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Pinzón-Cortésd
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Abstract

We present a new structure relation for the sequence of orthogonal poly-
nomials associated with a Dν-semiclassical linear functional of class s, and
then we use it to obtain a matrix characterization of the Dν-semiclassical
orthogonal polynomials in terms of the Jacobi matrix associated with the
multiplication operator in the basis of orthonormal polynomials, and the
nonsingular lower triangular matrix that represents the orthogonal polyno-
mials with respect to some bases of polynomials. We also provide a matrix
characterization of Dν-coherent pairs of linear functionals.
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1. Preliminaries

Every sequence of monic polynomials {Pn(x)}n≥0 with deg(Pn(x)) = n
is a basis of C[x], the linear space of polynomials with complex coefficients.
Then, there exists a unique sequence of linear functionals {pn}n≥0, called
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the dual basis of {Pn(x)}n≥0, such that 〈pn, Pm(x)〉 = δn,m, n,m ≥ 0, where
δn,m denotes the Kronecker delta. As a consequence, a linear functional
U : C[x] → C can be expressed as U =

∑
n≥0 〈U , Pn(x)〉 pn.

Lemma 1.1. Let {Pn(x)}n≥0 and {Rn(x)}n≥0 be sequences of monic polyno-
mials, and let {pn}n≥0 and {rn}n≥0 be their respective dual sequences. If

Rn(x) = Pn(x), n ≤ i+k, Rn(x) =
n∑

j=n−ι

γn,jPj(x), n ≥ i+k+1, γn,n �= 0,

then

pm =

⎧⎨⎩
rm if 0 ≤ m ≤ k,

rm +
∑m+i

n=i+k+1 γn,mrn if k + 1 ≤ m ≤ i+ k,∑m+i
n=m γn,mrn if m ≥ i+ k + 1.

Proof. For m ≥ 0, we have

pm =
∑
n≥0

〈pm, Rn(x)〉 rn =
i+k∑
n=0

δm,nrn +
∑

n≥i+k+1

n∑
j=n−i

γn,jδm,jrn,

which establishes the result.

We can associate with a linear functional U a sequence of complex num-
bers {un}n≥0, where un = 〈U , xn〉, n ≥ 0, which is called the sequence of
moments of U . In this context, U is said to be quasi-definite or regular if
det

(
[ui+j]

n
i,j=0

)
�= 0, for n ≥ 0. This condition is equivalent to the existence

of a sequence of monic polynomials {Pn(x)}n≥0 such that

deg(Pn(x)) = n, n ≥ 0, and 〈U , Pn(x)Pm(x)〉 = kn δn,m, kn �= 0, n,m ≥ 0.

{Pn(x)}n≥0 is said to be a sequence of monic orthogonal polynomials (SMOP)
with respect to the linear functional U . The linear functional p(x)U , where
p(x) is a polynomial with complex coefficients, is defined as 〈p(x)U , q(x)〉 =
〈U , p(x)q(x)〉 for all q ∈ C[x]. In particular, Pn(x)U = 〈U , P 2

n(x)〉 pn, for
n ≥ 0.

For each � ∈ C, let B� be the following basis of C[x]

B� =
{
u�,k(x) | u�,0 = 1, u�,k(x) = x(x− �) · · ·

(
x− (k − 1)�

)
, k = 1, 2, . . .

}
.

Notice that B0 is the canonical basis {u0,k(x) = xk}k≥0. In this way, if XB
denotes the matrix representation of the multiplication by x on C[x] with
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respect to some basis B ⊂ C[x], then it follows that

x

⎡⎢⎣ u�,0(x)
u�,1(x)

...

⎤⎥⎦ = X�

⎡⎢⎣ u�,0(x)
u�,1(x)

...

⎤⎥⎦ , where X� =

⎡⎢⎢⎢⎣
0 1 0 · · ·
0 � 1 · · ·
0 0 2� · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ ,

� ∈ C, since xu�,k(x) = k�u�,k(x) + u�,k+1(x). Besides, xk [u�,0(x), · · · ]T =

Xk
� [u�,0(x), · · · ]T , k ≥ 0.
Given a monic polynomial sequence {Pn(x)}n≥0 and a basis B ⊂ C[x],

we can associate with {Pn(x)}n≥0 a semi-infinite nonsingular lower triangu-
lar matrix AB whose n-th row contains the coefficients of the n-th degree
polynomial Pn(x) with respect to the basis B. For example, if

Pn(x) =
n∑

j=0

an,ju�,j, n ≥ 0, � ∈ C fixed,

then the entries of the matrix AB�
are an,j, for 0 � j � n, n � 0, and zero

otherwise. Since Pn is monic, the diagonal entries are an,n = 1 and, as a
consequence, AB�

is nonsingular.
Following the notation used in [26], a matrix B is said to be a lower semi-

matrix if there exists an integer number m such that bi,j = 0 if i − j < m.
The entry bi,j belongs to the m−th diagonal if i − j = m. If B is non zero,
we say that B has index m if m is the minimum integer number such that
B has at least one nonzero entry in the m−th diagonal. Furthermore, B is
said to be (n,m)−banded if there exists a pair of integers numbers (n,m)
with n ≤ m and all the nonzero entries of B lie between the diagonals of
indices n and m. Finally, B is called monic if all the entries in its diagonal
of index m are equal to 1. Notice that the set of banded matrices is closed
under addition and multiplication, and that the inverse of a banded matrix
might not be banded.

The following result characterizes the orthogonality of a sequence of monic
polynomials with respect to some linear functional U in terms of its corre-
sponding matrix AB.

Theorem 1.2 ([26, 27]). Let {Pn(x)}n≥0 be a monic polynomial sequence
and let AB be its associated matrix with respect to some basis B ⊂ C[x] of
monic polynomials. Then, {Pn(x)}n≥0 is orthogonal with respect to some
linear functional if and only if ABXBA−1

B is a (monic) element of T , the set
of (−1, 1)-banded matrices whose entries in the diagonals of indices 1 and
−1 are all nonzero.
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Let us consider the difference operator Dω, and the q-derivative operator
Dq, defined, respectively, by

(Dωp)(x) =
p(x+ ω)− p(x)

ω
, for ω ∈ C \ {0},

(Dqp)(x) =
p(qx)− p(x)

(q − 1)x
, for x �= 0, (Dqp)(0) = p′(0),

for q ∈ C \ {0} and qn �= 1, n ∈ Z
+, for p ∈ C[x]. From now on, ν and ν∗ will

denote either ω and −ω, or, q and q−1, respectively. Other notation that we
will also use is the following

�ν =

{
1, if ν = ω,
ν, if ν = q,

x � ν =

{
x+ ν, if ν = ω,
νx, if ν = q.

jν =

{
ν, if ν = ω,
0, if ν = q,

ηk−1,ν =

{
k, if ν = ω,

[k]q =
qk−1
q−1

, if ν = q.

Some properties of such operators are listed in the following lemma. They
can be shown using easy computations.

Lemma 1.3. For p, r ∈ C[x], we have

(i) Dω

[
p(x+ a)

]
=
(
Dωp

)
(x+ a), a ∈ C, Dq

[
p(bx)

]
= b
(
Dqp

)
(bx),

b ∈ C \ {0}.
(ii)

(
Dν [p r]

)
(x) = r(x)

(
Dνp

)
(x) + p(x � ν)

(
Dνr

)
(x).

(iii)
(
Dν∗p

)
(x � ν) =

(
Dνp

)
(x).

(iv) DνDν∗ = �ν∗Dν∗Dν .

For a linear functional U , the (distributional) Dν-derivative of U , DνU ,
is given by

〈DνU , p(x)〉 = −〈U , Dν∗p(x)〉 , p ∈ C[x].

Notice that the derivative operator Dν yields the usual derivative operator
when q → 1 and ω → 0. Indeed, when ω → 0 and q → 1, (Dνp)(x) converges
to d

dx
p(x) in C[x], and DνU converges to DU in (C[x])∗, respectively, where

DU is defined by 〈DU , p(x)〉 = −〈U , p′(x)〉.
The structure of the manuscript is as follows. In Section 2, we obtain a

new structure relation for Dν-semiclassical polynomials, and then we use it
to characterize the Dν-semiclassical character of a linear functional in terms
of banded matrices. A similar characterization for Dν-coherent pairs is pre-
sented in Section 3.
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2. A matrix characterization for Dν-semiclassical polynomials

A pair of non zero polynomials φ(x) = atx
t + . . .+ a0 and ψ(x) = brx

r +
· · · + b0, such that atbr �= 0, t ≥ 0, r ≥ 1, is said to be an admissible pair if
either t − 1 �= r or t − 1 = r and ηn−1,νar+1 + br �= 0, n ≥ 0. In this way, a
quasi-definite linear functional U is called Dν-semiclassical if there exists an
admissible pair (φ, ψ) such that

Dν [φ(x)U ] = ψ(x)U , deg(φ) ≥ 0, deg(ψ) ≥ 1, (2.1)

holds. The class of U is the nonnegative number s = min
{
max{deg(φ) −

2, deg(ψ)− 1} : (φ, ψ) is an admissible pair satisfying (2.1)
}
, and the corre-

sponding SMOP is also called Dν-semiclassical of class s.
The Dν-semiclassical linear functionals were introduced by J. A. Sohat in

[25]. In the last decades, they have been extensively studied by P. Maroni and
his coworkers in [5, 13, 21, 23]. In [22], Maroni developed a complete study
of these functionals, showing how they act on polynomials and giving some
structure forms that will be vital in the present work. The D-semiclassical
linear functionals of class one were classified by S. Belmehdi in [7] through a
distributional study and by giving an integral representation for the canonical
cases, except for the Bessel case. The study of the distributional equation
(2.1) has revealed many families of D-semiclassical orthogonal polynomials
of class greater than one, see for instance, [6, 10], where the authors study
the case s = 2 for symmetric and positive linear functionals and [20] where
F. Marcellán et al. obtain all the semiclassical linear functionals of class two
and their integral representations. For a complete survey on this topic see
[14].

The following result provides a criterion for determining the class of a
Dν-semiclassical linear functional.

Theorem 2.1 ([21, 24] when ν = ω, and [15] when ν = q). Let U be a
Dν-semiclassical linear functional satisfying (2.1). Then, the class of U is s
if and only if∏
c∈C,

φ(c)=0

[∣∣∣�ν∗ψ(c�ν∗)−
(
Dν∗φ

)
(c)
∣∣∣+∣∣∣〈U , �ν∗(θc�ν∗ψ)(x)−(θc�ν∗◦θcφ)(x)〉∣∣∣] > 0

holds, where θαp(x) =
p(x)−p(α)

x−α
, α ∈ C, p ∈ P. If there exists c ∈ C such that

φ(c) = 0 and

�ν∗ψ(c � ν
∗)−

(
Dν∗φ

)
(c) =

〈
U , �ν∗

(
θc�ν∗ψ

)
(x)−

(
θc�ν∗ ◦ θcφ

)
(x)
〉
= 0,
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then the Dν-Pearson equation (2.1) becomes

Dν

[
θcφ(x)U

]
=
[
�ν∗
(
θc�ν∗ψ

)
(x)−

(
θc�ν∗ ◦ θcφ

)
(x)
]
U .

A Dν-semiclassical linear functional of class s = 0 and its corresponding
SMOP are called Dν-classical. In this case, for polynomials satisfying (2.1)
we get deg(φ) ≤ 2 and deg(ψ) = 1.

On the other hand, for k ≥ 0,
(
Dνujν ,k

)
(x) = ηk−1,νujν ,k−1(x). Hence, if

Dν,jν is the matrix representation of Dν with respect to Bjν , then

XjνDν,jν −Dν,jν

(
Xjν � νI

)
= I,

D̂ν,jνDν,jν = I,
Dν,jνD̂ν,jν =

⎡⎢⎢⎢⎣
0 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ ,

with Dν,jν =

⎡⎢⎢⎢⎣
0 0 0 · · ·
η0,ν 0 0 · · ·
0 η1,ν 0 · · ·
...

. . . . . . . . .

⎤⎥⎥⎥⎦ , D̂ν,jν =

⎡⎢⎢⎢⎣
0 1/η0,ν 0 · · ·
0 0 1/η1,ν · · ·
0 0 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ .

If Ajν is the matrix whose entries of its k-th row, k ≥ 0, are the coefficients
of a polynomial pk(x) of degree k with respect to the basis Bjν , then the
entries of the k-th row of AjνDν,jν are the coefficients of Dνpk(x) which is
a polynomial of degree k − 1. Therefore, if pk(x) is monic, then the k-th

row, k ≥ 0, of Aν,jν = D̂ν,jνAjνDν,jν contains the coefficients of the monic

polynomial p
[1,ν]
k (x) = Dνpk+1(x)

ηk,ν
with respect to the basis Bjν . The following

result characterizesDν-classical SMOPs in terms of their corresponding semi-
infinite lower triangular matrices.

Theorem 2.2. Let Ajν be the matrix associated with the monic polynomials
sequence {Pn(x)}n≥0 with respect to Bjν . Then {Pn(x)}n≥0 is Dν-classical if
and only if AjνA

−1
ν,jν is a (0, 2)-banded monic matrix.

Proof. In [27], the author proved that

AjνA
−1
ν,jν = LjνDν,jν +Dν,jν

[
(−Mν,jν ) � νI

]
,

where Ljν = AjνXjνA
−1
jν ∈ T and Mν,jν = Aν,jνXjνA

−1
ν,jν . Thus, Mν,jν is a

monic element of T if and only if AjνA
−1
ν,jν is a (0, 2)-banded monic matrix.

Therefore, the result follows from Theorem 1.2.
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On the other hand, Dν-semiclassical linear functionals can be character-
ized, in terms of structure relations, as follows.

Theorem 2.3. Let U be a quasi-definite linear functional and let {Pn(x)}n≥0

be its corresponding SMOP. Then, the following statements are equivalent

• There exist non zero polynomials φ, ψ, of degrees t ≥ 0, l ≥ 1, respec-
tively, such that (2.1) holds.

• [22] (First structure relation) There exist a polynomial φ of degree t
and sequences {an,k}n≥s such that {Pn(x)}n≥0 satisfies

φ(x)P [1,ν∗]
n (x) =

n+t∑
k=n−s

an,kPk(x), n ≥ s, an,n−s �= 0, n ≥ s+ 1,

(2.2)
where s is a positive integer number with t ≤ s+ 2.

• [8] (Second structure relation) There exist non-negative integer numbers
t, s, and sequences {ãn,k}, {b̃n,k}, such that

n+s∑
k=n−s

ãn,kPk(x) =
n+s∑

k=n−t

b̃n,kP
[1,ν∗]
k (x), n ≥ max{s, t+ 1},

holds, where ãn,n+s = b̃n,n+s = 1, n ≥ max{s, t+ 1}.
In the next theorem, we provide another structure relation that charac-

terizes Dν-semiclassical linear functionals. It will be used later to express the
Dν-semiclassical character in terms of semi-infinite banded matrices.

Theorem 2.4. For a nonzero monic polynomial φ(x) of degree t let U and
{Pn(x)}n≥0 be a linear functional and its corresponding SMOP respectively.
The following statements are equivalent

(i) U is a Dν-semiclassical linear functional of class s satisfying (2.1), i.e.,
there exists a polynomial ψ(x) of degree r ≥ 1 such that (φ, ψ) is an
admissible pair and Dν [φ(x)U ] = ψ(x)U holds.

(ii) There exist a non-negative integer s, an integer r ≥ 1, and sequences
{bn,j}n≥s+1 and {cn,j}n≥s+1 such that s = max{t−2, r−1} and {Pn(x)}n≥0

satisfies the structure relation

s∑
j=0

bn,n−jPn−j(x) =
s+2∑
j=0

cn,n−jP
[1,ν∗]
n−j (x), bn,n = cn,n = 1, n ≥ s+ 1,

(2.3)
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where 〈Dν [φ(x)U ] , Pn(x)〉 = 0, r+1 ≤ n ≤ 2s+3, 〈Dν [φ(x)U ] , Pr(x)〉 �=
0, and lim

ν→δν,q

〈Dν [φ(x)U ],Pr(x)〉
〈U ,P 2

r (x)〉 �= −n, for n ≥ 0 and r = t− 1.

Proof. (i) ⇒ (ii): Let consider the Fourier expansion

Pn+j(x) =

n+j∑
k=0

an+j,kP
[1,ν∗]
k (x), an+j,n+j = 1, j = 0, . . . , s, n ≥ 1.

Multiplying the above equation by bn+s,n+j, with bn+s,n+s = 1, and adding
for j = 0, . . . , s, we obtain

s∑
j=0

bn+s,n+jPn+j(x) =
n+s∑
k=0

βk,n+sP
[1,ν∗]
k (x), n ≥ 1, (2.4)

where

βk,n+s = an+s,k +
s−1∑

j=max{0,k−n}
bn+s,n+jan+j,k, k = 0, . . . , n+ s, n ≥ 1.

If we apply 〈Pm(x � ν∗)φ(x)U , · 〉 to the above equation, form+(s+2) ≤ n−1,
then we get

n+s∑
k=0

βk,n+s

〈
φ(x)U , 1

ηk,ν∗

(
Dν∗ [Pk+1(x)Pm(x)]− Pk+1(x)Dν∗Pm(x)

)〉

= −
n+s∑
k=0

βk,n+s

ηk,ν∗

〈
U ,
[
ψ(x)Pm(x) + φ(x)Dν∗Pm(x)

]
Pk+1(x)

〉
= −

m+s∑
k=0

αm,kβk,n+s , m = 0, 1, . . . , n− s− 3, n ≥ s+ 3, (2.5)

where, for k = 0, . . . ,m+ s, m = 0, 1, . . . , n− s− 3, and n ≥ s+ 3,

αm,k =

〈
U ,
[
ψ(x)Pm(x) + φ(x)Dν∗Pm(x)

]
Pk+1(x)

〉
ηk,ν∗

.

In matrix form, (2.5) reads⎡⎢⎣ 0
...
0

⎤⎥⎦ =

⎡⎢⎣ α0,0 · · · α0,s 0 · · · 0
...

...
...

...
...

...
αn−s−3,0 · · · αn−s−3,s αn−s−3,s+1 · · · αn−s−3,n−3

⎤⎥⎦
⎡⎢⎢⎢⎣

β0,n+s

β1,n+s
...

βn−3,n+s

⎤⎥⎥⎥⎦ ,
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or, equivalently,⎡⎢⎣ 0
...
0

⎤⎥⎦ =

⎡⎢⎣ α0,0 · · · α0,s−1
...

...
...

αn−s−3,0 · · · αn−s−3,s−1

⎤⎥⎦
(n−s−2)×s

⎡⎢⎣ β0,n+s
...

βs−1,n+s

⎤⎥⎦

+

⎡⎢⎢⎢⎣
α0,s 0 · · · 0
α1,s α1,s+1 · · · 0
...

...
. . .

...
αn−s−3,s · · · · · · αn−s−3,n−3

⎤⎥⎥⎥⎦
(n−s−2)×(n−s−2)

⎡⎢⎣ βs,n+s
...

βn−3,n+s

⎤⎥⎦ .

In this way, since αm,m+s �= 0, for m = 0, . . . , n− s− 3 (by the admissibility
condition of a SMOP), then βk,n+s = 0, k = 0, . . . , s−1, implies that βk,n+s =
0, for k = s, . . . , n− 3. Thus (2.4) becomes

s∑
j=0

bn+s,n+jPn+j(x) =
n+s∑

k=n−2

βk,n+sP
[1,ν∗]
k (x), n ≥ 1,

which is equivalent to (2.3), completing the proof. Now, let us prove that
βk,n+s = an+s,k +

∑s−1
j=0 bn+s,n+jan+j,k = 0, for k = 0, . . . , s − 1, i.e., let us

show that the system

Γn,s := −

⎡⎢⎢⎢⎣
an+s,0

an+s,1
...

an+s,s−1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
an,0 an+1,0 · · · an+s−1,0

an,1 an+1,1 · · · an+s−1,1
...

...
. . .

...
an,s−1 an+1,s−1 · · · an+s−1,s−1

⎤⎥⎥⎥⎦
s×s

⎡⎢⎢⎢⎣
bn+s,n

bn+s,n+1
...

bn+s,n+s−1

⎤⎥⎥⎥⎦ =: Λn,sΥn,s

has a solution. If Λn,s is a nonsingular matrix, the desired conclusion follows.
On the other hand, if det(Λn,s) = 0, the system Λn,sΥn,s = Γn,s has a solution
if and only if the matrices Λn,s and [Λn,s | Γn,s]s×(s+1) have the same number
of linearly independent rows.

Let us assume that the jth and the kth rows of Λn,s are linearly dependent,
then there exists λn ∈ C such that(

an,j, an+1,j, · · · , an+s−1,j

)
= λn

(
an,k, an+1,k, · · · , an+s−1,k

)
.
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Since n is arbitrary, then the algorithm described above holds for n+1, and
thus we get(

an+1,j, an+2,j, · · · , an+s,j

)
= λn+1

(
an+1,k, an+2,k, · · · , an+s,k

)
.

As a consequence, the jth and the kth rows of [Λn,s | Γn,s] are also linearly
dependent. Therefore, Λn,s has the same number of independent rows as
[Λn,s | Γn,s], and then, Λn,sΥn,s = Γn,s has a solution.

(ii) ⇒ (i): Let us consider the sequence of monic polynomials {Rn(x)}n≥0

defined by

Rn(x) = Pn(x), n ≤ 2s+3, Rn+1(x) =
s+2∑
j=0

ηn,ν∗cn,n−j

ηn−j,ν∗
Pn−j+1(x), n ≥ 2s+3.

Then, from the definition of Rn+1(x), n ≥ 2s + 3, and from (2.3) it follows
that

〈Dν [φ(x)U ] , Rn+1(x)〉 = −ηn,ν∗
s∑

j=0

bn,n−j 〈φ(x)U , Pn−j(x)〉 = 0,

for n ≥ max{s + t + 1, 2s + 3} = 2s + 3. As a consequence, taking into
account the assumption, we get

Dν [φ(x)U ] =
∑
n≥0

〈Dν [φ(x)U ] , Rn(x)〉 rn =
r∑

n=0

〈Dν [φ(x)U ] , Pn(x)〉 rn,

where {rn}n≥0 is the dual sequence of {Rn(x)}n≥0.
In this way, using Lemma 1.1 with ι = s + 2, κ = s + 1, and γn,j =

ηn−1,ν∗cn−1,j−1

ηj−1,ν∗
, we obtain that rn = pn, for n ≤ s+1. Hence, since r ≤ s+1

and Pn(x)U = 〈U , P 2
n(x)〉 pn, it follows that

Dν [φ(x)U ] = ψ(x)U , where ψ(x) =
r∑

n=0

〈Dν [φ(x)U ] , Pn(x)〉
〈U , P 2

n(x)〉
Pn(x).

Notice that (2.3) can be expressed in matrix form as

BAjν∗ = CAν∗,jν∗ , (2.6)
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where B and C are monic (0, s)−banded and (0, s + 2)−banded matrices,
respectively, whose entries are the coefficients bn,n−j and cn,n−j. As a con-
sequence, the previous result means that {Pn(x)}n�0 is a Dν-semiclassical
SMOP of class s if and only if there exist matrices B and C such that (2.6)
holds. Furthermore, if {Pn(x)}n�0 is Dν-semiclassical of class s, it follows
from (2.6) that BAjν∗A

−1
ν∗,jν∗ is a (0, s+2)−banded monic matrix. Conversely,

if there exists a (0, s)−banded monic matrix B such that BAjν∗A
−1
ν∗,jν∗ is a

(0, s+2)−banded monic matrix, then (2.6) holds and, therefore, {Pn(x)}n�0 is
Dν-semiclassical of class s. As a consequence, we have the following straight-
forward generalization of Proposition 2.4 for Dν-semiclassical polynomials.

Theorem 2.5. Let {Pn(x)}n�0 be a MOPS with respect to a linear functional
U . Then, U is Dν-semiclassical of class s if and only if there exists a semi-
infinite (0, s)−banded monic matrix B such that BAjν∗A

−1
ν∗,jν∗ is a (0, s +

2)−banded monic matrix.

Remark 2.6. When s = 0, {Pn(x)}n�0 is Dν-classical if and only if

BAjν∗A
−1
ν∗,jν∗ = Ajν∗A

−1
ν∗,jν∗

is a (0, 2)−banded monic matrix, (which is the result stated in Theorem
2.2, since a linear functional is Dν-semiclassical of class s if and only if it is
Dν∗-semiclassical of class s). In other words, {Pn(x)}n�0 satisfies (see [2])

Pn(x) = P [1,ν∗]
n (x) + cn,n−1P

[1,ν∗]
n−1 (x) + cn,n−2P

[1,ν∗]
n−2 (x), n ≥ 1.

Now, let us consider a positive definite Dν-semiclassical linear functional
U that satisfies the Dν-Pearson equation (2.1), and let {pn(x)}n�0 be its
corresponding sequence of orthonormal polynomials. From the three-term
recurrence relation, we get

xp(x) = J̃p(x), (2.7)

where

J̃ =

⎛⎜⎜⎜⎜⎝
b0 a1 0 . . .

a1 b1 a2
. . .

0 a2 b2
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎠ , p(x) =
(
p0(x), p1(x), p2(x), · · ·

)T
.

On the other hand, the matrix expression for the (normalized) first struc-
ture relation for Dν-semiclassical polynomials given in (2.2) reads

φ(x)Dν∗p(x) = Ĥp(x), with Ĥ = XT
0 H̃, (2.8)
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where H̃ is a (−t, s)−banded matrix whose entries are the coefficients ap-
pearing in the right side of (2.2), and Dνp(x) = [Dνp0(x), Dνp1(x), . . .]

T . In
this way, the relation between H̃ and J̃ is described in the following result.

Theorem 2.7. Let {pn(x)}n�0 be a Dν-semiclassical sequence of orthonormal

polynomials and let Ĥ be the (−t + 1, s + 1)−banded matrix associated with
the first structure relation (2.8). Then

(i) [J̃ , Ĥ]ν∗ = φ(J̃),

(ii) Ĥ + ĤT = −ψ(J̃),

where [J̃ , Ĥ]ν∗ = J̃Ĥ − Ĥ(J̃ � ν∗I), and φ, ψ are the polynomials appearing
in the Dν-Pearson equation.

Proof. (i): Taking the Dν∗-derivative in (2.7), then multiplying by φ(x) and
using (2.8) we get

(x � ν∗)Ĥp(x) + φ(x)p(x) = J̃Ĥp(x).

Thus, since (x � ν∗)p(x) = (J̃ � ν∗I)p(x) and xkp(x) = J̃kp(x), k ≥ 0, above
equation becomes

Ĥ(J̃ � ν∗I)p(x) + φ(J̃)p(x) = J̃Ĥp(x),

and therefore, (i) holds. (ii): From (2.7), we have〈
Dν [φ(x)U ] ,p(x)pm(x)

〉
=
[〈
Dν [φ(x)U ] , p0(x)pm(x)

〉
,
〈
Dν [φ(x)U ] , p1(x)pm(x)

〉
, . . .

]T
=
〈
ψ(x)U ,p(x)pm(x)

〉
=
〈
U , ψ(J̃)p(x)pm(x)

〉
, m ≥ 0.

Notice that we get the m-th column of ψ(J̃). On the other hand, using (2.8),
we obtain

〈Dν [φ(x)U ] ,p(x)pm(x)〉 = −
〈
φ(x)U , Dν∗p(x)pm(x � ν∗) + p(x)Dν∗pm(x)

〉
= −

〈
U , Ĥp(x)pm(x � ν∗)

〉
−
〈
U ,p(x)φ(x)Dν∗pm(x)

〉
= −

[
m-th column of Ĥ

]
−
[
m-th row of Ĥ

]T
,

which is the m-th column of −[Ĥ + ĤT ]. Therefore, (ii) follows.

Remark 2.8. Notice that
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• From (i) we get

0 = φ(J̃)− φ(J̃)T = J̃Ĥ + (J̃ � ν∗I)ĤT − Ĥ(J̃ � ν∗I)− ĤT J̃

= J̃
(
Ĥ + �ν∗Ĥ

T
)
−
(
Ĥ + �ν∗Ĥ

T
)T

J̃ − jν∗
(
Ĥ − ĤT

)
,

or equivalently,

J̃
(
Ĥ + �ν∗Ĥ

T
)
−
(
Ĥ + �ν∗Ĥ

T
)T

J̃ = jν∗
(
Ĥ − ĤT

)
.

Therefore, when ν = ω, J̃(Ĥ + ĤT )/2 is a symmetric matrix, where

(Ĥ + ĤT )/2 is the symmetric component of Ĥ. On the other hand,

2φ(J̃) = φ(J̃) + φ(J̃)T = J̃Ĥ − (J̃ � ν∗I)ĤT − Ĥ(J̃ � ν∗I) + ĤT J̃

= J̃
(
Ĥ − �ν∗Ĥ

T
)
−
(
�ν∗Ĥ − ĤT

)
J̃ − jν∗

(
Ĥ + ĤT

)
,

i.e.,

J̃
Ĥ − �ν∗Ĥ

T

2
− �ν∗Ĥ − ĤT

2
J̃ = φ(J̃) + jν∗

Ĥ + ĤT

2
.

Hence, if ν = ω, the skew-symmetric component of Ĥ satisfies J̃
̂H− ̂HT

2
−

̂H− ̂HT

2
J̃ = φ(J̃).

• From (ii), the symmetric component of Ĥ satisfies

Ĥ + ĤT

2
= −1

2
ψ(J̃).

Finally, we state the relation between the matrices Ajν∗ and H.

Proposition 2.9. Let Ajν∗ be the lower triangular matrix associated with
the Dν-semiclassical MOPS {Pn(x)}n�0, with respect to the basis Bjν∗ . If H
is the (−t, s)-banded matrix associated with the first structure relation (2.2),
i.e., φ(x)Dν∗p(x) = XT

0 Hp(x), we have

H = X0Ajν∗Dν∗,jν∗φ(Xjν∗ )A
−1
jν∗ .

Proof. If Yjν∗ (x) =
[
1, x, x(x− jν∗), x(x− jν∗)(x− 2jν∗), . . .

]T
, then p(x) =

Ajν∗Yjν∗ (x), and therefore,Dν∗p(x) = Ajν∗Dν∗Yjν∗ (x) = Ajν∗Dν∗,jν∗Yjν∗ (x).
Multiplying by φ(x) and comparing with (2.2), we obtain

XT
0 HAjν∗Yjν∗ (x) = Ajν∗Dν∗,jν∗φ(x)Yjν∗ (x).
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Moreover, if φ(x) =
∑deg(φ)

k=0 γkx
k, then

φ(x)Yjν∗ (x) =

⎛⎝deg(φ)∑
k=0

γkx
k

⎞⎠
⎡⎢⎣ ujν∗ ,0

ujν∗ ,1
...

⎤⎥⎦ =

deg(φ)∑
k=0

γk
[
xkYjν∗ (x)

]

=

deg(φ)∑
k=0

γkX
k
jν∗Yjν∗ (x) = φ(Xjν∗ )Yjν∗ (x),

and, taking into account X0X
T
0 = I, the result follows.

3. A matrix characterization of Dν-Coherent pairs

A pair of linear functionals (U ,V) is said to be a (M,N)-Dν-coherent
pair of order (m, k) if their corresponding SMOP {Pn(x)}n≥0 and {Qn(x)}n≥0

satisfy
M∑
i=0

ai,nD
m
ν Pn+m−i(x) =

N∑
i=0

bi,nD
k
νQn+k−i(x), n ≥ 0,

where M , N , m, k ∈ N ∪ {0}, ai,n, bi,n ∈ C, for n ≥ 0, aM,n �= 0 for n ≥ M ,
bN,n �= 0 for n ≥ N and ai,n = bi,n = 0 for i > n. When k = 0, (U ,V) is
called a (M,N)-Dν-coherent pair of order m, and if (m, k) = (1, 0), we say
it (M,N)-Dν-coherent pair.

I. Area, E. Godoy and F. Marcellán in [3] and [4] extended the concept
of coherence from the theory of orthogonal polynomials in one continuous
variable to orthogonal polynomials in one discrete variable. They proved
that if (U ,V) constitutes a (1, 0)-Dν-coherent pair, then either U or V is
Dν-classical and the other one is a rational modification of the first.

Later on, in [16] (2004), K. H. Kwon, J. H. Lee and F. Marcellán stud-
ied (M + 1-term) generalized Dω-coherent pairs, (for us (M, 0)-Dω-coherent
pairs). In particular, they analyzed (2, 0)-Δ-coherent pairs, i.e., two SMOP
{Pn(x)}n�0 and {Rn(x)}n�0 satisfying a relation

Rn(x) =
1

n+ 1
ΔPn+1(x)−

σn

n
ΔPn(x)−

τn−1

n− 1
ΔPn−1(x), n ≥ 2,

where σn and τn are arbitrary constants and Δ is the Dω operator with
ω = 1 (forward difference operator). In this way, they showed that the linear
functionals must be Δ-semiclassical and they are related by an expression of
rational type. They also studied the case when one of the linear functionals
is Δ-classical.
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More recently, in [18] and [19], F. Marcellán and N. C. Pinzón Cortés
studied the (1,1)-Dν-coherent pairs proving that (1,1)-Dν-coherence implies
that the linear functionals are Dν-semiclassical, one of class at most 1 and
the other of class at most 5. Moreover, the functionals are related by a
rational function. In [17] they also give a matrix interpretation in terms of the
Jacobi matrices associated with the corresponding sequences of orthogonal
polynomials. Finally, in [1], R. Álvarez-Nodarse, J. Petronilho, N. C. Pinzón-
Cortés, and R. Sevinik-Adıgüzel analyzed the more general case, (M,N)-Dν-
coherent pairs of order (m, k), concluding that the linear functionals are
related by a rational factor and, when m �= k, then both U and V are Dν-
semiclassical functionals.

All the above constitute an extension of the results obtained for the con-
tinuous case given in [9] and in its introduction.

3.1. (M, 0)-Dν-Coherent pairs

Let us consider the simplest case of coherence, when N = k = 0 and
M = m = 1, i.e. U and V constitute a (1, 0)-Dν-coherent pair. In such a
case, the corresponding SMOP satisfy the structure relation

P [1,ν]
n (x) + c1,nP

[1,ν]
n−1 (x) = Qn(x), n ≥ 0. (3.1)

From [12], we can characterize the (1,0)-Dν-coherence by using banded ma-
trices as follows.

Theorem 3.1. Let {Pn(x)}n≥0 and {Qn(x)}n≥0 be SMOPs with associated
lower triangular matrices Ajν and Bjν , respectively, with respect to the basis
Bjν . Then {Pn(x)}n≥0 and {Qn(x)}n≥0 constitute a (1, 0)-Dν-coherent pair
if and only if BjνA

−1
ν,jν is a lower bidiagonal matrix with ones in the main

diagonal and nonzero entries in the subdiagonal.

Proof. Let assume ({Pn(x)}n≥0, {Qn(x)}n≥0) is a (1, 0)-Dν-coherent pair. Since

Aν,jν is the lower triangular matrix associated with {P [1,ν]
n (x)}n≥0, then (3.1)

can be written in matrix form as

Aν,jν + C1X
T
0 Aν,jν = Bjν ,

where C1 = diag(c1,0, c1,1, . . . ). Since Aν,jν is nonsingular, we have

I + C1X
T
0 = BjνA

−1
ν,jν .

As a consequence, BjνA
−1
ν,jν is lower bidiagonal with ones in the main diagonal

and non zero entries in the subdiagonal, since c1,n �= 0, n ≥ 1. Conversely,
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if BjνA
−1
ν,jν = T is bidiagonal with ones in the main diagonal and non zero

entries in the subdiagonal, then

TAν,jν = Bjν ,

so {Pn(x)}n≥0 and {Qn(x)}n≥0 constitute a (1, 0)-Dν-coherent pair of SMOPs.

The case of (1, 0)-Dν-coherence can be generalized to (M, 0)-Dν-coherence
when we consider a finite number M of terms in the left-hand side of the
structure relation (3.1), i.e.

P [1,ν]
n (x) +

M∑
k=1

ck,nP
[1,ν]
n−k (x) = Qn(x), n ≥ 0. (3.2)

In such a case, we have the following result.

Theorem 3.2. Let {Pn(x)}n≥0 and {Qn(x)}n≥0 be SMOPs with associated
lower triangular matrices Ajν and Bjν , respectively, with respect to the basis
Bjν . Then {Pn(x)}n≥0 and {Qn(x)}n≥0 constitute a (M, 0)-Dν-coherent pair
if and only if BjνA

−1
ν,jν is a (0,M)-banded matrix with ones on the main

diagonal.

Proof. Assume ({Pn(x)}n≥0, {Qn(x)}n≥0) is a (M, 0)-Dν-coherent pair given
by (3.2). If for 1 ≤ k ≤ M , Ck is a diagonal matrix with entries ck,n, n ≥ 0,
then (3.2) can be written in matrix form as[

I +

M∑
k=1

Ck(X
T
0 )

k

]
Aν,jν = Bjν ,

and, since Aν,jν is nonsingular,

I +
M∑
k=1

Ck(X
T
0 )

k = BjνA
−1
ν,jν .

As a consequence, BjνA
−1
ν,jν is a (0,M)-banded matrix. Conversely, ifBjνA

−1
ν,jν =

T is a (0,M)−banded matrix with ones in the main diagonal, then we have

TAν,jν = Bjν ,

so that {Pn(x)}n≥0 and {Qn(x)}n≥0 constitute a (M, 0)-Dν-coherent pair.
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3.2. (M, 0)-Dν-Coherent pairs of order m

For m ≥ 1, let us define the monic polynomial of degree n, P
[m,ν]
n (x),

associated with the m-th Dν-derivative of the monic polynomial Pn+m(x) as

P [m,ν]
n (x) =

Dm
ν Pn+m(x)

ηn,m,ν

, where ηn,m,ν =

{
(n+ 1)m, if ν = ω,
(qn+1;q)m
(1−q)m

, if ν = q,
n ≥ 0.

Here (a)n and (a; q)n denote the Pochhammer symbol and the q-Pochhammer
symbol, respectively, given by

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1), n ≥ 1,

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1.

Notice that if Ajν is the nonsingular lower triangular matrix associated
with the SMOP {Pn(x)}n�0 with respect to the basis Bjν , then the nonsin-

gular lower triangular matrix A
[m]
ν,jν associated with {P [m,ν]

n (x)}n�0 is A
[m]
ν,jν =

D̂m
ν,jνAjνD

m
ν,jν , where

Dm
ν,jν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . .
... 0 0 . . .

ηn,m,ν
... 0 . . .

0 ηn+1,m,ν
...

. . .
...

...
. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
← mth row,

D̂m
ν,jν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 1
ηn,m,ν

0 · · ·
0 0 · · · 1

ηn+1,m,ν
· · ·

0 0 0 · · · . . .

0 0 0
. . . . . .

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(Notice that ηn,1,ν = ηn,ν given in previous sections). Then, considering
the structure relation of (1, 0)-Dν-coherence

P [m,ν]
n (x) + c1,nP

[m,ν]
n−1 (x) = Qn(x), n ≥ 0,

and arguing as above, we have the following matrix characterization.

Theorem 3.3. Let {Pn(x)}n≥0 and {Qn(x)}n≥0 be SMOPs with associated
matrices Ajν and Bjν , respectively, with respect to Bjν . Then {Pn(x)}n≥0 and
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{Qn(x)}n≥0 constitute a (1, 0)-coherent pair if and only if Bjν

(
A

[m]
ν,jν

)−1

is a

lower bidiagonal matrix with ones on the main diagonal and nonzero entries
in the subdiagonal.

Finally, the following matrix characterization for the structure relation of
(1, 0)-Dν-coherence of order m

P [m,ν]
n (x) +

M∑
k=1

ck,nP
[m,ν]
n−k (x) = Qn(x), n ≥ 0,

can be easily obtained proceeding as in the proof of Theorem 3.2.

Theorem 3.4. Let {Pn(x)}n≥0 and {Qn(x)}n≥0 be SMOPs with associated
matrices Ajν and Bjν , respectively, with respect to the basis Bjν . Then {Pn(x)}n≥0

and {Qn(x)}n≥0 constitute a (M, 0)-Dν-coherent pairs of order m if and only

if Bjν

(
A

[m]
ν,jν

)−1

is a (0,M)−banded matrix with ones on the main diagonal.
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