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If T is a labelled tree, a matrix A is
principal submatrices of A associa
vertices of T are P-matrices, and A h
the smallest absolute eigenvalue of A
and its eigenvector is signed accordi
been incorrectly conjectured under we

1. Introduction

A real matrix is called totally positive (TP) 
P -matrix if every principal minor is positive.
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In [1] the following weakening has been studied. An n-by-n real matrix is totally 
positive relative to a given labelled tree T on n vertices (T-TP) if, for each pair of pendent 
vertices p and q of T , the matrix A[α] is TP when α is the ordered set of vertices of the 
unique induced path of T that connects p and q. If T is a path with vertices labelled in 
order, then TP and T-TP are the same. Note that we are going to refer to T throughout 
as a labelled tree.

Of course, T-TP equivalently means that A[α] is TP for the vertices of any induced 
path of T , as the unique path joining any pair of vertices of T is a subpath of some path 
joining pendent vertices.

It is known that a totally positive matrix has distinct positive eigenvalues and that the 
smallest one has an eigenvector that alternates in sign (see [2] for general background). 
Since a tree is bipartite, there is a signing of the vertices so that neighbors have different 
signs. For a labelled tree, T , let σ be a ±1 vector consistent with such a signing. We say 
that σ is signed according to T , and σ is unique up to multiplication by ±1. It had been 
conjectured that if A is T-TP, then A has a unique absolute smallest real eigenvalue with 
an eigenvector signed according to T . We call this the Neumaier conclusion, after the 
original conjecture by Arnold Neumaier, University of Vienna. See [1] for prior work.

ut is false in general. Here, our purpose 
y adding a hypothesis.

eover, we will denote by Ni (resp. Ni,j ,
 N \ {i, j, k}).
, β ⊆ N , with |α| = |β| = k, by A[α; β]
the rows indexed by α and the columns 
sp. columns) determined by the order in 
e mean the (n −1)-by-(n −1) submatrix 
e columns indexed by Nj, and by A(i)

ices. If P is an induced path of T , by 
indices of the vertices of P in the order 
 we discuss is independent of reversal of 
 direction.

rtices, we say that A ∈ Mn(R) is T-TP
two pendent vertices.

less is required than for a TP matrix; 
ntry-wise positive.
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This conjecture was proven for a few trees, b
is to prove the original conjecture for all trees b

2. Notation and terminology

Let us denote the set {1, . . . , n} by N ; Mor
and Ni,j,k) the set N \ {i} (resp. N \ {i, j}, and

Let A ∈ Mn(R). For any ordered index sets α
we mean the k-by-k submatrix of A that lies in 
indexed by β, and with the order of the rows (re
α (resp. β), by A[α] we mean A[α; α], by A(i; j) w
of A that lies in the rows indexed by Ni and th
we mean A(i; i).

Suppose that T is a labelled tree on n vert
A[P] we mean A[α] in which α consists of the 
in which they appear along P. Since everything
order, there is no ambiguity regarding intended

Definition 1. For a given labelled tree T on n ve
if A[P] is TP for each path P connecting any 

Observe that for a T-TP matrix, properly 
however, like TP matrices, T-TP matrices are e



Definition 2. For a given labelled tree T on n vertices, we say that A ∈ Mn(R) is
pendent-P relative to T if all principal submatrices, associated with the deletion of
pendent vertices, one at a time, are P-matrices.

Note that since in a P-matrix all the principal minors are positive the property of 
being pendent-P relative to a tree is preserved by permutation similarity.

Definition 3. For a given labelled tree T on n vertices, we say that A ∈ Mn(R) is
T-positive if it is T-TP and pendent-P relative to T .

Our arguments strongly use the adjoint of a T-TP matrix (or one satisfying additional 
hypotheses) as a surrogate for the inverse, and we frequently use Sylvester’s determinan-
tal identity, along with ad hoc arguments, to determine the sign pattern of the adjoint.

The version of Sylvester’s identity we shall use is the following [3, (0.8.6.1)]:

detA[α;β] = detA[α′;β′] detA[′α; ′β] − detA[α′; ′β] detA[′α;β′]
detA[′α′; ′β′] , (1)

in which α and β are index sets of the same size, α′ (resp. β′) is α (resp. β) without 
t the first index, and ′α′ (resp. ′β′) is α

. Note that, above, as throughout, these 
(ãi,j) the adjoint of A.

ient to achieve the Neumaier conclusion
otheses so that SA−1S is an entry-wise

 determined by σ signed according to T . 
allest eigenvalue is positive and has an 
our first result is.

ices and A ∈ Mn(R) be T-positive with

−1)i+jσiσj

that (−1)i+j detA(j; i) is the (i, j) entry

)i+j ãi,j .

)i+j detA(j; i) throughout the paper.
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the last index; ′α (resp. ′β) is α (resp. β) withou
(resp. β) without the first index and last index
index sets are ordered. We also denote by Ã =

3. Main result

Our purpose here is to give hypotheses suffic
relative to any tree. Our approach is to give hyp
positive matrix where S is the signature matrix
By Perron’s Theorem this means that the sm
eigenvector signed according to T . To this end 

Theorem 4. Let T be a labelled tree on n vert
detA > 0. Then

sign(detA(i; j)) = (

in which σ is signed according to T .

Remark 5. It is important to point out the fact 
in the adjoint matrix of A, i.e.,

detA(j; i) = (−1

For this reason we will write ãi,j instead of (−1



Now, let Sσ = diag(σ1, σ2, . . . , σn) with σ signed according to T . We have

Corollary 6. If T is a tree on n vertices and A ∈ Mn(R) is T-positive with detA > 0.
Then

SσA
−1Sσ is entry-wise positive.

Therefore, A satisfies the Neumaier conclusion.

Notice that A is TP (P) matrix if and only if SσA
−1Sσ is so, see, e.g., [2, Theo-

rem 1.3.3].

4. Supporting facts and proofs

In this section we give the results that we need in order to prove Theorem 4. We
also deduce the corollaries from it. First we state a technical result we need to prove 
Lemma 9.

 any three distinct integers i, j, k, with

detA[k,Ni,j,k; i,Ni,j,k] = 0.

e that 1 ≤ i < j < k ≤ n. To simplify 
ter’s identity (1) and taking into account
 permutation of the indices we get

(−1)n−1 detA[i,Ni,j,k, k; j, i,Ni,j,k]
− detA[i, α; j, i, α′] detA[α, k; i, α]
[α; i, α′]
A[i, α; j, i, α′] detA[α, k; i, α]
, α′] ,

eas as before, we get

)n detA[j, α, k; j, i, α]
] − detA[j, α; i, α] detA[α, k; j, i, α′]
[α; i, α′]

tA[j, α; i, α] detA[α, k; j, i, α′]
i, α′] .
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Lemma 7. Given a matrix A ∈ Mn(R), then for
1 ≤ i, j, k ≤ n, we have

ãk,i detA[i,Ni,j,k; i,Ni,j,k]

+ ãk,j detA[j,Ni,j,k; i,Ni,j,k] + ãk,k

Proof. Without loss of generality we may assum
the expressions we denote Ni,j,k by α. By Sylves
how the sign of the determinant changes after a

ãk,j = (−1)k+j(−1)2i−2 detA[i,Ni,j ; i,Ni,k] =

= (−1)n detA[i, α; i, α] detA[α, k; j, i, α′]
detA

= detA[i, α; i, α] detA[α, k; j, i, α′] − det
detA[r, α′; i

where r is the last entry of α.
On the other hand and following the same id

ãk,i = (−1)k+i+1 detA[j,Ni,j ; j,Nj,k] = (−1

= (−1)n detA[j, α; j, i, α′] detA[α, k; i, α
detA

= detA[j, α; j, i, α′] detA[α, k; i, α] − de
detA[r, α′;



Thus using the last two expressions and combining them properly, we get

ãk,i detA[i, α; i, α] = − detA[j, α; i, α]
(
ãk,j + detA[i, α; j, i, α′] detA[α, k; i, α]

detA[r, α′; i, α′]

)

+ detA[j, α; j, i, α′] detA[α, k; i, α] detA[i, α; i, α]
detA[r, α′; i, α′]

= −ãk,j detA[j, α; i, α] − detA[α, k; i, α]
detA[r, α′; i, α′]

(
detA[i, α; j, i, α′]

× detA[j, α; i, α] − detA[j, α; j, i, α′] detA[i, α; i, α]
)

= −ãk,j detA[j, α; i, α] − ãk,k detA[k, α; i, α]. �
It is important to point out that, via permutation similarity, the labelling of the 

tree, per se, is not important. If the conjecture were correct for one labelling of a given 
tree, it would be correct for another. Indeed, it is an easy exercise to see that if a path 
is labelled in some other way than consecutively, a T-TP matrix still has the “last” 
eigenvector signed according to the alternatively labelled path.

Once the next three Lemmata are proven, Theorem 4 follows. In the first lemma 
two pendent vertices. If the tree is not a 
n we prove the statement of the theorem 
n the last lemma we prove the statement 
n-pendent vertices.
ction on the number of vertices n, n ≥ 2, 
in [1], so we will assume n ≥ 4 and that 
diate). Recall that σ is signed according 

1)i+jσiσj , (2)

⇐⇒ sign(ãi,j) = σiσj

g(σ1, · · · , σn)

heorem 4, for any two different pendent 

1)p1+p2σp1σp2 .

5

we prove the statement of the theorem for any 
path, then it has at least 3 pendent vertices. The
assuming i is pendent and j is any vertex, and i
of the theorem without assuming i and j are no

We are going to prove these Lemmata by indu
of the tree T . The cases 2 ≤ n ≤ 4 were proven 
T is not a path (in which case the claim is inme
to T . Then, we need to prove

sign(detA(i; j)) = (−

for all 1 ≤ i, j ≤ n. Note that if (2) holds, since

sign(detA(i; j)) = (−1)i+jσiσj

the matrix

diag(σ1, · · · , σn) Ãdia

is entry-wise positive.

Lemma 8. Under the same assumptions as in T
vertices p1 and p2,

sign(detA(p1; p2)) = (−



Proof. Since after removing a pendent vertex of a tree it is still a tree (the tree has at 
least 4 vertices and it is not a path), we can apply the induction hypothesis to obtain

detA(p1; p2) = detA[Np1 , Np2 ] = (−1)p1+p2−1 detA[p2, Np1,p2 ; p1, Np1,p2 ].

Without loss of generality, let p3 be the last pendent vertex in N , with p3 > max{p1, p2}.
Therefore, if we denote Np1,p2,p3 ∪ {p3} by α and use Sylvester’s identity we get that
(−1)p1+p2 detA(p1; p2) is equal to

detA[p2, α
′;α] detA[α; p1, α

′] − detA[p2, α
′; p1, α

′] detA[α;α]
detA[α′;α′] .

Notice that since the tree, which is not a path, has at least 3 pendent vertices, we have 
rearranged the entries of α in such a way that the last element of α is the pendent ver-
tex p3, i.e., α′∪{p3} = α; while, for example, ãp1,p2 |p3 represents the entry (p1, p2) of the
adjoint of the (n −1) ×(n −1) submatrix of A from which the p3-th row and p3-th column
are removed. By the induction hypothesis sign(detA(p3)(p2; p1)) = (−1)p1+p2σp1σp2 .

Here the denominator is positive because A is pendent-P and p3 is a pendent vertex;
the numerator has the desired sign since (let us assume, for example, that p1 < p2)

= (−1)p3σp2σp3 ,

= (−1)p3σp1σp3 ,

= −σp1σp2 ,

= +.

eling after the deleting of p2 in the new
(p2)(p1; p3).
s, again by the induction hypothesis, we

= σp2σp3σp1σp3 = σp2σp1 ,

′]) = σp1σp2 ,

ve the following result:

heorem 4, for any pendent vertex p and 

1)i+pσiσp.
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sign(detA[p2, α
′;α])

sign(detA[α; p1, α
′])

sign(detA[p2, α
′; p1, α

′])

sign(detA[α;α])

Observe that if p1 < p2 and due to the re-lab
tree there is a shift in the resulting sign of detA

Then, since p1, p2, and p3 are pendent vertice
have

sign(detA[p2, α
′;α] detA[α; p1, α

′])

and

−sign(detA[p2, α
′; p1, α

so that the claim follows. �
Next, by using Lemma 7, we are going to pro

Lemma 9. Under the same assumptions as in T
for any i, 1 ≤ i ≤ N ,

sign(detA(i; p)) = (−



Proof. If i is a pendent vertex, i 	= p, then the result follows from Lemma 8. If i = p then 
the result follows since p is a pendent vertex and by the pendent-P hypothesis relative 
to T , we have

detA(p; p) = detA(p) > 0, σp σp > 0 ⇒ sign(detA(p; p)) = σpσp.

On the other hand, if i is not a pendent vertex, then setting in Lemma 7 the vertex j as 
another pendent vertex, namely q, and k = p, we get

0 = ãp,i detA[i,Ni,q,p; i,Ni,q,p] + ãp,q detA[q,Ni,q,p; i,Ni,q,p]

+ ãp,p detA[p,Ni,q,p; i,Ni,q,p].

Taking into account that p is a pendent vertex, by hypothesis and induction, we have

sign(detA[q,Ni,q,p; i,Ni,q,p]) = −σq σi,

sign(detA[p,Ni,q,p; i,Ni,q,p]) = −σp σi,

ã > 0, and sign(ã ) = σ σ . Therefore

sign
(
ãp,p detA[p,Ni,q,p; i,Ni,q,p]

)
,

that

etA(p)(q; q) > 0,

ollows. �
dentity [3, (0.8.4.1)]

detA−1[N \ β;N \ α], (3)

.

heorem 4, for any pair (i, j), neither of 

1)i+jσiσj .

ume that sign(detA(i; j)) 	= (−1)i+jσiσj

x. Then, on one hand, we have

= ãj,iãp,p − ãj,pãp,i,

7

p,p p,q p q

sign(ãp,q detA[q,Ni,q,p; i,Ni,q,p]) = −σp σi =

and since p and q are pendent vertices we have 

detA[i,Ni,q,p; i,Ni,q,p] = d

hence sign(ãp,i) = σiσp, and so that the claim f

For the last lemma we need to use Jacobi’s i

detA[α;β] = (−1)p(α,β) detA

where |α| = |β|, and p(α, β) =
∑

i∈α i +
∑

j∈β j

Lemma 10. Under the same assumptions as in T
which is pendent,

sign(detA(i; j)) = (−

Proof. We prove this by contradiction. If we ass
then sign(ãj,i) 	= σiσj . Let p any pendant verte

det Ã[j, p; i, p] =

∣∣∣∣∣ ãj,i ãj,p
ãp,i ãp,p

∣∣∣∣∣



so that, by Lemmata 8 and 9, we get

sign
(
det Ã[j, p; i, p]

)
= −σiσj .

On the other hand, since detA > 0, applying Jacoibi’s identity we have

sign
(
det Ã[j, p; i, p]

)
= sign

(
(−1)i+j detA[Ni,p;Nj,p]

)
= sign

(
(−1)i+j detA(p)(i; j)

)
,

so that it is equal to, by the induction hypothesis, σiσj which is a contradiction. Hence
the result follows. �

Theorem 4 follows from Lemmata 8, 9, and 10, as all types of minors are covered. 
As det(A) > 0, because of the relation between A−1 and Ã, Corollary 6 follows. Since
the Perron root of A−1 is the reciprocal of the smallest absolute eigenvalue of A, that
smallest eigenvalue is positive and has multiplicity 1. Because of the effect of similarity 
on eigenvectors (see [3]) the result about the signing of its eigenvector follows.

atrix A, relative to a tree, are sufficient
itions are more, see [1], than originally 
itions (T-TP) were not sufficient in gen-
ypotheses can be omitted. It is difficult 

ples. It is possible for matrix A to be 
atisfy the Neumaier conclusion. We still 

red the 5-star and the following 5-by-5 
relative to this tree and det(A) < 0.

A =

⎡
⎢⎢⎢⎢⎢⎣

55 77 10 17 49
40 137 3 1 8
57 74 86 15 47
94 2 8 86 58
48 41 4 4 78

⎤
⎥⎥⎥⎥⎥⎦

ssociated with the smallest eigenvalue, 
ere is the eigenvector in question, with
th:
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5. Remarks

We have shown that certain conditions on a m
to reach the Neumaier conclusion. These cond
conjectured, but the originally conjectured cond
eral. We do not know if some of the additional h
to construct appropriate examples.

However, we do have some informative exam
T-positive but have negative determinant and s
do not know how common this is.

Example 1. For this example we have conside
matrix. It is easy to check that A is pendent-P

2

5

41

3

Note that in this example, the eigenvector a
λ5 ∼ −0.23, has the predicted sign pattern. H
each entry approximated to the nearest hundred



x ≈

⎡
⎢⎢⎢⎢⎢⎣

−2.3
0.6
0.15
1.8
1

⎤
⎥⎥⎥⎥⎥⎦ .

The adjoint of A is

Ã =

⎡
⎢⎢⎢⎢⎢⎣

70451860 −27857784 −4763560 −11372966 −30073840
−18274672 7046528 1241168 2950496 7815680
−4532012 1908264 18096 774494 2064504
−55473260 21866360 3770144 8668470 23888344
−30671880 12220096 2084744 4963592 12765448

⎤
⎥⎥⎥⎥⎥⎦ .

Both x and Ã have the predicted sign pattern.

However, if A is T-TP but not pendent-P relative to T, the Neumaier conclusion may 

ve considered the following tree with 5 
asy to check that detA(5) < 0 therefore 
t(A) < 0.

A =

⎡
⎢⎢⎢⎢⎢⎣

88 50 35 78 38
50 48 19 27 11
35 19 41 13 6
78 27 13 86 44
38 11 6 44 59

⎤
⎥⎥⎥⎥⎥⎦

allest eigenvalue, λ5 ≈ −2.54, does not
is the eigenvector in question, with each 

8
⎤
⎥⎥⎥⎥⎥⎥⎦
.
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fail.

Example 2. (See [1].) For this example we ha
vertices and the following 5-by-5 matrix. It is e
A is not pendent-P relative to this tree, and de

5
1

4

2

3

Here the eigenvector associated with the sm
have the predicted sign pattern. The following 
entry approximated to the nearest hundredth:

x ≈

⎡
⎢⎢⎢⎢⎢⎢⎣

−68.0
32.75
26.69
45.57

1
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