
Noncooperative Game Theory
For Industrial Organization:
An Introduction and Overview

by
Drew Fudenberg

and
Jean Tirole

Number 445 April 1987



Digitized by the Internet Archive

in 2011 with funding from

IVIIT Libraries

http://www.archive.org/details/noncooperativega445fude



NONCOOPERATIVE GAME THEORY
FOR INDUSTRIAL ORGANIZATION:
AN INTRODUCTION AND OVERVIEW*

Drew Fudenberg
University of California, Berkeley-

Jean Tirole
Massachusetts Institute of Technology

*Forthcoiiiing in Handbook of Industrial Organization , R. Schmalensee and R.

¥illig, editors. The authors would like to thank Fredie Kofman, Jennifer
Reinganum, John Roberts, and the editors for helpful comments on a pre-
vious draft. Financial support from MSF Grants SES 85-09697 and SES 97619
is gratefully acknowledged.





March 1987

Introduction

Non-cooperative game theory is a way of modelling and analyzing situations

in which each player's optimal decisions depend on his beliefs or expectations

about the play of his opponents. The distinguishing aspect of the theory is

its insistence that players should not hold arbitrary beliefs about the play

of their opponents. Instead, each player should try to predict his opponents'

play, using his knowledge of the rules of the game and the assumption that his

opponents are themselves rational, and are thus trying to make their own

predictions and to maximize their own payoffs. Game-theoretic methodology has

caused deep and wide-reaching changes in the way that practitioners think about

key issues in oligopoly theory, much as the idea of rational expectations has

revolutionized the study of macroeconomics. This essay tries to provide an

overview of those aspects of the theory which are most commonly used by

industrial organization economists, and to sketch a few of the most important

or illuminating applications. We have omitted many interesting game-theoretic

topics which have not yet been widely applied.

!• Games, Strategies, and Equilibria

This section introduces the two formalisms used to represent noncooperative

games, and then discusses what we might mean by a "reasonable prediction" for

how a game will be played. This will lead us to the ideas of Nash and

subgame-perfect equilibria.



The Extensive and Normal Forms

There are two (almost) equivalent ways of formulating a game. The first

is the extensive form. An extensive form specifies: (1) the order of play;

(2) the choices available to a player whenever it is his turn to move; (3) the

information a player has at each of these turns; (4) the payoffs to each player

as a function of the moves selected; and (5) the probability distributions for

moves by "nature."

The extensive form is depicted by a "game tree," such as those in Figures

1 and 2. Game trees are the multi-player generalization of the decision trees

used in decision theory. The open circle is the first or initial node. The

tree's structure says which nodes follow which, and the numbers at each node

indicate which player has the move there. (Part of what is meant by "tree" is

that this structure is an ordering- -two distinct nodes cannot have the same

successor. Thus for example in chess, two different sequences of moves which

lead to the same position on the board are assigned different nodes in the tree.

See Kreps-Wilson (1982b) for a more formal discussion of this and other details

of extensive games. See also the classic book by Luce and Raiffa (1957) which

addresses most of the topics of this section.) The dotted line connecting two

of player two's nodes indicate that these two nodes are in the same "information

set, meaning that player two cannot tell which of the two actions has occurred

when it is his turn to move. Players must know when it is their turn to move,

so different players' information sets cannot intersect, and players must know

which choices are feasible, so all nodes in the same information set must allow

the same choices. We will restrict attention throughout to games of perfect

recall, in which each player always knows what he knew previously, including

The following description is freely adapted from Kreps-Wilson (1982b).



his own previous actions. This implies an additional restriction on the

information sets.

Players are assumed to maximize their expected utility, given their beliefs

about the actions of their opponents and of "Nature." The payoffs corresponding

to each sequence of actions are depicted at the terminal nodes or "outcomes

of the tree; (x,y) at a terminal node means that player one gets x and player

two gets y. The different initial nodes in Figure 3 correspond to different

moves by Nature, i.e. different "states of the world." (Note that this is a

one-player game.) There is no loss in generality in placing all of Nature's

moves at the start, because players need not receive information about these

moves until later on. The initial assessment p is a probability measure over

the initial nodes. The formal models we will discuss will always assume that

this assessment, the terminal payoffs, and the entire structure of the tree is

"common knowledge," meaning that all players know it, and they know that their

opponents know it, and so on. This does not mean that all players are perfectly

informed, but rather that we have explicitly depicted all the differences in

2
information in our tree. The extensive form will be taken to fully describe

the real situation--all possible moves and observations will be explicitly

specified. For example, if the "same game" is played three times, the "real

game" to be analyzed is the three-fold replication. The idealized situation

we have in mind is that, possibly after some "pre-play communication," players

are in separate rooms. They are informed of the course of play only by signals

corresponding to the information structure of the tree, and push various buttons

corresponding to the feasible actions at their various information sets. Once

2
See Aumann (1976) and Bradenburger-Dekel (1985) for a formal treatment of

common knowledge, and also the Mertens-Zamir (1985) paper we mention in Section
3.



play begins, players cannot explicitly communicate, except as provided by the

rules of the game, (In many situations, it is difficult to explicitly model

all the possible means of communication. This has spurred interest in shorthand

descriptions of the effects of communication. See our discussion of correlated

equilibrium.) A behavioral strategy for player i is a map that specifies for

each of his information sets, a probability distribution over the actions that

are feasible at that set. A behavioral pure strategy specifies a single action

at each information set, as opposed to a probability mixture. (Later we will

discuss whether it might be reasonable for a player to randomize.) A given

specification of behavioral strategies and an initial assessment generates a

probability distribution over terminal nodes, and thus over payoffs, in the

obvious way.

The distinguishing feature of game theory is that each player's beliefs

about his opponents actions are not arbitrarily specified. Instead, each player

is assumed to believe that his opponents are "rational", and to use that

information in formulating his predictions of their play. Any predictions that

are inconsistent with this presumed, but vaguely specified, rationality are

rejected.

To help clarify what we mean, let us return to the game depicted in Figure

1. Is there a reasonable prediction for how this game should/will be played?

One way to look for a prediction is to apply backwards induction. If player

two's information set is reached, and the payoffs are as specified, then two

should play L . Then if player one knows that player two knows the payoff,

player one should play U . Is this a good prediction? If all is as in Figure

1, player two should not expect player one to play D . What should two tell

himself if D is nevertheless observed? If the payoffs are guaranteed to be

as specified, the only possible explanation is that player one made a



"niistake"--he meant to play U but somehow he failed to do so. This analysis

falls apart if we take Figure 1 as a shorthand description for a game which is

probably as depicted, but might not be, so that playing D could convey

information to player two. We'll say more about this in Section 3. The key

for now is that the game must be taken as an exact description of reality for

our arguments to be sound.

In Figure 1, all (both) the information sets are singletons, so that each

player knows all previous actions at each of his turns to move. Games like this

are called "games of perfect information." The backwards induction argument

used above is called "Kuhn's algorithm" (1953). It always "works" (yields a

conclusion) in finite games of perfect information, and yields a unique

conclusion as long as no two terminal nodes give any player exactly the same

payoff. Backwards induction will not yield a conclusion in games of imperfect

information, such as that in Figure 2. Player two's optimal choice at his

information set depends on player one's previous move, which player two has not

observed. To help find a reasonable prediction for this game we introduce the

idea of the normal form.

The normal form representation of an extensive game condenses the details

of the tree structure into three elements: The set of players, I ; each

player's strategy space, which is simply the set of his behavioral pure

strategies; and a payoff function mapping strategy selections for all of the

players to their payoffs. We will use S. to denote player i's strategy

space, S to be the product of the S. , and ir :S->R to be player i's payoff

function. A triple (I,S,tr) completely describes a normal form.

Normal forms for two-player games are often depicted as matrices, as in

Figure 4. The left-hand matrix is the normal form for Figure 1, while the

right-hand one corresponds to Figure 2. Note that different extensive forms



can have the same normal form. For example, Figure 2 is a "simultaneous-move"

game, in which neither player observes his opponent's action before choosing

his own. We could represent this game equally well with an extensive form in

which player two moved first.

A mixed strategy is a probability distribution over the normal-form

strategies. Payoffs to mixed strategies are simply the expected value of the

corresponding pure-strategy payoffs. We will denote mixed strategies by Z ,

and the space of player i's mixed strategies by I. . Although different mixed

strategies can give rise to the same behavior strategies, Kuhn showed that the

two concepts are equivalent in games of perfect recall--any probability

distribution over outcomes that can be generated using one kind of randomization

3
can be duplicated by using the other.

In the normal form corresponding to Figure 1, choosing L gives player

two at least as high a payoff as choosing R regardless of player one's choice,

and gives strictly more if player one plays D . In such a case we say that

D is a (weakly) dominant strategy for player two. (Strict dominance means that

the strategy is strictly better for all choices by opponents.) It seems

reasonable that no player should expect an opponent to play a dominated

strategy, which means that one should expect that two will play L . This is

just rephrasing our backwards induction argument. The analog of rolling

backwards through the tree is the iterated elimination of dominated strategies:

making optimal choices at the last nodes is simple dominance, folding back one

step is first-order iterated dominance, and so on. (Actually iterated dominance

3
Two strategies for a player which differ only at information sets which

follow a deviation by that player yield the same probability distribution over
outcomes for any strategy selections of the other players. Some authors define
the normal form as identifying such equivalent strategies.



is a more general technique, as it can be applied to games of imperfect

information.

)

Nash Equilibrium

The normal form for Figure 2 does not have dominant strategies. Here to

make predictions we will have to accept a weaker notion of "reasonableness,"

that embodied in the concept of a Nash equilibrium. A Nash equilibrium is a

strategy selection such that no player can gain by playing differently, given

the strategy of his opponent. This condition is stated formally as

Definition : Strategy selection s* is a pure-strategy Nash equilibrium of the

game (1,8,11) if for all players i in I and all s. in S . ,

(1) iT^(s*) > Tr^(s.,s*_.) .

Here, the notation (s* .,s) represents the strategy selection in which all

players but i play according to s* , while i plays s. . Note that S" can

be an equilibrium if there is some player i who is indifferent between S"

.

and an alternative, s. . We view Nash equilibrium as a minimal requirement

that a proposed solution must satisfy to be "reasonable." If a strategy

selection is not a Nash equilibrium, then all players know that some player

would do better not to play as the selection specifies. If "reasonable" is to

mean anything, it should rule out such inconsistent predictions. Not all Nash

equilibria are reasonable, as is revealed by examining the extensive and normal

forms of Figure 5. The backwards -induction equilibrium (D,L) is a Nash

equilibrium, but so is (U,R). We will soon discuss the idea of a "perfect

equilibrium," which is designed to formalize the idea that (U,R) is not



reasonable. The perfection notion and other refinements of Nash equilibrium

do not help with the following problem. Consider a game like that in Figure

6. The only Nash equilibrium is (U,L), yet is this a reasonable prediction?

It depends on whether the players are sure that the payoffs are exactly as we've

specified, and that their opponents are "rational." If one plays U against

L , his payoff is 5, which is better than the 4.9 that one gets from D .

However, playing D guarantees that 1 gets 4.9, while if the outcome is (U,R)

then one gets 0. And similarly, player two can guarantee 4.9 by playing R .

Yet if player one's not sure that player two might not prefer R to L ,

then D could be attractive. And even if player one is sure of player two's

payoffs, if player one's not sure that player two knows player one's payoffs,

then player one might still fear that player two will play R. The point is that

the logic of Nash equilibrium relies on every player knowing that every player

knows that . . . the payoffs are as specified. Technically, the payoffs should

be "common knowledge," (as should the Nash concept itself.) The closer the

payoffs guaranteed by D and R come to the equilibrium payoffs , the more we

need to insist on the common knowledge. Ideally, equilibria should be subjected

to this sort of informal check or "sensitivity analysis."

Returning to Figure 2, the game there has two pure strategy equilibria,

(U,L) and (D,R). If there is a reasonable outcome in this game, both players

must be able to predict it, and predict that their opponents will predict it,

and so on. If players cannot so coordinate their expectations, there is no

reason to expect observed play to correspond to either equilibrium--for example,

we might see the outcome (U,R). Not all games have reasonable solutions, and

on the data given so far this could be one. However, Schelling's (1960) theory

of "focal points" suggests that in some "real life" situations players may be

able to coordinate on a particular equilibrium by using information that is



abstracted away in the standard game formulation. For example, the names of

the strategies may have some commonly-understood "focal" power. An example is

two players who are asked to name an exact time, with the promise of a reward

if their choices match. Here "12 noon" is focal, while "1:43" is not. The

payoffs may also help coordinate expectations. If both players did better with

(U,L) then (D,R), then (U,L) seems a natural outcome to expect one's opponent

to expect that.... Some authors (including us!) have argued that if there is

a unique Pareto optimum among the set of equilibria, it should be a focal point.

While this intuition seems sound for two-player games, a recent example of

Bernheim, Peleg and Whinston shows that with more than two players the intuition

is suspect. In response, they have introduced the concept of

"coalition-proofness", which we discuss at the end of this section.

The idea of a Nash equilibrium is implicit in two of the first games to

have been formally studied, namely the Cournot and Bertrand models of oligopoly.

Let us emphasize that despite the common practice of speaking of Cournot and

Bertrand equilibrium, the models are best thought of as studying the Nash

equilibria of two different simultaneous move games. In the Cournot model,

firms simultaneously choose quantities, and the price is set at the

market-clearing level by a fictitious auctioneer. In the Bertrand model, firms

simultaneously choose prices, and then must produce to meet demand after the

price choices become known. In each model, firms choose best responses to the

anticipated play of their opponents.

For concreteness , we remind the reader of the Cournot model of a duopoly

producing a homogeneous good. Firm 1 and Firm 2 simultaneously choose their

respective output levels, q. and q from feasible sets F. . They sell their

output at the market-clearing price p(Q) , where Q = q, + q.^ . Firm i's

cost of production is c.(q.) , and firm i's total profit is then it (q ,



Qo) = q-P(Q) " c.(q.) . The feasible sets F. and the payoff functions ir

determine the normal form of the game; the reader should check that he/she knows

how to construct an equivalent extensive form. The "Cournot reaction functions"

1 2
R (q ) and R (q.) specify each firm's optimal output for each fixed output

level of its opponent. If the u are dif ferentiable and strictly concave,

and the appropriate boundary conditions are satisfied, we can solve for these

reaction functions using the first-order conditions. The intersections of the

two reaction functions (if any exist) are the Nash equilibria of the Cournot

game: neither player can gain by a change in output, given the output level

of its opponent.

The Cournot game is often contrasted to the situation in which one firm,

say firm one, is a "Stackelberg leader" and the other firm is the "Stackelberg

follower." The Stackelberg leader moves first, and chooses an output which is

observed by the follower before the follower makes its own choice. Thus the

Stackelberg game is one of perfect information. In the backwards induction

(i.e. "perfect" - see page 17) equilibrium to this game, firm two's output is

along its reaction curve. Knowing this, firm one chooses its own output to

2maximize its payoff along the graph of R . The first -order condition for this

choice is that

8TT\R^(q2),q2)/3q^ + On^R^q^) ,q2)/3q2)dR^(qi)/dq^ =

The backwards -induction equilibrium to the Stackelberg game is called the

Stackelberg equilibrium." This terminology can be confusing to the beginner.

The Stackelberg equilibrium is not an alternative equilibrium for the Cournot

game, but rather a shorthand way of describing an equilibrium of an alternative

10



extensive form. While the prevailing terminology is too well established to

be changed, the student will do well to keep this distinction in mind.

The Cournot and Bertrand models are all static games, in which firms make

their choices once and for all. Section 2A discusses a dynamic version of these

games. Also, even as static games the Cournot and Stackelberg models must be

thought of as reduced forms, unless one literally believes in the existence of

the price-setting auctioneer. Kreps-Scheinkman (1983) have shown that the

auctioneer in the Cournot model can be replaced by a second period in which

firms choose prices, taking their production as fixed (at least if the rationing

scheme is "efficient" and the demand function is concave) . Thus in both models

firms choose both prices and outputs; the difference is in the timing of these

two decisions. (See Gertner (1985a) for simultaneous choices.)

Existence of Nash Equilibria

We will now take up the question of the existence of Nash equilibria. Not

all games have pure-strategy Nash equilibria. A simple example is "matching

pennies": players one and two simultaneously announce either "heads" or

"tails." If the announcements match, then player one gains a util, and player

two loses one. If the announcements differ, it is player two who wins the util,

and player one who loses. If the predicted outcome is that the announcements

will match, then player two has an incentive to deviate, while player one would

prefer to deviate from any prediction in which announcements do not match. The

only "stable" situation is one in which each player randomizes between his two

strategies, assigning equal probability to each. In this case each player is

completely indifferent between his possible choices. A mixed-strategy Nash

equilibrium is simply a selection of mixed strategies such that no player

prefers to deviate, i.e. the strategies must satisfy equation (1). Since

11



expected utilities are "linear in the probabilities," if a player uses a

non-degenerate mixed strategy (one that puts positive weight on more than one

pure strategy) then that player cannot strictly prefer not to deviate--the

inequality in (1) must be weak. (For the same reason, it suffices to check that

no player has a profitable pure-strategy deviation.) This raises the question

of why a player should bother to play a mixed strategy, when he knows that any

of the pure strategies in its support would do equally well. In matching

pennies, if player one knows that player two will randomize, player one has a

zero expected value from all possible choices. As far as his payoff goes, he

could just as well play "heads" with certainty, but if this is anticipated by

player two the equilibrium disintegrates. Some authors have suggested that for

this reason there is no "reasonable" prediction for matching pennies, or,

equivalently, that all possible probability mixtures over outcomes are equally

reasonable. (See e.g. Bernheim (1984) and Pearce (1984).) Harsanyi (1973)

followed by Aumann et al. (1981) and Milgrom-Weber (1986) have offered the

defense that the "mixing" should be interpreted as the result of small,

unobservable variations in the player's payoffs. Thus in our example, sometimes

player one might prefer matching on T to matching on H , and conversely.

Then for each value of his payoff player one would play a pure strategy. This

"purification" of mixed-strategy equilibria is discussed in Section 3C . Despite

some controversy, mixed strategies have been widely used both in "pure" game

theory and in its applications to industrial organization.

One reason is that, as shown by Nash (1950), mixed-strategy equilibria

always exist in finite games (games with a finite number of nodes, or,

equivalently, a finite number of normal-form pure strategies per player and a

finite number of players.)

12



Theorem (Nash): Every finite n-player normal form game has a mixed-strategy

equilibrium.

This can be shown by applying the Kakutani fixed-point theorem to the player's

reaction correspondences, as we now explain. A good reference for some of the

technical details involved is Green-Heller (1981).

Define player i's reaction correspondence, r (o) , to be the

correspondence which gives the set of (mixed) strategies which maximize player

i's payoff when his opponents play o . . This is just the natural

generalization of the Cournot reaction functions we introduced above. Since

payoffs are linear functions of the mixing probabilities, they are in particular

both continuous and quasiconcave. This implies that each player's reaction

correspondence is non-empty valued and convex-valued. Moreover, we can show

that the reaction correspondences are "upper hemi-continuous": if o -^a and

o. Er (o ) , then there is a subsequence of the o. which converges to a

o.Er (o) . Now define the correspondence r to be the Cartesian product of

the r. . This correspondence satisfies the requirements of the Kakutani

fixed-point theorem: it maps a compact convex subset of Euclidean space (the

relevant probability simplex) into its subsets, and it is non-empty valued,

convex-valued, and upper hemi-continuous . Hence r has a fixed point, and by

construction the fixed points of r are Nash equilibria.

Economists often use models of games with an uncountable number of actions.

Some might argue that prices or quantities are "really" infinitely divisible,

while others that "reality" is discrete, and the continuum is a mathematical

abstraction, but it is often easier to work with a continuum of actions rather

than a large finite grid. Moreover, as Dasgupta-Maskin (1986) argue, when the

continuum game does not have an equilibrium, the equilibria corresponding to

13



fine, discrete grids could be very sensitive to exactly which finite grid is

specified. These fluctuations can be ruled out if the continuum game has an

equilibrium. The existence of equilibria for infinite games is more involved

than for finite ones. If payoffs are discontinuous there may be no equilibria

at all. If the payoffs are continuous, then the Fan (1952) fixed-point theorem

can be used to show that a mixed-strategy equilibrium exists. If payoffs are

quasiconcave as well as continuous, then there exist equilibria in pure

strategies, as shown by Debreu (1952) and Glicksberg (1952).

Theorem (Debreu, Glicksberg , Fan): Consider an n-player normal form game whose

strategy spaces S. are compact convex subsets of an Euclidean space. If the

payoff functions ir (s) are continuous in s , and quasiconcave in s. , there

exists a pure-strategy Nash equilibrium.

The proof here is very similar to that of Nash's theorem: we verify that

continuous payoffs imply non-empty, upper hemi-continuous reactions, and that

quasiconcavity in own actions implies that reactions are convex-valued.

Theorem (Glicksberg): Consider an n-player normal form game (I,S,ii). If for

each i , S. is a compact convex subset of a metric space, and it is

continuous, then there exists a Nash equilibrium in mixed strategies.

Here the mixed strategies are the (Borel) probability measures over the pure

4strategies, which we endow with the topology of weak convergence. Once more,

Fix a compact metric space A . A sequence of measures y on A converges
"weakly" to a limit p if /fdy •* /fdy for every real -value continuous function

n
on A .

14



the proof applies a fixed-point theorem to the reaction correspondences. One

point to emphasize is that the mixed-strategy payoffs will be quasiconcave in

own actions even if the pure-strategy payoffs are not. With infinitely many

pure strategies, the space of mixed strategies is infinite-dimensional, so a

more powerful fixed-point theorem is required. Alternatively, one can

approximate the strategy spaces by a sequence of finite grids. From Nash s

theorem, each grid has a mixed-strategy equilibrium. One then argues that since

the space of probability measures is weakly compact, we can find a limit point

of the sequence of these discrete equilibria. Since the payoffs are continuous,

it is easy to verify that the limit point is an equilibrium.

There are many examples to show that if payoffs are discontinuous equilibria

need not exist. Dasgupta-Maskin argue that this lack of existence is sometimes

due to payoffs failing to be quasiconcave, rather than failing to be continuous.

They show if payoffs are quasiconcave, then a pure strategy equilibrium will

exist under a very weak condition they call "graph continuity." They also

provide conditions for the existence of mixed-strategy equilibria in games

without quasiconcave payoffs. The idea of their result is to provide conditions

ensuring that the limits of the discrete-grid equilibria do not have "atoms"

(non-negligible probability) on any of the discontinuity points of the payoff

functions. Simon (1985) relaxes their condition by requiring only that at least

one limit has this no-atoms property, instead of all of them.

A sizable literature has considered the existence of pure strategy

equilibrium when payoffs are not quasiconcave, particularly in the Cournot

model. Without quasiconcave payoffs, the reaction functions can have "jumps."

To prove existence of equilibrium in this setting one must show that the jumps

"do not matter." Roberts -Sonnenschein (1977) showed that "nice" preferences

and technologies need not lead to quasiconcave Cournot payoffs, and provided

15



examples of the non-existence of pure-strategy Cournot equilibrium. McManus

(1962) and Roberts -Sonnenschein (1976) show that pure strategy equilibria exist

in symmetric games with real-valued actions if costs are convex. The key is

that the convex-cost assumption can be shown to imply that all the jumps in the

reaction functions are jumps up. Novshek (1985) has shown that pure-strategy

equilibria exist in markets for a homogeneous good where each firm's marginal

revenue is decreasing in the aggregate output of its opponents, for any

specification of the cost functions. Topkis (1970) and Vives (1985) use a

fixed-point theorem for non-decreasing functions due to Tarski (1955) to prove

the existence of pure-strategy equilibria in games where the reactions are

increasing. Tarski also proved that a function from (0,1) to (0,1) which has

no downward jumps has a fixed point, even if the function is not everywhere

non-decreasing. Vives uses this result to give a simple proof of the

McManus/Roberts -Sonnenschein result. (In symmetric equilibria each firm's

reaction function depends only on the sum of its opponents actions, and all

firms have the the same reaction function. Thus if the actions are real-valued

the second of the Tarski results can be applied.)

The converse of the existence question is that of the characterization of the

equilibrium set. Ideally one would prefer there to be a unique equilibrium,

but this is only true under very strong conditions. When several equilibria

exist, one must see which, if any, seem to be reasonable predictions, but this

requires examination of the entire Nash set. The reasonableness of one

equilibrium may depend on whether there are others with competing claims.

Unfortunately, in many interesting games the set of equilibria is difficult to

characterize.

16



Correlated Equilibria

The Nash equilibrium concept is intended to be a minimal necessary condition

for "reasonable" predictions in situations where the players must choose their

actions "independently." Let us return to our story of players who may have

pre-play discussion, but then must go off to isolated rooms to choose their

strategies. In some situations, both players could gain if they could build a

"signalling device" that sent signals to the separate rooms. Aumann's (1974)

notion of a correlated equilibrium captures what could be achieved with any such

signals. (See Myerson (1983) for a fuller introduction to this concept, and

for a discussion of its relationship to the theory of mechanism design.)

To motivate this concept, consider Aumann's example, presented in Figure

7. This game has three equilibria: (U,L), (D,R), and a mixed-strategy

equilibrium that gives each player 2.5. If they can jointly observe a "coin

flip" (or sunspots, or any other publicly observable random variable) before

play, they can achieve payoffs (3,3) by a joint randomization between the two

pure-strategy equilibria. However, they can do even better (still without-

binding contracts) if they can build a device that sends different, but

correlated, signals to each of them. This device will have three equally likely

states, A, B, and C. Player one's information partition is (A,(B,C)). This

means that if A occurs, player one is perfectly informed, but if the state

is B or C , player one does not know which of the two prevails. Player two's

information partition is ((A,B),C). In this transformed game, the following

is a Nash equilibrium: player one plays U when told A , and D when told

(B,C); player two plays R when told C , and L when told (A,B). Let's check

that player one does not want to deviate. When he observes A , he knows that

two observes (A,B), and thus that two will play L ; in this case U is player

17



one's best response. If player one observes (B,C), then conditional on his

information he expects player two to play L and R with equal probability.

In this case player one will average 2.5 from either of his choices, so he is

willing to choose D . So player one is choosing a best response; the same is

easily seen to be true for player two. Thus we have constructed an equilibrium

in which the players' choices are correlated: the outcomes (U,L), (D,L), and

(D,R) are chosen with probability one-third each, while the "bad" outcome (U,R)

never occurs. In this new equilibrium the expected payoffs are 3 1/3 each,

which is better than in any of the equilibria of the game without the signalling

device. (Note that adding the signalling device does not remove the "old"

equilibria: since the signals do not influence payoffs, if player one ignores

his signal, player two may as well ignore hers.)

If we had to analyze each possible signalling device one at a time, we would

never be done. Fortunately, if we want to know what could be done with all

possible devices, we can dispense with the signals, and work directly with

probability distributions over strategies. In our example, players need not

be told about the states A, B, and C . They could simply be given recommended

strategies, as long as the joint distribution over recommendations corresponds

to the joint distribution over outcomes that we derived. Player one could be

told "play D" instead of (B,C), as long as this means there's a 50-50 chance

of player two playing L .

Definition: A correlated equilibrium is any probability distribution p(s)

over the pure strategies S. x...x S such that, for every player i and every

function d.(s.) that maps S . to S . .11 *^ 1 1
'

Ti^(p) > Zp(s)TT^(d^(s^),s_.)
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That is, player i should not be able to gain by disobeying the recommendation

to play s. if every other player obeys the recommendations.

A pure-strategy Nash equilibrium is a correlated equilibrium in which the

distribution p(s) is degenerate. Mixed-strategy Nash equilibria are also

correlated equilibria: just take p(s) to be the joint distribution over actions

implied by the equilibrium strategies, so that the recommendations made to each

player convey no information about the play of his opponents.

Inspection of the definition shows that the set of correlated equilibria

is convex, so the set of correlated equilibria is at least as large as the convex

hull of the Nash equilibria. Since Nash equilibria exist in finite games,

correlated equilibria do too. Actually, the existence of correlated equilibria

would seem to be a simpler problem than the existence of Nash equilibria,

because the set of correlated equilibria is defined by a system of linear

inequalities, and is therefore convex. Recently, Hart and Schmeidler (1986)

have provided an existence proof that uses only linear methods (as opposed to

fixed-point theorems.) One might also like to know when the set of correlated

equilibria differs "greatly" from the convex hull of the Nash equilibria, but

this question has not yet been answered.

We take the view that the correlation in correlated equilibria should be

thought of as the result of the players receiving correlated signals, so that

the notion of correlated equilibrium is particularly appropriate in situations

with pre-play communication, for then the players might be able to design and

implement a procedure for obtaining correlated, private signals. However, we

should point out that Aumann (1986) and Brandenburger-Dekel (1985b) argue that
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the correlated equilibrium notion is more "natural" than the Nash one from the

point of view of subjective probability theory.

Coalition-Proof Equilibria and Strong Equilibria

While no single player can profitably deviate from a Nash equilibrium, it

may be that some coalition could arrange a mutually beneficial deviation. If

players can engage in pre-play communication, then some coalitions of players

might hope to arrange for joint deviations from the specified play. The notion

of a "strong equilibrium" (Aumann (1959)) requires that no subset of players,

taking the actions of the others as given, could jointly deviate in a way that

benefits all of its members. As this requirement applies to the grand coalition

of all players, strong equilibria are Pareto-ef ficient . Because no

restrictions are placed on the play of a deviating coalition, the conditions

for a strong equilibrium are quite stringent, and these equilibria fail to exist

in many games of interest for industrial organization, such as, for example,

Cournot oligopoly. Recently, Bernheim, Peleg, and Whinston (1986) (B-P-W) have

proposed the idea of a "coalition-proof" equilibrium , which, they argue, is a

more natural way to take account of coalitional deviations.

The best way to explain their concept is to use their example, which also

serves the important function of showing why the criterion of Pareto-dominance

may not be a good way to select between equilibria when there are more than two

players. In Figure 10, player one chooses rows, player two chooses columns,

and player three chooses matrices. This game has two pure-strategy Nash

equilibria, (U,L,A) and (D,R,B), and an equilibrium in mixed strategies . B-P-W

do not consider mixed strategies, so we will temporarily restrict attention to

pure ones. The equilibrium (U,L,A) Pareto-dominates (D,R,B). Is (U,L,A) then

the obvious focal point? Imagine that this was the expected solution, and hold
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player three's choice fixed. This induces a two-player game between players

one and two. In this two-player game, (D,R) is the Pareto-dominant equilibrium!

Thus, if players one and two expect that player three will play A, and if they

can coordinate their play on their Pareto-preferred equilibrium in matrix A,

they should do so, which would upset the "good" equilibrium (U,L,A).

The definition of a coalition-proof equilibrium proceeds by induction on

the coalition size. First one requires that no one-player coalition can

deviate, i.e. that the given strategies are a Nash equilibrium. Then one

requires that no two-player deviation can deviate, given that once such a

deviation has "occurred", either of the deviating players (but none of the

others) is free to deviate again. That is, the two-player deviations must be

Nash equilibria of the two-player game induced by holding the strategies of the

others fixed. And one proceeds in this way up to the coalition of all players.

Clearly (U,L,A) in Figure 10 is not coalition-proof; brief inspection shows that

(D,R,B) is. However, (D,R,B) is not Pareto-optimal, and thus is not a strong

equilibrium; no strong equilibrium exists in this game.

The idea of coalition-proofness is an interesting way to try to model the

possibility of coalitional deviations. However, the assumption that only

subsets of the deviating coalitions can be involved in further deviations can

be questioned, and the general properties of the concept are unknown. For these

reasons, and because coalition-proof equilibria need not exist (even with mixed

strategies), we feel that at this time the B-P-W paper is more important for

the issues it raises than for its solution concept. We should mention here that

Bernheim-Whinston (1986) apply coalition-proofness to several well-known games

with interesting results.

2. Dynamic Games of Complete Information
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Most of the examples in the last section were static games: each player's

choice of actions was independent of the choices of his opponents. Many of the

interesting strategic aspects of the behavior of firms are best modelled with

dynamic games, in which players can observe and respond to their opponents'

actions. This is true not only of inherently dynamic phenomena such as

investment, entry deterrence, and exit, but also of the determination of price

and output in a mature market. Section 2 discusses a few special kinds of

dynamic games that have been frequently used in the study of oligopoly theory.

These are all games of complete information , i.e. the payoff functions are

common knowledge. Section 3 discusses games of incomplete information, which

have become increasingly common in the literature.

Subgame Perfection

In dynamic games a question arises that is not present in static ones:

What beliefs should players have about the way that their current play will

affect their opponents' future decisions? Recall that the game in Figure 1 had

two Nash equilibria, (D,R) and (U,L). We argued that (U,L) was unreasonable,

because L was dominated by R for player two. Alternatively, we arrived

at (D,R) as our prediction by working backwards through the tree. Another way

of putting this is that player one should not be deterred from playing D by

the "threat" of player two playing L , because if player two's information set

was actually reached, two would back off from his "bluff" and play D . This

approach is useful for thinking about situations in which backwards induction

and/or weak dominance arguments do not give sharp conclusions. Selten's (1965)

notion of a subgame-perfect equilibrium generalizes the backwards -induction

idea to rule out empty threats in more general situations.
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Subgame -perfect equilibrium strategies must yield a Nash equilibrium, not

just in the original game, but in every one of its "proper subgames." We'll

define this more formally in Section 3, but for now think of a proper subgame

as a subset of the initial game tree which: 1) is closed under succession--if

a node is in the subgame, so are all of its successors; 2) "respects information

sets" which means roughly that all of the information sets of the subgame are

information sets of the initial game; and 3) begins with an information set that

contains only one node. This last requirement is in a general sense very

restrictive, which is one of the motivations for the various refinements of the

perfection concept. However, most of the games we discuss in this section are

"deterministic multi-period games," which have a very simple structure that

makes subgame-perfection a useful tool. These games have extensive forms that

can be divided into periods so that: (1) at the start of the kth period all

play in periods 1 through (k-1) is common knowledge, (the initial information

sets in each period are all singletons); and (2) no information set contained

in the kth period provides any knowledge of play within that period. Any game

of perfect information is a multi-period game: just take all the successors

of the initial nodes to belong to period 1, their successors to period 2, and

so on. The Cournot and Bertrand models are 1-period games. If the same players

play a Cournot game twice in a row, and all players observe the "first-period"

quantities before making their second choice, we have a two-period game.

In a multi-period game, the beginning of each period marks the beginning

of a new subgame. Thus for these games we can rephrase subgame-perfection as

simply the requirement that the strategies yield a Nash equilibrium from the

start of each period.

Figure 5 is actually the game Selten used to introduce subgame perfection.

Here there are two proper subgames: the whole game, and the game beginning
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in the second "period" if one played D . In this subgame, the only Nash

equilibrium is for player two to choose L , so that any subgame perfect

equilibrium must prescribe this choice, and only (D,L) is subgame-perfect . More

generally, in any game of perfect information subgame perfection yields the same

answer as backwards induction. In finite-period simultaneous move games,

subgame-perfection does "backwards induction" period by period: at the last

period, the strategies must yield a Nash equilibrium, given the history. Then

we replace the last period with the possible last-period equilibria, and work

backwards. For example, a subgame-perfect equilibrium of a two-period Cournot

model must yield Cournot equilibrium outputs in the second period, regardless

of first-period play. Caution: if there are several Cournot equilibria, then

which of them prevails in the second period can depend on first-period play.

We will say more about this when we discuss Benoit-Krishna (1985).

2A. Repeated Games and "implicit Collusion"

Infinitely Repeated Games

Chamberlin (1956) criticized the Cournot and Bertrand models of oligopoly

for assuming that firms were myopic. He argued that in an industry with few,

long-lived firms, firms would realize their mutual interdependence and thus play

more "cooperatively" than the Cournot and Bertrand models suggested. The theory

of repeated games provides the simplest way of thinking about the effects of

long-term competition.

This theory shows that, under the proper circumstances, Chamberlin'

s

intuition can be partially formalized. Repetition can allow "cooperation" to

be an equilibrium, but it does not eliminate the "uncooperative" static

equilibria, and indeed can create new equilibria which are worse for all players
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than if the game had been played only once. Thus to complete the Chamberlin

argument, one must argue that the "cooperative" equilibria are "reasonable."

In an infinitely repeated game, players face the same constituent game in

each of infinitely many periods. There is no direct physical link between the

periods; each period's feasible actions and per-period payoffs are exactly as

. in the constituent game. This rules out important phenomena such as investment

in productive machinery, so few interesting industries can be modelled exactly

as repeated games. Nevertheless, if the history-dependent aspects of the

industry are not too important, the repeated game model may be a reasonable

approximation. Also, many of the qualitative predictions about the importance

of repeated play and the nature of equilibria are useful in thinking about more

general dynamic games, as we discuss in Section 2B. Of course, the main reason

that repeated games have received so much attention is their simplicity.

The Constituent Game g is a finite n-player game in normal form,

(I,I,Tr) where Z. is the probability distributions over a finite set S. of

pure strategies. In the repeated version of g , each player i's strategy

is a sequence of maps (o.(t)) mapping the previous actions of all players to

a 0. E I. . Let us stress that it is the past actions that are observable,11 ^ '

and not past choices of mixed strategies .

Players maximize the average discounted sum of their per-period payoffs with

common discount factor 6 . (We use the average discounted sum rather than

simply the sum so that payoffs in the one-shot and repeated games are

comparable--if a player receives payoff 5 every period his average discounted

payoff is 5, while the discounted sum is, of course, 5/(1-6) .

Player i's reservation utility is
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v.* = rain max ir (.a . ,a .)
1 1 -1

. 0.
-1 1

In any equilibrium of the repeated game, player i's strategy must be a best

response to the strategies of his opponents. One option player i has is to

play rayopically in each period, that is to play to maximize that period s

payoff, ignoring the way this influences his opponents' future play. This

static maximization will give player i at least v.* in each period, so that

in any equilibrium, player i's expected average payoff must be at least

v.* . A payoff vector v is individually rational if for all players v. >

V."
1

Notice that the equilibria of the constituent game (the "static equilibria")

remain equilibria if the game is repeated: If each player's play is independent

of the past history, then no player can do better than to play a static best

response. Notice also that if the discount factor is very low, we'd expect that

the static equilibria are the only equilibria--if the future is unimportant,

then once again players will choose static best responses. (This relies on g

being finite.)

The best-known result about repeated games is the celebrated "folk theorem."

This theorem asserts that if the game is repeated infinitely often and players

are sufficiently patient, then "virtually anything" is an equilibrium outcome.

By treating the polar case of extreme patience, the folk theorem provides an

upper bound for the effects of repeated play, and thus a benchmark for thinking

about the intermediate case of mild impatience.

The oldest version of the folk theorem asserts that if players are

sufficiently patient (the discount factors are near enough to one) then any

feasible individually rational payoffs are supportable by a Nash equilibrium.
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The idea of the proof is simple: any deviation from the prescribed path by

player i leads the other players to play to "minmax" him (i.e., using the

strategies that attain the minimum in the definition of v."'' ) for the rest of

the game. In a repeated Cournot game, this would correspond to all players

choosing the largest possible output forever. Given this threat, players will

indeed choose not to deviate as long as

(1) never deviating yields more than v.* , and

(2) the discount factor is large enough that the gains to any

one-period deviation are outweighed by the never ending

( "grim" ) punishment

.

The strategies sketched above clearly need not be subgame perfect--no firm

would choose to produce a huge amount if the market price were zero! However,

the "perfect folk theorem" shows that the same outcome can be enforced by a

perfect equilibrium, so that restricting attention to perfect equilibria does

not reduce the limit set of equilibrium payoffs . (It does, of course, rule out

some Nash equilibria.)

Friedman (1971) proved a weaker version of this theorem which showed that

any payoffs better for all players than a Nash equilibrium of the constituent

game are the outcome of a perfect equilibrium of the repeated game, if players

are sufficiently patient. The desired play is enforced by the "threat" that

any deviation will trigger a permanent switch to the static equilibrium.

Because this "punishment" is itself a perfect equilibrium, so are the overall

strategies. This result shows, for example, that patient, identical, Cournot

duopolists can "implicitly collude" by each producing one-half the monopoly

output, with any deviation triggering a switch to the Cournot outcome. This

would be collusive" in yielding the monopoly price. The collusion is

"implicit" (or "tacit") in that the firms would not need to enter into binding
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contracts to enforce their cooperation. Instead, each firm is deterred from

breaking the agreement by the (credible) fear of provoking Cournot competition.

If this equilibrium is suitably "focal," as it might be with two identical

firms, then the firms might be able to collude without even communicating! This

possibility has grave implications for anti-collusion laws based on observed

conduct. How could two non-communicating firms be charged with conspiracy?

Whether collusion can be enforced in a particular oligopoly then depends

on whether the "relevant" discount factor is sufficiently large. This discount

factor measures the length of the observation lag between periods, "as well as

the player's impatience "per unit time." In a market where orders are large

but infrequent, a single order might represent several years of full-time

production. Here the short-run gains to cheating might well outweigh the costs

of (greatly delayed) punishments. In the other extreme, with frequent, small

orders, implicit collusion is more likely to be effective.

The Friedman result is weaker than the folk theorem because of its

requirement that both players do better than in a static equilibrium. As a

Stackelberg follower's payoffs are worse than a Cournot duopolist's, Friedman's

result does not show that the Stackelberg outcome can be enforced in a repeated

Cournot game. That this is however true is shown in the "perfect folk theorems"

of Aumann-Shapley (1976), Rubinstein (1979), and Fudenberg-Maskin (1986a).

Aumann-Shapley and Rubinstein consider the no-discounting models in which

players are "completely" patient. Fudenberg-Maskin show that, under a mild

"full-dimensionality" condition, the result continues to hold if the discount

factors are sufficiently close to one. They also strengthen earlier results

by allowing players to use mixed strategies as punishments. Aumann-Shapley and

Rubinstein had restricted attention to pure strategies, which leads to higher

individually-rational payoff levels, and thus a weaker theorem. (Their work
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can also be interpreted as allowing mixed strategies as long as the mixing

probabilities themselves, and not just the actions actually chosen, are

observable at the end of each period.)

One might wish to characterize the set of perfect equilibria when there

is "substantial" impatience. A fascinating paper by Abreu (1984) provides a

tool for this purpose. (See also Harris (1986), who gives a clearer exposition

and simpler proofs of Abreu 's results.) Call strategies "simple" if they have

the following form: there is an "equilibrium path" and n "punishment paths,"

one for each player. Play follows the equilibrium path as long as no one has

deviated. If player i was the most recent player to deviate, and did so at

period t , then play at period (t+k) is given by the k element of the

"punishment path" corresponding to player i . (What happens if two or more

players deviate simultaneously is irrelevant.) The force in the restriction

to simple strategies is that player i's punishment path is independent of the

history before i's deviation and also of the nature of the deviation itself.

Simple strategies are optimal if each player's average discounted utility at

the beginning of his punishment phase is the lowest payoff he receives in any

perfect equilibrium.

As the set of equilibria is closed (Fudenberg-Levine [1983]), there is a

worst perfect equilibrium w(i) for each player i . Any equilibrium path that

can be enforced by the threat that player i's deviations will be punished by

switching to some equilibrium can clearly be enforced by the threat player i's

deviations will be punished by switching to w(i) . Therefore, as Abreu shows,

optimal simple strategies exist, and any perfect equilibrium outcome can be

Simultaneous deviations can be ignored, because in testing for Nash or
subgame-perfect equilibria, we ask only if a player can gain by deviating when
his opponents play as originally specified .
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enforced by such strategies. Thus, to characterize the set of equilibria in

any game it suffices to find the worst possible perfect equilibrium payoffs for

each player. In general this may be a difficult problem, but the set of

symmetric equilibria of symmetric games is more easily characterized.

[Caution -- symmetry here requires not only that the payoffs along the

equilibrium path be identical, but that the payoffs be identical in the

punishment phases as well.] Abreu's thesis (1983) uses the idea of optimal

simple strategies to characterize the symmetric equilibria of repeated Cournot

games. Shapiro's essay in this Handbook explains this characterization in

detail

.

Another case in which the lowest perfect equilibrium payoffs can be pinned

down is when equilibria can be constructed that hold players to their

reservation values. Fudenberg-Maskin (1987) provide conditions for this to be

true for a range of discount factors between some 6 and 1 . Because the

reservation values are of course the worst possible punishments, any equilibrium

outcome (Nash or perfect) can be enforced with the threat that deviations will

switch play to an equilibrium in which the deviator is held to his reservation

value.
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Repeated Games with Imperfect Monitoring

One drawback of repeated games as a model of collusion is that they do not

explain price wars: In equilibrium, no firm ever deviates. This lack motivated

the Green-Porter (1984) model of "Noncooperative Collusion under Imperfect

Price Information." The Green-Porter model is an infinitely repeated

quantity-setting game in which firms do not observe the outputs of their

opponents. Instead, firms only observe the market price, p(Q,6) , which is

determined by aggregate output Q and a stochastic disturbance, 8 . The

6's in the different periods are identically and independently distributed

according to a density f(6) , which is such that the set of possible prices

(the support of p(Q,e)) is independent of Q . All firms are identical, and

there is a symmetric ("Cournot") equilibrium of the constituent game in which

each firm produces output q . As with ordinary repeated games, one

equilibrium of the repeated game is for all firms to produce q each period.

Could the firms hope to improve on this outcome if they are patient?

Green-Porter show that they can, by constructing a family of "trigger-price"

equilibria of the following form: Play begins in the "cooperative" phase, with

each firm producing some output q* . Play remains in the cooperative phase

as long as last period's price exceeded a trigger level p* • If the price falls

below p* , firms switch to a "punishment phase" in which each firm produces

output q . Punishment lasts for T periods, after which play returns to a

cooperative phase. For a triple (q",P",T) to generate a Nash equilibrium,

each firm must prefer not to cheat in either phase. Since q is a static

equilibrium, no firm will cheat in the punishment phases, so we need only check

the cooperative phase. Setting q" = q results in a trivial trigger-price

equilibrium. If the firms are somewhat patient they can do better by setting

q* < q . In such an equilibrium, p must be high enough that punishment
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occurs with positive probability. Otherwise, a firm could increase its output

slightly in the cooperative phase without penalty. Thus punishment will occur

even if no firm has deviated . On seeing a low price, all firms expand their

output not out of concern that an opponent has cheated, but rather in the

knowledge that if low prices did not sometimes trigger punishment, then their

collusive scheme would not be self-enforcing. (See Rotemberg-Saloner (1986)

for a repeated game model with perfect monitoring in which price wars are

voluntary.

)

The trigger-price equilibria constructed by Green-Porter have an appealing

simplicity, but they need not be optimal--other equilibria may yield higher

expected payoffs (for the firms); Abreu-Pearce-Stacchetti (1986) investigated

the structure of the optimal symmetric equilibria in the Green-Porter model.

In the process, they develop a tool which is useful for analyzing all repeated

games with imperfect monitoring. This tool, which they call "self-generation,"

is extended in their 1986 paper.

Self-generation is a sufficient condition for a set of payoffs to be

supportable by equilibria. It is the multi-player generalization of dynamic

programming' s principle of optimality, which provides a sufficient condition

for a set of payoffs, one for each state, to be the maximal net present values

obtainable in the corresponding states. Abreu-Pearce-Stacchetti' s insight is

that the "states" need not directly influence the player's payoffs, but can

instead reflect (in the usual self-confirming way) changes in the play of

opponents. Imagine for example that, in the Green-Porter model, there are only

three possible values of the market price -- p > p > p Price p. occurs

with probability m.(Q) , where Q is total industry output. Note that past

prices do not directly influence current payoffs or transition probabilities.
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Nevertheless, we can construct equilibrium strategies that use the realized

prices to determine the transitions between "fictitious" states.

For example, imagine that we are told that there are two fictitious states

a and b , with associated payoffs for both firms of u and u . (We will

look at symmetric equilibria; otherwise we would need to specify each firm s

payoffs.) We are also given the following transition rule: the state switches

from a to b if p occurs, remaining at a if P = P, or p . State

b is absorbing: once it is reached, it prevails from then on. As we will see,

state b corresponds to an infinite "punishment phase" in Green-Porter. The

values u are self-generating if, in each state i=a,b, when players believe

that their future payoffs are given by u , there is an equilibrium s. in

current actions with average (over current and future payoffs) payoff u. .

In the language of dynamic programming, this says that for each player the

payoff u. is unimprovable, given the specified continuation payoffs and his

opponents' current actions. To show that self-generating payoffs are

sustainable by Nash equilibria, we first must define strategies for the players.

To do this, trace out the succession of single-period equilibria, i.e. if play

begins in state a , and p occurs in the first period, the state is still

a , so the second-period outputs are again given by the s . By construction,

no player can gain by deviating from strategy s. in state i for one period

and then reverting to them thereafter. The standard dynamic programming

argument then shows that unimprovability implies optimality: By induction, no

player can improve on u or u, by any finite sequence of deviations, and the

payoff to an infinite sequence of deviations can be approximated by finitely

many of them. In our example, since state b is absorbing, for (u , u, ) to
a. D

be self-generating, u must be self-generating as a singleton set. This means

that u, must be the payoffs in a static equilibrium, as in Green-Porter's
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punishment phase. In state a , today's outcome influences the future state,

so that players have to trade off their short run incentive to deviate against

the risk of switching to state b . Thus state a corresponds to a "cooperative"

phase, where players restrict output to decrease the probability of switching

to the punishment state.

The self-generation criterion not only provides a way of testing for

equilibria, it also suggests a way of constructing them: one can construct

state spaces and transition rules instead of working directly with the strategy

spaces. Fudenberg-Maskin (1986b) use this technique to investigate when "folk

theorems" obtain for repeated games with imperfect monitoring.

Returning to the topic of implicit collusion in oligopolies, what lessons

do we learn from the study of repeated games? First, repetition matters more,

and (privately) efficient outcomes are more likely to be equilibria, when the

periods are short. Second, more precise information makes collusion easier to

sustain, and lowers the costs of the occasional "punishments" which must occur

to sustain it. Third, firms will prefer "bright-line" rules which make

"cheating" easy to identify. For example, firms would like to be able to

respond to changes in market conditions without triggering "punishment
.

"

Scherer (1980) suggests that the institutions of price leadership and mark-up

pricing may be responses to this problem. (See also Rotemberg-Saloner (1985),

who explain how price leadership can be a collusive equilibrium with

asymmetrically-informed firms.)

While most applications of repeated games have been concerned with games

with infinitely lived players, "implicitly collusive equilibria" can arise even

if all the players have finite lives, as long as the model itself has an infinite

horizon. Let us give two examples. First, a finitely lived manager of a firm

becomes the equivalent of an infinitely lived player if he owns the firm.
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because the latter 's value depends on the infinite streams of profits (as in

Kreps (1985)). Second, overlapping generations of finite lived players can

yield some cooperation between the players. A player who cheats early in his

life will be punished by the next generation, which in turn will be punished

by the following generation if it does not punish the first player, etc. (Cremer

(1983)).

We conclude this section with three warnings on the limitations of the

repeated game model. First, by focusing on stationary environments, the model

sidesteps the questions of entry and entry deterrence. These questions can in

principle be studied in games whose only time-varying aspect is the number of

entrants, but serious treatments of the entry process more naturally allow for

factors such as investment. Second, because repetition enlarges the set of

equilibria, selecting an equilibrium becomes difficult. If firms are identical,

an equal division of the monopoly profits seems an obvious solution; however

if one complicates the model by, for instance, introducing a prior choice of

investment, most subgames are asymmetric, and the quest for a focal equilibrium

becomes harder. However, the selection criterion of picking a date-zero Pareto

optimal equilibrium outcome is not "meta-perfect": date-zero Pareto optimal

outcomes are typically enforced by the threat of switching to a non-Pareto

optimal outcome if some player deviates. Just after the deviation, the game

is formally identical to the period-zero game, yet it is assumed that players

will not again coordinate on the focal Pareto-optimal outcome. Third, implicit

collusion may not be enforceable if the game is repeated only finitely many

times. What then should we expect to occur in finite -lived markets?

Finite-Horizon Games
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Infinite-horizon repeated games are used as an idealization of repeated

play in long-lived markets. Since actual markets are finite-lived, one should

ask whether the infinite-horizon idealization is sensible. One response is that

we can incorporate a constant probability y of continuing to the next period

directly into the utility functions : the expected present value of ten utils

tomorrow, if tomorrow's utils are discounted by 6, and tomorrow arrives with

probability v, is simply Sy.

Then if both 6 and y are near to one the folk theorem applies. This

specification implies that the game ends in finite time with probability one,

but there is still a positive probability that the game exceeds any fixed finite

length. Thus one may ask what the theory predicts if the game is certain to

end by some very far-distant date. It is well known that in some games the

switch from an infinite horizon to a long finite one yields dramatically

different conclusions --the set of equilibrium payoffs can expand

discontinuous ly at the infinite-horizon limit. This is true for example in the

celebrated game of the "prisoner's dilemma," which is depicted in Figure 8.

When played only once, the game has a unique Nash equilibrium, as it is a

dominant strategy for each player to "fink." "Never fink" is a perfect

equilibrium outcome in the infinitely-repeated game if players are sufficiently

patient.

With a finite horizon, cooperation is ruled out by an iterated dominance

argument: Finking in the last period dominates cooperating there; iterating

once, both players fink in the second period, etc. The infinite-horizon game

lacks a last period and so the dominance argument cannot get started. Should

we then reject the cooperative equilibria as technical artifacts, and conclude

that the "reasonable solution" of the finitely-repeated prisoner's dilemma is

always fink"? Considerable experimental evidence shows that subjects do tend
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to cooperate in many if not most periods. Thus, rather than reject the

cooperative equilibria, we should change the model to provide an explanation

of cooperation. Perhaps players derive an extra satisfaction from "cooperating"

beyond the rewards specified by the experimenters. While this explanation does

not seem implausible, it seems a bit too convenient. Other explanations do not

add a payoff for cooperation per se, but instead change the model to break the

backwards -induct ion argument, which is argued to be unreasonable. One way of

doing this is developed in the "reputation effects" models of Kreps , Milgrom,

Roberts, and Wilson, which we discuss in Section 3. These models assume, not

that all players prefer cooperation, but that each player attaches a very small

prior probability to the event that his opponent does.

Radner (1980) provides another way of derailing the backwards induction

in the finitely-repeated game. He observes that the best response against an

opponent who will not fink until you do, but will fink thereafter (the "grim"

strategy) is to cooperate until the last period, and then fink. Moreover, as

the horizon T grows, the average gain (the gain divided by T ) to playing

this way instead of always cooperating goes to zero. Formally, in an

E -equilibrium, player's strategy gives him within z of his best attainable

payoff ( over the whole horizon ) ; in a subgame-perfect e -equilibrium this is true

in every subgame. Radner shows that cooperation is the outcome of a perfect

£ -equilibrium for any e > if players maximize their average payoff and the

horizon is sufficiently long. Radner 's result relies on "rescaling" the

player's utility functions by dividing by the length of the game. Thus

one-period gains become relatively unimportant (compared to the fixed e ) as

the horizon grows.

Fudenberg-Levine (1983) show that if players discount the future then the

E -equilibrium, finite horizon approach gives "exactly" the same conclusions as
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the infinite-horizon one: the set of infinite-horizon (perfect) equilibria

coincides with the set of limit points of finite horizon (perfect)

E -equilibria, where z goes to zero as the horizon T goes to infinity. That

is, every such limit point is on infinite-horizon equilibria, and every

infinite-horizon equilibrium can be approximated by a convergent sequence of

finite horizon e -equilibria. Fudenberg-Levine defined the "limits" in the

above with respect to a topology that requires the action played to be uniformly

close in every subgame. In finite-action games (games with a finite number of

actions per period) this reduces to the condition that (s )-*'s if

s and s exactly agree in the first k periods for all initial histories,
n JO ^ r

where k *'0 as n^*- . Harris (1985a) shows that this simpler convergence

condition can be used in most games, and dispenses with a superfluous

requirement that payoffs be continuous.

With either of the Fudenberg-Levine or Harris topology, the strategy spaces

are compact in finite-action games, so that the limit result can be restated

as follows: Let r(E, T) be the correspondence yielding the set of

E -equilibria of the T-period game. Then T is continuous at (0,~) . This

continuity allows one to characterize infinite-horizon equilibria by working

with finite-horizon ones. Backwards -induct ion can be applied to the latter,

albeit tediously, but not to the former, so that working with the finite horizon

E -equilibria is more straightforward. The continuity result holds for

discounted repeated games, and for any other game in which players are not too

concerned about actions to be taken in the far-distant future. (It does not

hold in general for the time-average payoffs considered b}^ Radner.)

Specifically, preferences over outcome paths need not be additively separable

over time, and there can be links between past play and future opportunities.

In particular the result covers the non-repeated games discussed later in this
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section. The intuition is simply that if players are not too concerned about

the future, the equilibria of the infinite-horizon game should be similar to

the equilibria of the "truncated" game in which no choices are allowed after

some terminal time T . So for any equilibrium s of the infinite horizon game

and E > , by taking T long enough, the difference in each player's payoff

between the play prescribed by s and that obtained by truncating s at time

t will be of order z .

We should point out that the "epsilons" are not always needed to ensure

continuity at the infinite-horizon limit. One example is Rubinstein's (1982)

bargaining game, which even with an infinite horizon has a unique perfect

equilibrium. (Rubinstein allows players to choose from a continuum of sharing

rules between and 1 . With a finite grid of shares, the uniqueness result

requires that each player prefers the second- largest partition today to the

largest one tomorrow, so that the grid must be very fine if the discount factors

are near to one.) Benoit-Krishna (1985) provide conditions for continuity to

obtain in the "opposite" way, with the set of finite-horizon equilibria

expanding as the horizon grows, and approaching the limit set given by the folk

theorem. (Friedman (1984) and Fraysse-Moreaux (1985) give independent but less

complete analyses.) For Nash equilibria this is true as long as the static

equilibria give all players more than their minmax values. Then any

individually-rational payoffs can be enforced in all periods sufficiently

distant from the terminal date by the threat that any deviations result in the

deviator being minmaxed for the rest of the game. Such threats are not

generally credible, so proving the analogous result for perfect equilibria is

more difficult. Benoit-Krishna show that the result does hold for perfect

equilibria if each player has a strict preference for one static equilibrium

as opposed to another (in particular there must be at least two static
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equilibria) and the Fudenberg-Maskin full dimensionality condition is

satisfied. The construction that Benoit-Krishna use to prove this is too

intricate to explain here, but it is easy to see that there can be perfect

equilibria of a finitely-repeated game which are not simply a succession of

static equilibria. Consider the game in Figure 9.

There are two pure-strategy static equilibria, (U,L) and (M,M). In the

twice-repeated game (without discounting, for simplicity) there is an

equilibrium with total payoffs (-1,-1). These payoffs result from the

strategies "pl^Y (D,R) in the first period; play (U,L) in the second iff (D,R)

was played in the first, otherwise, play (M,M)."

2B. Continuous-time Games

Frequently, continuous -time models seem simpler and more natural than models

with a fixed, non-negligible period length. For example, differential equations

can be easier to work with than difference equations. As in games with a

continuum of actions, continuous -time games may fail to have equilibria in the

absence of continuity'' conditions. More troublesome, there are deep mathematical

problems in formulating general continuous -time games.

As Anderson (1985) observes, "general" continuous -time strategies need not

lead to a well-defined outcome path for the game, even if the strategies and

the outcome path are restricted to be continuous functions of time. He offers

the example of a two-player game where players simultaneously choose actions

on the unit interval. Consider the continuous -time strategy "play at each time

t the limit as r"^t of what the opponent has played at times r previous

to t ." This limit is the natural analog of the discrete-time strategies "match

the opponent's last action." If at all times before t the players have chosen

matching actions, and the history is continuous, there is no problem in
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computing what should be played at t . However, there is not a unique way of

extending the outcome path beyond time t . Knowing play before t determines

the outcome at t , but is not sufficient to extend the outcome path to any open

interval beyond t . As a result of this problem, Anderson opts to study the

limits of discrete-time equilibria instead of working with continuous time.

Continuous time formulations are fairly tractable when strategies depend

on a "small" set of histories. This is the case in stopping-time games,

open- loop games, and in situations where players use "state-space strategies.

These games or strategies are not restricted to continuous time, and

discrete-time versions of all of them have been used in the industrial

organization literature.

2C. State-Space or Markov Equilibria

Consider games in which players maximize the present value of instantaneous

flow payoffs, which may depend on state variables as well as current actions.

(The feasible actions may also depend on the state.) For example, current

actions could be investment decisions, and the state could be the stocks of

machinery. Or current actions could be expenditures on R&D, with the state

variables representing accumulated knowledge. The strategy spaces are

simplified by restricting attention to "state-space" (or "Markov") strategies

that depend not on the complete specification of past play, but only on the

state (and, perhaps, on calendar time.) A state-space or Markov equilibrium

is an equilibrium in state-space strategies, and a perfect state-space

equilibrium must yield a state-space equilibrium for every initial state. Since

the past's influence on current and future payoffs and opportunities is

summarized in the state, if one's opponents use state-space strategies, one

could not gain by conditioning one's play on other aspects of the history. Thus
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a state-space equilibrium is an equilibrium in a game with less restricted

strategies. The state-space restriction can however rule out equilibria, as

shown by the infinitely-repeated prisoner's dilemma. Since past play has no

effect on current payoffs or opportunities, the state-space is null, and all

state-space strategies must be constants. Thus the only state-space equilibrium

is for both sides to always fink. (Caution: this conclusion may be due to a

poor model, and not to the wrong equilibrium concept. Section 4E shows how the

conclusion is reversed in a slightly different model.)

Maskin-Tirole (1985), using the Markov restriction, obtain collusion in a

repeated price game in which prices are locked in for two periods. They argue

that what is meant by "reaction" is often an attempt by firms to react to a state

that affects their current profits; for instance, when facing a low price by

their opponents, they may want to regain market share. In the classic repeated

game model, firms move simultaneously, and there is no physical state to react

to. If, however, one allows firms to alternate moves, they can react to their

opponent's price. (Maskin-Tirole derive asynchronicity as the (equilibrium)

result of the two-period commitments.) The possibility of reaction leads to

interesting Markov equilibria. However, although equilibrium payoffs are

bounded away from the competitive levels (in contrast to the folk theorem

approach), they are still many equilibria (Haskin-Tirole use

renegotiation-proofness to select one which exhibits the classic "kinked demand

curve.") Gertner (1985b) formalizes collusion with Markov strategies when

commitment (inertia) takes the form of a fixed cost of changing prices.

The literal definition of a state says that strategies can depend "a lot"

on variables with very little influence on payoffs, but they cannot depend at

all on strategies that have no influence. This can generate rather silly

discontinuities. For example, we can restore the cooperative equilibria in the
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repeated prisoner's dilemma by adding variables that keep track of the number

of times each player has finked. If these variables have an infinitesimal

effect on the flow payoffs, the cooperative equilibria can be restored.

The state-space restriction does not always rule out "supergame -type

equilibria, as shown in Fudenberg-Tirole (1983a). They reconsidered a model

of continuous-time investment that had been introduced by Spence (1979). Firms

choose rates of investment in productive capacity. The cost of investment is

linear in the rate up to some upper bound, with units chosen so that one unit

of capital costs one dollar. If firms did not observe the investment of their

rivals, each firm would invest up to the point where its marginal productivity

of capital equalled the interest rate. The capital levels at this "Cournot"

point exceed the levels the firms would choose if they were acting collusively,

because each firm has ignored the fact that its investment lowers its rivals'

payoffs. Now, if firms observe their rivals' investment (in either discrete

or continuous time) they could play the strategy of stopping investment once

the collusive levels are reached. This "early stopping" is enforced by the

(credible) threat that if any firm invests past the collusive level, all firms

will continue to invest up to the "Cournot" levels. The state-space restriction

seems to have little force in this game. There are no general results on when

the restriction is likely to have a significant impact.

State-space games closely resemble control problems, so it is not surprising

that they have been studied by control theorists. Indeed, the idea of

perfection is just the many-player version of dynamic programming, and it was

independently formulated by Starr-Ho (1967) in the context of nonzero-sum

differential games. The differential games literature restricts attention to

state-space equilibria in which the equilibrium payoffs are continuous and

almost-evervwhere differentiable functions of the state. These conditions

43



obtain naturally for control problems in smooth environments, but they impose

significant restrictions in games: It might be that each player's strategy,

and thus each player s payoff, change discontinuously with the state due to the

self-fulfilling expectation that the other players use discontinuous

strategies. This was the case in the "early-stopping" equilibria of the last

paragraph, so those equilibria would not be admissible in the differential games

setting. Perhaps the continuity restriction can be justified by the claim that

the "endogenous discontinuities" that they prohibit require excessive

coordination, or are not robust to the addition of a small amount of noise in

the players' observations. We are unaware of formal arguments along these

lines.

The technical advantage of restricting attention to smooth equilibria is

that necessary conditions can then be derived using the variational methods of

optimal control theory. Assume that player i wishes to choose a. to maximize

the integral of his flow payoff it , subject to the state evolution equation

(2) k(t) = f(k(t)) , k(0) = kp

Introducing costate variables X . , we define H. , the Hamiltonian for player

i , as

(3) H^ = TT^(k,a,t) + X.f(k(t))

A state-space equilibrium a(t) must satisfy

(4) a^ = a.(k,t) maximizes H.(k,t,a,X.)
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and

(5) X. - 9H./3k. - Z 9H./3a. 8a. /3k. , along with the appropriate
1 i' 1 j^i 1 J J 1

transversality condition.

Notice that for a one-player game the second term in (5) vanishes, and the

conditions reduce to the familiar ones. In the n-player case, this second term

captures the fact that player i cares about how his opponents will react to

changes in the state. Because of the cross-influence term, the evolution of

X is determined by a system of partial differential equations, instead of by

ordinary differential equations as in the one-player case. As a result, very

few differential games can be solved in closed form. An exception is the

linear-quadratic case, which has been studied by Starr-Ho among others. Hanig

(1985) and Reynolds (1985) consider a linear-quadratic version of the

continuous -time investment game. (Their model is that of

Spence-Fudenberg-Tirole, except that the cost of investment increases

quadratically in the rate.) They show that the "smooth" equilibrium for the

game has higher steady-state capital stocks and so lower profits , than the

static "Cournot" levels. Is this a better prediction than the collusive levels?

We do not know.

Judd (1985) offers an alternative to the strong functional form assumptions

typically invoked to obtain closed form solution to differential games. His

method is to analyze the game in the neighborhood of a parameter value that

leads to a unique and easily computed equilibrium. In his examples of patent

races, he looks at patents with almost zero value. Obviously if the patent has

exactly zero value, in the unique equilibrium players do no RS.D and have zero

values. Judd proceeds to expand the system about this point, neglecting all
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terms over third order in the value of the patent. Judd's method gives only

local results, but it solves an "open set" in the space of games, as opposed

to conventional techniques that can be thought of as solving a lower-dimensional

subset of them. We encourage the interested reader to consult Judd's paper

for the technical details.

2D. Games of Timing

In a game of timing, each player's only choice is when and whether to take

a single pre-specified action. Few situations can be exactly be described this

way, because players typically have a wider range of choices. For example,

firms typically do not simply choose a time to enter a market, but also decide

on the scale of entry, the type of product to produce, etc. This detail can

prove unmanageable, which is why industrial organization economists have

frequently abstracted it away to focus on the timing question in isolation.

We will not even try to discuss all games of timing, but only two-player

games which "end" once at least one player has moved. Payoffs in such games

can be completely described by six functions L.(t) , F.(t), and B.(t)
,

i=l,2. Here L. is player i's payoff if player i is the first to move

(the "leader"), F. is i's payoff if j is the first to move (the

"follower"), and B. is i's payoff if both players move simultaneously. This

framework is slightly less restrictive than it appears, in that it can

incorporate games which continue until both players have moved. In such games,

once one player has moved, the other one faces a simple maximization problem,

whdch can be solved and "folded back" to yield the payoffs as a function of the

time of the first move alone. A classic example of such a game is the "war of

attrition," first analyzed by Maynard Smith (1974): Two animals are fighting

for a prize of value v; fighting costs one util per unit time. Once one animal
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quits, his opponent wins the prize. Here L(t) is -t, and F(t) is v-t .

With short time periods B(t) will turn out to not matter much; let's set it

equal to v/q-t , q > 2 . If q=2 then each player has probability 1/2 of

winning the prize if both quit at once; if q=<» this probability is zero. Let

us solve for a symmetric equilibrium of the discrete time version with period

length A . Let p be the probability that either player moves at t when

both are still fighting. For players to use stationary mixed strategies, the

payoff to dropping out, pv/q , must equal that to fighting one more period and

then dropping out, pv+(l-p) pv/q - A . Equating these terms yields

p = (l-(l-4A/qv)^/^)q/2 .

[Dropping out with probability p per period is a "behavioral strategy;" the

corresponding mixed strategy is an exponential distribution over stopping

times
.

]

Let us note that as A^^O
, p"*'A/v , independent of q . More generally, a war

of attrition is a game of "chicken", in which each player prefers his opponent

to move (F(t)>L(t)), and wishes that he would do so quickly (F and L decrease

over time.) Weiss-Wilson (1984) characterize the equilibria of a large family

of discrete-time wars of attrition; Hendricks-Wilson do the same for the

continuous -time version. Section 3 describes some of the many

incomplete-information wars of attrition that have been applied to oligopoly

theory

.

Preemption games are the opposite case, with L(t) > F(t) , at least over

some set of times. Here the specification of B(t) is more important, as if

B exceeds F we might expect both players to move simultaneously. One example
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of a preemption game is the decision of when and whether to build a new plant

or adopt a new innovation, when the market is only big enough to support one

such addition. (If each firm will eventually build a plant, but the second

mover would optimally choose to wait until long after the first one, we can

"fold back" the second mover's choice to get the payoffs as a function of the

time of the first move alone.)

The relationship between L and F can change over time, and the two

players may have different "types" of preferences, as in Katz-Shapiro (1984).

No one has yet attempted a general classification of all games of timing.

Because the possible actions and histories are so limited, it is easy to

formulate continuous -time strategies for these games, in a way that permits a

well-defined map from strategies to outcomes. We develop these strategies

below. However, we will see that the simplicity of this formulation is not

without cost, as it is not rich enough to represent some limits of discrete-time

strategies. That is, there are distributions over outcomes (who moves and when)

that are the limits of distributions induced by discrete-time strategies, but

which cannot be generated by the"obvious" continuous time strategies.

The usual and simple continuous -time formulation is that each player's

strategy is a function G.(t) which is non-decreasing, right - cont inuous , and

has range in (0,1). Tliis formulation was developed in the 1950 's for the study

of zero-sum "duels", and was used by Pitchik (1982), who provides several

existence theorems. The interpretation is that G. is a distribution function,

representing the cumulative probability that player i has moved by time t

conditional on the other player not having moved previously. These distribution

functions need not be continuous; a discontinuity at time t implies that the

player moves with non-zero probability at exactly time t. Where G is

differentiable, its derivative dG is the density which gives the probability
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of a move over a short time interval. With this notation, player one's payoff

to the strategies G , G is

V^(G G ) = /'°[L(s)(l-G.(s))dG.(s)+F(s)(l-G.(s))dG.(s)]+Ia (s)a (s)B(s) ,

where a.(s) is the size of the jump in G. at s .

This formulation is very convenient for wars of attrition. In these games

there are "nice" discrete-time equilibria in which the probability of moving

in each period is proportional to the period length. In the example computed

above, the equilibrium strategies converged to the continuous -time limit

G(t)=l-exp(-t/v) . (For the case q=2 , the sum of the two players' payoffs

is upper hemi-continuous , and the fact that the equilibria converge is a

consequence of Theorem 5 of Dasgupta-Maskin (1986).) More complex wars of

attrition can have continuous -time equilibria with "atoms," (o.(t)>0 for some

t), but as the periods shrink these atoms become isolated, and again admit a

nice continuous-time representation.

Preemption games are markedly different in this respect, as shown in

Fudenberg-Tirole (1985). Consider the discrete-time "grab-the dollar" game:

L(t)=l, F(t)=0, and B(t)= -1. The interpretation is that "moving" here is

grabbing a dollar which lies between the two players. If either grabs alone,

he obtains the dollar, but simultaneous grabbing costs each player one. There

is a symmetric equilibrium in which each player moves with (conditional)

probability 1/2 in each period. Note well that the intensity of the

randomization is independent of the period length. The corresponding payoffs

are (0,0), and the distribution over outcomes is that with identical probability

(1/4) '
' either player one wins (moves alone) in period t, or player two wins

in period t, or both move at once at t. As the length of the period converges

49



to zero, this distribution converges to one in which the game ends with

probability one at the start, with equal probabilities of 1/3 that player one

wins, that player two does, or that they both move at once. This distribution

cannot be implemented with the continuous-time strategies described above, for

it would require a correlating device a I'Aumann. Otherwise, at least one

player would move with probability one at the start, which would make it

impossible for his opponent to have a 1/3 probability of winning. The problem

is that a great many discrete-time strategies converge to a continuous -time

limit in which both players move with probability one at time zero, including

"move with probability 1/2 each period," and "move with probability one at the

start." The usual continuous -time strategies implicitly associate an atom of

size one with an atom of that size in discrete time, and thus they cannot

represent the limit of the discrete-time strategies. Fudenberg-Tirole offered

an expanded notion of continuous time strategies that "works" for the grab-the

dollar game, but they did not attempt a general treatment of what the strategy

space would need to be to handle all games of timing.

The moral of this story is that while continuous time is often a convenient

idealization of very short time periods, one should keep in mind that a given

formulation of continuous time may not be adequate for all possible

applications. When confronted with, for example, the non-existence of

equilibria in a seemingly "nice" continuous -time game, it can be useful to think

about discrete-time approximations. Simon and Stinchcombe (1985) provide a

general analysis of when the usual continuous-time strategies are in fact

appropriate.

2E. Discrete vs. Continuous Time, and the Role of Period Len.°th
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The discussion above stressed that one must be careful that a given

continuous time model is rich enough to serve as the "appropriate" idealization

of very short time periods. Now we'd like to point out that new equilibria can

arise in passing to continuous time, and that these should not be discarded as

pathological. The simplest, and oldest, example of this fact is the

Kreps-Wilson (1982a) stopping-time version of the prisoner's dilemma. In this

version, players begin by cooperating, and once either finks they both must fink

forever afterwards. Thus the only choice players have is when to fink if their

opponent has not yet done so. In discrete time with a finite horizon, the

familiar backwards induction argument shows that the only equilibrium is to both

fink at once. However, the gain to finking one period ahead of one's opponent

is proportional to the period length, and in the continuous -time limit, there

is no gain to finking. Thus cooperation is an equilibrium in the

continuous -time game.

The analogy with the finite-to-infinite horizon limit is more than

suggestive. In a generalization of their earlier work, Fudenberg-Levine (1986)

showed that, in cases such as stopping-time games and state-space games where

the continuous time formulation is not too problematic, any continuous -time

equilibrium is a limit of discrete-time epsilon-equilibria, where the epsilon

converges to zero with the length of the period.

Little is known in general about the effect of period length on equilibrium

play, but several examples have been intensively studied. The best known is

the work of Coase (1972), Bulow (1982), Stokey (1981), and

Gul-Sonnenschein-Wilson (1986) who argue with varying degrees of formality that

the monopolistic producer of a durable good loses the power to extract rents

as the time period shrinks, thus verifying the "Coase conjecture." (See also

Sobel-Takahashi (1983) and Fudenberg-Levine-Tirole (1985).)
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2F. Open-Loop Equilibria

The terms "open- loop" and "closed- loop" refer to two different information

structures for multi-stage dynamic games. In an open- loop model, players cannot

observe the play of their opponents; in a closed-loop model all past play is

common knowledge at the beginning of each stage. Like "Cournot" and "Bertrand"

equilibria, open- and closed-loop equilibria are shorthand ways of referring

to the perfect equilibria of the associated model. (Caution: This terminology

is widespread but not universal. Some authors use "closed- loop equilibrium"

to refer to all the Nash equilibria of the closed- loop model. We prefer to

ignore the imperfect equilibria.) Open and closed loop models embody different

assumptions about the information lags with which players observe and respond

to each other's actions, and thus about the length of time to which players can

"commit" themselves not to respond to their opponents. In an open- loop model,

these lags are infinite, while in a closed- loop model, a player can respond to

his opponents. Because dynamic interactions are limited in open- loop

equilibria, they are more tractable than closed-loop ones. For this reason,

economists have sometimes analyzed the open-loop equilibria of situations which

seem more naturally to allow players to respond to their opponents. One

possible justification for this is that, if there are many "small" players, so

that no one player can greatly affect the others, then optimal reactions should

be negligible. When this is true, the open-loop equilibria will be a good

approximation of the closed- loop ones. Fudenberg-Levine (1987) explore this

argument, and find that its validity in a T-period game requires strong

conditions on the first through T-th derivatives of payoffs.

3Z
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Section 5: Static Gaines of Incomplete and Imperfect Information

3A. Bayesian Games and Bayesian Equilibrium

Players in a game are said to have incomplete information if they do

not know some of their opponent's characteristics (objective functions);

they have imperfect information if they do not observe some of their oppo-

nent's actions . Actually, the distinction between incomplete and imperfect

information is convenient, but artificial. As Harsanyi [l 96?] has shown, at -

a formal level, one can always transform a game of incomplete information

into a game of imperfect information. The idea is the following: let the

original game be an n-player game with incomplete information. Assume that

each player's characteristic is known by the player, but, from the point of

view of the (n-1 ) other players, is drawn according to some known probability

distribution. (See below for a discussion of this representation).

Harsanyi's construction of a transformed game introduces nature as a (n+1 )st

player, whose strategy consists in choosing characteristics for each of the n

original players at the start of the game, say. Each player observes his own

characteristics, but not the other players'. Thus, he has imperfect informa-

tion about nature's choice of their characteristics. (One can endow nature

with an objective function in order for it to become a player. One way of

doing so is to assume that nature is indifferent between all its moves. To

recover the equilibria of the original game (i.e., for given initial probabi-

lity distributions), one takes the projection of the equilibrium correspon-

dence for these probability distributions)

.

The notion of "type" ; The "characteristic" or "type" of a player embod-

ies everything which is relevant to this player's decision making. This

includes the description of his objective function (fundamentals), his be-

liefs about the other player's objective functions' (beliefs about fundamen-
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tals) , his beliefs about what the other players believe his objective func-

tion is (beliefs about beliefs about fundamentals), etc. As this is a bit

abstract, it is helpful to begin with Harsanyi's simple representation (this

representation is used in virtually all applications). Suppose that in an

oligopoly context, each firm's marginal cost c. is drawn from an "objective"

distribution p.(c.) (n.b.: we will write probability distributions as if

the number of potential types were finite. Continuous type spaces are also

allowed; summation signs should then also be replaced by integral signs); c.

is observed by firm i, but not by the other firms; p. is common knowledge;

everybody knows that c. is drawn from this distribution; that everybody knows

that c. is drawn from this distribution, etc. ...^ In this case firm i's

type is fully summarized by c. : because the probability distributions are

common knowledge, knowing c. amounts to knowing everything known by firm i.

By abuse of terminology, one can identify firm i's type with the realization

of c^.

More generally, Harsanyi assumed that the player's types {t.}^_. are

drawn from some objective distribution p(t^,...,t ), where t. belongs to some

space T^. For simplicity, let us assume that T. has a finite number |T. | of

elements, t. is observed by player i only. p^(t . [t .
) denotes player i's

conditional probability about his opponent's types t . = (t. ,...,t. .,t._^.,

•••j'tj^) given his type t..

To complete the description of a Bayesian game, we must specify an ac-

tion set A^ (with elements a.) and an objective function n.(a. ,...,

^Aumann [l 976J formalizes common knowledge in the following way. Let
(0,p) be a finite probability space and let P and Q denote two parti-
tions of Q representing the informations of two players. Let R denote
the meet of P and Q (i.e., the finest common coarsening of P and Q) . An
event E is common knowledge between the two players at oj e Q if the
event in R that includes u is itself included in E.
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a ,t t ) for each player i. The action spaces A., the objective func-
n 1 n r " r -^

tions IT. and the probability distribution p are common knowledge (every play-

er knows them, knows that everybody knows them, ...)• In other words,

everything which is not commonly known is subsumed in the type.

The Harsanyi formulation looks a priori restrictive because it presumes

a large common knowledge base. However, as Mertens and Zamir [1 983] have

shown (see also Brandenburger-Deckel [l985])» one can always define type

spaces that are large enough to describe every element of player i's private

information. Coming back to our original idea, player i's type then includes

his beliefs about the other players' beliefs about payoff relevant informa-

tion, his beliefs about the other players' beliefs about payoff relevant

information etc. Mertens and Zamir essentially show that this infinite re-

gression is well defined (under some weak assumptions, the space of types is

compact for the product topology)

.

In this section we consider only one-shot .simultaneous move games of

incomplete information. The n players first learn their types and then si-

multaneously choose their actions (note that the game is also a game of im-

perfect information). The game is static in that the players are unable to

react to their opponent's actions. The inference process as to the other

players' types is irrelevant because the game is over at the time each player

learns some signal related to his opponents' moves. Section 4 considers

dynamic games and the associated updating process.

Each player's decision naturally depends on his information, i.e., his

type. For instance, a high cost firm chooses a high price. Let a.(t.) de-

note the action chosen by player i when his type is t. (this could also de-

note a mixed strategy, i.e., a randomization over actions for a given type).

If he knew the strategies adopted by the other players {a.(t.)}.,. as a func-
(J «J «J "^
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tion of their types, player i would be facing a simple decision problem;

given his type t., he ought to maximize:

^t Pi^^-i l'''i)
Uj^(a^ (t^ ), .. . ,a^,.. . ,a^(t^),t^ ,.. .,t^, . . . ,t^).

-i

Harsanyi extended the idea of a Nash equilibrium by assuming that each player

correctly anticipates how each of his opponents behaves as a function of his

type:

Definition ; A Bayesian equilibrium is a set of (type contingent) strategies

{a*(t.)}. , such that a*(t.) is player i's best response to the other strate-
1 1 1=1 11

gies when his type is t.:

a|(t^) z arg mgx E^ Pi^^-i \^^)'^^iB.^ (t^ ) , • • ,a^, • • ,a^(tj^) ,t^ , . . ,t^, . . ,t^)

.

i -i

Thus, the Bayesian equilibrium concept is a straightforward extension of

the Nash equilibrium concept, in which each player recognizes that the other

player's strategies depend on their types.

Proving existence of a Bayesian equilibrium turns out to involve a sim-

ple extension of the proof of a Nash equilibrium. The trick is the follow-

ing: since player i's optimal action depends on type t., everything is as if

player i's opponents were playing against |T.| different players, each of

these players being drawn and affecting his opponent's payoffs with some

probability. Thus, considering different types of the same player as differ-

n
ent players leads to transform the original game into a game with {Sj=i tr^^l)

players. Each "player" is then defined by a name and a type. He does not

ca.re (directly) about the action of a player with the same name and a differ-

ent type (another incarnation of himself), but he does care about the other

players' actions. If a.,, denotes the action chosen by player {i,t.}, play-
... 1 t

.

1
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er {i,t.}'s objective is to maximize over a:

^t Pi^^-il^i^^i^^l.t '••'^'••'^n,t
>^^>-'rt^,..,t^).

-i 1 n

Thus, existence of a Bayesian equilibrium of a game with |T.
|
players stems

directly from the existence of a Nash equilibrium for a game with {T. |T. |}

players, as long as the numbers of players and types are finite.

With a continuum of types, some technicalities appear about whether

there exists a measurable structure over the set of random variables (Aumann

[1964]). One is then led to define a mixed strategy as a measurable function

from [0,1 ]xT. into A.. Or, equivalently, one can define it, as Milgrom and

Weber [1 985J do, as a measure on the subjects of T.xA. for which the marginal

distribution on T. is p. . Milgrom and Weber give sufficient conditions for

the existence of an equilibrium in such settings.

Kxnmple 1 : Consider a duopoly playing Coumot (quantity) competition. Let

firm i's profit be quadratic: IT. = q. (t. -q. -q . ) , where t. is the difference
1 ^1 1 ^1 ^j 1

between the intercept of the linear demand curve and firm i's constant unit

cost (i = 1 ,2) and q. is the quantity chosen by firm i (a. = q.). It is

common knowledge that, for firm 1, t. =1 ("firm 2 has complete information

about firm 1", or "firm 1 has only one potential type"). Firm 2, however,

has private information about its unit cost. Firm 1 only knows that tp = 3/4

with probability 1/2. Thus, firm 2 has two potential types, which we will

call the "low cost type" {t^ = 5/4) and the "high cost type" {t^ = 3/4). The

two firms choose their outputs simultaneously. Let us look for a pure stra-

L H
tegy equilibrium. Firm 1 plays q. , firm 2 plays q2(if t = 5/4) or q^ (if tp

= 3/4). Let us start with firm 2:

q2(t2) e arg max {q2(t2-q2-^1
) ^ "> "^2^*2^ " (^2~^^^^^'
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Let us now consider firm 1 , which does not know which type it faces

.

q^ E arg maz \j q.^{^-q.^-q^)* j q.^{^-q^-q.2^}

=> q^ = (l-Eq2)/2,

1 H 1 L
where E(«) denotes an expectation over firm 2's types. But Eq^ = -^ q^+ -^ q„

= (Et2-q^)/2 = (l-q^)/2. One thus obtains (q^ = 1/3, ^ = 11/24, <^ = 5/24}

as a Bayesian equilibrium (one can prove this equilibrium is unique). This

simple example illustrates how one can compute the Bayesian equilibrium as a

Nash equilibrium of a 5-player game (ItJ =1,
|
!_

I

= 2).

Example 2 ; Consider an incomplete-information version of the war of attri-

tion discussed in Section 2d. Firm i chooses a number a. in [0,+=>). Both

firms choose simultaneously. The payoffs are:

n. = {-a., if a. > a.

t.-a., if a. < a. .

t., firm i's type, is private information and take values in [0,+«>) with

ciimulative distribution function P. (t.) and density p. (t.). Types are, as in

example 1 , independent between the players, t. is the price to the winner,

i.e., the highest bidder. The game resembles a second-bid auction in that

the winner pays the second bid. However, it differs from the second-bid

auction in that the loser also pays the second bid.

Let us look for a Bayesian equilibrium of this game. Let a.(t.) denote

firm i's strategy. Then, we require
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a, (t.) E arg max {-a. Prob(a (t ) > a )+ / (t. -a.)} .

^ ^ a. ^ J J 1 {t.|a.(t.)<a.} ^ ^

1 J J J 1

A few tricks make the problem easy to solve. First, one can write the "self-

selection constraints": by definition of equilibrium, type t. prefers a.(t.)

to a.(t!), and type t! prefers a.(t!) to a.(t.)' Writing the two correspond-

ing inequalities and adding them up shows that a . must be a non-decreasing

function of t . . Second, it is easy to show that there can not be an atom at

a. > 0, i.e., Prob fa.(t.) = a. > O) = 0. To prove this, notice that if

there were an atom of types of firm j playing a. , firm i would never play in

[a.-e,a.) for e small: it would be better off bidding just above a. (the

proof is a bit loose here, but can be made rigorous). Thus, the types of

firms that play a. would be better off playing (a.-e), because this would not

reduce the probability of winning and would lead to reduced payments.

Let us look for a strictly monotonic, continous function a.(t.) with

inverse t. = ^-Ca.). Thus, ^jCa^^) is the type that bids a.. We then ob-

tain:

a.

a.(t.) e arg maz (-a. (l -P.C^-.Ca. )) ] + L^(t . -a .)p. f$.(a .) l'^'. (a .)da . I

.

cL >

1

By differentiating, one obtains a system of two differential equations in

$. (•) and iu( •) (or, equivalently, in a. (•) and a.A')). Rather then doing

so, let us take the following intuitive approach: If firm i, with type t.,

bids (a +da.) instead of a., it loses da. with probability 1 (since there is

no atom), conditionally on firm j bidding at least a. (otherwise this in-

crease has no effect). It gains t. (= *.(a.)) with probability {p.($.(a.))

^Ua. )/(l-P (?> (a.)) )}da. . Thus, in order for firm i to be indifferent:
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$.(a.)p.f*.(a.))$*.(a.) = 1-P.($.(a.)) .

We leave it to the reader to check that, for a symmetric exponential

-t.

distribution P.(t.) = 1-e , there ezists a smmetric equilibrium: *. (a.) =11 11
t^

/2a7, which corresponds to a.(t.) = —^ (as Riley [l 980] has shovm, there also

exists a continuum of asymmetric equilibria:

$^= K/aj- and $2 =
I /ij for K > O).

Let us now give an industrial organization interpretation of the game.

Suppose that there are two firms in the market; they both lose 1 per unit of

time when the compete; they make a monopoly profit when their opponents has

left the market, the present discounted value of which is t. (it would make

sense to assume that the duopoly and monopoly profit are correlated, but such

a modification would hardly change the results) • The firms play a war of

attrition, a. is the time firm i intends to stay in the market, if firm j

has not exited before. At this stage, the reader may wonder about our dynam-

ic interpretation: if firms are free to leave when they want and are not

committed to abide by their date choice of a. , is the Bayesian equilibrium

"perfect"? It turns out that the answer is "yes"; the dynamic game is essen-

tially a static game (which is the reason why we chose to present it in this

section). At any time a., either firm j has dropped out (bid less then a.)

and the game is over, or firm j is still in the market and the conditional

probability of exit is the one computed earlier. Thus the equilibrium is



60

perfect as well.

^

3B. Using Bayeaian Equililiria to Justify Mixed Equilibria

In Section 1 , we saw that simultaneous move games of complete informa-

tion often admit mixed strategy equilibria. Some researchers are unhappy

with this notion because, they argue, "real world decision makers do not flip

a coin." However, as Harsanyi [l 973] has shown, mixed strategy equilibria of

complete information games can often be vindicated as the limits of pure

strategy equilibria of slightly perturbed games of incomplete information.

Indeed, we have already noticed that in a Bayesian game, once the players'

type-contingent strategies have been computed, each player behaves as if he

were facing mixed strategies by his opponents (nature creates uncertainty

through its choice of types rather then the choice of the side of the coin)

.

To illustrate the mechanics of this construction, let us consider the

one-period version of the "grab-the-dollar" game introduced in Section 2.

Each player has tv7o possible actions: investment, no investment. In the

complete information version of the game, a firm gains 1 if it is the only

one to make the investment (wins), loses 1 if both invest, and breaks even if

it does not invest. (We can view this game as an extremely crude representa-

tion of a natural monopoly market.) The only symmetric equilibrium involves

mixed strategies: each firm invests with probability 1/2. This clearly is

an equilibrium: each firm makes if it does not invest, and -^ (l)+-p (-1)

^The war of attrition was introduced in the theoretical biology litera-
ture (e.g., Maynard Smith [1974], Riley [l 980] and has known many appli-
cations since. It was introduced in industrial organization by Kreps-
Wilson [l982a]. (See also Nalebuff [l 982] and Ghemewat-Nalebuff
[1985]). For a characterization of the set of equilibria and a unique-
ness result with changing duopoly payoffs and/or large uncertainty over
types, see Fudenberg-Tirole [1986]. See also Hendricks and Wilson
[l985a, 1985b].
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= if it does not. Now consider the same game with the following type of

incomplete information: Each firm has the same payoff structure except that,

when it wins, it gets (l+t) where t is uniformly distributed on

[-e, + e:]. Each firm knows its type t, but not that of the other firm. Now,

it is easily seen that the symmetric pure strategies: "a(t < O) = do not

invest, a(t > O) = invest" form a Bayesian equilibrium. From the point of

view of each firm, the other firm invests with probability 1/2. Thus, the

firm should invest if and only if -^ (l+t) + 1- (-1 ) > 0, i.e., t > 0. Last,

note that, when e converges to zero, the pure strategy Bayesian equilibrium

converges to the mixed strategy Nash equilibrium of the complete information

game.

As another example, the reader may want to study the sjTometric war of

attrition. Under complete information and symmetric payoffs, it is easily

shown that in a symmetric equilibrium, each player's strategy is a mixed

strategy with exponential distribution over possible times.' The symmetric

incomplete information equilibrixm (computed in Section 3A) converges to this

mixed strategy equilibrium when the uncertainty converges to zero (see

Milgrom-¥eber for the case of a uniform distribution)

.

Milgrom-Weber [l 985] offers sufficient (continuity) conditions on the

objective functions and information structure so that the limit of Bayesian

equilibrium strategies when the uncertainty becomes "negligible," forms a

Nash equilibrium of the limit complete information game. (Note: the war of

attrition does not satisfy their continuity conditions; but as Milgrom and

'Letting t denote the common payoff to winning, waiting da more yields
(x(a)t}da where x(a)da is the probability that the opponent drops be-
tween a and (a+da). This must equal the cost of waiting: da. Thus,
x(a) = 1/t is independent of time a.
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Weber show, the result holds anyway). They also identify a class of (atom-

less) games for which there exists a pure strategy equilibrium.

We must realize that games of complete information are an idealization.

In practice, everyone has at least a slight amount of incomplete information

about the others' objectives; Harsanyi's argument shows that it is hard to

make a strong case against mixed strategy equilibria on the grounds that they

require a randomizing device.

4. Dynamic Games of Incomplete Information

We now study games in which, at some point of time, a player bases his

decision on a signal that conveys information about another player. This

type of game is dynamic in that a player reacts to another player's move.

The tricky aspect of it is that, under incomplete information, the former

must apply Bayes rule to update his beliefs about the latter' s type. To do

so, he uses the latter's choice of action (or a signal of it) and equilibrium

strategy, as we shall see shortly. The equilibrium notion for dynamic games

of incomplete information is naturally a combination of the subgame perfect

equilibrium concept that we discussed earlier and Harsanyi [l967]'s concept

of Bayesian equilibrium for games of incomplete information. In this section

we consider the simplest such notion, that of perfect Bayesian equilibrium

concept, as well as some easy-to-apply (and sometimes informal) refinements.

In the next section, we will discuss more formal refinements of the perfect

Bayesian equilibrium concept for finite games.

The notion of a perfect Bayesian equilibrium was developed under various

names and in various contexts in the late 'sixties and the 'seventies. In

economics, Akerlof [I 970] and Spence [l974]'s market games and Ortega-

Reichert [l967]'s analysis of repeated first-bid auctions make implicit use
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of the concept. In industrial organization the first and crucial application

is Milgrom-Roberts [l982a]'s limit pricing paper, followed by the work of

Kreps-Wilson [l 982a] -Milgrom-Roberts [l 982b] on reputation. In game theory,

Selten [l 975] introduced the idea of trembles to refine the concept of sub-

game perfect equilibria in games without (many) proper subgames. (if each

player's type is private information, the only proper subgame is the whole

game, so subgame perfection has no force). Kreps-Wilson [l982b]'s sequential

equilibrium is similar, but, in the tradition of the economics literature, it

emphasizes the formation of beliefs, which makes the introduction of refine-

ments easier to motivate. We should also mention the work of Aumaim-Machler

[l 967] on repeated games of incomplete information.

We start this section with the simplest example of a dynamic game of

incomplete information, the signaling game. This is a two-period leader-

follower game in which the leader is endowed with private information that

affects the follower. We give some examples of such games and introduce some

refinements of the equilibrium concept. As the principles enunciated here

for signaling games generally carry over to general games, we do not treat

the latter in order to save on notation and space.

4A. The Basic Signaling Game

As mentioned earlier, the simplest game in which the issues of updating

and perfection arise simultaneously has the following structure: There are

two players; player 1 is the leader (also called "sender", because he sends a

signal) and player 2 the follower (or "receiver"). Player 1 has private

information about his type t. in T. , and chooses action a. in A. . Player 2,

whose type is common knowledge for simplicity, observes a. and chooses ap in

Ag. Payoffs are equal to 11^^(3^ ,a2,t^ ) (i = 1,2). Before the game begins.
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player 2 has prior beliefs p. (t. ) about player 1 's type.

Player 2, who observes player 1 's move before choosing his own action,

should update his beliefs about t. and base his choice of a„ on the posterior

distribution p(t, |a, ). How is this posterior formed? As in a Bayesian equi-

librium, player 1 's action ought to depend on his type; let 8.*{t ) denote

this strategy (as before, this notation allows a mixed strategy). Thus,

figuring out a*(*) and observing a, , player 2 can use Bayes' rule to update

p (•) into p ('la ). And, in a rational expectations world, player 1 should

anticipate that his action would affect player 2's also through the posterior

beliefs. Thus, the natural extension of the Nash equilibrium concept to the

signaling game is:

Definition ; A perfect Bayesian equilibrium (PBE) of the signaling game is a

set of strategies a*(t, ) and a-(a*) and posterior beliefs P^ ("t, |a. ) such

that:

(P^ ) a*(a^ ) e arg max Z p^ (t^ |a^ ^^2^^1 '^2'^1 ^

^2 ^1

(P^) a*(t^) e arg max F^ (a^ ,a*(a^ ) ,
t^ }

^2

(B) p (t |a ) is derived from the prior p (•), a and a*( •) using Bayes' rule

(when applicable)

.

(p.) and (Pj) are the perfectness conditions. (P. ) states that player 2

reacts optimally to player 1's action given his posterior beliefs about t.

.

(P2) demonstrates the optimal Stackelberg behavior by player 1 ; note that he

takes into account the effect of a, on player 2's action. (B) corresponds to

the application of Bayes' rule. The quantifier "when applicable" stems from
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the fact that, if a. is not part of player 1 's optimal strategy for some

type, observing a. is a zero-probability event and Bayes rule does not pin

down posterior beliefs. Any posterior beliefs p ('la ) are then admissible.

Indeed, the purpose of the refinements of the perfect Bayesian equilibrium

concept is to put some restrictions on these posterior beliefs.

Thus, a PBE is simply a set of strategies and beliefs such that, at any

stage of the game, stategies are optimal given beliefs and beliefs are ob-

tained from equilibrium strategies and observed actions using Bayes' rule.

Two features of the concept developed thus far should be emphasized:

First, a PBE has a strong fized point flavor. Beliefs are derived from

strategies, which are optimal given beliefs. For this reason, there exists

no handy algorithm to help us construct equilibria. Remember that for games

of complete information, Kuhn's algorithm of backward induction gave us the

set of perfect equilibria. Here we must also operate the Bayesian updating

in a forward manner. This makes the search for. equilibria rely on a few

tricks (to be discussed latter) rather than on a general method.

Second, too litle structure has been imposed on the type and action

spaces and on the objective functions to prove existence of a PBE. Actually,

existence theorems are available only for games with a finite number of types

and actions (see subsection 4E). Most applications, however, involve either

a continuum of types or/and a continuum of actions. Existence is then ob-

tained by construction, on a case by case basis.

For more general games than the signaling game, the definition of a PBE

is the same: At each information set posterior beliefs are computed using

optimal strategies and the information at the information set. And, strate-

gies are optimal given beliefs. ¥e will not give the formal definition of
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this because it involves nothing more than a (very hea-vy) extension of the

notation.

Let us now give simple examples of PBE in signaling games. From now on,

we delete the subscript on player 1's type, as there is no possible confu-

sion.

4B. Examples

Example 1 ; a two-period reputation game . The following is a much simplified

version of the Kreps-Wilson-Milgrom-Roberts reputation story. There are two

firms (i = 1,2). In period 1, they are both in the market. Only firm 1 (the

"incumbent") takes an action a.. The action space has two elements: "prey"

and "accomodate." Firm 2 (the "entrant") 's profit is D if firm 1 accomo-

dates and Pp if firm 1 preys, such that Dp > > Pp. Firm 1 has one of two

potential types t. : "sane" and "crazy." When sane, firm 1 makes D. when it

accomodates and P. when it preys, where D. > P.. Thus, a sane firm prefers

to accomodate rather then preying. However, it would prefer to be a monopo-

ly, in which case it would make M. per period. When crazy, firm 1 enjoys

predation and thus preys (its utility function is such that it is always

worth preying). Let p. (respectively, (l-p^)) denote the prior probability

that firm 1 is sane (respectively, crazy).

In period 2, only firm 2 chooses an action ap. This action can take two

values: "stay" and "exit." If it stays, it obtains a payoff Dp if firm 1 is

actually sane, and Pp if it is crazy (the idea is that unless it is crazy,

firm 1 will not pursue any predatory strategy in the second period because

there is no point building or keeping a reputation at the end. This assump-

tion can be derived more formally from the description of the second-period

competition). The sane firm gets D. if firm 2 stays and M. > D. if firm 2
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exits. We let 6 denote the discount factor between the two periods.

We presumed that the crazy type always preys. The interesting thing to

study is thus the sane type's behavior. From a static point of view, it

would want to accomodate in the first period; however, by preying it might

convince firm 2 that it is of the crazy type, and thus induce exit (as

Pp < O) and increase its second-period profit.

Let us first start with a taxonomy of potential perfect Bayesian equili-

bria. A separating equilibrium is an equilibrium in which firm 1 's two types

choose two different actions in the first period. Here, this means that the

sane type chooses to accomodate. Note that in a separating equilibrium, firm

two has complete information in the second period:

p. (t = sane|a. = accomodate) = 1 and p. (t = crazy|a. = prey) = 1.

A pooling equilibrium is an equilibrium in which firm 1 's two types choose

the same action in the first period. Here, this means that the sane type

preys. In a pooling equilibrium, firm 2 does not update its beliefs when

observing the equilibriim action: p. (t = sane
I
a = prey) = p . Last, there

can also exist hybrid or semi-separating equilibria . For instance, in the

reputation game, the sane type may randomize between preying and accomodat-

ing, i.e., between pooling and separating. One then has

p (t = sane
I
a = prey) t (0,p ) and p (t = sane | a = accomodate) = 1

.

Let us first look for conditions of existence of a separating equili-

brium. In such an equilibrium, the sane type accomodates and thus reveals

its type and obtains D. (1+6) (firm 2 stays because it expects D- > in the

second period). If it decided to prey, it would convince firm 2 that it is

crazy and would thus obtain P. +6IL . Thus, a necessary condition for the
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existence of a separating equilibriiom is:

(6) 6(M^-D^) < (D^-Pi).

Conversely, suppose that (6) is satisfied. Consider the following strategies

and beliefs: the sane incumbent accomodates, and the entrant (correctly)

anticipates that the incumbent is sane when observing accomodation; the crazy

incumbent preys and the entrant (correctly) anticipates that the incumbent is

crazy when observing predation. Clearly, these strategies and beliefs form a

separating PBE.

Let us now look at the possibility of a pooling equilibrium. Both types

prey; thus, as we saw, p = p, when predation is observed. How, the sane

type, who loses (D. -P. ) is the first period, must induce exit. Thus, it must

be the case that:

(7) p^D2+(l-p^)P2 < 0.

Conversely, assume that (7) holds, and consider the following strategies and

beliefs: both types prey; the entrant has posterior beliefs p. = p. when

predation is observed and p = 1 when accomodation is observed. The sane

type's equilibrium profit is P.+6M. while it would become D, (1+6) under ac-

comodation. Thus, if (6) is violated, the proposed strategies and beliefs

form a pooling PBE (note that if (7) is satisfied with equality, there exists

not one, but a continuum of such equilibria). So the equilibrium is that the

entrant never enters and the incumbent never preys.

¥e leave it to the reader to check that if both (6) and (7) are violat-

ed, the unique equilibrium is a hybrid PBE (with the entrant's randomizing

when observing predation).
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Remark ; The (generic) uniqueness of the PBE in this model is due to the fact

that the "strong" type (the crazy incumbent) is assumed to prey no matter

what. Thus, predation is not a zero probability event and, furthermore,

accomodation is automatically interpreted as coming from the sane type if it

belongs to the equilibrium path. The next example illustrates a more complex

and a more common structure, for which refinements of the PBE are required.

Example 2, which, in many respects, can be regarded as a generalization of

example 1 also involves several cases resembling those in example 1

.

Example 2 ; The Limit-Pricing Game

As mentioned earlier, the paper which introduced signaling games into

the industrial organization field is Milgrom-Roberts [l982a]'s article on

limit pricing. Let us take the following simple version of their two-period

model. Firm 1 , the incumbent, has in the first period a monopoly power and

chooses a first-period quantity a. = q^ • Firm 2, the entrant, then decides

to enter or to stay out in the second period (thus, as in the previous game,

ao = or 1 or £:[o,l] if we allow mixed strategies). If it enters, there is

duopolistic competition in period two. Otherwise, firm 1 remains a mono-

poly.

Firm 1 can have one of two potential types: its constant unit production

cost is "high" (h) with probability p^ and "low" (L) with probability (l-p^).

We will denote by q^ the monopoly quantities for the two types of incumbent

(t = H,L). Naturally, q < q^. ¥e let M!'(q.) denote the monopoly profit of

type t when producing q. ; in particular, let M. = M. (q ) denote type i's

monopoly profit when it maximizes its short-r\in profit. ¥e assume that

M. (q ) is strictly concave in q. .
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Finn 1 knows t from the start; firm 2 does not. Let D denote firm 2's

duopoly profit when firm 1 has type t (it possihly includes entry costs). To

make things interesting, let us assume that firm 2's entry decision is influ-

H T

enced by its beliefs about firm 1 's type: D > > D^. The discount factor

is 6.

Let us look for separating equilibria. For this, we first obtain two

necessary conditions: that each type does not want to pick the other type's

equilibrium action ("incentive constraints"). We then complete the descrip-

tion of equilibrium by choosing beliefs off-the-equilibrium path that deter

the two types from deviating from their equilibrium actions. Thus, our

necessary conditions are also sufficient, in the sense that the corresponding

quantities are equilibrium quantities. In a separating equilibrium, the

high-cost type's quantity induces entry. He thus plays q (if it did not, he

could increase his first-period profit without adverse effect on entry).

Thus, he gets {M.+6 D^ } . Let q. denote the output of the low-cost type. The

high-cost type, by producing this output, deters entry and obtains

TT T U
(M^ (q. )+6K. }• Thus, a necessary condition for equilibrium is:

(8) M^-M^(q^) > 6{K^-D^).

The similar condition for the low-cost type is:

(9) M|'-M5'(q^) < 6{k]-D^).

To make things interesting, we will assxime that there is no (separating)

equilibrium in which each type behaves as in a full information context;

i.e., the low-cost type would wish to pool:
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(10) M!i^-M"(q^) < 6(M^-d5^).

To characterize the set of q. satisfying (8) and (9), one must make more

specific assumptions on the demand and cost functions. We will not do it

here, and we refer to the literature for this. We just note that, under

reasonable conditions, (8) and (9) define a region [q.,q.], where q^ > q^.

Thus, to separate, the low-cost type must produce sufficiently above its

monopoly quantity so as to make pooling very costly to the high-cost type. A

crucial assumption in the derivation of such an interval is the Spence-

Mirrlees (single-crossing) condition:

^(»XKu,))>o.

qL is such that (8) is satisfied with equality; it is called the "least-cost"

separating quantity, because, of all potential separating equilibria, the

low-cost type would prefer the one at q. .

Let us now show that these necessary conditions are also sufficient.

Let the high cost type choose q and the low-cost type choose q. m Ltl-|»q-|J'

When a quantity that differs from these two quantities is observed, beliefs

are arbitrary. The easiest way to obtain equilibrium is to choose beliefs

that induce entry; this way, the two types will be little tempted to deviate

from their presumed equilibrium strategies; so let us specify that when q.

does not belong to {q^,q>}, p. = 1 (firm 2 believes firm 1 has high-cost);

whether these beliefs, which are consistent with Bayes' rule, are "reason-

able," is discussed later on. Now, let us check that no type wants to devi-

ate. The high-cost type obtains its monopoly profits in the first period
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and, thus, is not willing to deviate to another quantity that induces entry.

He does not deviate to q either from (8). And similarly for the low-cost

type. Thus, we have obtained a continuum of separating equilibria.

Note that this continuum of separating equilibria exists for any p^ > 0.

By contrast, for p^ = 0, the low-cost firm plays its monopoly quantity q .

We thus observe that a tiny change in the information structure may make a

huge difference. A very small probability that the firm has high cost may

force the low cost firm to increase its production discontinuously to signal

its type . Games of incomplete information (which include games of complete

information!) are very sensitive to the specification of the information

structure, a topic we will come back to later on.

Note also that Pareto dominance selects the least cost separating equi-

librium among separating equilibria. [The entrant has the same utility in

all separating equilibria (the informative content is the same); similarly,

the high cost type is indifferent. The low cost type prefers lower out-

puts] .

The existence of pooling equilibria hinges on whether the following

condition is satisfied.

(11) p^D^+(l-p^)D^ < 0.

Assume that condition (ll) is violated (with a strict inequality — we

will not consider the equality case for simplicity) . Then, at the pooling

quantity, firm 2 makes a strictly positive profit if it enters (as p = p. ).

This means that entry is not deterred, so that the two types can not do bet-

ter then choosing their (static) monopoly outputs. As these outputs differ,

no pooling equilibrixan can exist.

Assume, therefore, that (ll) is satisfied so that a pooling quantity q.



75

deters entry. A necesary condition for a quantity q. to be a pooling equili-

brium quantity is that none of the types want to play his static optimum. If

he were to do so, it would at worse deter entry. Therefore, q. must satisfy

(9) and the analogous condition for the high-cost type:

(12) Mlf-M!^(q^) < 6(M5^-Df).

Again, the set of outputs q. that satisfy both (9) and (12) depends on

the cost and demand functions. Let us simply notice that, from (10), there

exists an interval of outputs around q that satisfy these two inequalities.

Now it is easy to see that if q^ satisfies (9) and (12), q^ can be made

part of a pooling equilibrium. Suppose that whenever firm 1 plays an output

differing from q. (an off-the-equilibrium path action), firm 2 believes firm

1 has a high cost. Firm 2 then enters, and firm 1 might as well play its

monopoly output. Thus, from (9) and (12), none of the types would want to

deviate from q. .

¥e leave it to the reader to derive hybrid equilibria (the analysis is

very similar to the previous ones). We now investigate the issue of refine-

ments.

4C. Some Refinements

Games of incomplete information in general have many PBE. The reason

why this is so is easy to grasp. Consider the basic signaling game and sup-

pose that one wants to rule out some action a^ by player 1 as an equilibrium

action. If, indeed, a. is not played on the equilibriim path, player 2's

beliefs following a. are arbitrary. In most games there exists some type t

such that if player 2 puts all the weight on t, it takes an action that is

detrimental for all types of player 1 (for instance, t is the high cost type
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in the limit pricing game; it induces entry). As playing a. produces a bad

outcome for player 1 , not playing a. on the equilibrium path may be self-

fulfilling. Some authors have noted that, while non credible actions were

ruled out by the perfectness part of the PBE, players could still "threaten"

each other through beliefs. This subsection and 4D discuss refinements that

select subsets of PBEs.

Often, however, the very structure of the game tells us that some be-

liefs, while allowable because off-the-equilibrium path, "do not make sense."

Over the years intuitive criteria for selection of beliefs have been devel-

oped for each particular game. V/e mention here only a few of these criteria.

These criteria, which apply to all types of games (including games with a

continuum of types or actions), are sometimes informal in that they have not

been designed as part of a formal solution concept for which existence has

been proved. But most of them are, for finite games, satisfied by the

Kohlberg-Mertens [l 986] concept of stable equilibria, which are known to

exist (see subsection 4E below). Last, we should warn the reader that the

presentation below resembles more a list of cookbook receipes than a unified

methodological approach.

i) Elimination of Weakly Dominated Strategies

In the tradition of Luce-Raiffa [1957], Farquharson [1969], Moulin

[1979], Bernheim [1984], and Pierce [1984], it seems natural to require that,

when an action is dominated for some type, but not for some other, the pos-

terior beliefs should not put any weight on the former type. This simple

restriction may already cut on the number of PBE considerably. Consider the

limit pricing game. Quantities above q. are dominated for the high cost type
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H H H
(if this type chooses q , its intertemporal profit is M +6D. ; if it chooses

q , this profit does not exceed M. (q. )+6 M, ; from the definition of q, , the

second action is weakly dominated for q > q. ) • Thus, when q belongs to

[.% »?i ]» "the entrant should believe that the incumbent's cost is low, and

should not enter. Thus, the low cost incumbent need not produce above q. to

deter entry. We thus see that we are left with a single separating PBE in-

stead of a continuum (this reasoning is due to Milgrom-Roberts).

A small caveat here: playing a quantity above q, is dominated for the

high cost type only once the second period has been folded back. Before

that, one can think of (non-equilibrium) behavior which would not make such a

quantity a dominated strategy. For instance, following q , the entrant might

enter and charge a very low price. So, we are invoking a bit more than the

elimination of dominated strategies. A quantity above q. is dominated condi-

tional on subsequent equilibrium behavior — a requirement in the spirit of

perfectness. More generally, one will want to iterate the elimination of

weakly dominated strategies.

Note that, in the limit pricing game, the elimination of weakly domin-

ated strategies leaves us with the "least cost" separating equilibrium, but

does not help us select among the pooling equilibria. This is because the

equilibrium pooling quantities are not dominated for the high cost type.

ii) Elimination of Equilibrium Weakly Dominated Strategies (intuitive
Criterion)

The next criterion was proposed by Kreps [l 984] to single out a property

satisfied by the more stringent stability requirement of Kohlberg-Mertens

[1 986] and, thus, to simplify its use in applications of game theory. The
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idea is roughly to extend the elimination of weakly dominated strategies to

strategies which are dominated relative to equilibrium payoffs . So doing

eliminates more strategies and thus refines the equilibrium concept further.

More precisely, consider the signaling game and a corresponding PBE and

associated payoffs. Let a. denote an out of equilibrium action which yields

for a subset J of types payoffs lower than their equilibrium payoffs whatever

beliefs player 2 forms after observing a,

.

More formally, let F*(t) denote player 1 's equilibrium payoff when he

has type t. Let BR(p ,a ) = arg max (Zp (t)n (a ,a ,t) } denote player 2's

a^sA^

best response(s) when he has posterior beliefs p, (•); and let BR(l,a )
=

U BR(p ,a ) denote the set of player 2's best responses when his

posterior beliefs put all the weight in a subset I of types.

Suppose that there exists a subset J of T such that:

(1) For all t in J and for all a^ in BR(T,a^ ) , 11^ (a^ ,a2,t) < rT^(t) .

(2) There exists a type t in T-J such that for all ap in BR(T-J,a. ),

n^(a^,a2,t) > n*(t).

From condition (1), we know that no type in J would want to deviate from

his equilibrium path, whatever inference player 2 would make following the

deviation. It thus seems logical that player 2 does not put any weight on

types in J. But, one would object, no type outside J may gain from the devi-

ation either. This is why condition (2) is imposed. There exists some type

outside J, this type strictly gains from the deviation. The intuitive cri-

terion rejects PBE that satisfy (1) and (2) for some action a^ and some sub-

set J.
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One immediately sees that this criterion has most power when there are

only two potential types (see below for an application to the limit pricing

game). The subsets J and T-J of the criterion are then necessarily composed

of one type each. Thus, the requirement "for all a„ in BR(T-J,a. ) . .
•" in

condition 2 is not too stringent, and the criterion has much cutting power.

With more than two types, however, there may exist many a^ in BR(T-J,a.

)

and, therefore, the requirement that some type prefers the deviation for all

a_ in BR(T-J,a. ) becomes very strong. The refinement then loses some of its

power.

Cho [1985] and Cho-Kreps [1 987] invert the quantifiers in condition (2),

which becomes:

(2') For all action ap in BR(T-J,a. ), there exists t such that

n^Ca^.a^.t) > n*(t).

In other words, whatever beliefs are formed by player 2 which do not put

weight on J, there exists some type (in T-j) who would like to deviate.

Condition (2') is somewhat more appealing than condition (2), as if (2') is

satisfied, the players can not think of any continuation equilibrium which

would satisfy (I) and deter any deviation. By contrast, condition (2), ex-

cept in the two-type case, allows continuum equilibria that satisfy (I) and

such that no player in (T-J) wants to deviate from equilibrium behavior.

Cho and Cho-Kreps 's "communicational equilibrium" is a PBE such that

there does not exist an off-the-equilibrium action a. and a subset of types J

that satisfy (I ) and (2'). Banks and Sobel [1 985] identify a condition that

is equivalent to (2'); they require (among other things) that player 2's off-

the-equilibri\im path beliefs place positive probability only on player 1 's

types who might not lose from a defection. They go on to define the concept
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of "divine equilibrium." A divine equilibium thus satisfies the Cho-Kreps

criterion and, for finite games, exists (because it is stable).

We should also mention the work by Farrell [l 984] and Grossman and Perry

[l 986a, b] who offer a criterion similar to, but stronger than, the intuitive

criterion. In a signaling game their criterion roughly says that, if there

exists a deviation a^ and a set of types J such that if the posterior beliefs

are the same as the prior truncated to (T-J) , types in J (respectively, in

(T-J)) lose (respectively, gain) relative to their equilibrium payoffs, the

initial equilibrium is not acceptable. This requirement is stronger than the

Cho-Kreps criterion because, in particular, it does not allow any leeway in

specifying posterior beliefs within the support (T-J). The refinement, how-

ever, is so strong that equilibrium may not exist; so it is restricted to a

given (and yet unknown) class of games.

Let us now apply the intuitive criterion to the limit pricing game. As

the intuitive criterion is stronger than iterated elimination of weakly domi-

nated strategies, we get at most one separating equilibrium. The reader will

check that this least-cost separating equilibrium indeed satisfies the intui-

tive criterion. Let us next discuss the pooling equilibria (when they exist,

i.e., when pooling deters entry). Let us show that pooling at q. < q does

not satisfy the intuitive criterion: Consider the deviation to q . This
^m

deviation is dominated for the high-cost type ("J = H"), who makes a lower

first-period profit and cannot increase his second-period profit. Thus,

posterior beliefs after q^ should be p =0, and entry is deterred. But,

then the low-cost type would want to produce q . This reasoning, however,

does not apply to pooling equilibria with q, > <!_• Deviations to produce
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less are not dominated for any type. Thus, one gets a (smaller) continuum of

pooling equilibria (the intuitive criterion here has less cutting power than

in the Spence signaling game — see Kreps [l984])-

One can restrict the set of pooling equilibria that satisfy the intui-

tive criterion by invoking Pareto dominance: The pooling equilibrium at q

Pareto dominates pooling equilibria with q^ > q (both types of player 1 are

closer to their static optimum, and player 2 does not care). But, we are

still left with a separating and a pooling equilibria, which cannot be ranked

using Pareto dominance (player 2 prefers the separating equilibrium). For

further refinements in the context of limit pricing, see Cho [1986].

(iii) Guessing Which Equilibrixun One is in (McLennan [1985])

McLennan' s idea is that a move is more likely if it can be explained by

a confusion over which PBE is played. He calls an action "useless" if it is

not part of some PBE path. Posterior beliefs at some unreached information

set must assign positive probability only to nodes that are part of some PBE,

if any (i.e., to actions which are not useless). One thus obtains a smaller

set of PBE, and one can operate this selection recursively until one is left

with "justifiable equilibria" (which, for finite games, are stable).

iv) Getting Rid of Out-of-Equilibri\im Events

As we explained, the indeterminacy of beliefs for out-of-equilibrium

events is often a factor of multiplicity. The previous criteria (as well as

the one presented in the next section) try to figure out what posterior be-

liefs are reasonable in such events. An alternative approach, which was

pioneered by Saloner [l 981 ] and Matthews-Mirman [l 983] consists in perturbing
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the game slightly so that these zero-probability events do not occur. The

basic idea of this technique is to let the action chosen by an informed play-

er be (at least a bit) garbled before it is observed by his opponents. For

instance, one could imagine that a firm's capacity choice is observed with an

error or that a manufacturer's price is garbled at the retail level. By

introducing noise, all (or most) potentially received signals are equilibrium

ones and, thus, refinements are useless. Although the class of games to

which this technique can be applied is limited (the noise must represent some

reasonable economic phenomenon) , this way of proceeding seems natural and is

likely to select the "reasonable" equilibria of the corresponding ungarbled

game in the limit (as Saloner, for instance, shows in the limit pricing

game)

.

4D. Finite Games ; Existence and Refinements in Finite Games

We now informally discuss refinements that are defined only for finite

games. Some of these refinements (Selten, Myerson) rest on the idea of tak-

ing the limit of equilibria with "totally mixed strategies." One basically

considers robustness of each PBE to slight perturbations of the following

form: each agent in the game tree is forced to play all his potential ac-

tions with some (possibly small) probability, i.e., to "tremble." This way,

Bayes' rule applies everywhere (there is no off-the-equilibrium-path out-

come). To be a bit more formal, assume that an agent is forced to put weight

(probability) CT(a) on action a where a(a) > e(a) > (for each action a).

Then the agent can maximize his payoff given these constraints and pick a

best perturbed strategy. A refined equilibrium is a PBE which is the limit

of equilibria with totally mixed strategies, where the limit is taken for a

given class of perturbations. The other two refinements we discuss (Kreps-
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Wilson, Kohlberg-Mertens) employ somewhat similar ideas. ¥e shall present

the refinements in an increasing-strength order.

General existence results for equilibria of dynamic games with incom-

plete information have been provided only for games with a finite number of

actions and types, starting with Selten. We sketch the proof of existence of

a trembling hand equilibrium below. Proofs of existence for alternative

refinements are similar.

i) Sequential Equilibriiim (Kreps-Wilson [1982])

Kreps-Wilson look at PBE which satisfy a consistency requirement. The

set of strategies and beliefs at each information set of the game must be the

limit of a sequence of sets of strategies and beliefs for which strategies

are always totally mixed (and beliefs are thus pinned down by Bayes' rule.)

Moreover, the beliefs on all players are derived as the limit corresponding

to a common sequence of strategies. The strategies and beliefs are not a

priori required to form a PBE of a perturbed game. So, the check is purely

mechanical; given a PBE, it suffices to show that it is or is not the limit

of a sequence of totally mixed strategies and associated beliefs.

Let us now discuss the consistency requirement. In the simple signaling

game considered above, it has no bite, and a PBE is also sequential, as is

easily seen (by choosing adequately the trembles in player 1 's strategy, one

can generate any beliefs one wants) . Sequential equilibrium has more cutting

power in more complex games because it imposes consistent beliefs between the

players (or agents) off the equilibrium path. For instance, if there are two

receivers in the signaling game (players 2 and 5)» these two players should

form the same beliefs as to player 1's type when observing the latter' s ac-

tion. This property comes from the fact that at each stage of the converging
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sequence, players 2 and 5's Bayesian updating uses the same trembles by play-

er 1 and, thus, reach the same conclusion. Similarly, sequential equilibrium

requires consistency of a player's beliefs over time. Kreps and Wilson have

shown that for "almost all" games, the sequential equilibrium concept coin-

cides with the perfect equilibrium concept (see below). For the other (non

generic) games, it allows more equilibria. Selten requires the strategies in

the perturbed game to be optimal given the perturbed strategies. But, unless

the payoff structure exhibits ties, this condition has no more bite than the

consistency requirement of Kreps-Wilson.

ii) Trembling-hand Perfect Equilibrium (Selten [1973])

In developing his notion of the "trembling hand" perfection Selten be-

gins by working with the normal form. An equilibrium is "trembling-hand

perfect in the normal form" if it is the limit of equilibria of "e-perturbed"

games in which all strategies have at least an.e probability of being played.

That is, in an e-perturbed game, players are forced to play action a with

probability of at least e(a), where the e(a) are arbitrary as long as they

all exceed e. The e(a) are called "trembles." The idea of introducing

trembles is to give each node in the tree positive probability, so that the

best responses at each node" are well-defined. The interpretation of the

trembles is that in the original game if a player unexpectedly observes a

deviation from the equilibrium path he attributes this to an inadvertent

"mistake" by one of his opponents.

To see how the trembles help refine the equilibrium set, let us once

again consider the game in Figure 5 which Selten used to motivate subgame

perfectness.
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The Nash equilibrium {U,R} is not the limit of equilibria with trembles:

if player 1 plays D with some probability, player 2 puts as much weight as

possible on L.

However, Selten notes that his refinement is not totally satisfactory.

Consider Figure 11, which is a slight variation on the previous game. Player

1 moves at "dates" 1 and 3«

PUT FIGURE 11 HERE

The only subgame perfect equilibrium is {L^,!^,!.'}. But the subgame-

imperfect Nash equilibrivim (R. ,R2»R] } is the limit of equilibria with

2
trembles. To see why, let player 1 play (L. ,L>') with probability e and

(L^,RJ) with probability e. Then player 2 should put as much weight as pos-

sible on Rp, because flayer 1's probability of "playing" B.! conditional on

having "played" L. is

£/(e + E ) =1 for e small.

When perturbing the normal form, we are allowing for a type of correla-

tion between a player's trembles at different information sets. In the above

example, if a player "trembles" onto L. , he is very likely to tremble again.

This correlation goes against the idea that players expect their opponents to

play optimally at any point in the game tree, including those not on the

equilibrium path.

To avoid this correlation, Selten introduces a second refinement, based

on the "agent's normal form." The idea is to treat the two choices of player

1 in Figure 11 as made by two different players, each of whom trembles inde-

pendently of the other. More precisely, the agent normal form for a given
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game is constructed by distinguishing players not only by their names (i) and

their types (t.), but also by their location in the game tree. So, for in-

stance, player 1 with type t. playing at date 1 is not the same agent as

player 1 with type t. playing at date 3; or player 1 with type t^ playing at

date 3 should be considered as a different agent depending on his (her) in-

formation at that date. In the agent's normal form, each information set

represents a different agent/player. However, different agents of a same

player i with type t. are endowed with the same objective function. A

"trembling hand perfect" equilibrium is a limit of equilibria of e-perturbed

versions of the agent's normal form.

It is clear that a trembling-hand perfect equilibrium is sequential: We

can construct consistent beliefs at each information set as the limit of the

beliefs computed by Bayes rule in the perturbed games, and the equilibrium

strategies are sequential given these beliefs. One might expect that the

(constrained) optimality requirement along the converging sequence adds some

cutting power. However, the arbitrariness of the E(a) makes perfectness a

weak refinement, as shown by Kreps-Wilson' s result on that the sets of the

sequential and perfect equilibria coincide for generic extensive-form pay-

offs.

Let us now sketch the proof of existence of a trembling-hand perfect

equilibrium. Remember that the proof of existence of a Bayesian equilibrium

consists of considering {J\T. \} players (i.e., in introducing one player per

type) , and applying standard existence theorems for Nash equilibrium. More

generally, the proof for trembling-hand perfect equilibrium uses existence of

a Nash equilibrium on the agents' normal form. Consider the perturbed game

in which the agents are forced to play trembles (i.e., to put weight at least

equal to E(a) on action a). The strategy spaces are compact convex subsets
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of a Euclidean space. Payoff functions are continuous in all variables and

quasiconcave (actually, linear) in own strategy. So there exists a Nash

equilibrium of the agents' normal form of the perturbed game. Now consider a

sequence of equilibrium strategies when e tends to zero. Because the strate-

gy spaces are compact, there is a converging subsequence. The limit of such

a subsequence is called a trembling-hand perfect equilibrium.^

¥e should also note that Selten works with the normal form or the

agents' normal form; so do the next two refinements. Thus, beliefs are left

implicit. Kreps and Wilson's paper is the first pure game theory article to

put emphasis on the extensive form and on beliefs (although there is a cur-

rent debate about whether defined on the normal or extensive form, the re-

finements that are currently easily applicable to industrial organizational

models put constraints on beliefs — see the previous section)

.

iii) Proper Equilibrium (Myerson [1978])

Myerson considers perturbed games in which, say, a player's second best

action(s) get at most e times the weight of the first best action(s), the

third best action(s) get at most e times the weight of the second best ac-

tion(s), etc. The idea is that a player is "more likely to tremble" and put

weight on an action which is not too detrimental to him; the probability of

deviations from equilibriiim behavior is inversely related to their costs. As

the set of allowed trembles is smaller, a proper equilibrum is also perfect,

[with such an ordering of trembles, there is no need to work on the agent's

normal form. The normal form suffices.]

Q
°Note that because payoffs are continuous, the limit is automatically a
Nash equilibrium. But the converse, of course, is not true (for in-
stance, for games of perfect information, a trembling-hand equilibrium
is subgame perfect, as is easily seen).
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To illustrate the notion of proper equilibriiom, consider the following

game (due to Myerson)

:

PUT FIGURE 12 HERE

This game has three pure strategy Nash equilibria: (U,L),(M,M) and (D,R).

Only two of these are perfect equilibria: D and R are weakly dominated stra-

tegies and therefore cannot be optimal when the other player trembles. (M,M)

is perfect: Suppose that each player plays M with probability 1-2e and each

of the other two strategies with probability e. Deviating to U for player

one (or to L for player two) increases this player's payoff by (£-9e)-(-7e) =

-E < 0. However, (M,M) is not a proper equilibrium. Each player should put

much more weight (tremble more) on his first strategy than on his third,

vrhich yields a lower payoff. But if player one, say, puts weight e on U and

2 2
e on D, player two does better by playing L than by playing M, as (E-9e )

-

(-Ye ) > for e small. The only proper equilibrium in this game is (U,L).

iv) Stable Equilibrium (Kohlberg-Mertens [1986])

Ideally, one would wish a PBE to be the limit of some perturbed equili-

brium for all perturbations when the size of these perturbations goes to

zero. Such an equilibrium, if it exists, is labelled
"
truly perfect ." Un-

fortunately, true perfection may be out of this world (truly perfect equil-

ibria tend not to ezist) . Kohlberg and Mertens, to obtain existence, settled

for "stability." Stability is a complex criterion, which encompasses the

intuitive criterion mentioned in the previous section and other features as

well. Let us give an example of the description of a stable equilibrium in

the signaling game (this introduction follows Kreps [1984]). Consider two
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totally mixed strategies 0. and a- for players 1 and 2, and two strictly

positive numbers z and Ep. A{e. ,a. }._. perturbation of the original game is

such that, when player i chooses strategy a. , the strategy which is imple-

mented for him is a. with probability (l-e.) and a. with probability e. . Let

(a., Op) be a PBE of the perturbed game. A subset E of PBE of the original

game is stable if, for any t) > 0, there exists an equilibria of the perturbed

game that lies no more than e from the set E. A stable component is then

defined as a minimal connected stable set of equilibria. Kohlberg and

Mertens have shown that every gaime has at least one stable component, and

that, for almost every signaling game, all equilibria within a given con-

nected component give rise to the same probability distribution on end-

points.

4E. Perturbed Games and Robust Equilibria

Our earlier discussion of the Saloner/Matthews-Mirman contribution em-

phasized the robustness of the solution to the introduction of noise. More

generally, robustness to "reasonable" structural changes in the game seem

desirable. This leads us to the discussion of the reputation-effects model

of Kreps-Wilson-Milgrom-Roberts [1982], which is one of the most important

applications of the theory of dynamic games of incomplete information.

This work actually started with a robustness issue: In the finite hori-

zon repeated prisoners' dilemma the only equilibrim is "fink, fink" at each

period. As we observed in Section 2, this conclusion seems extreme for long,

finite games; in response, the four authors decided to perturb the prisoner's

dilemma game slightly by introducing a small probability that each party is

willing to play the suboptimal strategy tit-for-tat. Similarly, in the con-
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text of example 1 , one could introduce a probability that firm 1 enjoys prey-

ing (is crazy). Then, if the horizon is sufficiently long and the discount

rate sufficiently small, it may be worthwhile for a sane type (one whose

payoff is as originally specified) to pretend at the start that it is a crazy

type. By cooperating in the repeated prisoners' dilemma game or preying in

the predation game, the sane type invests in reputation that will induce the

other player to take actions that are favorable to the former (cooperate;

stay out). Thus, in games that are repeated for a long time, a small differ-

ence in information can make a big difference in terms of outcome.

Fudenberg-Maskin [l 986] develop the reputation-effects model to its

logical conclusion. They show that, for any e, when the horizon goes to

infinity, all individually rational payoffs of a finitely repeated, full-

information game can arise as PBE of a slightly perturbed, incomplete infor-

mation game, in which the objective function of each player is the one of the

original game with probability (l-e) and can be any "crazy" objective func-

tion with probabiity e. In the Friedman tradition, the result that one can

obtain any payoff Pareto superior to a Nash payoff is easy to derive: Con-

sider a Nash equilibrium of the original game ("fink, fink" in the repeated

prisoners' dilemma) and an allocation that dominates this Nash equilibrium,

and the corresponding prescribed strategies ("cooperate, cooperate"). Sup-

pose that with probability e, each player has the following objective func-

tion: "I like to play the strategy corresponding to the superior allocation

as long as the others have followed their corresponding strategies; if some-

body has deviated in the past, my taste commands me to play my Nash equili-

brium strategy forever." Now suppose that the horizon is long. Then by

cooperating, each player loses some payoff at most over one period if the

other player deviates. When deviating, he automatically loses the gain of
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being able to cooperate with the crazy type until the end. So, as long as

there remains enough time until the end of the horizon, ("enough" depends on

e) deviating is not optimal. The proof for points that do not dominate a

Nash equilibrium is harder.

The reputation effects papers show that adding a small e of incomplete

information to a long but finitely repeated game could make virtually any-

thing into a PBE. However, for any fixed horizon, a sufficiently small e of

the form they considered has no effect. If we admit the possibility that

players have private information about their opponents' payoffs, then even in

a fixed extensive form, the sequential rationality requirements of PBE com-

pletely lose their force. More precisely, any Nash equilibrium of an exten-

sive form is a PBE (indeed, a stable PBE) of a perturbed game in which pay-

offs differ from the original ones with vanishingly small probability.

PUT FIGURE 13 HERE

Consider the game in Figure 13* Player 1 has two possible types t. and

tp, with Prob(t = t^ ) = 1-e. When t = t. , the game is just as in the game of

Figure 5, where the backwards induction equilibrium was (D,C). When t = tp,

though, player 2 prefers R to L. The strategies (U. ,Dp,R) are a PBE for this

game; if player 2 sees D, he infers that t = tp. Thus, a "small" perturba-

tion of the game causes a large change in play — player 1 chooses U with

probability (l-e). Moreover, this equilibrium satisfies all the currently

known refinements.

Most of these refinements proceed by asking what sort of beliefs are

"reasonable" — what should players expect following unexpected events? If

they have very small doubts about the structure of the game, the unexpected
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may signal, as here, that things are indeed other than had previously seemed

likely. This point is developed in Fudenberg-Kreps-Levine [198?].

Thus, small changes in information structure can always extend the set

of predictions to include all of the Nash equilibria, and in long repeated

games the "robustness" problem is even more severe. What then is the predic-

tive content of game theory? In real world situations, it may be the case

that only some types are unlikely (most types of "craziness" are not plau-

sible). The players may then have a fairly good idea of what game is played.

However, the economist, who is an outsider, may have a hard time knowing

which information structure is the relevant one. Thus, one may think of a

situation in which, at the same time, the players are following the Kreps-

Wilson-Milgrom-Roberts strategies, and the reputation literature is of little

help to the economist. If this is true, the economist should collect infor-

mation about the way real world players play their games and which informa-

tion structure they believe they face, and then try to explain why particular

sorts of "craziness" prevail.

The above implies a fairly pessimistic view of the likelihood that game

theory can hope to provide a purely formal way of choosing between PBEs. It

would be rash for us to assert this position too strongly, for research on

equilibrium refinements is proceeding quite rapidly, and our discussion here

may well be outdated by the time it appears in print. However, at present we

would not want to base important predictions solely on formal grounds. In

evaluating antitrust policy, for example, practicioners will need to combine

a knowledge of the technical niceties with a sound understanding of the work-

ings of actual markets.
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Concluding Remark

Our already incomplete discussion of equilibrium concepts for dynamic

games of imcomplete information is likely to be out of date very shortly, as

the pace of activity in this field is very intense, and current refinements

have not yet been tested for a wide class of models. Our purpose was only to

provide an introduction, a survey and some cookbook receipes for readers who

currently want to apply these techniques to specific games.
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