ENSAM-Paris

Ecole Nationale Supérieure D'Arts et Métiers

RESUMEN PROYECTO DE FIN DE CARRERA

PJE-FISE-F12087

Estudio experimental de un sistema de rotores contra-rotativos en un túnel de viento axial

JUNIO 2012

Presentado por:

Eva CABRERA

Profesores responsables:

-Florent RAVELET

-Hussain NOURI

AÑO: 2011-2012 Nº DE PROYECTO: PA-F12087 **DEPARTEMENTO: FISE**

AUTOR: Eva CABRERA

TÍTULO: Estudio experimental de un sistema de rotores contra-rotativos en un túnel de viento axial.

TUTORES DEL PROYECTO: Florent RAVELET, Hussain NOURRI

NÚMERO DE PÁGINAS: 24

NÚMERO DE REFERENCIAS BIBLIOGRAFICAS: 4

RESUMEN: El proyecto tendrá por objetivo la comprensión de las interacciones físicas que se producen en un sistema de rotores contra-rotativos en un túnel de viento axial. Para realizar este estudio, se medirán de las fluctuaciones de presión y se analizaran las prestaciones globales en el banco de ensayo AERO2FANS desarrollado por el laboratorio DynFluid.

En una segunda parte se verá el interés de integrar un estator en el banco de ensayo. Este estator ha estado concebido con el programa MFT 3D.

Para finalizar el proyecto se hará un análisis de la viabilidad de adaptar nuestro banco de ensayos para que en éste se puedan realizar buenas mediciones acústicas. Se analizará la cámara de aspiración y de descarga del túnel de viento axial.

PALABRAS CLAVE: Acústica física, ruido, aislamiento, túnel de viento axial, ventiladores, mediciones en fluidos.

Tabla de contenidos

AG	RAD	DECIMIENTOS							
1.	INTRODUCCIÓN								
2.	BA	NCO DE ENSAYOS AERO2FANS6							
3.	PRI	ESENTACIÓN DEL PROYECTO							
4.	PA	RTE EXPERIMENTAL							
4	.1	ENSAYOS DE FLUCTUACIÓN DE PRESIÓN SEGÚN LA DISTANCIA AXIAL							
	4.1.	1 Calibración							
	4.1.	2 Condiciones de los ensayos							
	4.1.	3 Análisis frecuencial							
	4.1.	4 Conclusiones							
4	.2 M	EDIDAS DE LAS PRESTACIONES GLOBALES13							
4	.2.1 1	Influencia de la relación de velocidades en el rendimiento máximo							
4	.2.2 1	Influencia de la distancia axial 16							
5.	CO	NCEPCIÓN DEL ESTATOR							
5	5.1	INTERÉS DEL ESTATOR EN EL BANCO DE ENSAYOS 18							
5	5.2 CO	ONCEPCIÓN DEL STATOR CON MDT3D 19							
5	5.3	ESTATOR DEFINITIVO							
6	VIA	ABLIDAD DE REALIZAR MEDIDAS ACÚSTICAS FIABLES EN AERO2FANS							
7	BIE	3LIOGRAFÍA							

AGRADECIMIENTOS

Agradezco a Don Florent RAVELET por haberme dado la posibilidad de realizar el proyecto de fin de carrera en el laboratorio DynFluid así como a Hussain NOURRI por su disponibilidad, paciencia y ganas de enseñar.

1. INTRODUCCIÓN

El objetivo de este proyecto es trabajar en la tesis en curso que se desarrolla en el laboratorio DynFluid. El propósito es el estudio experimental de los flujos en un sistema de rotores contra rotativos.

El proyecto tendrá por objetivo la comprensión de las interacciones físicas que se producen entre los dos rotores contra rotativos. Primeramente se efectuarán las mediciones de las fluctuaciones de presión con micrófonos que estarán situados radialmente a 90° y a una distancia axial de 5mm del primer rotor. Seguidamente se analizarán las prestaciones globales. Se realizarán distintos ensayos modificando la distancia axial con una velocidad de rotación fija y se harán medidas de las fluctuaciones de presión, de caudal y de par.

La segunda parte va a consistir en ver el interés de integrar un estator en el banco de ensayo. Se realizará la concepción del estator utilizando el programa MFT desarrollado por el laboratorio DynFluid. Nuestros objetivos en esta concepción son conseguir a la salida un comportamiento del fluido lo más axial posible y una presión estática alrededor de 200 Pa. Tendremos restricciones geométricas sobre el ángulo de calado, la curvatura, la cuerda de la pala y además restricciones en las condiciones de funcionamiento como el equilibrio radial.

Para finalizar el proyecto se hará un análisis de la viabilidad de adaptar nuestro banco de ensayos para que en éste se puedan realizar buenas mediciones acústicas. Se analizará la cámara de aspiración y de descarga del túnel de viento axial.

2. BANCO DE ENSAYOS AERO2FANS

FIG.1.Imagen del banco de ensayos AERO2FANS

Se va a trabajar en el banco de ensayos AERO2FANS, túnel de viento axial con un sistema de rotores contra-rotativos normalizado según el estándar 5801. Esta instalación se compone de un conducto cilíndrico de diámetro interno de 380 mm. El conducto de aspiración está integrado por una tobera para reducir la energía perdida debida a la fricción del fluido y a la separación del flujo. La distancia entre el conducto de entrada y el rotor está en torno a 5D.

El banco de ensayos está instrumentado con captores de presión para hacer las medidas de las fluctuaciones de presión, un dispositivo para controlar el caudal y un travesaño que recupera el flujo. El travesaño está instalado antes del rotor de aguas arriba para homogeneizar el flujo de entrada. Dos motores "brushless" PANASONIC A4 conducen cada rotor de forma independiente. Estos rotores están situados en una carcasa de un diámetro 0.33D y una longitud de 0.45D. Un sistema anti-rotatorio va a situarse a una distancia 2D del conjunto de rotores contra-rotativos. Esto permitirá al fluido de salida no tener un componente rotacional así como hacer que las medidas de presión sean más fiables.

Los ensayos para ver la axialidad del fluido de salida se han realizado por medio de imágenes de prototipos de dimensiones muy pequeñas con una cámara de alta resolución.

Se realizarán medidas de la presión estática por medio de tomas de presión situadas a una distancia de 1D del sistema anti-rotacional. Las mediciones de caudal vamos a evaluarlas a partir de las fluctuaciones de presión que hagamos a una distancia de 5D del conducto de salida.

Además, para analizar más en detalle las fluctuaciones de presión, se han añadido cuatro tomas de presión en una distancia comprendida entre el conducto de aspiración y el rotor aguas arriba. Para modificar las condiciones de funcionamiento tenemos un dispositivo para regular el flujo del conducto que está situado en el conducto de descarga.

3. PRESENTACIÓN DEL PROYECTO

En nuestros días la reducción de la talla de las máquinas es cada vez más presente, lo cual implica una velocidad específica más importante si queremos conservar el mismo caudal. Además los rendimientos de las máquinas convencionales son bastante bajos y pueden generar un ruido molesto en su utilización. Las hélices contra-rotativas pueden entonces aparecer como una solución factible para remplazar las máquinas actuales.

La utilización de las hélices contra-rotativas permite reducir notablemente la velocidad de rotación para un mismo caudal. Además el fluido es enderezado por el segundo rotor, existiendo una menor perturbación en la salida. Así las prestaciones Aero-acústicas y el rendimiento son mejores. En contraposición el sistema se vuelve más complejo, más pesado y más ruidosos en comparación a un sistema con una única hélice.

4. PARTE EXPERIMENTAL

4.1 ENSAYOS DE FLUCTUACIÓN DE PRESIÓN SEGÚN LA DISTANCIA AXIAL.

Se va a estudiar la interacción entre el rotor aguas abajo y aguas arriba observando la fluctuación de presión según se modifica la distancia axial entre los rotores.

Esta fluctuación de presión la vamos a tratar en el dominio frecuencial donde haremos la FFT y estudiaremos los modos de pasaje de las palas y sus armónicos correspondientes.

Para realizar este tratamiento, haremos medidas de la señal de presión en pared a partir de micrófonos perfectamente integrados en el banco de ensayos gracias a un bloque en aleación de aluminio.

FIG.2. Bloque micrófonos

Es posible de esta forma integrar este bloque entre los rotores de la misma forma que los bloques en plexiglás que existen en la instalación. Para evaluar las fluctuaciones de presión según la distancia axial habrá que añadir 110 mm a la distancia que queramos poner en nuestra instalación. La razón es la configuración geométrica existente.

4.1.1 Calibración

Para trabajar con los micrófonos es necesario verificar los datos proporcionados por el constructor efectuando la calibración. Nosotros queremos deducir la sensibilidad del micrófono. Este valor será muy importante dado que las medidas estarán hechas en mV. Se obtendrá el valor de la presión acústica multiplicando la medida de la señal por la sensibilidad del micrófono.

-mes: valor medido.-G: ganancia aplicada en entrada.-p': presión de referencia.

**Observación*. Nosotros hemos comenzado a realizar esta calibración pero no hemos podidos efectuarla bien debido al tiempo y a la sonda de referencia. Sin embargo el proceso que hemos comenzado a utilizar ha sido hacer dos medidas con micrófonos a 94 dB durante 10s a 4000Hz con una ganancia de 40 dB para poder hacer después la media. De esta forma podremos deducir después la sensibilidad de cada micrófono.

4.1.2 Condiciones de los ensayos

Los ensayos se realizarán según las condiciones siguientes. El rotor de aguas arriba girará a N1=2000tr/min, la relación de velocidad es =Nrotor.aguas abajo/Nrotor.aguas arriba será de =0.9. Además el sistema funcionará a caudal nominal.

El registro de las fluctuaciones de presión se efectuará a partir de dos micrófonos con una ganancia de 10 dB. Este durará 20s a una frecuencia de muestreo de 6000Hz.

**Observación*. Debido al problema ya explicado se puede ver que una señal corresponde a un micrófono.

4.1.3 Análisis frecuencial

FIG.3.Análisis frecuencial para una distancia axial entre rotores de s=10mm

Se pueden identificar los armónicos provocados por cada uno de los ventiladores. Las primeras constataciones que podemos ver son que las amplitudes del rotor de aguas abajo son mucho más importantes que las del rotor aguas arriba.

	ROTOR 1									
f1=367	f2=734	f3=1101	f4=1470	f5=1835	f6=2202	f7=2569				
367	733.9	1101	1470	1835	2203	2569				
43.74	11.86	-2.077	6.066	-16.96	-29.81	-33.59				

Tabla 1.Armónicos del rotor aguas arriba

	ROTOR 2									
f1=210	f2=420	f3=630	f4=840	f5=1050	f6=1260	f7=1470				
209.9	420	630	840	1050	1260	1470				
70.05	52.91	38.02	29.12	22.89	14.37	6.066				

Tabla 2. Armónicos del rotor aguas abajo

Las frecuencias de interacción corresponden a esta expresión:

$$fint = \alpha_1 frotor. amont + \alpha_1 frotor. aval$$

	Frecuencias de interacción												
157	249.8	313.9	333.6	350	523.8	577	650	750.1	997	1150	1207	1311	1364
23.36	8.707	0.1012	-5.14	0.1298	-0.1422	24.3	-0.2124	1.186	5.294	-5.17	8.458	-19.1	13.27

Tabla 3.Frecuencias de interacción

Para ver y comparar la tendencia que siguen los armónicos del rotor aguas abajo y aguas arriba así como las frecuencias de interacción haremos la representación siguiente.

FIG.5.Graficos de tendencias s=10mm

Constatamos que las frecuencias de interacción del rotor aguas abajo disminuyen de manera más pronunciada que las del rotor aguas arriba.

Debido a la distancia muy pequeña(s=10mm) a la que hemos realizado este ensayo podemos identificar numerosas frecuencias de interacción entre ellos.

Además se puede ver la tendencia que siguen los armónicos y las frecuencias de interacción según aumenta la distancia axial entre ellos. Para mostrar esto representamos la gráfica siguiente para una distancia de s=180mm.

FIG.6.Gráfico de tendencia s=180mm

Podemos concluir que según aumenta la distancia axial entre el rotor aguas arriba y aguas abajo la pendiente con la que veremos disminuir los armónicos será mayor.

Observamos también una desaparición del pasaje de palas del rotor aguas abajo. Además debido a que la interacción según aumenta la distancia axial es cada vez más débil, se encontrarán menos frecuencias de interacción en este ensayo.

4.1.4 Conclusiones

Tras realizar los ensayos se ha podido constatar que las fluctuaciones de presión del rotor aguas abajo eran más importantes que las del rotor aguas arriba y que los armónicos del rotor aguas abajo disminuyen de forma más pronunciada que las del rotor aguas arriba.

Además cuando la distancia entre rotores pasa de s=10 mm a s=180 mm las amplitudes disminuyen fuertemente como se ha podido observar mediante las líneas de tendencia.

Se ha podido afirmar que el ruido generado por los ventiladores disminuye según aumentamos la distancia entre rotores. Esto se justifica por la desaparición de las frecuencias de interacción.

4.2 MEDIDAS DE LAS PRESTACIONES GLOBALES

4.2.1 Influencia de la relación de velocidades en el rendimiento máximo.

En esta parte, se han continuado los trabajos precedentes de mediciones de prestaciones globales. Varios ensayos se han efectuado para una distancia entre rotores fija a s=10mm modificando la velocidad de rotación del rotor aguas arriba. Queremos ver la influencia que tiene la relación de velocidades en estas condiciones.

Hemos querido hacer especialmente ensayos con relaciones de velocidad bastante grandes (entre 0.8 y 1.5) para poder evaluar la curva de rendimiento máximo y tener fiabilidad en los datos.

	max	Q (m3/s)	P68(Pa)
1	66.16	3256	241
1.1	66.58	3508	280
1.2	66.54	3630	300
1.25	66.30	3748	320
1.30	65.68	3748	320
1.35	66.46	3716	320
1.4	66.25	4047	380
1.45	67.09	3935	360
1.5	66.32	4146	400

Tabla 4.S=10mm ; N1=1800rpm ; S=10mm

Eva CABRERA

PA-F12087

	max	Q (m3/s)	P68(Pa)								
0.8	62.3	2831	183								
1	66.32	2996	207								
1.5	62.96	3653	306								
1.68	61.2	3735	320								
	Tabla 5.S=10mm; N1=1600rpm										
	max	Q (m3/s)	P68(Pa)								
0	36.71	1699	67								
0.5	52.83	2915	199								
0.8	62.88	3479	288								
0.85	64.19	3491	290								
0.9	65.39	3592	308								
0.95	66	3783	341								
1	66.31	3637	315								
1.05	67.04	3790	342								
1.1	66.84	3861	355								
1.15	67.07	3921	357								
1.20	66.72	3980	368								

Tabla 6.S=10mm ; N1=2000rpm

FIG.3.Curba de rendimiento máximo según

Podemos concluir que en el intervalo [0.8; 1.2] el sistema de rotores contra-rotativos es muy eficiente. Además se obtendrá un rendimiento máximo mayor que se mantendrá en un valor elevado más tiempo según la velocidad de rotación del rotor aguas arriba esté fijada en un valor más grande.

4.2.2 Influencia de la distancia axial.

Se puede ver la influencia de la distancia axial fijando la velocidad de rotación del primer rotor N1 y la relación de velocidades en un valor constante.

En vista a los trabajos precedentes donde se ha visto una débil influencia de la distancia axial cuando la velocidad del primer rotor es grande, se ha querido examinar el comportamiento del sistema fijando la velocidad del primer rotor en una velocidad más pequeña.

Se han hecho ensayos para s=10mm y s=180mm fijando la velocidad del primer rotor a una velocidad de N1=1000tr/min y N1=1200tr/min.

<u>N1=1000 tr/min</u>

FIG 4.Curvas características y de rendimiento para N1=1000tr/min y s=10mm et s=180mm.

FIG 5.Curvas características y de rendimiento para N1=1000tr/min, s=10mm y s=180mm.

Observamos que según aumenta la distancia axial entre rotores las curva característica y de rendimiento tienen valores menores. De esta forma concluimos la influencia de la distancia axial en nuestro sistema de hélices contra-rotativas.

Concluimos también que no existe una diferencia apreciable entre los resultados obtenidos para N1=1000tr/min y N1=1200tr/min.

<u>N1=1200tr/min</u>

5. CONCEPCIÓN DEL ESTATOR

5.1 INTERÉS DEL ESTATOR EN EL BANCO DE ENSAYOS

La deflexión que los álabes del rotor generan en el flujo introduce siempre una componente circunferencial que no es utilizada como trabajo efectivo. Por ello, para poder recuperar esta energía cinética que se perdería en el rotor aguas abajo, es muy habitual dotar de axialidad al flujo por medio de un estator.

Reduciendo esta energía, conseguimos un incremento en la presión total de la máquina.

Puede resultar muy interesante estudiar la influencia del estator y sus posibles posiciones en el banco de ensayos. Una de estas razones es que podemos transformar la energía rotacional a la salida de los rotores en un incremento de presión. Además podremos enriquecer nuestro estudio de las interacciones físicas en el túnel de viento axial incorporando este nuevo elemento y realizar de esta forma medidas de las prestaciones de nuestro sistema.

5.2 CONCEPCIÓN DEL STATOR CON MDT3D

Se va a realizar la concepción del estator. Para comenzar tendremos que tener en cuenta los conceptos siguientes. Si definimos,

c2 = velocidad de entrada del estator c3 = velocidad de salida del estator ca = velocidad axial cu = velocidad circunferencial

Y, tomando como hipótesis fluido incompresible y caudal constante podemos deducir,

$$c3 < c2$$

$$cu2 \neq 0,$$

$$cu3 = 0$$

$$c3 = ca2$$

$$Ec2 \rightarrow Epstat$$

$$\Delta Psth \propto Cu2$$

$$\Delta Pd = \frac{1}{2} \cdot \rho \cdot Cu2^{2}$$

Se va a concebir el estator esperando el comportamiento más axial posible a la salida. Otro criterio de diseño será que la presión estática esté en torno a 200 Pa. Utilizaremos para diseñar el estator el programa MFT desarrollada por el laboratorio DynFluid.

Para conseguir estas condiciones elegiremos un factor de difusión de 0.4, tomaremos una ley generatriz de vórtice constante así como estableceremos el equilibrio radial. Se modificará el ángulo de ataque , la longitud de la pala, así como la curvatura aerodinámica. El espesor no es un factor influyente.

La configuración más interesante tendrá 13 palas, un espesor máximo de 5mm, un factor de difusión en pie y en periferia 0.4 y un radio interior de 55mm y exterior de 190 mm.

Parámetros de de los álabes	salida	Factor de difusión	Grado de reacción y distancia r-e			Número de alabes y espesor	
Ri (mm)	55	Factor de difusión en pie	0.4	Grado de reacción	0.9	Nº álabes	13
Re (mm)	190	Factor de difusión en periferia	0.4	Distancia rotor estator	0	Esp. Máx.	5

R1 (mm)	R2 (mm)	Gamma	L (mm)	Cz 0	Epaisseur(%)	Sigma1 (deg)	Sigma2 (deg)	Beta 1
55	55	17.68436	100	2.7	7.77837	2.046612	2.046612	40.61679
68.5	68.5	17.44005	99	2.7	6.83509	1.8696	1.8696	40.01302
82	82	17.15884	98	2.7	6.09586	1.75119	1.75119	39.3297
95.5	95.5	16.83389	97	2.695	5.50092	1.66627	1.66627	38.55404
109	109	16.45861	96	2.695	5.01178	1.60238	1.60238	37.67492
122.5	122.5	16.0266	95	2.6	4.60252	1.55257	1.55257	36.68238
136	136	15.74045	94.75	2.6	4.25506	1.51265	1.51265	36.03522
149.5	149.5	15.74045	94.5	2.6	3.95638	1.47994	1.47994	36.03522
163	163	15.74045	94.25	2.7	3.69688	1.45265	1.45265	36.03522
176.5	176.5	15.74045	94	2.7	3.46932	1.42953	1.42953	36.03522
190	190	15.74045	93.75	2.7	3.26816	1.4097	1.4097	36.03522

Tabla 7. Parámetros geométricos del estator

	Débit (m3/s)	Rend Sta (%)	dP Sta (Pa)	Rend Tot (%)	dP Tot (Pa)	PA (W)	Couple (N.m)
1	0,90713	65,38459	251,11927	81,3572	312,46444	348,39536	1,66346
2	0,93032	63,74489	238,25207	80,96864	302,62734	347,71392	1,66021
3	0,95355	61,84568	224,76046	80,41874	292,25896	346,54093	1,65461
4	0,97681	59,69621	210,78382	79,72228	281,49469	344,90728	1,64681
5	1,00008	57,30506	196,42966	78,89728	270,44322	342,80495	1,63677
6	1,02342	54,673	181,74943	77,96042	259,16381	340,21478	1,6244
7	1,04676	51,81201	166,88065	76,93211	247,78963	337,15041	1,60977
8	1,07018	48,70573	151,82311	75,81544	236,32814	333,59229	1,59278
9	1,09361	45,33929	136,6288	74,60708	224,82652	329,55667	1,57352
10	1,11708	41,68459	121,28843	73,30035	213,27986	325,03281	1,55192

FIG6.Conception du stator par MFT

Observamos que para esas condiciones de funcionamiento tendremos una fluctuación de presión estática próxima a 200 Pa.

FIG7.Concepción del estator por MFT

Definimos la naturaleza del fluido)
------------------------------------	---

- En las características de los elementos como es el juego radial, la rugosidad y un dGamma igual a cero. Además no elegiremos carenado.
- En las condiciones de funcionamiento trabajaremos a caudal nominal (intervalos introducidos).
- Elegiremos pérdidas mecánicas nulas.
- En las opciones de cálculo elegiremos equilibrio radial.

Beta 1 (deg)	Beta 2 (deg)	Alpha 2 (deg)	Alpha 3 (deg)	Ue (m/s)	Us (m/s)	Ca1 (m/s)	Ca2 (m/s)	Ca3 (m/s)	Ca4 (m/s)	Cu2 (m/s)	Cu3 (m/s)
70,08343	60,93032	53,46962	8,99519	25,35868	25,35868	9,18801	8,05342	8,05342	8,05342	10,87151	1,27484
68,79993	60,89025	44,79732	6,29987	27,25149	27,25149	10,57019	9,77149	9,77149	9,77149	9,7026	1,07876
68,95406	62,03954	39,95638	4,82976	29,1443	29,1443	11,21427	10,70826	10,70826	10,70826	8,97142	0,9048
69,44422	63,53004	35,92224	3,71152	31,03711	31,03711	11,63875	11,35727	11,35727	11,35727	8,22801	0,73673
70,04552	65,00233	32,28403	2,7497	32,92992	32,92992	11,95589	11,86015	11,86015	11,86015	7,49305	0,56962
71,05082	66,58637	30,3285	2,20672	34,82273	34,82273	11,95589	12,03117	12,03117	12,03117	7,03848	0,4636
72,41149	68,08751	31,2179	2,24048	36,71554	36,71554	11,63875	11,87414	11,87414	11,87414	7,1963	0,46456
73,80341	69,67151	32,22256	2,3716	38,60835	38,60835	11,21427	11,59581	11,59581	11,59581	7,30865	0,48025
75,37294	71,31924	35,06838	3,01581	40,50116	40,50116	10,57019	11,06701	11,06701	11,06701	7,7689	0,58306
77,77146	73,56222	44,17242	5,47875	42,39398	42,39398	9,18801	9,72121	9,72121	9,72121	9,44436	0,93241

FIG8.Concepción del estator por MFT

Se puede observar que el ángulo a la salida, Alpha 3, es muy pequeño, por lo que el comportamiento del fluido a la salida será prácticamente axial. Se puede ver también que $cu2 \neq 0$, y que cu3 es muy próximo a cero.

5.3 ESTATOR DEFINITIVO

Modificaciones

- Se ha modificado la longitud de las palas ya que eran demasiado largas.
- Se han hecho modificaciones ya que las palas estaban demasiado cercanas unas de otras.

Modelo final

- El ángulo a la salida no es tan pequeño como en la simulación pero se encuentra en un intervalo aceptable.
- La presión estática está en torno a 180 Pa.

6 VIABLIDAD DE REALIZAR MEDIDAS ACÚSTICAS FIABLES EN AERO2FANS

En esta parte queremos abordar el problema que presenta el ruido en nuestro banco de ensayos. Nuestro objetivo consistirá en disminuir el nivel acústico de una manera conforme a las normas acústicas ISO.

Para hacer esto debemos reflexionar en los puntos siguientes:

- 1. Exterior: hacer un doble revestimiento o no.
- 2. Dimensionamiento adecuado de nuestro trabajo.
- 3. ¿Qué debemos hacer en el interior de la cámara?

Las normas acústicas ISO (bibliografía) tienen por objetivo definir métodos de medida para niveles de potencia sonora en tercios de octava (u octavas) de los ventiladores, sea cual sea su forma de conexión. Debemos tener en cuenta las medidas de caudal presión tienen que poder ser realizadas paralelamente con las medidas acústicas.

Esto necesita una adaptación de las instalaciones a las exigencias descritas en la norma **ISO 5801**, relativa a las medidas de las prestaciones aero-acústicas de los ventiladores. Los diferentes métodos son de clase de precisión 2.

El método de medida del ruido externo de los ventiladores está descrito en la norma ISO 13347. Están propuestos tres métodos, que dan en principio resultados idénticos con incertidumbres de medida similares:

- Cámara reverberante;
- Superficie aislante;
- Intensimetría acústica.

Se distingue entonces el ruido generado hacia el exterior de aquel que se propaga en el conducto.

Trataremos también un cuarto método para medir el ruido en conducto. Este será el más indicado en visa a nuestra instalación existente y a la instalación.

El intervalo de frecuencias donde trabajaremos será [150Hz-2000Hz].

Eva CABRERA

CÁMARA REVERBERANTE	SUPERFICIE AISLANTE	INTENSIMETRIA ACÚSTICA	BRUIT EN CONDUIT
ISO 3743 Intervalo de frecuencias entre 50 Hz à 10 kHz comprende nuestro rango de trabajo [150-2000Hz]	ISO 3744 Terminación anecoica simplificada	ISO 9614 La potencia acústica se determina a partir de medidas de intensidad en una superficie próxima al ventilador con la ayuda de una sonda intensimétrica	ISO 5136 La potencia se obtiene a partir de tres medidas de presión acústica en una misma sección de conducto.
Hay que asegurar una uniformidad en el campo de presión acústica.	La potencia acústica se determina a partir de medidas de presión acústica en varios puntos repartidos en una superficie que rodea el ventilador. Esto implica una problemática en nuestros ensayos.	Este método es mucho menos tributario al ruido de fondo ambiente con respecto a los otros.	El conducto tiene que estar equipado de un travesaño que redirija el fluido. Disponemos de este elemento.
Disponemos un dispositivo de regulación de caudal para variar el punto de funcionamiento del ventilador.	Hay que realizar correcciones en las medidas de potencia acústica según una fuente sonora de referencia cuya posición se especifica en la norma ISO 13347 en función de la superficie de medida.	Requiere una sonda de medida con un programa adaptado	El circuito debe estar equipado de un dispositivo de regulación de caudal y de medida como el que disponemos.
Terminación anecoica cilindro silenciador comercializado. Diámetros demasiado grandes para nuestra instalación.	La duración del ensayo es bastante más larga que en la cámara reverberante.	Requiere una formación más importante para el operario.	Necesitamos una terminación anecoica que permita amortiguar las ondas estacionarias provenientes de las reflexiones a la entrada del conducto.
Esta opción está concebida para espacios más grandes.	Necesitamos una superficie de referencia que nos supone una problemática a la hora de realizar nuestros ensayos.	No tenemos ningún requisito	Es el método más indicado dado a nuestra instalación existente. Nuestra problemática es el dimensionamiento de la terminación anecoica en nuestro banco de ensayos.

Tabla 8. Métodos de medida de ruido.

7 BIBLIOGRAFÍA

"Experimental investigation on ducted counter-rotating axial flow fans"

Hussain NOURI, Florent RAVELET, Farid BAKIR, and Christophe SARRAF Arts et Métiers Paris Tech, DynFluid

"Bruit des ventilateurs par Alain GUEDEL. Partie 2"

Normes sur sagaweb: ISO 5801; ISO 3743; ISO 3744; ISO 9614; ISO 5136

"Interacción no estacionaria en una turbomaquina axial" D.Jesús Manuel Fernandez Oro