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On computational aspects of discrete Sobolev inner products

on the unit circle
Kenier Castillo a,⇑, Lino G. Garza b, Francisco Marcellán b
a Departamento de Matemática Aplicada, UNESP – Universidade Estadual Paulista, 15054-00 São José do Rio Preto, SP, Brazil 
b Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain

a b s t r a c t

In this paper, we show how to compute in Oðn2Þ steps the Fourier coefficients associated 
with the Gelfand Levitan approach for discrete Sobolev orthogonal polynomials on the unit 
circle when the support of the discrete component involving derivatives is located out side 
the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these 
polynomials in terms of those associated with the original orthogonality measure. 
Moreover, we show how to recover the discrete part of our Sobolev inner product.
Keywords: Discrete Sobolev inner product, Gelfand–Levitan approach, Computational complexity, Cholesky decomposition, Outer relative 
asymptotics
1. Introduction

1.1. Orthogonal polynomials on the unit circle
m

w

orem [15,16], i f a is a zero of /nðzÞ then jaj < 1.
z 2 C; jzj  1g. In the Hilbert space H 

onic polynomials, 
 there exists a unique sequence of 
Let us consider a non trivial probability measure dr supported on the unit circle T f
L2ðT; drÞ we define the usual inner product

f ; gð Þ
Z

T

f ðzÞgðzÞdrðzÞ:

The application of the Gram Schmidt process to 1; z; z2; . .  . , yields a sequence of m
UnðzÞf g nP0, orthog onal with respect to the measure drðzÞ. In other words,
pect to drðzÞ. According to Fejér’s the 
onic polynomials, such thatZ
UnðzÞUmðzÞdrðzÞ  jn 

2dn;m; jn > 0; n; m P 0;
T

here dn;m is the Kronecker delta, and

jn 
2 k Unk2

Z
T

jUnðzÞj2drðzÞ:

Let us denote by /nðzÞ  jnUnðzÞ the orthonormal polynomial of degree n with res
ard and backward recurrence relations 

ð1:1Þ

arza), pacomarc@ing.uc3m.es (F. Marcellán).
It is well known that the sequence UnðzÞf g nP0 satisfies the following forw
[16,15],Unþ1ðzÞ  zUnðzÞ þ  Unþ1ð0ÞU�nðzÞ; n P 0;
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Unþ1ðzÞ 1 Unþ1ð0Þj j2
� �

zUnðzÞ þUnþ1ð0ÞU�nþ1ðzÞ; n P 0; ð1:2Þ

where U�nðzÞ  znUnðz 1Þ is the so called reversed polynomial, and the complex numbers fUnð0ÞgnP1, with

jUnð0Þj < 1; n P 1; ð1:3Þ

are known in the literature (see [15]) as Verblunsky, Schur, or reflection coefficients. The monic orthogonal polynomials are
therefore completely determined by the sequence fUnð0ÞgnP1. In this situation, we have an analogous of Favard’s theorem 
[15,16], formulated as follows. Any sequence fangnP1 of complex numbers satisfying janj < 1 for every n P 1 arises as the 
sequence of Verblunsky coefficients of a unique non trivial probability measure supported on the unit circle.

In the case of orthogonal polynomials on the unit circle we have a simple expression for the polynomial kernel [15,16],
similar to the Christoffel Darboux formula on the real line [5]. The nth polynomial kernel Knðz; yÞ associated with 
UnðzÞf g nP0 is given by

Knðz; yÞ
Xn

j 0

UjðyÞUjðzÞ
kUjk2

U�nþ1ðyÞU
�

nþ1ðzÞ  Unþ1ðyÞUnþ1ðzÞ 
kUnþ1k2ð1 yzÞ

; ð1:4Þ

and it satisfies the reproducing property,Z
T

Knðz; yÞf ðzÞdrðzÞ  f ðyÞ; ð1:5Þ

for every polynomial f of degree at most n.
ontinuous measure with respect to the 
ym derivative of the measure rðhÞ sup 
The orthogonality measure can be decomposed as the sum of a purely absolutely c
Lebesgue measure and a singular part. Thus, if we denote by r0ðhÞ, the Radon Nikod

ported in ½ p; p� with respect to the Lebesgue measure, then
ð1:6Þ
drðhÞ  r0ðhÞdh
þ drsðhÞ;
evai class. We say that drðhÞ belongs 
2p 
where rsðhÞ is the singular part of rðhÞ.

In the literature, two of the most relevant classes of measures are the Szego} and N
to the Szego} class ifZ p

p
log r0ðhÞ dh

2p >
1;

i.e., log r0ðzÞ 2 L1½ p; p�.

On the other hand, we say that drðhÞ belongs to the Nevai class if

limU ð0Þ  lim
/nð0Þ 0:
n!1 n
n!1 jn
ained in [13].
The relation between the above two classes can be viewed using the results cont
ties of orthogonal polynomials with re 
 their interest on sequences of polyno 
rview with more than 350 references). 
1.2. Discrete Sobolev orthogonal polynomials

In the last years, some attention has been paid to the study of asymptotic proper
spect to non standard inner products. More precisely, several authors have focused
mials orthogonal with respect to Sobolev inner products (see [12] for an updated ove
articular case of Sobolev inner product, 
ior of such sequences of orthogonal 
Their algebraic and analytic properties of orthogonal polynomials associated with a p
the so called discrete case, have been intensively studied. The asymptotic behav

polynomials, the localization, interlacing properties, asymptotic behavior and monotonicity of their zeros, Fourier expansions 

ems in the theory of partial differential 

zÞgnP0 which are orthonormal with re 
as well as their relevance in the analysis of spectral methods for boundary value probl
equations provide a very large field to explore.

The aim of this contribution is to study computational aspects of polynomials fwnð

spect to the discrete Sobolev inner product

Z NX
ðl Þ
 ð1:7Þ

wledge, the computational aspects of 
hf ; gi
T

f ðzÞgðzÞdrðzÞ þ
k 0

Mkf k ðzkÞgðlk ÞðzkÞ; Mk > 0; zk 2 C;

where l ; k 0; 1; . . . ; N, are non negative integer numbers. To the best of our kno
k

 in an unpublished manuscript due to 
the same ideas given in the manuscript 
Sobolev inner products have not been studied previously up to for the real line case
Van Assche [17], and the contributions [7,18]. We follow the same schedule and uses 
ich are related with the support of the 

2

[17]. The paper and the manuscript contain similar results with only few changes wh
measure and the asymptotic properties of the sequence of orthogonal polynomials.



We recall that more general inner products where cross derivatives appear in the discrete part of (1.7) have been also 
studied. Moreover, the sequences of orthonormal polynomials in the non diagonal case have the same outer asymptotic 
behavior as the corresponding to the diagonal case, see [3]. In such a situation, a more precise information can be done. 
The asymptotic behavior does not depend on the masses Mk; k 0; 1; . . .  ; N, see, among others, [2,10,11].

The structure of the manuscript is as follows. In Section 2, we obtain in Oðn3Þ steps through a Cholesky decomposition of 
the corresponding Gram matrix, the Fourier coefficients associated with the Gelfand Levitan approach for discrete Sobolev 
orthogonal polynomials on the unit circle. In Section 3, we reduce the computational complexity to Oðn2Þ steps. In Section 4, 
we find a way to recover the discrete part of our Sobolev inner product using the asymptotic behavior of the corresponding 
sequence of orthogonal polynomials. Finally, we also propose some related open problems.

2. The Gelfand–Levitan approach

Basically, the Gelfand Levitan approach is based on the fact that the polynomial wnðzÞ of degree n, orthonormal with
respect to the Sobolev inner product (1.7) can be considered as a perturbation of /nðzÞ. Hence, useful information can be 
obtained by expanding wnðzÞ in an orthonormal series

wnðzÞ
nX

k 0

kn;k/kðzÞ; n P 0: ð2:8Þ

This approach can be traced back to Bernstein for orthogonal polynomials on ½ 1; 1� and probably Bernstein’s method in 
spired to Gelfand and Levitan to work out a similar procedure for the analysis of differential equations from its spectral func 

e key to understand the behavior of the 

ð2:9Þ
tion [8].
It is clear that the knowledge of the Fourier coefficients kj;k; 0 6 k 6 j; 0 6 j 6 n, is th

sequence of discrete Sobolev orthonormal polynomials fwngnP0.
Let us introduce the lower triangular matrix

Ln

k0;0 0 0 � � �

k1;0 k1;1 0
...

...
... . .

.
� � �

2
666664

3
777775;
kn;0 kn;1 � � �  kn;n

ð2:10Þ

; /1ðzÞ; . . . ; /
of order ðn þ 1Þ � ð n þ 1Þ. Therefore, (2.8) can be represented in a matrix form as

wnðzÞ  Ln/nðzÞ;

where

wn w0ðzÞ; w1ðzÞ; . . . ; wnðzÞ½ � T 
; /n /0ðzÞ
nðzÞ½ � T

and T denote the transpose. Let

h/0ðzÞ; /0ðzÞi h/0ðzÞ; /1ðzÞ i  � � �  h/0ðzÞ; /nðzÞi 
2 3
ÞgnP0. From (2.10), we obtain
Gn

h/1ðzÞ; /0ðzÞi h/1ðzÞ; /1ðzÞ i  � � �  h/1ðzÞ; /nðzÞi
...

... . .
. ...

h/nðzÞ; /0ðzÞi h/nðzÞ; /1ðzÞ i  � � �  h/nðzÞ; /nðzÞi

66664
77775;

be the Gram matrix associated with the sequence of orthonormal polynomials f/nðz
ð2:11Þ
hwnðzÞ; /nðzÞi LnGn;

where

hwnðzÞ; /nðzÞi

hw0ðzÞ; /0ðzÞi hw0ðzÞ; /1ðzÞi � � � hw0ðzÞ; /nðzÞi 
hw1ðzÞ; /0ðzÞi hw1ðzÞ; /1ðzÞi � � � hw1ðzÞ; /nðzÞi

.. .. . . ..

2
6666

3
7777:
. . . .4 5
hwnðzÞ; /0ðzÞi hwnðzÞ; /1ðzÞi � � � hwnðzÞ; /nðzÞi Since 
Ln is non singular, from (2.10) we also find
/ ðzÞ  L
1

n n wnðzÞ;
so that
1 � � H1
� � H
3

hwnðzÞ; /nðzÞi hwnðzÞ; Ln wnðzÞi hwnðzÞ; wnðzÞi Ln 1 Ln ;



where H denote the transpose conjugate. Thus, solving (2.11) for Gn we get the following result.

Lemma 2.1. Let Gn be the Gram matrix of the inner product (1.7) associated with the sequence of orthonormal polynomials
f/nðzÞgnP0. Then,

Gn L 1
n L

1
n

� � H
;

where Ln is the lower triangular matrix defined in (2.9).
Taking into account that L 1

n is a lower triangular matrix and L 1
n

� � H
is an upper triangular matrix which is equal to

the transpose of L 1
n , Lemma 2.1 yields the Cholesky decomposition of the Gram matrix Gn. In other words, we get a

straightforward numerical method based on numerical linear algebra for obtaining the Fourier coefficients
kj;k; 0 6 k 6 j; j 6 n, i n  Oðn3Þ steps. A natural question is: can we reduce this complexity? An affirmative answer is given in 
the next section.

3. Reducing the computational complexity

The entries in the Gram matrix Gn are explicitly given by

h/iðzÞ; /jðzÞi
Z

T

/iðzÞ/jðzÞdrðzÞ þ
NX

k 0

Mk/
ðlk Þ
i ðzkÞ/ðlk Þ

j ðzkÞ  di;j þ
NX

k 0

Mk/
ðlk Þ
i ðzkÞ/ðlk Þ

j ðzkÞ; 0 6 i; j 6 n;

rete part of the inner product appears. 
where the evaluation of orthonormal polynomials f/nðzÞgnP0 in the support of the disc
Thus we can write

Gn In þ Sn;
where In is the identity matrix, and the entries of Sn are

NX

ð3:12Þ

d in the above identity, we get
ðSnÞi;j Mk/
ðlk Þ
i ðzkÞ/ðlk Þ

j ðzkÞ; 0 6 i; j 6 n:
k 0 

From Lemma 2.1,

ðLn 
1ÞH 

Ln þ LnSn:

Therefore, for m < n and taking into account the last row of the matrices involve
nX
ð3:13Þ
0 kn;m þ

k 0
kn;kðSnÞk;m; 0 6 m 6 n 1:

When n m,
n

ð3:14Þ

1

kn;n
kn;n þ

X
k 0

kn;kðSnÞk;n:
 i and j are separated in each term of 
r the Fourier coefficients.
From (3.12), we see that ðSnÞi;j; 0 6 i; j 6 n, has a special form in which the variables
the sum. This structure suggests that a similar separation of indices should also hold fo
Theorem 3.1. Let Kn�1 be the kernel matrix with entries
ð3:15Þ
ðK Þ
nX1

ð li Þ ðlj Þ

n 1 / ðz Þ/

r system of equations
i;j
k 0

k i k ðzjÞ; 0 6 i; j 6 N;

and, let an an;0; an;1; . . .  ; an;N½ � T be the solution of the linea
ð3:16Þ
ðIN þ Kn 1DNÞan bn; �

all n P 0, we have
where DN diag M0; M1; . . .  ; MN½ � and bn/ðn

l0 Þðz0Þ; /ðn
l1 Þðz1Þ; . . .  ; /ðn

lN ÞðzNÞ
T�. Then, for 
ð3:17Þ

kn;k

NX
an;iMi/

ðliÞ
k ðziÞ; 0 6 k 6 n 1
kn;n i 0

and
ð3:18Þ

1
2 1

NX
an;iMi/

ð
n

li ÞðziÞ:

nk ;n i 0
4



Proof. In order to prove the above statements we need to show that (3.17) and (3.18) satisfy (3.13) and (3.14). If we use the 
proposed solution (3.17), then we find

kn;m

kn;n 
þ

nX
k 0

kn;k

kn;n
ðSnÞk;m

NX
i 0

an;iMi/
ð
m

li ÞðziÞ þ
nX1

k 0

ðSnÞk;m
NX

i 0

an;iMi/
ðliÞ
k ðziÞ

!
þ ð SnÞn;m:

kn;m

kn;n 
þ

nX
k 0

kn;k

kn;n
ðSnÞk;m

NX
i 0

an;iMi/
ð
m

li ÞðziÞ þ
nX1

k 0

NX
j 0

an;jMj/
ðlj Þ
k ðzjÞ

By using the explicit expression for ðSnÞk;m; 0 6 k 6 n, this 
becomes  !

NX
i 0

Mi/
ðliÞ
k ðziÞ/ðm

li ÞðziÞ
!
þ

NX
i 0

Mi/
ð
n

liÞðziÞ/ðm
li ÞðziÞ:

Combining all the terms where the values /ðm
li ÞðziÞ; i 0; 1; . . . ; N, appear, the above expression yields

kn;m

kn;n
þ

nX
k 0

kn;k

kn;n
ðSnÞk;m

NX
i 0

Mi/
ð
m

liÞðziÞ an;i þ
nX1

k 0

NX
j 0

an;jMj/
ðli Þ
k ðziÞ/

ðlj Þ
k ðzjÞ þ  /ðn

liÞðziÞ
!!
:

Notice that the expression inside brackets is the i th equation in the linear system of Eq. (3.16). Hence, this expression 
vanishes and (3.13) is satisfied.

It remains now to determine the value of kn;n which can be done using (3.14), as follows

1
2k 

1 þ
nX1kn;k

kn;n
ðSnÞk;n þ ð SnÞn;n:

revious identity becomes
n;n k 0

By using the explicit expression of ðSnÞk;n; 0 6 k 6 n, and the solution (3.17) the p

nX1NXNX NX
1

2
nk ;n

1 þ
k 0 i 0 j 0

an;iMiMj/
ðlj Þ
k ðzjÞ/ðliÞk ðziÞ/

ð
n

lj ÞðzjÞ þ
j 0

Mjj/
ð
n

lj ÞðzjÞj2:
From the linear system of Eq. (3.16), we find

NX

i 0

Mian;iðKn 1Þj;i an;j /
ð
n

lj ÞðzjÞ:

Thus,
NX� � NX NX
1
2

nk ;n
1

j 0

Mj an;j þ /ðn
lj Þðzj Þ /

ð
n

lj ÞðzjÞ þ
j 0

Mjj/
ð
n

lj ÞðzjÞj2 1
j 0

Mjan;j/
ð
n

lj ÞðzjÞ;
ebraic expressions of both families of
e linear system of Eq. (3.16).
which corresponds to (3.18). h

Here we recall a well known result [6] concerning the relation between the alg
orthogonal polynomials /nðzÞ and wnðzÞ. Indeed, this is the standard way to obtain th
 6 j; j 6 n, to solve the linear system of 
ves at the N þ 1 points zk; k 0; 1; . . .  ; N. 
el matrix Kn 1 can be obtained from the 
Notice that we have reduced the computation of the Fourier coefficients kj;k; 0 6 k
Eq.(3.16). The next step is to evaluate the polynomials /nðzÞ and some of their derivati
This can be done in OðnðN þ 1ÞÞ steps by using the recurrence relation (1.1). The kern
2  computed in OðnÞ steps whenever N is 
lete array of Fourier coefficients.
Chris toffel Darboux formula (1.4) in OððN þ 1Þ Þ steps. Thus, kn;k; k 0; 1; . . .  ; n, can be
finite. As a consequence, we reduce the required computing time to calculate the comp
erations.
ich was first observed by Grenander
Corollary 3.1. To compute the Fourier coefficients kj;k; 0 6 k 6 j; j 6 n, we require Oðn2Þ op
The kernel matrix Kn 1 given in (3.15) satisfies an interesting extremal property, wh
stic processes.
and Rosenblatt [9] motivated by their applications in the theory of stationary stocha

ree at most n 1 and let
Let denote by Pn 1 the linear space of polynomials with complex coefficients and deg

kXn 1k2
Z

T

jXn 1ðzÞj2drðzÞ;
 drÞ. If one imposes the constraints
be the squared norm of the polynomial Xn 1ðzÞ 2  Pn 1 in the linear space H  L2ðT;
raints is
Xðn
liÞ

1ðziÞ  di; i 0; 1; . .  . ; N;

the minimum of kX ðzÞk2 among all polynomials in P satisfying the above const
ð3:19Þ

e need to take n 1 P N , otherwise the 
ptotics of (3.19) when the measure

5

n 1 n 1 

dH 
K 1

n 1 d;

where d is the ðN þ 1Þ dimensional column vector d ð d0; d1; . . .  ; dNÞT . It is clear that w
above constraints cannot be satisfied. Grenander and Rosenblatt also give the asym



satisfies the Szeg}o condition and the points are inside the unit circle. Their results for constraints on the unit circle however 
turn out to be wrong, see [14, pp. 26].

4. Recovering the discrete part outside the unit circle

Let us discuss now an application of the above results to the study of the asymptotic behavior of the discrete Sobolev
orthogonal polynomials on the unit circle [2,10,11].

Let D f z 2 C; jzj < 1g be the open unit disk. The most extensively studied case of discrete Sobolev inner product corre
sponds to the case where zk 2 C n D; k 0; 1; . .  . ; N, i n  (1.7). In this section, we propose a way to locate the points zk, the 
masses Mk, and the order of the derivatives lk; k 0; 1; . . .  ; N, by checking the outer relative asymptotics. In [3,6,11,10,2] and 
the references therein, the outer relative asymptotics of orthogonal polynomials with respect to a discrete Sobolev inner 
product on the unit circle was intensively studied. Here, we propose a slightly modified outline based on the results given in 
the previous section.

In order to obtain the asymptotic behavior of the ratio wnðzÞ=/nðzÞ, we need to study some asymptotic results for Kn 1 and 
kn;n.

Lemma 4.1. Let assume that drðzÞ belongs to the Nevai class and zi 2 C n D; i 0; 1; . . . ; N. If bn ð /ðnl0 Þðz0Þ; . . .  ; /ðn
lN ÞðzN ÞÞ

T 
, then

lim
n!1
ðdiag bnÞH 

Kn 
1

1 diag bn
1

zizj 1

� 	
06i;j6N

1!
E 1

N :

ð4:20Þ

.  ; N. Then

K. Castillo et al. / Applied Mathematics and Computation 223 (2013) 452–460 457
Proof. For the kernel matrix Kn 1 given in (3.15), we have

diag bnð Þ 1 
Kn 1 diag bnð ÞH

� � 1 K
ð
n

li ;lj
1
Þðzi; zjÞ

/ðn
li ÞðziÞ/

ð
n

lj ÞðzjÞ

0
@

1
A

06i;j6N

:

Now, from [6] we get

lim
n!1

K
ð
n

li;lj
1
Þðzi; zjÞ 1

zizj 1 
;/ðn

liÞðziÞ/
ð
n

lj ÞðzjÞ 

and the result follows. h

Lemma 4.2. Let assume that drðzÞ belongs to the Nevai class and zi 2 C n D; i 0; 1; . .

n!1
1 þ 1E 1

Nlimkn;
2

n 1T k 2;
where 1 ½ 1; 1; . . .  ; 1� is a ðN þ 1Þ dimensional row vector.

Proof. From Theorem 3.1, we have
2 H 1 ð4:21Þ
kn; n 1 þ bnIN þ DN Kn 1ð Þ DN bn:
Since [6],
lim
n!1

1

/ðn
liÞðziÞ

0; i 0; 1; . . . ; N;
1 1
when n tends to infinity we can replace in (4.21) ðIN þ DN Kn 1Þ by ðDN Kn 1Þ . Thus,
n!1
1 þ lim

n!1
limkn;

2
n bH

n K
1

n 1 bn;

which gives the desired result. h
We are now ready to deduce the outer relative asymptotic behavior.
. . .  ; N. Then
Theorem 4.1. Let assume that drðzÞ belongs to the Nevai class and zi 2 C n D; i 0; 1; 
lim
n!1

wnðzÞ
/ ðzÞ k 1 1 EN

1ZN
� �

;

; . . .  ; zNg
�
.

n

where ZN
1 1 1

h
Ti � Sfz0; z1
zz0 1 ; zz1 1 ; . . .  ; zzN 1 , uniformly on every compact subset of C n D

6



Proof. By using Theorem 3.1, we rewrite (2.10) as

wnðzÞ  kn;n /nðzÞ þ
nX1

k 0

NX
i 0

an;iMi/kðzÞ/
ð
k

li ÞðziÞ
! �

h 
kn;n /nðzÞ þ  aH DN K

ð0;l0Þ
n 1 ðz; z0Þ; Kð0;l1 Þ

n 1 ðz; z1Þ; . .  . ; Kð0;lN Þ
n 1 ðz; zNÞ

Ti	
:

Therefore,

wnðzÞ
/nðzÞ

kn;n 1 b
n

H ðIN þ DN Kn 1Þ 1
DN ðdiag bnÞ Kn 1

� �
; ð4:22Þ

where

Kn 1
Kð0;l0Þn 1 ðz; z0Þ

/nðzÞ/ðn
l0 Þðz0Þ

;
Kð0;l1Þn 1 ðz; z1Þ

/nðzÞ/ðn
l1 Þðz1Þ

; . .  . ; Kð0;lN Þ
n 1 ðz; zNÞ

/nðzÞ/ðn
lN ÞðzNÞ

"
T#
:

Notice that, when n tends to infinity, we can replace ðIN þ DN Kn 1Þ 1 by ðDN Kn 1Þ 1 in (4.22) just as in the previous the orem. 
Thus, using (4.20) and Lemma 4.2 the result follows. h

If z zi; i 0; 1; . . .  ; N and ei denotes the column vector with entries di;j; j 0; 1; . . .  ; N, then from the previous result we 
get

wnðziÞ 1
� �
lim
n!1/nðziÞ

k 1 1ENEN ei k 1 1eið Þ 0;
.  ; N. Then
Thus we have proved the following.

Corollary 4.1. Suppose that drðzÞ belongs to the Nevai class and zi 2 C n D; i 0; 1; . .
lim wnðziÞ 0:
ere the derivatives in the discrete Sobo 
derivatives li; i 0; 1; . .  . ; N, associated 
n!1/nðziÞ
Theorem 4.1 and its corollary give a way to locate the points zi; i 0; 1; . . .  ; N, wh

lev inner product are evaluated. In order to obtain the masses Mi and the order of the 

with the discrete part, we can use the following result.
 ; N. Then
Theorem 4.2. Suppose that drðzÞ belongs to the Nevai class and zi 2 C n D; i 0; 1; . . .

NX

lim
n!1

k
Mi j 0

wðn
liÞðziÞ/ðn

liÞðziÞ  ðEN
1Þi;j; i 0; 1; . . .  ; N:

Proof. From (2.10) and Theorem 3.1, we have

ð l2 3

0 
w n

Þðz0Þ 
6666

7777

wðn

l1 Þðz1Þ...

wðn
lN ÞðzNÞ

6664
7775

kn;n bn þKn 1 DN anð Þkn;nan
kn;n ðIN þKn 1 DNÞ 1 bn:
Therefore,

wðn
l0 Þðz0Þ/ðn

l0 
2
66

3
77 wðn

l0 Þðz0Þ
2
6

3
7

Þðz0Þ wðn
l1 Þðz1Þ/66 77 wðn

l1 Þðz1Þ
66 77

diag bn 1
T :
ð l1 Þðz Þ..

666 777ð diag bnÞH ..

6666
7777kn;n ðdiag bnÞH ðIN þ Kn 1 DNÞ 1 
n 1.6 7 .
4 5 4 5
wðn

lN ÞðzNÞ/ðn
lN ÞðzNÞ wðn

lN ÞðzNÞ
According to Lemma 4.1 and following the same procedure as above, we obtain
7



lim
n!1

wðn
l0 Þðz0Þ/ðn

l0 Þðz0Þ

wðn
l1 Þðz1Þ/ðn

l1Þðz1Þ
...

2
6666664

3
7777775

k D 1
N E

1
N 1T ;

wðn
lN ÞðzNÞ/ðn

lN ÞðzNÞ 

and so our statement holds. h

From the above result, we can obtain the masses and the derivatives in the discrete part of (1.7) by checking the behavior 
of wðn

lÞðziÞ/ðn
lÞðziÞ for different choices of the integer l. When l li the limit exists and it gives the value of the mass Mi.

5. Some remarks and open problems

Notice that we can derive in a straightforward way all the previous results for discrete Sobolev orthogonal polynomials on
the real line, see [17]. In fact, we can say even more. Most of our results are still valid when the measure drðzÞ is supported on 

a rectifiable Jordan curve or arc in the complex plane. We restrict ourselves to the unit circle case because the statements
become more transparent. From the asymptotic point of view, in [1] outer relative asymptotics have been done when the

measure drðzÞ supported on a rectifiable Jordan curve or arc belongs to the Szeg}o. In our work we have focussed our atten 
tion in a more general family of measures supported on the unit circle, the so called Nevai class that contains in a strict sense
the Szego} class.

oints zi; i 0; 1; . . .  ; N, are located on
ass, then using the results of [3,4] or 
According to the above asymptotics, it is natural to ask what happens when the p
the unit circle. The answer is well known. In any case, if drðzÞ belongs to the Szego} cl
the previous ideas, we deduce in a straightforward way that

lim
n!1

wnðzÞ
/nðzÞ

1;
rete part of the Sobolev inner product
rete part of our inner product?
discrete Sobolev has been intensively
he points zi; i 0; 1; . . .  ; N, are inside
Sobolev orthogonal polynomials have
zÞ, when n tends to infinity.

. The research of K. Castillo was sup
 e Inovação of Brazil, Project 370291/
ral de Investigación, Ministerio de Eco
nowledges the financial support of
ct 107/2012

on a rectifiable Jordan curve or arc, Constr.
uniformly on compact subsets of C n D. Obviously, our procedure to recover the disc
does not hold here. Thus, a first natural question is: how to recover in this case the disc

Although the asymptotic behavior of polynomials orthogonal with respect to a 
studied, there still remain some open problems to consider. What happens when t
the unit circle? We conjecture that, under certain conditions on drðzÞ, the discrete 
the same outer asymptotic behavior as the polynomials orthogonal with respect to drð
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