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a b s t r a c t

In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the 
asymptotic properties of the corresponding orthog-onal polynomials and the behavior of their zeros. We are interested in 
Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic 
behavior between these Sobolev orthogonal polynomials and the Jacobi ones. Moreover, this asymptotic behavior provides an 
approximation of the zeros of the Sobolev polynomials in terms of the zeros of other well-known special functions. We 
generalize some results appeared in the literature very recently.

1. Introduction

One of the aims of this paper is the study of the asymptotic behavior of sequences of polynomials {Q (α,β,Mn)
n }n≥0 orthog-

onal with respect to the inner product

(f , g)S,n =

 1

−1
f (x)g(x)(1 − x)α(1 + x)βdx + Mnf (j)(1)g(j)(1), (1)

where α > −1, β > −1, and j ≥ 0.
We assume that {Mn}n≥0 is a sequence of nonnegative real numbers satisfying

lim
n→∞

Mnnγ = M > 0, (2)

where γ is a fixed real number. Notice that this assumption is not very restrictive since the sequence {Mn}n≥0 can behave
asymptotically like any real power of the monomial n.

The main motivation to study this type of inner product arises from the papers [1,2]. In [1] the authors work with a
measure supported on [−1, 1]. However, in [2] the authors deal withmeasures supported on an unbounded interval. In both
cases the authors consider measures with nonzero absolutely continuous part, i.e., they work with the so-called continuous
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Sobolev orthogonal polynomials. The main topic in those papers is how to balance the Sobolev inner product to equilibrate
the influence of the two measures in the asymptotic behavior of the corresponding orthogonal polynomials. This inspires
us to consider the discrete Sobolev inner product

(f , g)S =


fgdµ0 + M


f (j)g(j)dµ1 =


fgdµ0 + Mf (j)(c)f (j)(c),

which is a perturbation of a standard inner product. Now, making M dependent on n we can study the influence of the
perturbation on the asymptotic behavior of the orthogonal polynomials. The literature on discrete Sobolev (or Sobolev-type)
orthogonal polynomials is verywide, sowe refer the interested readers on this topic to survey [3] and the references therein.

From here, in [4] the authors found the asymptotic behavior of a family of orthogonal polynomials with respect to a
varying Sobolev inner product similar to (1), involving the Laguerre weight w(x) = xαe−x, α > −1. We remark that the
techniques used in [4] are not useful in this case, and now we need to use more powerful techniques based on those con-
sidered in [5]. More recently, in [6] the same authors have even improved these techniques in such a way that they have
obtained relevant results for the orthogonal polynomials with respect to a non-varying discrete Sobolev inner product being
µ0 a general measure.

Previously, in [7] J.J. Moreno-Balcázar obtained some results in this direction but only for the case j = 0. Again, the
method used in that paper does not allow to tackle our problem.

We want to emphasize that our objective is to establish that the size of the sequence {Mn}n≥0 has an essential influence
on the asymptotic behavior of the orthogonal polynomials with respect to (1), but this influence is only local, that is,
around the point where we have introduced the perturbation. In our case, this point is located at x = 1. Furthermore,
we prove that this influence depends on the size of the sequence {Mn}n≥0 and its relation with the parameter α in the Jacobi
weight and the order of the derivative in (1). It is important to remark that for a sequence {Mn}n≥0, we have a sequence of
orthogonal polynomials for eachn, sowehave a square tableau {Q (α,β,Mn)

k }k≥0. Here,wedealwith the diagonal of this tableau,
i.e. {Q (α,β,Mn)

n }n≥0 = {Q (α,β,M0)
0 (x),Q (α,β,M1)

1 (x), . . . ,Q (α,β,Mi)
i (x), . . .}. At this point, in order to simplify the notation, wewill

denote Q (α,β,Mn)
n (x) = Qn(x).

A second aim of this paper is to establish a simple asymptotic relation between the zeros of the Sobolev polynomials
which are orthogonal with respect to (1) and the zeros of combinations of Bessel functions of the first kind. This relation is
deduced as an immediate consequence of Mehler–Heine formulae (Theorem 2) and they have a numerical interest since we
provide an estimate of the zeros of these polynomials.

Since Jacobi classical orthogonal polynomials are involved in the varying inner product (1), we recall some of their basic
properties. Jacobi polynomials are orthogonal with respect to the standard inner product

(f , g) =

 1

−1
f (x)g(x)(1 − x)α(1 + x)βdx, α, β > −1.

In the sequel, we will work with the sequence {P (α,β)n }n≥0, α > −1 and β > −1, normalized by (see [8, f. (4.1.1)])

P (α,β)n (1) =


n + α

n


=

Γ (n + α + 1)
Γ (n + 1)Γ (α + 1)

. (3)

The derivatives of Jacobi polynomials satisfy (see, [8, f. (4.21.7)])

(P (α,β)n (x))(k) =
1
2k

Γ (n + α + β + k + 1)
Γ (n + α + β + 1)

P (α+k,β+k)
n−k (x), k ≥ 0. (4)

Using (3) and (4), we deduce

(P (α,β)n (1))(k) =
1
2k

Γ (n + α + β + k + 1)
Γ (n + α + β + 1)

Γ (n + α + 1)
Γ (n − k + 1)Γ (α + k + 1)

, (5)

where (P (α,β)n (1))(k) denotes the kth derivative of P (α,β)n evaluated at x = 1.
We also note that the squared norm of a Jacobi polynomial is (see, [8, f. (4.3.3)]):

∥P (α,β)n ∥
2

=
2α+β+1

2n + α + β + 1
Γ (n + α + 1)Γ (n + β + 1)
Γ (n + 1)Γ (n + α + β + 1)

. (6)

Finally, we will use the Mehler–Heine formula for classical Jacobi polynomials

Theorem 1 ([8, Th. 8.1.1]). Let α, β > −1. Then,

lim
n→∞

n−αP (α,β)n


cos

 x
n


= lim

n→∞

1
nα

P (α,β)n


1 −

x2

2n2


= (x/2)−α Jα(x),
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uniformly on compact subsets of C. Here Jα(x) denotes the Bessel function of the first kind, i.e.,

Jα(x) =

∞
k=0

(−1)k

k!Γ (k + α + 1)

 x
2

2k+α
.

We will also use the following limit related to Stirling formula (see, for example, [9, f. (5.11.13)])

lim
n→∞

nb−aΓ (n + a)
Γ (n + b)

= 1. (7)

We introduce the following notation: If an and bn are two sequences of real numbers, then an ≈ bn means that the
sequence an

bn
converges to 1.

The paper is organized as follows. In Section 2 we provide some properties of the varying Jacobi–Sobolev orthogonal
polynomialswhich are essential to establish theMehler–Heine asymptotics for these polynomials in Section 3. Furthermore,
as a consequence of this asymptotic formula we deduce the asymptotic behavior of the corresponding zeros. Thus, as we
have commented previously, we can see the influence of the parameter γ , related to the size of the sequence {Mn}n≥0, on the
location of these zeros. Finally, in Section 4we illustrate the results obtained in Section 3with some numerical experiments.

2. Varying Jacobi–Sobolev orthogonal polynomials

It is well known that the classical Jacobi orthogonal polynomials, {P (α,β)i }
n
i=0, constitute a basis of the linear space Pn[x]

of polynomials with real coefficients and degree at most n. Therefore, the Jacobi–Sobolev orthogonal polynomial of degree
n, Qn(x), can be expressed as

Qn(x) = P (α,β)n (x)+

n−1
i=0

an,iP
(α,β)

i (x).

Then, using well-known algebraic tools (see, for example, [10, Sect. 2]) we can deduce

Qn(x) = P (α,β)n (x)−

Mn


P (α,β)n (1)

(j)
1 + MnK

(j,j)
n−1(1, 1)

K (j,0)n−1 (1, x), (8)

with

K (j,k)n (x, y) =

n
i=0


P (α,β)i (x)

(j) 
P (α,β)i (y)

(k)
∥P (α,β)i (x)∥2

.

Next, we give a technical result useful for our purposes, interesting in itself though.

Lemma 1. Let {Qn}n≥0 be the sequence of orthogonal polynomials with respect to (1) and 0 ≤ k ≤ n, then

(a)

lim
n→∞

(Qn)
(k)(1)

P (α,β)n (1)
(k) =


k − j

α + j + k + 1
, if γ < 2(α + 2j + 1),

θα,β,j,k, if γ = 2(α + 2j + 1),
1, if γ > 2(α + 2j + 1),

(9)

where

θα,β,j,k =
M(k − j)+ Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)(α + j + k + 1)
(α + j + k + 1)


M + Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)

 . (10)

(b) (Qn,Qn)S,n ≈ ∥P (α,β)n ∥
2.

Proof. Kernel polynomials related to classical families of orthogonal polynomials and their derivatives have been widely
studied in the literature. Thus, we can claim that the following limit exists,

lim
n→∞

K (j,k)n−1 (1, 1)
n2α+2j+2k+2

∈ R. (11)

It is very easy to check it by using Stolz’s criterion, (5), (6), (7) and the fact that

n2α+2j+2k+2
− (n − 1)2α+2j+2k+2

≈ (2α + 2j + 2k + 2)n2α+2j+2k+1.
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Thus,

lim
n→∞

K (j,k)n−1 (1, 1)
n2α+2j+2k+2

= lim
n→∞

K (j,k)n−1 (1, 1)− K (j,k)n−2 (1, 1)
n2α+2j+2k+2 − (n − 1)2α+2j+2k+2

= lim
n→∞


P (α,β)n−1 (1)

(k) 
P (α,β)n−1 (1)

(j)
∥P (α,β)n−1 ∥2(2α + 2j + 2k + 2)n2α+2j+2k+1

= lim
n→∞

Cj,kΓ (n + α + β + j)Γ (n + α + β + k)Γ (n + α)Γ (n)
Γ (n − j)Γ (n + α + β)Γ (n − k)Γ (n + β)n2α+2j+2k

= Cj,k ∈ R,

where

Cj,k =
1

Γ (α + j + 1)Γ (α + k + 1)2α+β+j+k+1(α + j + k + 1)
.

We will now prove part (a) of the lemma, by (8)

lim
n→∞

Q (k)
n (1)

P (α,β)n (1)
(k) = lim

n→∞

1 −
MnK

(j,k)
n−1 (1, 1)

1 + MnK
(j,j)
n−1(1, 1)


P (α,β)n (1)

(j)

P (α,β)n (1)

(k)


= lim
n→∞

1 −
Mnnγ 1

2j
Γ (n+α+β+j+1)

Γ (n−j+1)Γ (α+j+1)
K (j,k)n−1 (1,1)

n2α+2j+2k+2 n2α+2j+2k+2−γ

1
2k

Γ (n+α+β+k+1)
Γ (n−k+1)Γ (α+k+1)


1 + Mnnγ

K (j,j)n−1(1,1)

n2α+4j+2 n2α+4j+2−γ


 .

To simplify the computations we introduce the following notation

an = Mnnγ , by (2) we have lim
n→∞

an = M,

bn,j,k =
K (j,k)n−1 (1, 1)
n2α+2j+2k+2

, by (11) we have lim
n→∞

bn,j,k = Cj,k.

Then, the above limit becomes

lim
n→∞


1 −

anbn,j,k 1
2j

Γ (n+α+β+j+1)
Γ (n−j+1)Γ (α+j+1)n

2α+2j+2k+2−γ

1
2k

Γ (n+α+β+k+1)
Γ (n−k+1)Γ (α+k+1)


1 + anbn,j,jn2α+4j+2−γ



= 1 −
2k−jΓ (α + k + 1)
Γ (α + j + 1)

lim
n→∞

an lim
n→∞

bn,j,k lim
n→∞

n2α+2j+2k+2−γ

n2k−2j(1 + anbn,j,jn2α+4j+2−γ )

= 1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
lim
n→∞

n2α+4j+2−γ

(1 + anbn,j,jn2α+4j+2−γ )

= 1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
lim
n→∞

1
1

n2α+4j+2−γ + anbn,j,j
.

Therefore, it is necessary to distinguish three cases according to the value of the parameter γ . The value of this limit is:
Case γ > 2(α + 2j + 1).

1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
lim
n→∞

1
1

n2α+4j+2−γ + anbn,j,j
= 1.

Case γ < 2(α + 2j + 1).

1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
lim
n→∞

1
1

n2α+4j+2−γ + anbn,j,j

= 1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
1

MCj,j
= 1 −

α + 2j + 1
α + j + k + 1

=
k − j

α + j + k + 1
.
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Case γ = 2(α + 2j + 1).

1 −
2k−jΓ (α + k + 1)Cj,kM

Γ (α + j + 1)
1

1 + MCj,j
= 1 −

M(α + 2j + 1)
(α + j + k + 1)


M + Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)


=

M(k − j)+ Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)(α + j + k + 1)
(α + j + k + 1)


M + Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)


= θα,β,j,k.

Thus, we have proved (a). Now, we are going to prove (b). Using standard arguments for Sobolev orthogonal polynomials
we can deduce

(Qn,Qn)S,n = ∥P (α,β)n ∥
2
+

Mn


P (α,β)n (1)

(j)2

1 + MnK
(j,j)
n−1(1, 1)

.

Then,

lim
n→∞

(Qn,Qn)S,n

∥P (α,β)n ∥2
= lim

n→∞

1 +


P (α,β)n (1)

(j)2

∥P (α,β)n ∥2

Mn

1 + MnK
(j,j)
n−1(1, 1)

 .
To establish (b) it is enough to prove that

lim
n→∞


Mn


P (α,β)n (1)

(j)2

∥P (α,β)n ∥2

1 + MnK

(j,j)
n−1(1, 1)


 = 0.

Indeed, from (5) and (6) this limit can be expressed as

lim
n→∞


Mn


P (α,β)n (1)

(j)2

∥P (α,β)n ∥2

1 + MnK

(j,j)
n−1(1, 1)




= lim
n→∞

Mn
1
22j

Γ (n+α+β+j+1)
Γ (n−j+1)Γ (α+j+1)

Γ (n+α+β+j+1)
Γ (n+α+β+1)

n−4j−2α−β+γ Γ (n+α+1)
Γ (n−j+1)Γ (α+j+1)

1
n−4j−2α−β+γ

2α+β+1

2n+α+β+1
n−βΓ (n+β+1)

Γ (n+1)
1

n−β


1 + MnK

(j,j)
n−1(1, 1)

n2α+4j+2−γ

n2α+4j+2−γ


 .

Again, to simplify the computations we introduce some notation

an = Mnnγ , by (2) we have lim
n→∞

an = M,

bn =
Γ 2(n + α + β + j + 1)Γ (n + α + 1)n−4j−2α−β

Γ (n − j + 1)Γ 2(n + α + β + 1)
, then by (7) lim

n→∞
bn = 1,

cn =
Γ (n + β + 1)n−β

Γ (n + 1)
, then by (7) lim

n→∞
cn = 1,

dn = Mnnγ
K (j,j)n−1(1, 1)
n2α+4j+2

, then using (2) and (11) we get lim
n→∞

dn = MCj,j,

Eα,j =
1
22j

1
Γ 2(α + j + 1)

.

In this way, for every γ , the above limit is

lim
n→∞

Eα,janbnn4j+2α+β−γ

cn 2α+β+1nβ
2n+α+β+1


1 + dnn4j+2α+2−γ

 = lim
n→∞

Eα,janbn(2n + α + β + 1)

2α+β+1n2


cn
n4j+2α+2−γ + cndn

 = 0,

and we have just proved (b). �
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Remark 1. Notice that taking into account (b) in the above lemma, (a) holds true when we consider orthonormal polyno-
mials.

To tackle Mehler–Heine asymptotics we need to expand the Sobolev polynomials Qn adequately. The following result
gives us this expansion. In a more general framework it has been established in [6, Th. 1]. The idea is that the coefficients
bi(n) in (12) can be obtained as a solution of a homogeneous linear system of j + 1 equations and j + 2 unknowns. In our
concrete case, we can compute explicitly the entries of the corresponding coefficient matrix.

Proposition 1. There exists a family of real numbers {bi(n)}
j+1
i=0, not identically zero, such that the following connection formula

holds

Qn(x) =

j+1
i=0

bi(n)(1 − x)iP (α+2i,β)
n−i (x), n ≥ j + 1. (12)

Lemma 2. Let {bi(n)}
j+1
i=0 be the coefficients in (12). Then

lim
n→∞

bi(n) = bi ∈ R, i ∈ {0, 1, . . . , j + 1}.

Proof. We take the kth derivative in (12) and we evaluate the corresponding expression at x = 1,

Q (k)
n (x) =

j+1
i=0

bi(n)
k

s=0


k
s

 
(1 − x)i

(s) 
P (α+2i,β)
n−i (x)

(k−s)

=

j+1
i=0

bi(n)
min{i,k}
s=0


k
s


(−1)s

i!
(i − s)!

(1 − x)i−s

P (α+2i,β)
n−i (x)

(k−s)
.

Then,

Q (k)
n (1) =

k
i=0

bi(n)

k
i


(−1)ii!


P (α+2i,β)
n−i (1)

(k−i)
.

From Lemma 1, limn→∞
Q (k)n (1)

P(α,β)n (1)
(k) exists and its value depends on the value of parameter γ related to the size of the

sequence {Mn}n≥0, so

Q (k)
n (1)

P (α,β)n (1)
(k) =

k
i=0

bi(n)

k
i


(−1)ii!Ai(k, n) (13)

with Ai(k, n) =


P(α+2i,β)
n−i (1)

(k−i)


P(α,β)n (1)

(k) .

It only remains to prove that there exists limn→∞ Ai(k, n) ∈ R and, therefore the coefficients {bi(n)}
j+1
i=0 are convergent.

Indeed

lim
n→∞

Ai(k, n) = lim
n→∞

1
2k−i

Γ (n−i+α+2i+β+k−i+1)
Γ (n−i+α+2i+β+1)

Γ (n−i+α+2i+1)
Γ (n−i−k+i+1)Γ (α+2i+k−i+1)

1
2k
Γ (n+α+β+k+1)
Γ (n+α+β+1)

Γ (n+α+1)
Γ (n−k+1)Γ (α+k+1)

= Ai(k, α),

where we denote Ai(k, α) =
2iΓ (α+k+1)
Γ (α+i+k+1) . �

Remark 2. Let bi = limn→∞ bi(n)with i ∈ {0, 1, . . . , j + 1}. (13) is a recursive algorithm to compute bi.

• Step 1. For k = 0 we obtain b0 in a straightforward way.
• Step 2. For k = 1 we deduce the value of b1 from (13) using step 1. Similarly, for k ≥ 2 we apply (13) in a recursive way.
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3. Asymptotics and zeros of varying Jacobi–Sobolev

We focus our attention on the analysis of Mehler–Heine formulas for these discrete Jacobi–Sobolev orthogonal polyno-
mials because we want to know how the discrete part in the inner product (1) influences the asymptotic behavior of the
corresponding orthogonal polynomials. Furthermore, we will prove that this influence is related to the size of the sequence
{Mn}n≥0.

Theorem 2. For the sequence {Qn}n≥0 the following Mehler–Heine formula holds

lim
n→∞

Qn(cos(x/n))
nα

= lim
n→∞

Qn


1 −

x2

2n2


nα

=


φα(x), if γ > 2(α + 2j + 1),
ψα,j(x), if γ = 2(α + 2j + 1),
ϕα,j(x), if γ < 2(α + 2j + 1),

(14)

uniformly on compact subsets of C, where

φα(x) =

 x
2

−α

Jα(x),

ψα,j(x) =

j+1
i=0

bi2i
 x
2

−α

Jα+2i(x),

with

bi = (−1)i
M(i−j)−Γ 2(α+j+1)2α+β+2j+1(α+2j+1)(α+j+i+1)
(α+j+i+1)(M+Γ 2(α+j+1)2α+β+2j+1(α+2j+1))

− Γ (α + i + 1)
i−1
k=0

bk
 i
k


(−1)kk!2k

Γ (α+i+k+1)

i! 2
iΓ (α+i+1)
Γ (α+2i+1)

,

for 0 ≤ i ≤ j + 1, and

ϕα,j(x) =

j+1
i=0

bi2i
 x
2

−α

Jα+2i(x),

where the coefficients bi are computed as

bi = (−1)i
i−j

α+j+i+1 − Γ (α + i + 1)
i−1
k=0

bk
 i
k


(−1)kk!2k

Γ (α+i+k+1)

i! 2
iΓ (α+i+1)
Γ (α+2i+1)

, 0 ≤ i ≤ j + 1.

Notice that in last two cases the coefficient b0 is computed using the corresponding formula assuming


−1
i=0 = 0.

Proof. Scaling and taking limits in (12)

lim
n→∞

Qn


1 −

x2

2n2


nα

= lim
n→∞

j+1
i=0

bi(n)

1 −


1 −

x2

2n2

i
P (α+2i,β)
n−i


1 −

x2

2n2


nα

=

j+1
i=0

lim
n→∞

bi(n) lim
n→∞


1 −


1 −

x2

2n2

i
P (α+2i,β)
n−i


1 −

x2

2n2


nα

=

j+1
i=0

bi2i
 x
2

−α

Jα+2i(x),

uniformly on compact subsets of C. Notice that in the last inequality we have used Theorem 1 written in the following way

lim
n→∞


x2

2n2

i
P (α+2i,β)
n−i


1 −

x2

2n2


nα

= 2i
 x
2

−α

Jα+2i(x),

uniformly on compact subsets of C, where i is a fixed nonnegative integer number.
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Now, we distinguish three cases according to the value of the parameter γ .

• If γ > 2(α + 2j + 1), we are going to prove that b0 = 1 and bi = 0 if i ∈ {1, 2, . . . , j + 1}.
We can compute bi from (13). If k = 0, then

Qn(1)

P (α,β)n (1)
= b0(n)A0(0, n).

Using Lemma 1 and taking limits, we obtain b0 = 1. If k = 1, then according to Lemma 1 we have

Q (1)
n (1)

P (α,β)n (1)
(1) = b0(n)A0(1, n)− b1(n)A1(1, n).

Taking limits,

1 = 1 − b1A1(1, α), then b1 = 0.

Applying a recursive procedure we get bi = 0 for i ∈ {1, 2, . . . , j + 1}. To illustrate this procedure we consider the case
k = j + 1. Thus, we have bi = 0 for i ∈ {1, 2, . . . , j}. Then,

Q (j+1)
n (1)

P (α,β)n (1)
(j+1) = b0(n)A0(1, n)+

j
i=1

bi(n)

j + 1
i


(−1)ii!Ai(j + 1, n)

+ bj+1(n)(−1)j+1(j + 1)!Aj+1(j + 1, n).

Taking limits,

1 = 1 + bj+1(−1)j+1(j + 1)!Aj+1(j + 1, α), then bj+1 = 0.

• Case γ = 2(α + 2j + 1). From (13) and k = 0, we have

Qn(1)

P (α,β)n (1)
= b0(n)A0(0, n).

Taking limits when n tends to infinity in the above expression, we get

b0 =
−jM − Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1)(α + j + 1)
(α + j + 1)(M + Γ 2(α + j + 1)2α+β+2j+1(α + 2j + 1))

.

For i ≥ 1,we use Lemma 1 again and take limits. Thus, we deduce the coefficients bi in a recursive way from (13).
• Case γ < 2(α + 2j + 1). We can tackle this case in the same way as the case γ = 2(α + 2j + 1). �

Next, we are going to study the zeros of the polynomials {Qn}n≥0 orthogonal with respect to (1). The following result was
established for the non-varying casewithin amore general framework byH. G.Meijer in [11, Th. 4.1] (see also [12, Lemma2]).
Actually, that proof can be written in the same way for the varying case, so we omit it.

Proposition 2. The polynomial Qn(x), n ≥ 1, has n real and simple zeros and at most one of them is located outside the interval
[−1, 1].

We can give more information about the location of the zeros. The case j = 0 was considered in [7]. We notice that in that
case all the zeros are in the interval (−1, 1). Thus, next we will assume j > 0 and we will denote by yn,1 > yn,2 > · · · >
yn,n−1 > yn,n the zeros of Qn(x).

Proposition 3. For n large enough and j > 0, we have

• If γ > 2(α + 2j + 1), then all zeros of Qn(x) are located in (−1, 1).
• If γ < 2(α + 2j + 1), then yn,1 > 1.
• If γ = 2(α + 2j + 1), then yn,1 > 1 if and only if

M >
2α+β+2j+1(α + j + 1)(α + 2j + 1)Γ 2(α + j + 1)

j
.

Proof. We distinguish three cases, but essentially we use Lemma 1 (a) with k = 0, and the fact that the leading coefficient
of Qn is positive. Then,

• If γ > 2(α + 2j + 1), then by Lemma 1 Qn(1) > 0 for n large enough. Therefore, taking into account Proposition 2, all
the zeros are located in (−1, 1).

• If γ < 2(α + 2j + 1), then Qn(1) < 0 for n large enough, which implies that there is a zero of Qn greater than 1 and by
Proposition 2 it is the only one.
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• If γ = 2(α + 2j + 1), then yn,1 > 1 if and only if Qn(1) < 0 for n large enough, and this only happens if and only if

M >
2α+β+2j+1(α + j + 1)(α + 2j + 1)Γ 2(α + j + 1)

j
. �

Now we deduce the asymptotic behavior of the zeros of Qn(x).

Proposition 4. Let yn,1 > yn,2 > · · · > yn,n−1 > yn,n be the zeros of Qn(x) and φα(x), ϕα,j(x), and ψα,j(x) the functions
defined in Theorem 2. We assume j > 0.

1. If γ > 2(α + 2j + 1), then

lim
n→∞

n

2(1 − yn,i) = jα,i, i ≥ 1,

where jα,i denotes the ith positive zero of the Bessel function of the first kind.
2. If γ < 2(α + 2j + 1), then

lim
n→∞

yn,1 = 1, lim
n→∞

n

2(1 − yn,i) = sα,i−1, i ≥ 2,

where sα,i denotes the ith positive zero of the function ϕα,j(x).
3. If γ = 2(α + 2j + 1), we have two cases:

(a) If M ≤
2α+β+2j+1(α+j+1)(α+2j+1)Γ 2(α+j+1)

j , then yn,1 ≤ 1, for n large enough, and

lim
n→∞

n

2(1 − yn,i) = tα,i, i ≥ 1,

where tα,i denotes the ith positive zero of the function ψα,j(x).
(b) If M >

2α+β+2j+1(α+j+1)(α+2j+1)Γ 2(α+j+1)
j , then

lim
n→∞

yn,1 = 1, lim
n→∞

n

2(1 − yn,i) = tα,i−1, i ≥ 2,

where tα,i denotes the ith positive zero of the function ψα,j(x).

Proof. It follows from Theorem 2, Proposition 3, and Hurwitz’s Theorem (see [8, Th. 1.91.3]). �

To illustrate Theorem 2 we are going to recover the case j = 0 obtained in [7]. In that paper the author uses monic
polynomials, and here we are considering a different normalization, i.e. the leading coefficient of Qn is

Γ (2n + α + β + 1)
2nΓ (n + 1)Γ (n + α + β + 1)

.

Therefore, it is necessary to do some easy computations. We use the relations (see, [9, f.10.6.1], [13, 6.1.18])

Jα(x)−
2(α + 1)

x
Jα+1(x) = −Jα+2(x), (15)

as well as

Γ (2x) =
Γ (x)Γ


x +

1
2


21−2x

√
π

. (16)

First, using (7) and (16) we get

Γ (2n + α + β + 1)
2nΓ (n + 1)Γ (n + α + β + 1)

≈
2n+α+β

√
π

Γ


n +

α
2 +

β

2 +
1
2


Γ (n + 1)

Γ


n +

α
2 +

β

2 + 1


Γ (n + α + β + 1)

≈
2n+α+β

n
1
2
√
π
.

In [7] it was obtained

lim
n→∞

2nP̂ (α,β,Mn)
n (cos(x/n))

nα+1/2
=

−2−β
√
πx2zα+2(x), if γ < 2α + 2,

−2−β
√
π(zα(x)+ aα,β,Mzα+1(x)), if γ = 2α + 2,

2−β
√
πzα(x), if γ > 2α + 2,

where

zα(x) = x−α Jα(x),

aα,β,M =
−2M(α + 1)

M + 2α+β+1Γ (α + 2)Γ (α + 1)
,

9



and {P̂ (α,β,Mn)
n }n≥0 denotes the sequence of monic polynomials which are orthogonal with respect to (1) with j = 0. This

result can be written as follows

lim
n→∞

2n+α+β P̂ (α,β,Mn)
n (cos(x/n))
nα+1/2

√
π

=

−2αx2zα+2(x), if γ < 2α + 2,
−2α(zα(x)+ aα,β,Mzα+1(x)), if γ = 2α + 2,
2αzα(x), if γ > 2α + 2.

(17)

We can observe that

2n+α+β P̂ (α,β,Mn)
n (cos(x/n))
nα+1/2

√
π

≈
Qn(cos(x/n))

nα
.

Therefore, it only remains to compare the limit functions in (14) and (17). The case γ > 2α+2 is trivial.We pay attention
to the other two cases.

• γ < 2α + 2.
In this case b0 = 0 and b1 = −1/2. Thus we have

ϕα,0(x) = −

 x
2

−α

Jα+2(x) = −2αx2x−α−2Jα+2(x) = −2αx2zα+2.

• γ = 2α + 2.
In this case,

b0 = −
Γ 2(α + 1)2α+β+1(α + 1)

M + Γ 2(α + 1)2α+β+1(α + 1)
,

b1 =
M

2(M + Γ 2(α + 1)2α+β+1(α + 1))
.

By using (15) we deduce

ψα,0(x) = b0
 x
2

−α

Jα(x)+ 2b1
 x
2

−α

Jα+2(x)

=
−Γ 2(α + 1)2α+β+1

M + Γ 2(α + 1)2α+β+1(α + 1)

 x
2

−α

Jα(x)

+
M

M + Γ 2(α + 1)2α+β+1(α + 1)

 x
2

−α

Jα+2(x)

= −

 x
2

−α

Jα(x)+
M(α + 1)

M + 2α+β+1Γ 2(α + 1)(α + 1)

 x
2

−α−1
Jα+1(x)

= −2α(zα(x)+ aα,β,Mzα+1(x)).

4. Numerical experiments

In this section we illustrate the previous results on the zeros of the polynomials Qn with some numerical experiments
where we have taken j = 3 for all of them. Thus, we are dealing with the varying Sobolev inner product

(f , g)S,n =

 1

−1
f (x)g(x)(1 − x)α(1 + x)βdx + Mnf (3)(1)g(3)(1).

We have used the mathematical software Mathematica R⃝8.0 for the computations. In all the numerical experiments we
have computed the four largest zeros of the polynomials Qn(x) and the corresponding scaled zeros for several values of n.
We only show one example for each possible case. In the tables about the scaled zeros we show their asymptotic behavior
such as it is described in Proposition 4.

• Case γ > 2(α + 2j + 1).
We choose the following values:

α = 3, β = 1, γ = 25, and Mn =
3en

(6en + 4)nγ
.

It was proved in Theorem 2 that in this case the Mehler–Heine formula for the polynomials Qn is the same one as for
the classical Jacobi polynomials. This behavior is due to the negligible influence of the sequence of masses {Mn}n≥0 on the
asymptotics. Obviously, as it was stated in Proposition 4, this determines the asymptotic behavior of the zeros which is
illustrated in Tables 1 and 2.
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Table 1
Case γ = 25 > 2(α + 2j + 1), j = 3, α = 3, β = 1, γ =

25, Mn =
3en

(6en+4)nγ .

yn,4 yn,3 yn,2 yn,1

n = 150 0.994346 0.99636 0.997952 0.999125
n = 250 0.997937 0.998672 0.999254 0.999681
n = 500 0.999479 0.999665 0.999811 0.999919

Table 2
Case γ = 25 > 2(α + 2j + 1), j = 3, α = 3, β = 1, γ = 25, Mn =

3en
(6en+4)nγ .

n

2(1 − yn,1) n


2(1 − yn,2) n


2(1 − yn,3) n


2(1 − yn,4)

n = 150 6.27524 9.59956 12.7982 15.9503
n = 250 6.31687 9.66386 12.885 16.0602
n = 500 6.34839 9.71233 12.9501 16.1421
Limit j3,1 = 6.38016 j3,2 = 9.76102 j3,3 = 13.0152 j3,4 = 16.2235

Table 3
Case γ = 4 < 2(α + 2j + 1), j = 3, α = 3, β = −1/2, γ =

4, Mn =
7 ln(n+1)+5
(3+ln(n2))nγ

.

yn,4 yn,3 yn,2 yn,1

n = 150 0.994574 0.996593 0.998169 0.999286
n = 250 0.998176 0.998915 0.999497 1.0016
n = 500 0.999554 0.999739 0.999883 1.0014

Table 4
Case γ = 4 < 2(α+ 2j+ 1), j = 3, α = 3, β = −1/2, γ = 4, Mn =
7 ln(n+1)+5
(3+ln(n2))nγ

.

n

2(1 − yn,2) n


2(1 − yn,3) n


2(1 − yn,4)

n = 150 9.07735 12.382 15.6257
n = 250 7.92964 11.6463 15.1011
n = 500 7.6415 11.4238 14.9355
Limit s3,1 = 7.64622 s3,2 = 11.4432 s3,3 = 14.9699

• Case γ < 2(α + 2j + 1).
According to Theorem 2 the limit function in the Mehler–Heine formula is given by ϕα,3(x) =

4
i=0 bi2

i
 x
2

−α Jα+2i(x),
where the coefficients bi, 0 ≤ i ≤ 4, can be computed from Theorem 1. We choose the following values:

α = 3, β = 1, γ = 4, and Mn =
7 ln(n + 1)+ 5
(3 + ln(n2))nγ

.

In Table 3 we can see that the largest zero is greater than 1 for n large enough according to Proposition 3. Table 4 shows
the asymptotic behavior of the scaled zeros given in Proposition 4.

• Case γ = 2(α + 2j + 1).
According to Theorem 2 the limit function in the Mehler–Heine formula is given by ψα,3(x) =

4
i=0 bi2

i
 x
2

−α Jα+2i(x),
where the coefficients bi, 0 ≤ i ≤ 4, can be computed again from Theorem 1. We choose the following values:

α = β = −9/10, γ = 61/5 = 12.2,

and we denote by V the quantity which appears in Proposition 4, i.e.

V =
2α+β+2j+1(α + j + 1)(α + 2j + 1)Γ 2(α + j + 1)

j
.

Thus, with this data

V = 21/5 15128
75

Γ 2

31
10


≃ 1119.0037947.

Now we take

Mn =
Mn2(n − 1/2)(n + 2)

nγ+4
=

Mn2(n − 1/2)(n + 2)
n81/5

.
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