}
𝑛≥0

of order
𝑁. Similarly, given a finite set of complex numbers {𝛾

𝑛
}
𝑁

𝑛=1
,

with |𝛾
𝑛
| ̸= 1, 𝑛 = 1, 2, . . . , 𝑁, let us define the newVerblunsky

coefficients {�̃�
𝑛
}
𝑛≥1

= {𝛾
1
, . . . , 𝛾

𝑁
, 𝛼
1
, 𝛼
2
, . . .}. Then the monic

OPUC defined by the forward Szegő relation associated
with {�̃�

𝑛
}
𝑛≥1

are said to be the antiassociated polynomials of
{𝜙
𝑛
(𝑧)}
𝑛≥0

of order 𝑁.

3. (1, 1)-Coherent Pairs on the Unit Circle

Apair ofHermitian regular linear functionals (U,V) defined
on the linear space of Laurent polynomials is said to be a
(1, 1)-coherent pair if their corresponding sequences ofmonic
OPUC, {𝜙

𝑛
(𝑧)}
𝑛≥0

and {𝜓
𝑛
(𝑧)}
𝑛≥0

, are related by

𝜙
[1]

𝑛
(𝑧) + 𝑎

𝑛
𝜙
[1]

𝑛−1
(𝑧)

= 𝜓
𝑛
(𝑧) + 𝑏

𝑛
𝜓
𝑛−1

(𝑧) , 𝑎
𝑛

̸= 0, 𝑛 ≥ 1,

(16)

where 𝜙[1]
𝑛

(𝑧) = (𝜙
𝑛+1

(𝑧))/(𝑛 + 1), for 𝑛 ∈ N. In such a case,
the pair {𝜙

𝑛
(𝑧)}
𝑛≥0

and {𝜓
𝑛
(𝑧)}
𝑛≥0

is also said to be a (1, 1)-
coherent pair. If 𝑏

𝑛
= 0 for every 𝑛 ≥ 1, then (U,V) is called

a (1, 0)-coherent pair.

Lemma 1. If (U,V) satisfies (16), then, one has the following.

(i) 𝑎
1

̸= 𝑏
1
if and only if 𝜙[1]

𝑛
(𝑧) ̸= 𝜓

𝑛
(𝑧), for every 𝑛 ≥ 1.
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(ii) For 𝑛 ≥ 1, one has

𝜙
[1]

𝑛
(𝑧)

= 𝜓
𝑛
(𝑧) + (𝑏

𝑛
− 𝑎
𝑛
) 𝜓
𝑛−1

(𝑧)

+

𝑛−2

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑎
𝑛
𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑘+2

(𝑏
𝑘+1

− 𝑎
𝑘+1

) 𝜓
𝑘
(𝑧) ,

(17)

𝜓
𝑛
(𝑧)

= 𝜙
[1]

𝑛
(𝑧) + (𝑎

𝑛
− 𝑏
𝑛
) 𝜙
[1]

𝑛−1
(𝑧)

+

𝑛−2

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
𝑘+2

(𝑎
𝑘+1

− 𝑏
𝑘+1

) 𝜙
[1]

𝑘
(𝑧) .

(18)

Proof. From (16) it is easy to check that 𝑎
1
= 𝑏
1
if and only if

there exists 𝑁 ∈ N, 𝑁 ≥ 1, such that 𝜙[1]
𝑁

(𝑧) = 𝜓
𝑁
(𝑧). Also,

from (16) and using induction on 𝑛, it is immediate to prove
(17) and (18).

Corollary 2. If (U,V) is a (1, 1)-coherent pair given by (16),
then

⟨V, 𝜙
[1]

𝑛
(𝑧)⟩ = (−1)

𝑛

(𝑎
1
− 𝑏
1
)

𝑛

∏
𝑗=2

𝑎
𝑗
⟨V, 1⟩ , 𝑛 ≥ 1, (19)

where∏𝑘2
𝑗=𝑘
1

𝑎
𝑗
= 1 whenever 𝑘

2
< 𝑘
1
.

We will study the (1, 1)-coherence relations when U is
the linear functional associated with basic positive measures
on the unit circle, namely, the Lebesgue and Bernstein-Szegő
measures.

The Lebesgue linear functional is the linear functional
associated with the Lebesgue measure 𝑑𝜇(𝜃) = 𝑑𝜃/2𝜋, and
its corresponding sequence of monic OPUC is 𝜙

𝑛
(𝑧) = 𝑧𝑛,

for 𝑛 ∈ Z+ ∪ {0}. Besides, the reversed polynomials are
𝜙∗
𝑛
(𝑧) = 1, 𝑛 ∈ Z+ ∪ {0}, and its Verblunsky coefficients are

𝛼
𝑛

= 𝜙
𝑛
(0) = 0, for 𝑛 ≥ 1. Furthermore, its moments are

𝑐
𝑛
= 𝛿
𝑛,0
, for 𝑛 ∈ Z+ ∪ {0}, and its Carathéodory function is

𝐹(𝑧) = 1.
The Bernstein-Szegő linear functional is associated with

the measure 𝑑𝜇(𝜃) = ((1 − |𝐶|
2)/|1 + 𝐶𝑒𝑖𝜃|2)(𝑑𝜃/2𝜋), with

𝐶 ∈ C and |𝐶| < 1. Its corresponding monic OPUC are
𝜙
𝑛
(𝑧) = 𝑧𝑛−1(𝑧 + 𝐶) for 𝑛 ≥ 1 and 𝜙

0
(𝑧) = 1. Its reversed

polynomials are 𝜙∗
𝑛
(𝑧) = 1+𝐶𝑧, for 𝑛 ≥ 1, and its Verblunsky

coefficients are 𝛼
𝑛

= 𝜙
𝑛
(0) = 0, for 𝑛 ≥ 2 and 𝛼

1
= 𝐶.

Besides, its moments are 𝑐
𝑛

= (−𝐶)
𝑛 for 𝑛 ∈ Z+ ∪ {0}, and

its Carathéodory function is 𝐹(𝑧) = (1 − 𝑧𝐶)/(1 + 𝑧𝐶).
We begin by analyzing the first one.

4. The Lebesgue Linear Functional

Theorem 3. Let (U,V) be a (1, 1)-coherent pair on the unit
circle such that their corresponding monic OPUC satisfy (16),
and letU be the Lebesgue linear functional.

(i) If 𝑎
1
= 𝑏
1
, then V is also the linear functional associ-

ated with the Lebesgue measure, and 𝑎
𝑛
= 𝑏
𝑛
for 𝑛 ≥ 1.

(ii) If 𝑎
1

̸= 𝑏
1
and |𝜓

𝑛
(0)| = |𝛽

𝑛
| ̸= 1, 𝑛 ≥ 1, then

V
𝑛
= (−𝑎

2
)
𝑛−1

(𝑏
1
− 𝑎
1
) V
0
, 𝑛 ≥ 1, (20)

𝑎
2
= 𝑏
2
(1 −

𝛽1

2

) + 𝛽
1
, 𝑎
𝑛
= 𝑎
2
,

𝑏
𝑛
=

𝑏
𝑛−1

1 −
𝛽𝑛−1


2
=

𝑏
2

∏
𝑛−1

𝑘=2
(1 −

𝛽𝑘

2

)
, 𝑛 ≥ 3,

(21)

𝛽
1
= 𝑎
1
− 𝑏
1
,

𝛽
𝑛
= (−1)

𝑛−1

𝑏
𝑛
⋅ ⋅ ⋅ 𝑏
2
𝛽
1
= −𝑏
𝑛
𝛽
𝑛−1

, 𝑛 ≥ 2,
(22)

𝜓
1
(𝑧) = 𝑧 + 𝑎

1
− 𝑏
1
, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑛 ≥ 2,

𝜓
𝑛
(𝑧) = 𝑧

𝑛

+ (𝑎
2
− 𝑏
𝑛
) 𝑧
𝑛−1

+

𝑛−2

∑
𝑘=1

(−1)
𝑛−𝑘−1

𝑏
𝑛
⋅ ⋅ ⋅ 𝑏
𝑘+2

(𝑎
2
− 𝑏
𝑘+1

) 𝑧
𝑘

+ 𝛽
𝑛
,

(23)

where {V
𝑛
}
𝑛≥0

is the sequence of moments associated
withV.

Proof. Since 𝜙[1]
𝑛

(𝑧) = 𝑧𝑛 for 𝑛 ∈ Z+ ∪ {0}, then (16) becomes

𝑧
𝑛

+ 𝑎
𝑛
𝑧
𝑛−1

= 𝜓
𝑛
(𝑧) + 𝑏

𝑛
𝜓
𝑛−1

(𝑧) , 𝑎
𝑛

̸= 0, 𝑛 ≥ 1. (24)

Thus, applying the linear functional V on the previous ex-
pression, we get

V
𝑛
= −𝑎
𝑛
V
𝑛−1

= (−1)
𝑛−1

𝑎
𝑛
⋅ ⋅ ⋅ 𝑎
2
(𝑏
1
− 𝑎
1
) V
0
, 𝑛 ≥ 2,

V
1
= (𝑏
1
− 𝑎
1
) V
0
.

(25)

(i) If 𝑎
1
= 𝑏
1
, then from (25) we have V

𝑛
= 0 for 𝑛 ≥ 1.

Thus, 𝜓
𝑛
(𝑧) = 𝑧𝑛 for 𝑛 ≥ 1, and, as a consequence, from (24)

we obtain 𝑎
𝑛
= 𝑏
𝑛
for every 𝑛 ≥ 1.

(ii) From (18), we have

𝜓
𝑛
(𝑧) = 𝑧

𝑛

+ (𝑎
𝑛
− 𝑏
𝑛
) 𝑧
𝑛−1

+

𝑛−2

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
𝑘+2

(𝑎
𝑘+1

− 𝑏
𝑘+1

) 𝑧
𝑘

.

(26)

Multiplying (26) by 𝑧−1 and applyingV, we obtain

0 = V
𝑛−1

+ (𝑎
𝑛
− 𝑏
𝑛
) V
𝑛−2

+

𝑛−2

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
𝑘+2

(𝑎
𝑘+1

− 𝑏
𝑘+1

) V
𝑘−1

.
(27)

Thus, multiplying this equation by 𝑏
𝑛+1

and adding it to the
previous equation for 𝑛 + 1, we get

0 = V
𝑛
+ 𝑎
𝑛+1

V
𝑛−1

(25)

= −𝑎
𝑛
V
𝑛−1

+ 𝑎
𝑛+1

V
𝑛−1

= (𝑎
𝑛+1

− 𝑎
𝑛
) V
𝑛−1

, 𝑛 ≥ 2.

(28)



Abstract and Applied Analysis 5

Since 𝑎
𝑛

̸= 0, 𝑛 ≥ 1, and 𝑎
1

̸= 𝑏
1
, (25) yields V

𝑛
̸= 0 for 𝑛 ≥ 1.

Thus, from (28), we conclude that 𝑎
𝑛+1

= 𝑎
𝑛
for 𝑛 ≥ 2 or,

equivalently, 𝑎
𝑛+1

= 𝑎
2
for 𝑛 ≥ 2. Therefore, (25) becomes

(20).
On the other hand, from (26) we obtain (22) and (23).

Besides, from the forward Szegő relation and (26), we can
obtain another expression for 𝜓

𝑛+1
(𝑧), 𝑛 ≥ 0. By comparing

the coefficients of 𝑧𝑛, we get 𝑎
𝑛+1

− 𝑏
𝑛+1

= 𝑎
𝑛
− 𝑏
𝑛
− 𝑏
𝑛+1

|𝛽
𝑛
|2,

for 𝑛 ≥ 1. Hence, since 𝑎
𝑛+1

= 𝑎
𝑛
and |𝛽

𝑛−1
| ̸= 1, for 𝑛 ≥ 2, (21)

follows.

We are interested in the cases where V is also a positive
definite linear functional. Notice that, aside from the trivial
case when 𝑎

1
= 𝑏
1
, all of the coherence coefficients are

determined from the values of 𝑎
1
, 𝑏
1
, and 𝑏

2
(or, equivalently,

𝑎
1
, 𝑏
1
, and 𝑎

2
). Not every choice of these parameters will yield

a positive definite linear functionalV. For instance, if |𝑏
2
| = 1

and |𝑎
1
− 𝑏
1
| = |𝛽

1
| = √2, then we can see from (22) that

|𝑏
𝑛
| = 1, 𝑛 ⩾ 3, and |𝛽

𝑛
| = √2, 𝑛 ⩾ 2. However, it is possible

to choose the values of 𝑎
1
, 𝑏
1
, and 𝑏

2
in order to get a positive

definite linear functional V, or at least its rational spectral
transformation. We have the following cases.

Proposition4. Let (U,V) be a (1, 1)-coherent pair on the unit
circle such that their corresponding monic OPUC satisfy (16),
and letU be the linear functional associated with the Lebesgue
measure. Assume thatV is normalized (i.e., V

0
= 1).Then, one

has the following.

(i) Let |𝑏
1
− 𝑎
1
| < 1. If 𝑎

2
= 𝑎
1
− 𝑏
1
(i.e., 𝑏

2
= 0), then

𝑏
𝑛

= 0 and 𝑎
𝑛

= 𝑎
1
− 𝑏
1
for every 𝑛 ≥ 2. Besides, V

is the linear functional associated with the Bernstein-
Szegő measure with parameter 𝑏

1
− 𝑎
1
. Furthermore, if

𝑏
𝑁

= 0 for some 𝑁 ≥ 2, then 𝑏
2
= 0.

(ii) If 𝑎
1
, 𝑏
1
, 𝑎
2
∈ R and either 0 < 𝑎

1
− 𝑏
1
< 𝑎
2
< 1 or

−1 < 𝑎
2
< 𝑎
1
− 𝑏
1
< 0 holds, then the Carathéodory

function associated withV is

𝐹V = −
𝑏
1
− 𝑎
1

𝑎
2

𝐹
𝐵
(𝑧) +

𝑏
1
− 𝑎
1
+ 𝑎
2

𝑎
2

, (29)

where 𝐹
𝐵
(𝑧) is the Carathéodory function associated

with the Bernstein-Szegő measure with parameter −𝑎
2
.

As a consequence, the orthogonalitymeasure associated
withV is

𝑑𝜇
2
= −

𝑏
1
− 𝑎
1

𝑎
2

1 −
𝑎2


2

1 + 𝑎
2
𝑒𝑖𝜃


2

𝑑𝜃

2𝜋

+
𝑏
1
− 𝑎
1
+ 𝑎
2

𝑎
2

𝑑𝜃

2𝜋
.

(30)

(iii) For any values of 𝑎
1
, 𝑏
1
, the value of 𝑏

2
can be chosen

in such a way thatV is the linear functional associated

with a rational spectral transformation of a Nevai class
measure.

Proof. (i)Notice that 𝑎
1

̸= 𝑏
1
because 𝑎

2
̸= 0.Wefirst prove that

if 𝑏
𝑁

= 0 for some 𝑁 ≥ 2, then 𝑏
𝑛

= 0 for 𝑛 ≥ 2. Assume
that for some 𝑁 ≥ 2, 𝑏

𝑁
= 0. From (21), (22), and (23) it

follows that 𝑏
𝑛
= 0 = 𝛽

𝑛
and 𝜓

𝑛
(𝑧) = 𝑧𝑛−1(𝑧 + 𝑎

2
) for 𝑛 ≥ 𝑁.

Besides, another expression for 𝜓
𝑁
(𝑧) is 𝜓

𝑁
(𝑧) = 𝑧𝜓

𝑁−1
(𝑧) +

𝛽
𝑁
𝜓
∗

𝑁−1
(𝑧) = 𝑧𝜓

𝑁−1
(𝑧), where𝜓

𝑁−1
(𝑧) is given by (23).Thus,

the comparison of the coefficients of 𝑧𝑁−1 in both expressions
of 𝜓
𝑁
(𝑧) yields 𝑎

2
= 𝑎
2
− 𝑏
𝑁−1

, and thus, 𝑏
𝑁−1

= 0. Following
the same argument for 𝑏

𝑁−1
, . . . , 𝑏

2
, we conclude that 𝑏

𝑛
= 0

for 𝑛 = 2, . . . , 𝑁 − 1 and 𝑎
2
= 𝑎
1
− 𝑏
1
. Therefore, 𝑏

𝑛
= 0 = 𝛽

𝑛

for 𝑛 ≥ 2, 𝛽
1
= 𝑎
1
− 𝑏
1
= 𝑎
2
, and 𝜓

𝑛
(𝑧) = 𝑧𝑛−1(𝑧 + 𝑎

1
− 𝑏
1
)

for 𝑛 ≥ 1. As a consequence, from (21) and (20), it follows
that 𝑎

𝑛+1
= 𝑎
1
− 𝑏
1
and V
𝑛
= (𝑏
1
− 𝑎
1
)
𝑛, 𝑛 ≥ 0. Finally, since

|𝛽
1
| = |𝑏
1
−𝑎
1
| < 1, thenV is the linear functional associated

with the Bernstein-Szegő measure.
(ii) From (20), the Carathéodory function associatedwith

V is 𝐹V = 1 + 2∑
𝑘≥1

(𝑏
1
− 𝑎
1
)(−𝑎
2
)
𝑘−1

𝑧𝑘. Since |𝑎
2
| < 1,

then (see [19]) the Bernstein-Szegő polynomials of parameter
−𝑎
2
have moments 𝑐

𝑛
= (−𝑎

2
)
𝑛 and are orthogonal with

respect to the measure ((1 − |𝑎
2
|2)/|1 + 𝑎

2
𝑒𝑖𝜃|2)(𝑑𝜃/2𝜋), and

their associated Carathéodory function is 𝐹
𝐵
(𝑧) = 1 −

2𝑎
2
∑
𝑘≥1

(−𝑎
2
)
𝑘−1

𝑧𝑘. Therefore, (29) holds. In other words
(see [23]), 𝐹V can be obtained by applying a rescaling to
the moments of 𝐹

𝐵
(𝑧), followed by a perturbation of its first

moment (i.e., a diagonal perturbation of the corresponding
Toeplitz matrix). Thus, the orthogonality measure associated
withV is given by (30).

(iii) From (21), given 𝛽
1
= 𝑎
1
− 𝑏
1
, we have 𝑏

3
= 𝑏
2
/(1 −

|𝛽
2
|
2

) = 𝑏
2
/(1 − |𝑏

2
𝛽
1
|
2

), so we can choose |𝑏
2
| small enough

so that 𝛽
2
is sufficiently close to 0. Thus, 𝑏

3
will also be close

to 0, and since

𝛽
𝑛
= −𝑏
𝑛
𝛽
𝑛−1

, 𝑛 ≥ 2,

𝑏
𝑛
=

𝑏
𝑛−1

1 −
𝛽𝑛−1


2
, 𝑛 ≥ 3,

(31)

{|𝑏
𝑛
|}
𝑛⩾2

will be an increasing sequence and, as a consequence,
{|𝛽
𝑛
|}
𝑛⩾2

will be a decreasing sequence. Besides, 𝑏
2
can be

chosen so that |𝑏
𝑛
| converges to a constant 𝑏, 0 < 𝑏 < 1,

and therefore the product ∏𝑛−1
𝑘=2

|1 − |𝛽
𝑘
|2| will also converge

to |𝑏
2
|/𝑏. This shows that 𝛽

𝑛
→ 0, and thus {𝛽

𝑛
}
𝑛⩾2

defines a Nevai measure 𝜇. As a consequence, since V has
{𝛽
𝑛
}
𝑛⩾1

as Verblunsky coefficients, V can be expressed as an
antiassociated perturbation of order 1 (see [24]) applied to the
measure 𝜇.

5. The Bernstein-Szegy Linear Functional

Now, we proceed to analyze the companionmeasureVwhen
U is the Bernstein-Szegő linear functional defined as above.
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Theorem 5. Let U be the Bernstein-Szegő linear functional,
and let (U,V) be a (1, 1)-coherent pair on the unit circle given
by (16). Then, the moments ofV are

V
𝑛
= (−1)

𝑛

× [

[

(𝑎
1
− 𝑏
1
)

𝑛−1

∑
𝑘=0

𝑛 + 1 − 𝑘

𝑛 + 1
𝐶
𝑘

𝑛−𝑘

∏
𝑗=2

𝑎
𝑗
+

1

𝑛 + 1
𝐶
𝑛]

]

V
0
,

𝑛 ≥ 1,

(32)

where ∏
𝑘
2

𝑗=𝑘
1

𝑎
𝑗

= 1 whenever 𝑘
2

< 𝑘
1
, and the sequence of

monic OPUC {𝜓
𝑛
(𝑧)}
𝑛≥0

is given by 𝜓
0
(𝑧) = 1, 𝜓

1
(𝑧) = 𝑧 +

(𝑎
1
− 𝑏
1
) + (1/2) 𝐶, and, for 𝑛 ≥ 2,

𝜓
𝑛
(𝑧)

= 𝑧
𝑛

+ [(𝑎
𝑛
− 𝑏
𝑛
) +

𝑛

𝑛 + 1
𝐶] 𝑧
𝑛−1

− [𝑏
𝑛
(𝑎
𝑛−1

− 𝑏
𝑛−1

) −
𝑛 − 1

𝑛
𝐶 (𝑎
𝑛
− 𝑏
𝑛
)] 𝑧
𝑛−2

+

𝑛−3

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
𝑘+3

× [𝑏
𝑘+2

(𝑎
𝑘+1

− 𝑏
𝑘+1

) −
𝑘 + 1

𝑘 + 2
𝐶 (𝑎
𝑘+2

− 𝑏
𝑘+2

)] 𝑧
𝑘

.

(33)

Furthermore, |𝛽
𝑛
| = |𝜓

𝑛
(0)| ̸= 1, 𝑛 ≥ 1, and

𝛽
1
= (𝑎
1
− 𝑏
1
) +

1

2
𝐶, 𝛽

2
= − [𝑏

2
𝛽
1
−

1

2
𝐶𝑎
2
] ,

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑛 ≥ 3,

𝛽
𝑛
= (−1)

𝑛−1

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
3
[𝑏
2
(𝑎
1
− 𝑏
1
) −

1

2
𝐶 (𝑎
2
− 𝑏
2
)]

= −𝑏
𝑛
𝛽
𝑛−1

,

(34)

𝑎
𝑛
+ 𝑏
𝑛
[
𝛽𝑛−1


2

− 1]

= −
𝑛

𝑛 + 1
𝐶 + 𝛽

1
+

1

2
𝐶𝑎
2
𝛽
1
−

𝑛−1

∑
𝑘=2

𝑏
𝑘

𝛽𝑘−1

2

,

𝑛 ≥ 2.

(35)

Proof. Since 𝜙[1]
𝑛

(𝑧) = 𝑧𝑛 + (𝑛/(𝑛 + 1))𝐶𝑧𝑛−1, for 𝑛 ≥ 0, then,
from (19), we get

V
𝑛
= −

𝑛

𝑛 + 1
𝐶V
𝑛−1

+ (−1)
𝑛

(𝑎
1
− 𝑏
1
)

×

𝑛

∏
𝑗=2

𝑎
𝑗
V
0
, 𝑛 ≥ 1,

(36)

where ∏
𝑘
2

𝑗=𝑘
1

𝑎
𝑗
= 1 whenever 𝑘

2
< 𝑘
1
. From (36) and using

induction on 𝑛, it is easy to verify that the moments of V

are given by (32). Besides, from (18) and (33), (34) holds.
Furthermore, since {𝜓

𝑛
(𝑧)}
𝑛≥0

is a sequence of monic OPUC,
then it follows that |𝛽

𝑛
| ̸= 1, 𝑛 ≥ 1.

On the other hand, from the forward Szegő relation and
(33), we can get another expression of𝜓

𝑛
(𝑧), for 𝑛 ≥ 2. Hence,

comparing the coefficients of 𝑧 and using (34), (35) follows.

As in the previous section, we are interested in the
situationswhereV is also a positive definite linear functional.
Notice now that the values of 𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, and 𝑏

3
determine

all other coherence coefficients. We have the following cases.

Proposition 6. Let U be the Bernstein-Szegő linear func-
tional, and let (U,V) be a (1, 1)-coherent pair on the unit circle
given by (16). Then, one has the following.

(i) If 𝑎
1

= 𝑏
1
, then 𝐶 = 0 and, therefore, U and V are

Lebesgue linear functionals, and 𝑎
𝑛
= 𝑏
𝑛
for 𝑛 ≥ 1.

(ii) Let 𝑎
1

̸= 𝑏
1
.

(1) If V is normalized (i.e., V
0
= 1) and 𝑏

𝑁
= 0 for

some𝑁 ≥ 3, then𝐶 = 0; this is,U is the Lebesgue
linear functional. As a consequence, 𝑏

𝑛+1
= 0,

𝑎
𝑛+1

= 𝑎
1
−𝑏
1
,𝜓
𝑛
(𝑧) = 𝑧𝑛−1(𝑧+𝑎

1
−𝑏
1
), and V

𝑛
=

(𝑏
1
−𝑎
1
)
𝑛 for every 𝑛 ≥ 1. In other words, for |𝑏

1
−

𝑎
1
| < 1,V is the linear functional associated with

the Bernstein-Szegőmeasure, with parameter 𝑏
1
−

𝑎
1
.

(2) If (1/2)𝐶𝑎
2
= 𝑏
2
𝛽
1
, then 𝜓

𝑛
(𝑧) = 𝑧𝑛−1(𝑧 + 𝑎

1
−

𝑏
1
+ (1/2)𝐶) for 𝑛 ≥ 1; this is, for |𝑏

1
− 𝑎
1
−

(1/2)𝐶| < 1, V is the linear functional associated
with the Bernstein-Szegő measure, with parame-
ter 𝑏
1
− 𝑎
1
− (1/2)𝐶.

(3) If (1/2)𝐶𝑎
2

̸= 𝑏
2
𝛽
1
and 𝑏
𝑛

̸= 0, for 𝑛 ≥ 3, then

𝑏
𝑛
=

𝑏
𝑛−1

1 −
𝛽𝑛−1


2

=
𝑏
3

∏
𝑛−1

𝑘=3
(1 −

𝛽𝑘−1

2

)
, 𝑛 ≥ 4,

(37)

and 𝑏
3
can be chosen so that V is the linear

functional associated with an antiassociated per-
turbation of order 2 applied to a Nevai measure.

Proof. (i) If wemultiply (33) by 𝑧
−1 and applyV, then we get,

for 𝑛 ≥ 2,

0 = V
𝑛−1

+ [(𝑎
𝑛
− 𝑏
𝑛
) +

𝑛

𝑛 + 1
𝐶] V
𝑛−2

− [𝑏
𝑛
(𝑎
𝑛−1

− 𝑏
𝑛−1

) −
𝑛 − 1

𝑛
𝐶 (𝑎
𝑛
− 𝑏
𝑛
)] V
𝑛−3

+

𝑛−3

∑
𝑘=0

(−1)
𝑛−(𝑘+1)

𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
𝑘+3

× [𝑏
𝑘+2

(𝑎
𝑘+1

− 𝑏
𝑘+1

) −
𝑘+1

𝑘+2
𝐶 (𝑎
𝑘+2

− 𝑏
𝑘+2

)] V
𝑘−1

.

(38)
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If we multiply this equation by 𝑏
𝑛+1

and we add it to the
previous equation for 𝑛 + 1, then we obtain

0 = V
𝑛
+ [𝑎
𝑛+1

+
𝑛 + 1

𝑛 + 2
𝐶] V
𝑛−1

+
𝑛

𝑛 + 1
𝐶𝑎
𝑛+1

V
𝑛−2

,

𝑛 ≥ 2.

(39)

Hence, from (39) and (36), it follows that

0 = (−1)
𝑛+1

(𝑎
1
− 𝑏
1
)

×

𝑛+1

∏
𝑗=2

𝑎
𝑗
V
0
[𝑎
𝑛+3

− 𝑎
𝑛+2

+
1

(𝑛 + 3) (𝑛 + 4)
𝐶]

+ [
1

(𝑛 + 2) (𝑛 + 3)
𝑎
𝑛+3

+
𝑛 + 1

(𝑛 + 2) (𝑛 + 3) (𝑛 + 4)
𝐶]𝐶V

𝑛
,

𝑛 ≥ 0.

(40)

On the other hand, if we apply the linear functional V
to both sides of the (1, 1)-coherence relation (16), we get V

1
+

[𝑎
1
+ (𝐶/2)]V

0
= 𝑏
1
V
0
and

V
𝑛
+ [𝑎
𝑛
+

𝐶𝑛

𝑛 + 1
] V
𝑛−1

+ 𝑎
𝑛

𝐶 (𝑛 − 1)

𝑛
V
𝑛−2

= 0,

𝑛 ≥ 2.

(41)

Thus, from (39) and (41), we obtain, for 𝑛 ≥ 2,

0 = [𝑎
𝑛+1

− 𝑎
𝑛
+

𝐶

(𝑛 + 1) (𝑛 + 2)
] V
𝑛−1

+ [
𝑛𝑎
𝑛+1

𝑛 + 1
−

(𝑛 − 1) 𝑎
𝑛

𝑛
]𝐶V
𝑛−2

.

(42)

Therefore, if 𝑎
1
= 𝑏
1
, then from (32), the moments of V

are V
𝑛
= (1/(𝑛 + 1))(−𝐶)

𝑛V
0
for 𝑛 ≥ 0, and, as a consequence,

(40) becomes

0 = (−1)
𝑛

1

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)

× 𝐶
𝑛+1

[𝑎
𝑛+3

+
𝑛 + 1

𝑛 + 4
𝐶] V
0
, 𝑛 ≥ 0,

(43)

and (42) is, for 𝑛 ≥ 2,

0 = (−1)
𝑛−1

1

𝑛 (𝑛 + 1)
𝐶
𝑛−1

× [
1

𝑛 + 2
𝐶 −

1

𝑛 − 1
𝑎
𝑛+1

] V
0
, 𝑛 ≥ 2.

(44)

Then, if 𝐶 ̸= 0, from (43) and (44) it follows that 𝑎
𝑛
= −((𝑛 −

2)/(𝑛 + 1))𝐶, for 𝑛 ≥ 3, and 𝑎
𝑛
= ((𝑛 − 2)/(𝑛 + 1))𝐶, for 𝑛 ≥ 3,

respectively, which is a contradiction. Thus, if 𝑎
1
= 𝑏
1
, then

𝐶 = 0; that is,U is the Lebesgue linear functional, and in case
the part 𝑖 of Theorem 3 holds.

Now, let us assume 𝑎
1

̸= 𝑏
1
.

(ii)(1) From part (i) of Proposition 4, it suffices to show
that U is the Lebesgue linear functional. Thus, let us prove

that if 𝑏
𝑁

= 0 for some 𝑁 ≥ 3 (and therefore 𝛽
𝑁

= 0), then
𝐶 = 0. Indeed, if 𝑏

𝑁
= 0 for some 𝑁 ≥ 3, then from (33)

for 𝑛 = 𝑁 + 1, 𝑁 ≥ 2, it follows that 𝛽
𝑁+1

= 0, for 𝑁 ≥ 3.
Furthermore, from the forward Szegő relation and (33) for
𝑛 = 𝑁, we obtain an expression of𝜓

𝑁+1
(𝑧), for𝑁 ≥ 3. Hence,

comparing the coefficients of this expression and (33) for 𝑛 =

𝑁 + 1, we obtain, for𝑁 ≥ 3,

(𝑎
𝑁+1

− 𝑏
𝑁+1

) +
𝑁 + 1

𝑁 + 2
𝐶 = 𝑎

𝑁
+

𝑁

𝑁 + 1
𝐶, (45)

−𝑏
𝑁+1

𝑎
𝑁

+
𝑁

𝑁 + 1
𝐶 (𝑎
𝑁+1

− 𝑏
𝑁+1

) =
𝑁 − 1

𝑁
𝐶𝑎
𝑁
, (46)

𝑏
𝑁+1

𝑁 − 1

𝑁
𝐶𝑎
𝑁

= 0. (47)

Since 𝑎
𝑁

̸= 0, then from (47) it follows that either 𝐶 = 0 or
𝑏
𝑁+1

= 0. If 𝐶 = 0, then from (46) we get 𝑏
𝑁+1

= 0 and, as
a consequence, from (45) we have 𝑎

𝑁+1
= 𝑎
𝑁
. If 𝑏
𝑁+1

= 0,
then from (46) it follows that either 𝐶 = 0 (and thus, from
(45), 𝑎

𝑁+1
= 𝑎
𝑁
) or 𝑎
𝑁+1

= ((𝑁2 − 1)/𝑁2)𝑎
𝑁
. If 𝑏
𝑁+1

= 0 and
𝑎
𝑁+1

= ((𝑁2 −1)/𝑁2)𝑎
𝑁
, from (45) it follows that𝐶 = (((𝑁+

1)(𝑁 + 2))/𝑁2)𝑎
𝑁
. But if 𝑏

𝑁+1
= 0, we can follow a similar

argument and conclude that 𝐶 = ((𝑁 + 2)(𝑁 + 3)/(𝑁 + 1)
2

)

𝑎
𝑁+1

, and since 𝑎
𝑁+1

= ((𝑁2 − 1)/𝑁2)𝑎
𝑁
, then we also have

𝐶 = ((𝑁 + 2)(𝑁 + 3)(𝑁 − 1)/(𝑁 + 1)𝑁2)𝑎
𝑁
, which yields a

contradiction. Therefore, 𝐶 = 0.
(ii)(2) If (1/2)𝐶𝑎

2
= 𝑏
2
𝛽
1
, then from (34) it follows that

𝛽
2

= 0 and, as a consequence, 𝛽
𝑛

= 0 for every 𝑛 ≥ 2.
Therefore, from the forward Szegő relation it follows that
𝜓
𝑛
(𝑧) = 𝑧𝑛−1(𝑧 + 𝛽

1
) for 𝑛 ≥ 1.

(ii)(3) From the forward Szegő relation and (33) we obtain
an expression of 𝜓

𝑛
(𝑧), for 𝑛 ≥ 3. If we compare the

coefficients of 𝑧 of this expression and (33), we get𝛽
2
[𝑏
4
−𝑏
3
] =

𝑏
4
𝑏
3
𝛽
2
∑
3

𝑘=3
𝑏
𝑘
|𝛽
𝑘−1

|2 and

𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
4
𝛽
2
[𝑏
𝑛
− 𝑏
3
]

= 𝑏
𝑛
𝑏
𝑛−1

⋅ ⋅ ⋅ 𝑏
3
𝛽
2

𝑛−1

∑
𝑘=3

𝑏
𝑘

𝛽𝑘−1

2

, 𝑛 ≥ 5.
(48)

Thus, if (1/2)𝐶𝑎
2

̸= 𝑏
2
𝛽
1
, then from (34) it follows that 𝛽

2
̸= 0,

and, as a consequence, if 𝑏
4
, . . . , 𝑏

𝑛−1
, 𝑛 ≥ 5, are nonzero, then

from (48) we get

𝑏
𝑛
=

𝑏
3

1 − 𝑏
3
∑
𝑛−1

𝑘=3
𝑏
𝑘

𝛽𝑘−1

2
, 𝑛 ≥ 4. (49)

Besides, from (34), |𝛽
𝑛
| = |𝑏
𝑛
𝛽
𝑛−1

| for 𝑛 ≥ 3, and if 𝑏
3

̸= 0, then
by induction on 𝑛 we can prove that 𝑏

𝑛
= 𝑏
𝑛−1

/(1 − |𝛽
𝑛−1

|2),
for 𝑛 ≥ 4, which is (37). Therefore, proceeding as in the proof
of Proposition 4, we can choose |𝑏

3
| small enough so that 𝛽

3

is sufficiently close to 0. As a consequence, {|𝑏
𝑛
|}
𝑛⩾3

will be an
increasing sequence, and hence {|𝛽

𝑛
|}
𝑛⩾3

will be a decreasing
sequence. Also, we can choose 𝑏

3
such that |𝑏

𝑛
| converges to a

constant 𝑏, with 0 < 𝑏 < 1.The infinite product∏𝑛−1
𝑘=3

|1−|𝛽
𝑘
|
2

|

will then converge to |𝑏
3
|/𝑏. Therefore, since {𝛽

𝑛
}
𝑛⩾1

are the
Verblunsky coefficients of V, this linear functional V is an
antiassociated perturbation of order 2 (see [24]) applied to a
Nevai measure 𝜇.
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