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Abstract

Matrix orthogonal Laurent polynomials in the unit circle and the theory
of Toda-like integrable systems are connected us-ing the Gauss—Borel
factorization of two, left and a right, Cantero-Morales—Veldzquez block
moment matrices, which are constructed using a quasi-definite matrix
measure. A block Gauss—Borel factorization problem of these moment
matrices leads to two sets of biorthogonal matrix orthogonal Laurent
polynomials and matrix Szeg6 polynomials, which can be expressed in
terms of Schur complements of bordered trun-cations of the block
moment matrix. The corresponding block extension of the Christoffel—
Darboux theory is derived. De-formations of the quasi-definite matrix
measure leading to integrable systems of Toda type are studied. The
integrable theory is given in this matrix scenario; wave and adjoint wave
functions, Lax and Zakharov—Shabat equations, bilinear equa-tions and
discrete flows — connected with Darboux transfor-mations. We generalize
the integrable flows of the Cafasso’s matrix extension of the Toeplitz
lattice for the Verblunsky coefficients of Szeg6 polynomials. An analysis
of the Miwa shifts allows for the finding of interesting connections
between Christoffel-Darboux kernels and Miwa shifts of the matrix or-
thogonal Laurent polynomials.
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1. Introduction

In this paper we extend previous results on orthogonal Laurent polynomials in the
unit circle (OLPUC) [13] to the matrix realm (MOLPUC). To explain better our aims
and results we need a brief account on orthogonal polynomials, Laurent orthogonal
polynomials and their matrix extensions, and also some facts about integrable systems.

1.1. Historical background

1.1.1. Szegd polynomials

We will denote the unit circle by T:={z € C:|z| =1} and D:={z € C: |z| < 1}
stands for the unit disk; when z € T we will use the parametrization z = e with
6 € [0,27). In the scalar case, one deals with a complex Borel measure p supported in T
that is said to be positive definite if it maps measurable sets onto non-negative numbers,
that in the absolutely continuous situation (with respect to the Lebesgue measure df)
has the form w(#)df. For the positive definite situation the orthogonal polynomials in
the unit circle (OPUC) or Szegd polynomials are defined as those monic polynomials
P, of degree n that satisfy the following system of equations, called orthogonality re-
lations: [ Pn(2)z7%du(z) = 0, for k = 0,1,...,n — 1 [90]. The connections between
orthogonal polynomials on the real line (OPRL) supported in the interval [—1,1] and
OPUC have been explored in the literature, see for example [53,22]. Let us observe that



for this analysis the use of spectral theory techniques requires the study of the oper-
ator of multiplication by z. Recursion relations for OPRL and OPUC are well known;
however, in the real case, the three term recurrence laws provide a tridiagonal matrix,
the so-called Jacobi operator, while in the unit circle support case, the problem leads to
a Hessenberg matrix [61], being a more involved scenario that the Jacobi one (as it is
not a sparse matrix with a finite number of non-vanishing diagonals). In fact, OPUCs
recursion relation requires the introduction of reciprocal or reverse Szeg6 polynomials
Py (z) := 2'P(271) and the reflection or Verblunsky (Schur parameters is another usual
name) coefficients a; := P;(0). The recursion relations for the Szeg6 polynomials can be
written as (gi ) = ( Z; ) (i}: ) There exist numerous studies on the zeroes of the
OPUC [10,16,19,54,58,60,74,80] with interesting applications to signal analysis theory
[63,65,82,83]. Despite the mentioned advances for the OPUC theory, the corresponding
state of the art in the OPRL context is still much more developed. An issue to stress here
is that Szegd polynomials are, in general, not a dense set in the Hilbert space L*(T, u);
Szegb’s theorem implies for a non-trivial probability measure dy on T with Verblunsky
coefficients {, }2°, that the corresponding Szegd’s polynomials are dense in L*(T, p)
if and only if [])7 ,(1 — |a,|?) = 0. For an absolutely continuous probability measure
Kolmogorov’s density theorem ensures that density in L?(T, ) of the OPUC holds iff
the so-called Szeg8’s condition [i.log(w(6))df = —oo is fulfilled [89]. We refer the reader
to Barry Simon’s books [85] and [86] for a very detailed studied of OPUC.

1.1.2. Orthogonal Laurent polynomials

Orthogonal Laurent polynomials on the real line (OLPRL) were introduced in [66,
67] in the context of the strong Stieltjes moment problem. When this moment problem
has a solution, there exist polynomials {Q,}, known as Laurent polynomials, such that
Jpx7 " Qu(x)dp(x) = 0 for j = 0,...,n — 1. The theory of Laurent polynomials on
the real line was developed in parallel with the theory of orthogonal polynomials, see
[33,43,64] and [81]. The theory of orthogonal Laurent polynomials was carried from the
real line to the circle [91] and subsequent works broadened the matter (e.g. [37,29,35,36]),
treating subjects like recursion relations, Favard’s theorem, quadrature problems, and
Christoffel-Darboux formulae. The Cantero-Moral-Veldzquez (CMV) [29] representa-
tion is a hallmark in the study of certain aspects of Szegd polynomials, as we mentioned
already while the OLPUC are always dense in L?(T, u1), this is not true in general for
the OPUC [25,37]. The bijection between OLPUC in the CMV representation and the
ordinary Szeg6 polynomials implies the replacement of complicated recursion relations
with five term relations similar to the OPRL situation. Other papers have reviewed and
broadened the study of CMV matrices, see for example [87,68]; in particular alternative
or generic orders in the base used to span the space of OLPUC can be found in [36].
In particular, the reading of Simon’s account of the CMV theory [87] is illuminating.
In fact, the discovery of the advantages of the CMV ordering goes back to the previous
work [93].



1.1.8. Matriz orthogonal polynomials

Orthogonal polynomials with matrix coefficients on the real line were considered in
detail by Krein [69,70] in 1949, and thereafter were studied sporadically until the last
decade of the XX-th century. Some relevant papers on this subject are [20,56,17]; in
particular, in [17] the scattering problem is solved for a kind of discrete Sturm—Liouville
operators that are equivalent to the recursion equation for scalar orthogonal polynomials.
They found that polynomials that satisfy a relation of the form

Z‘Pk(l‘) = AkPkJrl(l‘) + BkPk(J,‘) + Azilpkfl(w), k= 0,1,...,

are orthogonal with respect to a positive definite measure. This is a matrix version of
Favard’s theorem for scalar orthogonal polynomials. Then, in the 1990s and the 2000s
some authors found that matrix orthogonal polynomials (MOPs) satisfy in certain cases
some properties that satisfy scalar-valued orthogonal polynomials; for example, Laguerre,
Hermite and Jacobi polynomials, i.e., the scalar-type Rodrigues’ formula [47,48,34] and
a second order differential equation [44,46,24]. Later on, it has been proven [45] that
operators of the form D = 9%2F,(t) + 0'Fy(t) + 0°Fy have as eigen-functions different
infinite families of MOPs. Moreover, in [24] a new family of MOPs satisfying second order
differential equations, whose coefficients do not behave asymptotically as the identity
matrix, was found; see also [30]. In [31] the Riemann—Hilbert problem for this matrix
situation and the appearance of non-Abelian discrete versions of Painlevé I were explored,
showing singularity confinement — see [32]; for Riemann—Hilbert problems see also [62].
Let us mention that in [75,76] and [27] the MOPs are expressed in terms of Schur
complements that play the role of determinants in the standard scalar case. For a survey
on matrix orthogonal polynomials, we refer the reader to [39].

1.1.4. Integrable hierarchies and the Gauss—Borel factorization

The seminal paper of M. Sato [84] and further developments performed by the Kyoto
school [40-42] settled the Lie-group theoretical description of the integrable hierarchies. It
was Mulase [78] the one who made the connection between factorization problems, dress-
ing procedures and integrability. In this context, Ueno and Takasaki [92] performed an
analysis of the Toda type hierarchies and their soliton-like solutions. Adler and van Moer-
beke [4-8,3,9] have clarified the connection between the Lie-group factorization, applied
to Toda type hierarchies — what they call discrete Kadomtsev—Petviashvilii (KP) —
and the Gauss—Borel factorization applied to a moment matrix that comes from orthog-
onality problems; thus, the corresponding orthogonal polynomials are closely related to
specific solutions of the integrable hierarchy. See [21,52,71,11] for further developments
in relation with the factorization problem, multicomponent Toda lattices and generalized
orthogonality. In [3] a profound study of the OPUC and the Toda type associated lattice,
called the Toeplitz lattice (TL), was performed. A relevant reduction of the equations of
the TL has been found by Golinskii [59] in the context of Schur flows when the measure
is invariant under conjugation (also studied in [88] and [49]), another interesting paper



on this subject is [77]. The Toeplitz lattice was proven to be equivalent to the Ablowitz—
Ladik lattice (ALL) [1,2], and that work has been generalized to the link between matrix
orthogonal polynomials and the non-Abelian ALL in [27]. Both of them have to deal
with the Hessenberg operator for the multiplication by z. Research about the integrable
structure of Schur flows and its connection with ALL has been done (in recent and not so
recent works) from a Hamiltonian point of view in [79], and other works also introduce
connections with Laurent polynomials and 7-functions, like [50,51,23].

1.2. Preliminary material

1.2.1. Semi-infinite block matrices
For the matrix extension considered in the present work we need to deal with block
matrices and block Gauss—Borel factorizations. For each m € N, the directed set of

= C™>*™ and its

natural numbers, we consider ring of the complex m x m matrices M, :
direct limit M := lim M, the ring of semi-infinite complex matrices. We will denote
by diag,, C M,, the set of diagonal matrices. For any A € M, A;; € C denotes the
(4, j)-th element of A, while (A);; € M, denotes the (i, j)-th block of it when subdivided
into m x m blocks. We will denote by G the group of invertible semi-infinite matrices
of M. In this paper two important subgroups are %/, the invertible upper triangular
— by blocks — matrices, and .Z, the lower triangular — by blocks — matrices with the
identity matrix along their block diagonal. The corresponding restriction on invertible
upper triangular block matrices is denoted by % . Block diagonal matrices will be denoted
by 2 = {D € My : (D);; = d; - 6;; with d; € M,,}. Given a semi-infinite matrix
A € M, we consider its [-th block leading submatrix

(Ao (Aox - (Ao
A[l] = (A?LO (A)l,l o (A)%J_l € M,,.;, (A)z] e M,,,
(A)l.fl,o (A)i1q - (A)z;1,zf1

and we write
Al [ AlL=1
A= : (1)
AL A2
for the corresponding block partition of a matrix A where, for example, A2 denotes
all the (A); ;-th blocks of the matrix A with ¢ < [, j > {. Very much related to the block
partition of a matrix M are the Schur complements. The Schur complement with respect
to the upper left block of the block partition

A B
M:<C D)eMp+q, A= (a;;) € M, D e Mg,

is



(aij)| B

M/A:zSC( s

> =D —-CA™'D,

where we have assumed that A is an invertible matrix.

1.2.2. Quasi-definiteness

Let us recall the reader that measures and linear functionals are closely connected;
given a linear functional £ on A, the set of Laurent polynomials on the circle — or
polynomial loops L,61C, we define the corresponding moments of £ as ¢, := L[z"] for all
the possible integer values of n € Z. The functional £ is said to be Hermitian whenever
C—pn = Cn, Yn € Z. Moreover, the functional £ is defined as quasi-definite (positive
definite) when the principal submatrices of the Toeplitz moment matrix (4A; ;), A;; ==
ci—;, associated to the sequence ¢,, are non-singular (positive definite), i.e., Vn € Z,
Ay = det(ci—j)7 =g # 0 (> 0). Some aspects on quasi-definite functionals and their
perturbations are studied in [15,26]. It is known [57] that when the linear functional £ is
Hermitian and positive definite, there exists a finite positive Borel measure with a support
lying on T such that £[f] = [;. fdu, Vf € Ajw). In addition, a Hermitian positive definite
linear functional £ defines a sesquilinear form (-,-) £ : Ajoe) X Ajoq) = C as (f, 9)c = L[f7],
Vf,9 € Ajs]- Two Laurent polynomials {f, g} C A are said to be orthogonal with
respect to L if (f,g)r = 0. From the properties of L it is easy to see that (-,-); is a
scalar product and if y is the positive finite Borel measure associated to . we are led to
the corresponding Hilbert space L?(T, 11), the closure of Afso)- The more general setting,
when L is just quasi-definite is associated to a corresponding quasi-definite complex
measure u, see [55]. As before, a sesquilinear form (-,-), is defined for any such linear
functional £; thus, we just have the linearity (in the first entry) and skew-linearity (in
the second entry) properties. However, we have no symmetry allowing the interchange
of the two arguments. We formally broaden the notion of orthogonality and say that f is
orthogonal to g if (f, g), = 0, but we must be careful as in this general situation it could

happen that (f,g)z = 0 but (g, f) # 0.

1.2.83. Matriz Laurent polynomials and orthogonality
A matrix-valued measure p = (p; ;) supported on T is said to be Hermitian and/or
positive definite, if for every Borel subset 2 of T, the matrix p(4) is a Hermitian and/or

positive definite matrix. When the scalar measures pu; ;, i,7 = 1,...,m, are absolutely

g
continuous with respect to the Lebesgue measure on the circle df, according to the
Radon—Nikodym theorem, it can be always expressed using complex weight (density
or Radon-Nikodym derivative of the measure) functions w; ;, 4,5 = 1,...,m, so that
du, ;(0) = w; ;(6)dd, 0 € [0,2m). If, in addition, the matrix measure p is Hermitian
and positive definite, then the matrix (w; ;(#)) is a positive definite Hermitian matrix.
For the sake of notational simplicity we will use, whenever it is convenient, the complex

notation du(z) = ie'?du(h).



The moments of the matrix measure u are

1 1 .
z_"du_(z) — /e_mad,u(H) € M,,,

T or iz 2
T 0

Cp -

while the Fourier series of the measure is

Fu(u) == Z cpu”, (2)

n=—oo

that for absolutely continuous measures, du(f) = w(0)de satisfies F,(0) = w(#). Let
D(0;7,R) = {z € C: r < |z| < R} denote the annulus around z = 0 with interior and
exterior radii r and R, R;j + := (limsup,,_, oo ¥/|cijan|)Tt and Ry = min; j—1__m Rij+
and R;j - = max; j—1,.. m {j—. Then, according to the Cauchy-Hadamard theorem,
the series F,(z) converges uniformly in any compact set K, K C D(0; R_, R.).

The space Ap, g = My {Iz7P,Iz7PT 129} (where I € M, is the identity
matrix) of complex Laurent polynomials with m x m matrix coefficients and the corre-
sponding restrictions on their degrees is an M,,, free module of rank p+ ¢+ 1. We denote
by LyoiM,, the infinite set of Laurent matrix polynomials or polynomial loops in M,,.

Given a matrix measure p, we introduce the following left and right matrix-valued
sesquilinear forms in the loop space LM, considered as left and right modules for the
ring M,,,, respectively,

(ahe = o(2) HC) rt e m,,, (3)

(o= 7 Bg(z) 1, ()

The sesquilinearity of these forms means that the following two properties hold:

(1) {fr+ foogdu = (fro9)m + (fo. 9 and (f, 91 + 920 = (f 1) 1 + (f, 92)) - for
all f, f1,f2,9,91,92 € LM,,, and H = L, R.

2) (mf,9)e = (fro)emt, (fymghe = m{f,9)r, (fm.ghr = mI(f,g)r and
{f,gmWhr = (f,g9) rm, for all f,g € LM, and m € M,,.

Moreover, if the matrix measure is Hermitian, then so are these forms; i.e.,

(f o0k = (9. fhu, H=L,R

Actually, from these sesquilinear forms, for a positive definite Hermitian measure, we
can derive the corresponding scalar products



and corresponding Hilbert spaces H with a norm — of Frobenius type — given by

Il =+ {f, flu, H=L,R

A set {p}Y, C H, H = L, R, is an orthogonal set if and only if
(pi"\pi" ) ¢ = dishss Ty € M.
1.3. On the content of the paper

In previous papers we have approached the study of the link between orthogonality
and integrability within an algebraic/group theoretical point of view. Our keystone relies
on the fact that a number of facets of orthogonality and integrability can be described
with the aid of the Gauss—Borel factorization of an infinite matrix. This approach was
applied in [12] for the analysis of multiple orthogonal polynomials of mixed type, allow-
ing for an algebraic proof of the Christoffel-Darboux formula, alternative to the analytic
one, based on the Riemann—Hilbert problem (and constrained therefore by convenient
analytic conditions) given in [38]. This approach was also used successfully in [13], where
a CMV ordering of the Fourier basis gave, for a given measure on the unitary circle,
a moment matrix whose Gauss—Borel factorization leads to OLPUC. Recursion relations
and Christoffel-Darboux formula appeared also in a straightforward manner. Also con-
tinuous and discrete deformations and 7-function theory were extended to the circular
case under the suitable choice of moment matrices and shift operators. In this last paper
we only requested to the measure to be quasi-definite, condition that implies the exis-
tence of the Gauss—Borel factorization. Let us mention that we have applied this method
in the finding of Christoffel-Darboux type formulae in other situations, see [18,14].

In this paper we consider two semi-infinite block matrices, whose coefficients (matrices
in C™*™) are left and right matrix moments, ordered in a Cantero—Morales—Veldzquez
style, of a matrix measure on the circle. The corresponding block Gauss—Borel factoriza-
tion of these CMV block moment matrices leads to MOLPUC. To be more precise, we
get the right and left versions of two biorthogonal families of matrix Laurent polynomi-
als and corresponding Szegdé polynomials. When the matrix measure is Hermitian, these
two families happen to be proportional resulting in two families of MOLPUC. Following
[75,27] we express them as Schur complements of bordered truncated moment matrices.
We also prove, in an algebraic manner using the Gauss—Borel factorization, the five term
recursion relations and the Christoffel-Darboux formula. Let us stress that in this paper
we introduce an intertwining operator 1 not used in [13] that clarifies the appearance of
reciprocal polynomials and simplifies the algebraic proofs. The recursion relations indi-
cate which deformations of the quasi-definite matrix measure lead to integrable systems
of Toda type. Thus, we discuss the following elements: wave and adjoint wave functions,



Lax and Zakharov—Shabat equations, bilinear equations and discrete flows — connected
with Darboux transformations. In this context we find a generalization of the matrix
Cafasso’s extension of the Toeplitz lattice for the Verblunsky coefficients of Szegé poly-
nomials. The Cafasso flows correspond to what we call total flows, which are only a
part of the integrable flows associated to MOLPUC. We unsuccessfully tried to get a
matrix 7 theory, but despite this failure, we get interesting byproducts. We analyze the
role of Miwa shifts in this context and, as a collateral effect, nicely connect them with
the Christoffel-Darboux kernels. These formulae suggest a link of these kernels with the
Cauchy propagators that in the Grassmannian 0 approach to multicomponent KP hier-
archy was used in [72,73]. This identification allows us to give in Theorem 6 expressions
of the MOLPUC in terms of products of their Miwa shifted and non-shifted quasi-norms.
Despite that these expressions lead to the 7-function representation in the scalar case,
this is not the case within the matrix context.

Let us mention that the submodules of matrix Laurent polynomials considered in
this paper have the higher and lower powers constrained to be of some particular form,
implied by the chosen CMV ordering. In [13] this limitation was overcome by the in-
troduction of extended CMV orderings of the Fourier basis, which allowed for general
subspaces of Laurent polynomials. A similar procedure can be performed in this matrix
situation; but, as its development follows very closely the ideas of [13], we prefer to avoid
its inclusion here.

The layout of this paper is as follows. Section 2 is devoted to orthogonality theory,
in particular in Section 2.1 we consider the left and right block CMV moment matri-
ces and perform corresponding block Gaussian factorizations in Section 2.2, getting the
associated families of right and left MOLPUC and matrix Szegé polynomials and their
biorthogonality relations. We also get the recursion relations and Schur complement ex-
pressions of them in terms of bordered truncations of the moment matrices. Then, in
Section 2.3 we introduce the matrix second kind functions that are connected with the
Fourier series of the measure and that will be relevant later on for the adjoint Baker
functions. The reconstruction of the recursion relations from the Gauss—Borel factoriza-
tions is performed in Section 2.4; the Christoffel-Darboux formulae for this non-Abelian
scenario are given in Section 2.5. Observe that in this case, the projection operators are
projectors in a module over the ring C™*"™ that in the Hermitian definite positive situ-
ation lead to orthogonal projections in the standard geometrical sense. The integrability
aspects are treated in Section 3. Given adequate deformations of the moment matrices,
we find wave functions, Lax equations and Zakharov—Shabat equations in Section 3.1;
here we also consider a generalization of the Cafasso’s Toeplitz lattice and the bilinear
equations formulation of the hierarchy. Finally, we extend to this matrix context the
discrete flows for the Toeplitz lattice, intimately related to Darboux transformations
in Section 3.2 and also derive the bilinear equations fulfilled by the MOLPUC in Sec-
tion 3.1.3. Finally, in Section 3.3 we consider the action of Miwa transformations and
get the previously mentioned results. We conclude the paper with a series of appendices
that serve as support of certain sections.



Finally, let us stress that this paper is not just an extension of the results of [13] to
the matrix realm but we also have introduced important elements not discussed there,
which also hold in that scalar case, as the n operator, a different proof of the Christof-
fel-Darboux formula with no need of associated polynomials and new relations between
Christoffel-Darboux kernels and Miwa shifted MOLPUC.

2. Matrix orthogonality and block Gauss—Borel factorization

In this section, inspired by the CMV construction [29] and the previous work [13], for
a given matrix measure, we introduce an appropriate block moment matrix that, when
factorized as a product of lower and upper block matrices, gives a set of biorthogonal
matrix Laurent polynomials on the unit circle. This Borel-Gauss factorization problem
also allows us to derive the recursion relations and the Christoffel-Darboux theory.

2.1. The CMYV right and left moment matrices for quasi-definite matrix measures

The following m X m matrix-valued vectors will be relevant in the construction of
biorthogonal families of MOLPUC

Definition 1. The CMV vectors are given by

x1(z) == (]I,O,]Iz,O,HzQ, .. .)T,
X2(2) := (0,1,0,1z,0,1:%,...) ",
Xa(z) == zilxa(zfl), a=1,2,

x(2) == x1(2) + x5(2) = (LI, Iz, 1272 122, .. .)T.

In the sequel, the matrix x) will denote the I-th component of the matrix vector y

-
x =2,
Definition 2. The CMV left and right moment matrices of the measure p are

Co cC_1 C1 C_2
C1 Co Cy C_1

1 ..
gt = ygx(z) u(z) (x(z))Jf =2r| 1 c2 c c—3 ... |, (5)
T e C2 C1 Cs3 Co -




Notice that when du(#) is Hermitian, so are the moment matrices g and g%.

In the scalar case [13], the only requirement that the moment matrix needs to meet is
to be Gaussian factorable; i.e., all the principal minors of the matrix are requested to be
not degenerated. The measure from which this moment matrix is constructed receives the
name of quasi-definite measure. This condition is related to the existence of biorthogonal
polynomials of all degrees — also called non-triviality of the measure. In the matrix case,
the requirement is a bit more relaxed.

Definition 3. The matrix measure y is said to be quasi-definite if its truncated moment
matrices satisfy

det((gH)[l]) #0 for H=R,Land=1,2,3,....

Notice that (¢")l!] € M,,,;; a quite different situation from the scalar case in which all
the principal minors had to be non-degenerate, while in the matrix case only the ml-order
principal minors should meet this requirement. Actually, this is the only restriction —
besides having compact support on T — that from hereon the matrix measures must
satisfy, since when this condition holds

Proposition 1. The moment matrices g, H = L, R, of a matriz quasi-definite measure
admit a block Gauss—Borel factorization.

Proof. See Appendix A. O

2.1.1. The generalized matriz Szegd polynomials
Definition 4. Given a matrix quasi-definite measure u, the set of monic matrix polyno-
mials {Pifl}fio, {Pﬁ}j’io, 1= 1,2, with deg Pﬁ =1, H = L, R, satisfying

iz

(21, Pfl(z)»L = nglLl(z) d'u(z)z_j =0, j=0,...,0—-1,
T

(Ph(2), 1)), = 7§zjd‘f—(z>[p;l(z>]* —0, =001,

1z

d .
PR Y o oo,

1z

(P, D) = ¢

11



{21, Pfl(z)»R = ¢z*jdﬁf(2)Pﬁ(2) =0, j=0,...,1—-1,
T

are said to be Szegd polynomials.

Proposition 2. The matriz Szegd polynomials introduced in Definition 4 for the quasi-
definite situation exist and are unique. Moreover, there exist matrices hl € M,,,
H = L, R, such that the biorthogonality conditions are fulfilled

S ihit = (P, Py, H=R,L.

H’

Now we introduce the matrix extension of the Verblunsky coefficients.
Definition 5. The Verblunsky matrices of a matrix quasi-definite measure are

ol ==Pl0), i=1,21=1,23,..., H=L,R,

7 :
and the reciprocal or reversed Szegd matrix polynomials are given by
(PHY'(2) =2 (P ("), H=LR

Notice that in the Hermitian positive definite case, the matrices th , H =L R,
l =0,1,2,..., can be interpreted as a kind of “matrix-valued norms” for the matrix
Szegd polynomials, as the square-root of their traces is a norm indeed.

2.2. The CMYV matriz Laurent polynomials

We consider now the m x m block LU factorization of the moment matrices (5)

and (6); in fact, there are two block Gauss—Borel factorizations, for both the right and
left moment matrices, to consider

gF = S7'DES, = 8718y, S\ €L, Se €U, Sa €U, Dy € P, (7)

——1 — _—
gt = 2,DRZ, " =2,77', Z, e ¥, Zi €U, Z, €U, Dr < 9. (8)
For the entries of the block diagonal matrices, we use the notation

D" = diag(D{',D{,...), H=L,R. (9)

The reader should notice that in the Hermitian case, the two normalized matrices of
the factorization are related
1 ——1
st=s, ., zZl=2z (10)

and the block diagonal matrices are Hermitian; (D)t = D¥ H = L, R.

12



Definition 6. We introduce the following partial CMV matrix Laurent polynomials

o1 = Six1(2), ¢1q = 51X§(Z)

ok = (S50 ), ok, = (Syt

ol = x1 ()71, R, = [xJ(z)Zl,
oty =x1 (2" oy =[] ()2

and CMV matrix Laurent polynomials

Of = i1 + 612 = Six(2), o =0k, + ok, = (S7) x(2), (11)
of i=of + ol =xT(2)2,  of=of +efa=xT()(Z) (2)

Notice that these semi-infinite vectors with matrix coefficients (y; O (2),1=0,1,...,
can be written as

() (2)

oF = [ @NVE |, oF = (")), (V). =12

For the Hermitian case, we have

)@ =0H 7 )Y@, @D e = (@MY e)DE,
l=0,1,.... (13)

2.2.1. Biorthogonality

From the Gaussian factorization, whose existence is ensured for quasi-definite ma-
trix measures, we infer that these matrix Laurent polynomials satisfy biorthogonal type
relations.

Theorem 1. The matriz Laurent polynomials {(¢H)§l)}?io and {(@H)él)};’io, H=1L,R,
introduced in (11) and (12), are biorthogonal on the unit circle

Proof. It is straightforward to check that

55 ¢f(z)dM(Z) (2) 51( yﬁ X(Z)d'fiz)x(z)*)s S1g" S5t
T T

- TdL(Z) R(z) = 2—1 —Zdu(z) B . 2_1 -
f(qsf( )1 ) <Z§X() O a- gzt o

13



In order to relate the CMV matrix Laurent polynomials to the Szeg6 polynomials, we

rewrite the quasi-orthogonality conditions from Theorem 1

?g(wf)(gl)(z)Mz_k —0, k=—l,... -1,

1z
T
20+1 dp(z
Pt B —o, et

(15)

(16)

Proposition 3. For a quasi-definite matriz measure i, the matriz Szegd polynomials and

the CMV matrix Laurent polynomials are related in the following way for the left case

2(eh) ) (2) = Phy(2),
l“(@f)@ur1 (2) = (Pdors1) " (2),

2(D5) (05) ™ (2) = Pha(2),
ZZH(D2l+1)T(‘P§)(2l+l)(z) (Plors1) " (2),

and

(08 (2) =PIy (2),
D) P () = (Phyyy) (),
(B (2)DE = PFy(2),
ZIH(“P?) (QZH)(Z)DQH = (P2L,2l+1)*(z)

for the right case.

(17)
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Proof. Taking the differences between the RHS and LHS of the equalities, we get matrix
polynomials, of degree d = 2] — 1,2l that when paired via {(-,-) g, H = L, R, to all the
powers 27, j = 0,...,q cancels. Therefore, as we have a quasi-definite matrix measure,
with moment matrices having non-null principal block minors, the only possibility for
the difference is to be 0. O

The last identifications together with (4) define some of the entries of the Gaussian
factorization matrices.

Proposition 4. The matrix quasi-norms h,? introduced in Definition J and the coefficients
DH given in (9) satisfy

L _ nL L _ PR
h21 - D2l7 h2l+1 - D2l+1»

R _ R R _ nkL
h2l - D2l7 h2l+1 - D2l+1'

For the first non-trivial block diagonal of the factors in the Gauss—Borel factorization,
we get

Proposition 5. The matrices of the block LU factorization can be written more explicitly
in terms of the Verblunsky coefficients as follows

I 0 0 0 0
[afy]T 1 0 0 0
* 04{12 I 0 0
S1= * * [agfg]T I 0 J
* * * a{“A I
I 0‘{%,1 * * *
0 I [cyQLQ]T * *
. 0 0 I ofy *
S2 =10 0 0 I [od,)t ;
0 0 0 0 I
I 0 0 0 0
041L,1 I 0 0 0
. e Y LI 0 0
Zy = * * afg I 0 )
* * * [a§4]T I

15



I [aQLyl]T * * *

0 I aﬁQ * *
Z, =10 0 I [a2L73]T *

0 0 I oty

This gives the following structure for the MOLPUC
Proposition 6.

(1) The MOLPUC are of the form

(¢1L)(2l) :041L72l271+m+zz,
(o1) =27 e (afl) ',

(65)® = (1) ") (=™ + -+ ),
(¢§)(2H1) (hE)D) (aﬁzlﬂ)w)a
(6F) ) = (afiyz™ 4+ 2) (b)) ",

(6F) Y = (717 e (adgg) ') (W) T
(65 = allyz 4 4 2,

(¢2)

L 1
R SR RN AR

(2) The “quasi-norms” and the MOLPUC fulfill

31 = yg(d)l) (D ( )d/{i(z)z”l, hi = 55( 1L)(21)(Z)d/f(z)z47

1z

2l Td,uz 2041 rdp(z) ;-
hE 7% ) ii )Zl, hh :yg(( 52)( )(z)) ( )z -1
T T

Proof.
(1) Use (7), (8) and Propositions 4 and 5
(2) Consider the biorthogonality (14) together with the explicit expressions of the first

item in this proposition and orthogonality relations (15) and (16). O

Recalling (10), we conclude from Proposition 5 that in the Hermitian context, we have

16



ofy=aff, H=LR, 1=01,..

9

(D' =Dff, H=L,R 1=0,1,....

It is not difficult to see comparing the previous result with the proof of the Gaussian

factorization (A.1) that in terms of Schur complements, we have

Proposition 7.

(1) The matrices Dff € C™*™, H = L,R, 1 =0,1,..., from the diagonal block of the

bock LU factorization can be written as the following Schur complements

DlH — (gH)[l'H]/(gH)[l], H=LR [=01,....

(2) The Verblunsky matrices can be expressed as

2k—1
[2k] —1
O‘1L,2k =- Z (gL)zk,i(((gL) ) )i,2k71’
i=0
R t_ 2k L Iy [2k+1] —1
[0‘2,2k+1] = Z(g )2k+1,¢(((9) ) )i,2k’
i=0
o) == 3 () (597
2,2k] = 9 )k, \\\9 §,2k—1°
i=0
2%
[2k+1]\ —1
041L,2k+1 = Z(gR)2k+17i(((gR) ) )i,2k’
i=0
2h—1
i [2k]y —1
[O‘2L,2k] == Z(((QL) ) )Zkfl,i(gL)i,Qk’
i=0
R o 2k I [2k+1]3 —1 I
Q911 = Z(((Q ) ) )Qk,i(g )i,2k+1’
i=0
2k—1 .
a{%,Qk == Z (((QR) ) )2k—1,i(gR)i,2k’
i=0
2%

[azL,zkH]T = Z(((QR)[2k+1])_1)2k,i (gR)i,Qk—Q—l'

=0

2.2.2. Alternative ways to express the CMV matriz Laurent polynomials

(20)

For later use, we now present some alternative expressions for the MOLPUC
(e D(2), H = L,R, 1 = 0,1,... in terms of Schur complements of bordered trun-

cated matrices

17



Lemma 1. The next expressions hold true

(‘plL)(l)(Z) =(So)uy(0 0 ... 0 I) ((gL)[Hl])le[Hl]

(@)oo  (9%)o1 oo (9%)ou1 x(2)©

=SC

(9" )i—10 (QL)'Z—l,l (g X(Z).

(g™)10 (@911 - (@911 | x(x)®

(6")o (@5 o (@)1 | x(z)©

=5C

and

(1)) = T (o)

(21)

(22)



(QR)O,O (gR)0,1 (QR)0,171 (gR)O,l
(QR)I,O (QR)1,1 (QR)1,171 (gR)l,l
=sc| : : L on T,
()10 ()11 (g™)i—1-1 | (g1
[x(2) 11O [x(2) 1D . [x(2) "I [x(2) T
T

(900 (9o (9%)0u-1 | [(x(z)")T]©®
(9M)10 (9™ (911 | [(x(z) "W
=SC : .
(9%)i—1,0 (9%)i—11 - (g1 |[(x(2) T)T0D
(@M)o (9% - (@ | [x(zx) 1)

Proof. See Appendix A. O

Following [27] we give expressions in terms of Schur complements for the matrix Szegé
polynomials, in terms of bordered truncated matrices of the right and left block CMV
moment matrices, extending though similar expressions given in [27] in terms of standard
block moment matrices.

Corollary 1. The left matriz Szegé polynomials can be rewritten as the following Schur
complements of bordered truncated CMV moment matrices

L\[2]] ’ (Z)[zl]
Ply(z) = 2 SC g7) X :
1221(2) ((QL)QZ,O o (9P)220-1 | x(2) @D
R\ [21+1] ‘ *(z)[2l+1]
PL Py :zl—i-l e (g ) X 7
1’2”1( ) ((QR)21+1,0 (QR)2l+1,2z—1‘X*(z)(mﬂ)
‘ (gL)O,Ql
[Pl (2)]! = 2sc | (gD ,
(gL)2l71,2l
(x()HPI] (x(2)1) D
(9")0,2141
Phaun()] =21sc | 0% ,

(QR)21,21+1
(NPT G () D

while for the right polynomials we have
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(QR)O,zl
Pll,%zz(z) =2'SC (gR)[Ql] )
(QR)2171,21
(x(2) P (x(2) 1)@
(QL)0,21+1
P11?21+1(Z) =Z*1sC (gL)[le]

(gL)21,21+1
(X* (z)T)[2l+1] ‘ (X* (Z)T)(QH-I)

Rt (9" [ Oe()h
[ngl(Z)] =2z SC ((gR)zz,O (93)21721_1‘@(2)1)(21) )

R - T S+l (QL)[2l+1] ‘ (X*(Z)T)[QH_H
[Pozrn ()] = 5C ((QR)QlJrl,O (gR)21+172171‘(X*(z)T)@l“) '

Proof. These relations appear when one introduces in (17) and (18) the expressions of
the CMV polynomials in terms of Schur complements. O

2.8. Matrix second kind functions

The following matrix fashion of rewriting previous left objects

(1L,1 1L,2>: S1 0 (Xl Xﬁ):( Six1 S1x5 >
ok, ok, oS\ Sy Tx (ST )
<¢f> _ ( i ¢iz> <1>
o5 b5, ¢ha ) \1)°
[g"1F 0 | _ | [So)fISTT 0 |
0 g-| 0 S7tSy |

and the right ones

[S2]T 0 (STt o
0 St 0 Sy

Zy 0

<¢ﬁ1 ¢§1) :( XI XI )
oty b D™ Dal™/) | o0 [z

¢y P )

R RY _ 1,1 2,1

(o of)=1 DG ).
9"t 0 | _ [ [Z71T 0 | | [Z]f o
0 g 0 Z 0 z!

inspires the next
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Definition 7. The partial matrix CMV second kind sequences are given by
(Cil sz> |50 (x’{ xz) _ ([Sllﬂx’f [Sllm)
C2L,1 CzL,z 0 S X1 X2 Saxi Sax2 ’
(Cfl C§1> _ ([XT]T [XT]T) _ ([XT]T[Z?N [XT]T%)
Cly C3%y X3 Xz Xz (20T X3 2
and the corresponding matrix CMV second kind sequences are
Ct\ _ [(CL Oy (1
cy) \Cy CF)\1)’

(cef emy=a n(oR &)

R R
C1,2 02,2

[Z7'T 0
0 Zo

Complementary to the above definition

Definition 8. The associated CMV Fourier series are
(FzL,1 F2L,2) _ "o (X*{ m) _ ([gL]Tx’{ [gL]Tsz)
rf, 0 g \xi xe 9" xi  gtxe )’

(Ffl Ffﬁ),:([xi‘]T [XI]T) [g"]" 0 :<[><i‘]T[9R]T [XT]T9R>
Iy Ifhy) " \xs Xz 0 g" Xz oMt xag™ )

for which we have:

Proposition 8.

(1) The elements I'" and C*, H = L, R, are related in the following way

(Ei) - l[sép S?l

(2) The second kind functions can be expressed as Schur complements as follows

[Z5]1 0
0 z;t

L
(C;), (Lf If)=(Ck cf)
C3

(gL)O,l
(cH @) =sc| (@) : oy
(QL)lfu
(CEHI[(E()HD
LW,y = (g")M | (1 (2)1
(02) (z) =8SC ((QL)l,o (gL)z,l1(F1(Z))(l)> )

21



9)i0 (9 1,1—1‘
(9™)o.
(B =sc| @D 0" )El y (Dr');-
(I (2) [l]‘ (z))®

(3) In terms of the matrixz Laurent orthogonal polynomials and the Fourier series of the
matriz measure, we have

z) =2mz"'F,(z7") (npf‘) @ (7). (23)

Proof. The first part of the proposition follows directly from comparison of the struc-
ture of the relations from the previous lemma with the definitions of the CMV matrix
polynomials. For example

=870k = OF = 8,1} same structure as ¢F = S;x replacing I't" < x.
For the second part of the proposition, we shall only prove one of the cases since the

rest of them can be proven following the same procedure. First, from the definition of
the second kind functions, we have

Taking the [-th component of this vector of matrices, we get

(01 (l) / Z ,n—1 1n9 d,u 0)}1‘(905)(1)(619)

g n=—o©
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27

_ Z Zn—l/ei(n—i-k)e[du(e)]T((Pg,k)(l)

k,n=—o0 0

cor (8 ) (3 )

k=—o00 n=-—oo
= 277271FJ(2) ((pf/)(l)(zfl). a

Recalling the previously stated relation between the I' and the C¥, it follows from
Proposition 8 that

Proposition 9. The associated CMV Fourier series satisfy
Ffj =2rz"'F, (z_l)x(j) (=71, FQL]- = 27TZ_1FT(Z)X(j) (1),
Ff“j :QWZ*IFu(z*I)X(j)(zfl), F L =21z 1FT( )X(J)( h.

Another interesting representation of these functions is

Proposition 10. The second kind functions have the following Cauchy integral type for-
mulae

e = f[ o] 2 )

J u—z"1
z) = 1udH(u)_ ul, z
Chi(2) z&zﬁ() ) s
el = -+ ] g
T
Chate) = ot | ] <
T
Al = pdp() [, w7
0T (2)] zﬁ[ ) ]
cfi) = B[ | Yol 1>
T
ot = Pl L [T
T
(Cfi(a)] = |-+t s | ot ol <1
T
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Proof. Direct substitution leads to

But these are the series expansions of the functions of the proposition. We will not deal
here with convergence problems since their discussion follows the ideas of [13]. O

2.4. Recursion relations
In order to get the recursion relations we introduce the following

Definition 9. For each pair 7, j € Z,, we consider the block semi-infinite matrix F; ; whose
only non-zero m x m block is the (4, j)-th block where the identity of M,,, appears. Then,
we define the projectors

o0 (o)
Iy =) By, Iy =Y Eaji19511,
=0 =0
and the following matrices

oo o0 o0
Ay = E E2j,2+2j, Ay = E E1+2j,3+2j, A= E Ej,j+1,
Jj=0 Jj=0 Jj=0

T = Al + A; + E171AT.
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The matrix 7", which can be written more explicitly as follows

0010000000 -
10,00000000 ---
’0707107 6:ﬁ 6:6 70:7070777
0100000000 ---
00]0000I000---
r=[0001000000:
00100000010 ---
00,000L0000---
‘0_0_;0_ 6:6 6:6 _0:_0_0777
00/00000T00---

satisfies
ri=rt=77T
and has the following properties

Proposition 11. The next eigen-value type relations hold true

Tx(z) = 2x(2), T 'x(2) = 27 "x(2),
X&) T =2x(2)",  x(2)'T=2"x(z)".

Proof. It follows from the relations

Aix(2) = 2111 x(2), Aax(z) = 27 Iox(2),
Al x(2) = (27 Iy — EgpA)x(2), Ag x(2) = (211 — E1 1 AT )x(2).

From these, the following symmetry relations are obtained
Proposition 12. The moment matrices commute with T; i.e.,
T¢ =¢"r, H=L,R.

Proof. It is a consequence of

Ty = %ZX(Z) W) eyt = %X(z) W) (1x(2)" = gt
T

T

14" = )

T

(24)
(25)

O

(26)
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We now introduce another important matrix in the CMV theory
Definition 10. The intertwining matrix 7 is

1,0 0,0 0,00 ---

0'r 0'0 00 0 ---

-4 -4 - = =
0000T,00 ---
'@d@d@dfff
0000010 -

which, as the reader can easily check, has the following properties

-1 T

nt=n ax()=x(kE"),  x@) "

n=x("")
When z € T, we have that nx = ¥ and x "7 = x which lead to the intertwining property

Proposition 13. The left and right moment matrices satisfy the intertwining type property

ng" = g"n.

Proof. It is straightforward to realize that

Proposition 14. The matrices T and n are related by
ny =71"1n.
Now we proceed to the dressing of T and 7. We first notice that
Proposition 15. The following equations hold

1Syt = S,rSy
777y = 2,10 2,
ZytnrrS;t =z nrPSyt, pel.
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Those equations allow us to define

Definition 11. Let us define

JE = § TS = S.1Sy

and for any p € Z, introduce

JR =277, = 277 Z,,

Clp = Zy 'qrP Syt = Z7 e syt

Observations.

(1)

O[*\PH = Zz—lanlplsl—l = Z;lf‘p‘nsl_l.

(2) In the Hermitian case,

el 1
Clop = Z5 'nSy " = 27 'Sy = D2y S, D' = D"Zins| D"

t _ L
— C[O]fD C[O]

—1DE,

Proposition 16. Powers of Jg can be expressed as follows

(JB)'" = Ol

(1!

= [Cpyl ™' Cpy-

Now we give the schematic shape of some of these matrices

JH =

% %1% 010 0,0 0,00 -
%1% 01000000 -

0 x'x x'«x0'00'00 ---
| | | |
0 %% %+ 00000 ---

000 % %000
000 '« x'«0'00 ---

-— < +
00000 %1% %%x0 ---
00,0 0,0 % % 0 -
0000000 % % -
0010 010 0,0 %1% % ---

% %0 0,0 0,0 0,0 0 ---
# % 000000 -

% %1% %x10010000 ---
0 01k %1% %0 0,00 -
00/% %% %0000 -
000 0% %% %100 ---
oY DU
00/00% %%«x%00---
00,0 0,0 0 * % * -
00000 O *'% % -
0010 010 0,0 0% % ---

(27)

(28)
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*1% 010 0100 -+ *1% 010 0100 -+

% %0000 - *:**:oo:om--

Ofs %% 000 --- 0'* *I* O'OO

B e e B

010 %% 00 --- O|0 *|>k >k|00--~
O[O]: ():O O:* *:*O g C[—l] O:O O:* *:*0

0:00:0 *:** 0:00:0 *:**

0/00/001% % --- 0/00/001% % ---

| | | | | |

Here the * are non-zero m x m blocks that, thanks to the factorization problem, can
be written in terms of the Verblunsky coefficients as we will see later. The shape of
each matrix is a consequence of the two possible definitions (in terms of upper or lower
block-triangular matrices). For the explicit form of these matrices, see Appendix B.

A first consequence is the following relations among Verblunsky coefficients and the
matriz quasi-norms of the Szeg6 polynomials

Proposition 17. The following relations are fulfilled

hiok,,]" = [of,] hE h ot =l
af i =hkaf, [0fia] ' BE = nE [k, 0],
hi = (I— [ag) o) ot )i

hEt =hl 1(]I—[a2k]a ),

h£ = (]I afk[az k] )hk 15

hi aﬁk [QQL,k]T)v

hE | (]I —
Proof. Just compare the two possible definitions of C[jg and C'[jE - O

Notice that the two relations in each column coincide in the Hermitian case.

Proposition 18. The next eigen-value properties hold

Jrol = 2o, (JB) ot = 2 lek,
) ek =k, (TN ek = 20k,
oB[TR)" = 20F, o ([J7N 7 =2 1ek,

o7 = 2o, (I = 20,

and the following properties are fulfilled

P R0y = (@)

C[p]dif(z) =
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Proof. The results follow directly from the action of Y+ and 7 on x and the definitions
of JH, Clp) and & For example

JL¢1L = S’lTSflS'lx(z) = 51Tx(z) = 251x(2) = z@lL,
C’[p@f = Zz_lnTpSl_lslx(z) = Z;lnsz(z) = szglx(zfl) = z”(@f(iil))f.

For the remaining relations, one proceeds in a similar way. 0O
This last proposition implies
Proposition 19. The following recursion relations for the left Laurent polynomials hold

2(901)(%) —Qg 2k+1(]I [04521@} o351 2k)( )(% Y 051L,2k+1 [Oég;zkr(%)(%)

_ al s (QD )(2k+1) ( ) 2k+2

Z(‘Pl)(%H) (- [0‘§2k+1]T0‘1L2k+1)(H - [O‘Q%]T%sz)(@ )(% !
+ (1= [0fain]) of o) [offarn] ()
— [afai1] ot anga (o )(%H) + o5 +1]T(901L)(2k+2)»
Z(‘Pé)(%)(z) = _a§2k+1(¢§)(2k 1)(2) — 0oy [0 2k]T(‘P§)(2k)
— (1= afgin [0f o] ) (05) T 2)
+ (I 05 [O‘l 2k+1] ) (L= a3l o [0 ok 1o T) (ﬁ)(%ﬁ) (2),

2(902)(2k+1) ( )(% Y )+ [051 Qk] (802)(%)(2)* [0‘1L,2k+1r04§2k+2(90 )(2k+1)( )

+ [Ch 2k+1] (I- 0‘5,2k+2 [Oéf,zk+2]T)(905)(2“2)(2),

while for the right polynomials, relations are

2(of) ™ = = (eB) * Vad g — (00) [0 ab
¥1 2kH)O‘l ,2k+2 (]I - [a§2k+l]TO‘f,2k+l)
— ()"
+ (90:1[2) (B+2) (H - [a2R2k+2] Tafzk-s-z) (]I - [a§2k+1} TalL,2k+1)a
Z( )(%H) 90{%) .- 1) ( )(%)[ Qg Qk]T - (80{2) (2k+1)0‘1 2k+2 [a§2k+1]T
+ (‘P )(%H) (]I - [ Qo 2k+2] 251 2k+2) [a2 2k+1r,
(@f)(%) = (<P§)(2k Y (H - a2 2k [041 2k] )042 2k+1 (902 )(%) [%L,QIJ T045’2k+1
(0 R (0 (n — afty, [al o)) (n — ofopi1[0f241] ")
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+ (0F) " [al ] (1= afarsi [0F ssa] )

- (‘PQ )(2k+1)0<2 2ht1 [041 2k+1]Jf + (‘P?)(%H) [O‘ka-&-l] F

We have written down just the recursion relations for z and not those for 2=, which
can be derived similarly to these ones. For the complete recursion expressions, see Ap-
pendix C.

Proposition 20. The following relations hold true

o) () = (1= [afy] ol o) () 2V (@) + [of] (1) PP (2),

eB) P N = —aly L (0D PV @) + (08) PP (e)

2)

2)

o5 () = () TV + (6 P e [afian)
)(2k+1 (__1))T

((
(( :
((

((p2

= — (ot )(%H)(z)al 2ky2 + (o1 )(2k+2)( )(T- [aé%m]fafzm)»
()™ ()" = ~[0faa] (1) V2 + (1) ),
()™ ()]

= (1= af o [0dar] ) (1) ™ () + af i (1)
()™ E) = ()™ @) + (o)™ b,
(5 )

= —(W{%)(zk)(z) [0‘52“1}T + (‘P{%)(%H)(z) (I- a1L,2k+1 [a§2k+1] T)-

1
2
1
2

(2k+1)( )

)

1
2
1
2

Proof. These relations appear just by substituting into (18) the expressions of the blocks
of (JH):H, C[O], C[,l]. O

Using Proposition 19 and the matrix CMV recursion relations in Proposition 20, one
derives the recursion relations for the matrix Szegd polynomials:
PL P, P :
Z 1,2l+1( z) — P 21+2(Z) —Qq 2l+2( 2 2l+1( ))
T *
(le,%zz( )) (H - (az 21) &31 21) (Pz 21-1( Z)) = (a2 21) Py 21( )
* * i i
(PzL,zz(Z)) - (P2,2l71(z)) (H a1 ,21 (a2 21) ) P1 21 (aszl)
ZP1],221+1( )— P 2l+2(z) (Pz 2[+1( )) CV1L,21+2
)

(P21?21+1( )) (Pz (2 )* = (0‘2 2l+1) ZP1,21(Z)



P1L,21+1(Z) - (H - alL,21+1 (agzlﬂ)T)Zszz(z) = 041L,2z+1 (P21?2z+1(2>)*
Pf’zzﬂ(z) - ZP1},%21(Z)(]I - (042L,2z+1)Ta§21+1) = (PQL,21+1(Z))*04§21+1

(P2L,21(Z))* - (PQL,21+1(Z))* = —przl(z) (045,2z+1)T

which after the prescription

sr:ﬂ\, = afN Ty = aﬁN
v o= (akn)" oy = (afy)]

coincide with the formulae in [27].
2.5. Christoffel-Darboux theory

To conclude this section, we show how the Gaussian factorization leads to the
Christoffel-Darboux theorem for the matrix Laurent polynomials on the unit circle con-
text. In this particular situation we must consider two different cases. As we are working
in a non-Abelian situation, we first have projections in the corresponding modules, “or-
thogonal” in the ring (our blocks) context. Secondly, when the matrix measures are
Hermitian and positive definite, we will have a scalar product, and the projections to
consider are orthogonal indeed.

2.5.1. Projections in modules

Given a right or left M,,, module M, any idempotent endomorphism 7 € Endyy,, (M),
72 =, is called a projection. For any given projection 7, we have Ker 7 = Im(1 — 7),
Ker(1—7) = Imm, and the following direct decomposition holds: M = Im 7 @ Im(1 — 7).
Two projections 7 and 7’ are said to be orthogonal if 77’ = 0; observe that (1 — ) is
idempotent and moreover orthogonal to 7. Orthogonality is not related here to any inner
product so far, it is just a construction in the module. In particular, in our discussion of

matrix Laurent polynomials, we introduce the following free modules

, A I =2k
L, Y [ A :
A =M {xV};_, = {Am,[—k—l,k]v l=2k+1.

That we can consider as a left free module, when multiplied by the left, and denoted
by V4], or as a right free module (when multiplication by matrices is performed by
the right) and denoted by W1q). We will denote by V' = lim V}; and W = lim W[, the
corresponding direct limits, the left and right modules of matrix Laurent polynomials.
The bilinear form

iz

Gl19) = (5" 1), = (700 = P51 g,
T
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fulfills

This can be understood as a change of basis in the left and right modules Wp;) and Vj;
the left moment matrix can be understood as the matrix of the bilinear form G when
on the left module W[ we apply the isomorphism or change of basis represented by the
1 matrix. Similarly, the right moment matrix can be understood as the matrix of the
bilinear form G when on the right module V};; we apply the isomorphism represented by
the n matrix. Observe that the G dual vectors introduced in Appendix D are of the form

Thus, following Appendix D, we consider the ring of G projections in these left and right
modules

Definition 12.
(1) The Christoffel-Darboux projectors
v —V W —w
L B TR W — Wy,

are the ring left and right projections associated to the bilinear form G.
(2) The matrix Christoffel-Darboux kernels are

—

1

K02 = D) Y] (D) ).

k=

= o

1—

K (2,2 = 3 (o) @[ ()] (29

k=0

Proposition 21. For the projections and matriz Christoffel-Darboux kernels introduced
in Definition 12, we have the following relations

-1

w06 = [ 1)L REN ) = S ™00, (65 Vo)

k=0

Vfev,
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VfeW.

Proposition 22. The Christoffel-Darbouz kernels have the reproducing property

) = a0 ) LK), = LR

Proof. This follows from the idempotency property of the 7’s.

Moreover,

Proposition 23. If the matriz measure p is Hermitian, then

(1) the followings expansions are satisfied

-1

(2N = 3™ ), () () V) vre,

(2) the following Hermitian type property holds for the projectors

(ridf. o)y = (f.mlgY . H=R,L.

When the matrix measure is Hermitian and positive definite, we have a standard scalar
product and a complex Hilbert space, and the projections 7 IS
— not only in the module but in the geometrical sense as well — to the subspaces
of truncated matrix Laurent polynomials; notice that there are two different, however
equivalent, scalar products and distances involved. In this situation, as is well known,
these projections give the best approximation within the truncated Laurent polynomials

and the corresponding left and right distances.

are orthogonal projections
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2.5.2. The Christoffel-Darbouz type formulae
Theorem 2. For zz' # 1, the matriz Christoffel-Darbouz kernels fulfill

KPR (z,2")(1—z2)
= (1) Y (0E ) T () H TV ) — (D) F TV ) (09 ()
[[2(5) "V @) hE L = [2(05) ™ ()] hhada ] (W) 7 (@) V()

[N @)+ [2e5) @) g ] 1) ™ ().

KL [2l+1]( )( _ 5 /)

= [=(e )(2”1) 1 it (08) " [(5) ) ()
T
[

~ (5 @) () Y
= [(e5) V@) B [(h5 ) T ) TV ()
+ [ad ]’ <hél> Heh) ()]
— D) P ] (1) () = adaiga (1) TV ()], (31)
K2 (z,2)(1— 2’2)
= [(5)™) 7 )rh (r5o) T )V (@)
— [ T E D ™ @)
= 2[( )" hk s — (6B S [k 1] (W) T T F Y ()]
—2[(eD) @) = (o) ata ) (6D ()],
Kt 2l“]( Z)(1-27)
= () T @k (h5) T (eF) TV E Y = (D) P ) () T (Y
= (o) TV ki [(h) T ) TV ()] + ol (hE) T () ()
—2(B) () [(5) ()] = [0fara] () @ ()] (32)

Proof. See Appendix A. O
In terms of the matrix Szegd polynomials, we have

Corollary 2. The matriz Christoffel-Darbouzx kernels can be expressed in terms of the
matriz Szegd polynomials as follows

22/71 l *
KA () = B o () () T (Pfa) ()

z

— (PEy ) (7Y () Py (2)],
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2l+1zl —1

KRR (a2 = [Pl () () (PR ()

— (PE)" (=7 (1) " Plyya (21)],

KRR () = (ii;il [P (2] ()~ [(PEa) " ()]
) ] o) PR

KRBz ) = 22k ()] ) (P ()]
1) ] ) [P ()],

where we assume that zz' # 1.

As we have just seen, letting an operator act to the left or to the right and comparing
the two results has been very successful with Jg. Actually we still have the operators
Cy,C_1 to which we can also apply the same procedure to get some other interesting
relations for the CD kernels.

Proposition 24. The neat relations between K™ and KT hold

KR[2141] (z, %) _ gLl2i41] <§,21>,
KR [2042) (z, l/) _ gLil2i42) (175)
z z

_ (90{%) (2k+1) ( )(2k+2)( )

- (901 )(%H)( )(H [042 2k+2]TCYf2k+2) (901 )(2k+1) (z’),

1 1 1
R [2l+1] KL [2l+1] /
2 K ( 2’) z <27 : )

— (M) (2k) (2)(o}) (2k+1) ()
= ()@= of s [adhara] ) (1) Y (),

Lpra(, 1Y _ L pn (1 )
2 'z z z’

Proof. The first two relations arise when comparing the action of Cy to the left or to
the right in

o1 (2)Cooy (%)

and truncating the expressions up to [2k+ 1] (first relation) or [2k +2] (second one). The
other two relations are obtained proceeding in the same way but using C_; instead. O
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3. MOLPUC and two dimensional Toda type hierarchies

Once we have explored how the Gauss—Borel factorization of block CMV moment
matrices leads to the algebraic theory of MOLPUC, we are ready to show how this
approach also connects these polynomials to integrable hierarchies of Toda type. We
first introduce convenient deformations of the moment matrices, that as we will show
correspond to deformations of the matrix measure. With these we will construct wave
functions, Lax equations, Zakharov—Shabat equations, discrete flows and Darboux trans-
formations and Miwa transformations. These last transformations will lead to interesting
relations between the matrix Christoffel-Darboux kernels, Miwa shifted MOLPUC and
their “norms”. The integrable equations that we derive are a non-Abelian version of the
Toeplitz lattice or non-Abelian ALL equations that extend, in the partial flows case,
those of [27] — appearing these last ones in what we denominate total flows.

8.1. 2D Toda continuous flows

In order to construct deformation matrices which will act on the moment matrices

(resulting in a deformation of the matrix measure) we first introduce some definitions.
Definition 13.

tH th ) € diag,,, j = 0,1,2,..., H =

(1) Given the diagonal matrices tf = diag(t;, .- tj,

L, R and t1, € C, we introduce
.
th= (th thth, .., tho= (th R el ),

we also impose ) = 0.
(2) We also consider the CMV ordered Fourier monomial vector but evaluated in 1"

@) = (LY L1 r2, ),

(3) With this we introduce

th « x(1) = itfx(f)(j), [X(T)]T xtf = i[x(f)(j)]—rtf.
j=0 J=0

The products in the above expressions are by blocks; i.e., the factors in M,,, multiply
M,,, block of the M, block matrix.
(4) The deformation matrices are

Wo (tL) = exp(tL * X(T)), Vo(tR) = exp([x(T)]—r * tR).
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(5) The t-dependent deformation of moment matrices, g*(t), H = L, R, and their
Gauss—Borel factorization are considered

g (8) == Wo(t9) " [Vo(—nt™)] ', g™ (t) = (S1(1)) " Sa(t), (33)
g () == Wo(—t5n)] g™V (tR),  gR(t) = Za(t)(Za(1)) "

Proposition 25.

(1) The deformed moment matrices can be understood as the moment matrices for a
deformed (t-dependent) measure given by

dp(z,t) = exp(trx(2))du(z) exp(x(2) "tr),
with the deformed Fourier series of the evolved matrix measure given by
Fo)(2) = exp(tLx(2)) F(2) exp(x(2) "tr). (35)
(2) The Hermitian character of the matriz measure is preserved by the deformation

whenever t© = (tf)tn.

Observe that in this paper we introduce a slightly different set of flows or deformations
of the measure than those in the scalar case [13]. Despite that in that scalar situation
both definitions give the very same flows that is not the case in this non-Abelian scenario,
as in this case we have deformation matrices multiplying at the left and right of the initial
matrix measure, and the order is relevant.

8.1.1. The Gauss—Borel approach to integrability
We consider the elements that enable us to construct the integrable hierarchy

Definition 14.

(1) Left and right wave matrices

W (t) = S1(H)Wo ("), Wi (t) := Sa(t)Vo (—nt"™),
W) = Vo(t™) Zu(t),  W3'(t) := Wo(—t"n) Za(t). (36)

(2) Left and right wave and adjoint wave functions

(1) = WE(b)x(2), (@E) (z.t) = [(WE) ' 0] 'x* (=),
Wk (2, t) = WE(E)X(2), (@F) (2.t) = [(WE) " (0] 'x(=),
Uiz t) = x(2) WD), () (20 = x"()T[(W T @)
U (2 t) = () TWEW), () (5 0) = x(2) T [(WF) @)
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(3) Left and right Jacobi vector of matrices (using our previous notation)

I
(7 (1)
JH(t)

X(Ju(t)) = (JH(t)=2 |- H=LR

(JH (1))

(4) Projection operators, a =1,...,m

SlE’aa;S'l_l7 H=1, H — L,
P(H,H’) — 52E,MSQ_17 H =R, o — L,
‘ ZQ_IEaaZQa H = L, H = R7
Zl_lEaaZh H = R, H = R

(5) Left and right Lax matrices

)= S1()TS1(t) " = Sa ()Y Sa(t) "t = JE(t),

Ri(t) := Z1() =12, (t) = Zo(t) '~ Zo(t) = TR (1),
) =S (H)Y 1S (t) "t = Si() Y 1S (1) = (T (1))
)

(6) Zakharov—Shabat matrices

(S1Baa(x(X)D 574, H=1L, H =
BUHH) . _ _(SZEaa(X(T))(j)Sgl)—, H=R, H =1L,
" (23 ' Baax(¥~1)D2Z5)y, H=1L, H =R,
(27 Baalx(r~1))V21)-, H=R, H =R,
(TN, H=L H =L,
oy _ ) —(xT)Y), H=R, H' =L,
! ~(x((J®)™H),, H=L, H' =R,
(x(JB)y"H@))_, H=R, H =R

(7) A time dependent intertwining operator

Clp(t) = Zo() 'YPS1(t) ™" = Zy(t) " 'nYPSa(t) .

Observe that

-1

gt =Wim) Wy, gt =Wl W)

(40)
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Definition 15. For H = R, L we introduce the total derivatives

We now present the linear systems, Lax equations and Zakharov—Shabat equations
that characterize integrability

Proposition 26. The following equations hold:

(1) Linear systems for the wave matrices

GWiL H,Lyr L o L H,Lyy/L

otH :Bj,a Wi, Wi :Bj Wi,
J,a

oWl R oH,R R R H,R

o = WiBiah O Wi =WiEBT
J,a

fori=1,2, H=L,R,a=1,....,m, j=0,1,....
(2) Lax equations

01T _ i it Oy = [BIPH gH
atfa - [ ja ]7 H,j - [ j ) ]7
8PbI_II,H,/ HH// H/ H// H/ H// HH// H/ H//
815—5 = [ ja 0 Tb L aHJPb = [Bj Iy ]
J.a
with HH ,H'"=L,R,a,b=1,...,mand j =0,1,....
(3) FEwolution of the dressed intertwining operator
9C) H,R H,L ICy) H,R H,L
o, = —Bja Cw — CwBjas ot~ —B; ) = O B

(4) Zakharov-Shabat equations

Hy,H' Hy, H'
aleJh _ aszJ’z + [ Hiy,H' H27Hl] =0
otz gl A
J2,a2 J1,a1

Proof. See Appendix A 0O

From the definitions of the wave functions, the action of 7" on y, the expression (35),
and the relations (23), it follows that

Proposition 27. The wave functions are linked to the CMV polynomials and the Fourier
series of the measure as follows
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T (2,t) = ¢1 (2, 1) exp(thx(2)),
(PE) (2,1) = 202719k (271, ) F (2) exp(—tEx(2)),
WE(z,t) = 22 'l (2 ) Fu (2 ) exp(—x (2 71) T #9),
(TE) (2,1) = ¢ (2, 1) exp(x (2 71) T #7),
Ufi(z,t) = exp(x(2) ' t7) 61 (2, 1),
()" (2,1) = 2wz exp(—x(2) TER) Fi(2) (65) (=7, 1),
Wiz, t) = 2m2 exp(—thx (=) Fu (=)o (271, 0),
(W) (2,1) = exp(tEx(271)) o5 (2, 1). (43)

These wave functions are also eigen-functions of the Lax matrices (38) L;, R;, fori =1,2,

LoF =20k TR, = 20f,

8.1.2. CMYV matrices and matrixz Toeplitz lattice

For the CMV ordering of the Laurent basis, the Lax equations acquire a dynamical
non-linear system form that is the matrix version, in the CMV context, of the Toeplitz
lattice developed in [3]. In [27] Mattia Cafasso presented a non-Abelian extension of the
TL which corresponds to our total flows. The partial flows presented here are, to our
knowledge, new in the literature.

Proposition 28. The Lax equations result in the following non-linear dynamical system
for the matriz Verblunsky coefficients H = L, R:

e Partial flows

0 _
atL O‘{%k (hlg—l) 1af,k—1Ea7ahkRv
1l,a
9 Lt R 1
W[azk] = (hkfl) Eaa[az k+1] hk,
,a
0 _
e 8] = hE (g ] Bua ()™
9 L L R R 1
otk Ok = _(hk)Ea,aaqu(hkq) ;
,a
9 -1 L R
8t£‘ alk (h’ ) Eavaal,k+1hk7
0

——[afi]" = =) 7 [afh ] Buah
2,a

)



0

[O‘g,k]T = _hkREa,a [%L,kq] f (héq) _1»

ots,
0 -1
W%L,k = hk a7 k+1Ea,a (hkR—l) )
,aQ
0
8tTh£ = —afEqa(ay k+1) hi,
1,a
0 R R(_L T R
&S—th = —hi (05 1) Eaaary,
l,a
0 R R \T L R
th = _(a2,k> Ea,aal,k+1hk7
2,a
0 i
i e = ~hi ot Baa(0z) -
2,a

o Total flows [27]

Om [O‘ri = [aé?m]T(H —aik [aé?k]T%

Oy, = —(1—af [ad] T)O‘fkflv
Onalof]" = (1= o] "af) [ofi ],

Onaafy = —afi_y (1= [af,] af),
3H,2[0‘§kr =~ (1 [og] ]TO‘ ) 03 1]

O aaly = ol (1- [ofy ] afy),
3H,2[0‘2L,kr = —[ok, 1] (@ ol [ad,]"),

s

3H,20¢5k = (H af’k [aik]T)aﬁkJrlv
h

Onahf = —aty (k) b
5H,1h1}j = _hkR(azL,k—l)Taffk,
aH,2h1}j = _(agtk)TakahkRa
3H72h£ = —h£a5k+1(a§’k)T.

Proof. To obtain the partial flows, it is enough to use the Lax equations for j,p = 1,2
and operate. In order to obtain the total flows, we go back to the partial flows, and
sum in a. From the Lax equations, we know that in this total case we no longer need
to distinguish between R, L. This procedure leads to the result that is finally rewritten
using the relations in Proposition 17. O
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3.1.3. Bilinear equations

Bilinear equations are an alternative way of expressing an integrable hierarchy devel-
oped by the Japanese school, see [40-42]|. We are going to show that these MOLPUC also
fulfill a particular type of bilinear equations. These results are the matrix extensions of
the scalar situation described in [13]. Let us start by considering the wave semi-infinite
matrices W (t) 36 associated to the moment matrix g/, H = L, R. Since the last one
is time independent, the reader can easily check that

Proposition 29.
(1) The wave matrices associated to different times satisfy
WEO (W)™ = Wi (W (t)
(W)W () = (W5(0) " W), (44)
(2) The vectors x, x* fulfill
Res.—o[x(z) (x*(é))T] = Res.—o [X*(z)(x(é))T] =L
(3) One has that the product of two matrices can be expressed as
UV = Res.—o[Ux(2) (VIx"(2))] = Res.—o[Ux" () (VIx(2))]
= Res.=o[(X"(9)TUT) 'x(2) V] = Res.o [(x(2) TU) '\ (2) V]
From where we derive
Theorem 3. For two different set of times t,t the wave functions satisfy
Res.o[#F (2, 0)[(#F)"(2,D)] "] = Res.—o [ (=, ) [(#4)" (2. 9)] (45)
Res.—o [[(#F)"(2,6)] "0 (2,1)] = Res.—o [[(#F) " (2,0)] "0 (2, D)]. (46)

From the identities in (43) the previous theorem can be rewritten in terms of CMV
polynomials as

Res._o[(eF) " (2.8) (exp (£ — 79)x(2)) 2™ Ful) [(e) ™ (. 0)]
= Reseoe[(o1) V) (T B esp(x(2) (77— 7)) (o)™ (1. D)'),
Res._o[[(#5)? (7, 0)] (7 Ful2) expl(() T (8 — ) () ™ (2. )]

= —Resoe[[(8) (5 0)] (exp((t2 — £4)x(2)) = F(2)) (o)™ (2. D).
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Here we have used that Res,—.. F(2) = — Res,—g 2 2F(z7!). Alternatively, we can write
all the previous expressions using integrals instead of using residues. To do this, let us
denote by vy and 7., two positively oriented circles around z = 0 and z = oo, respectively,
included in the annulus of convergence of the Fourier series of the matrix measure, such
that they do not include different simple poles that z = 0, oo, respectively. Then,

55@%(2, H[(w)* (z,0)] dz = §£u7§(z, H[(w5)*(z,0)] dz, (47)

yé[(w{?)*(z, 0] ot (2, Dz = %[(wf)*(z, ] (2, )dz (48)

or, in terms of matrix Laurent orthogonal polynomials and Fourier series of the matrix

measure:

Proposition 30. The evolved MOLPUC satisfy

Fe)O el — @) R (4 ) a:

= b)) R s (@ = ) (o)™ (D)
P ) (Bl espn ()T (0 = 1) () (2 Pt

= 75[@05)(” (2_1,t)f(exp((t]‘ - fL)X(z))z_lFH(z)) (go{?‘) (m)(z,f)dz.

Yoo

8.2. 2D Toda discrete flows
Given a couple of sequences of diagonal matrices

d= {d+7d7}7 d:t = {d:t,o = Ovd:t,lvd:t,Qv e '}7 d:l:,j € dia'gmv

and a pair of non-negative integers n = {n,n_} € Z2 , we consider the next semi-infinite
block matrices

Afn)=O-d_or ™) (I—dep YA —dyol) - I—dspn, 1),
Afn)=0—d_oY) - (I—d_py T)(I—dy o ") - (I—dypn,T7).

Observe that the order of the factors does not alter the product as each of them commutes
with the others.
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Definition 16. Given two couples of sequences of diagonal matrices, say d = {df ,diy
H = L, R, we introduce the discrete flows for the right and left moment matrices

g (k) = AL (nF)g# Al (nR), = {nt nl"} € 72,
g7(0,0)=¢", H=L,R.

The property ng”(nt,nf) = gf(n’,nf)n is easily checked and it follows that we
have an associated measure of which these are the corresponding left and right moment
matrices given by

L

dp(n”,n) = Li})(]l —d~ 27 ﬁ(ﬂ — di}jz)]

R

n? nf
x du [H(H —d? ) [ (- df’jz)] .
i=0 j=0

The measure is Hermitian if the following conditions are fulfilled
R 7t L L R
[df,;] =di;=ds;, Nt = Ngx = N,
being the evolved measure

dp(ng,n_) = [H(H —d_;z7") H(]I - d+7jz)]

i=0 j=0
n_ ny T

x dp lH(H —d_z ) JJa- dﬂ-z)] .
i=0 j=0

Positive definiteness for the Hermitian situation can be ensured if we request d; := d ; =
[d_;]T and n:=n, = n_ so that

m

dp(n) = lz ( H 11— dj’az|2> Eua

a=1

dp li ( ﬁ 11— dj,az|2> Eoal.
j=0

a=1

As in the continuous case, we introduce

Definition 17. The wave matrices, depending on discrete variables n,nft € Z2, are
defined as

WIL (nL, nR) =95 (nL,nR)AgL (nL), WQL (nL,nR) =5 (nL, nR) (AgR (nR))_l7

WlR(nL,nR) = AdRR (nR)Zl (nL,nR), W2R(nL,nR) = (Af}L (nL))_lZg (nL,nR).
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Hence
g" = [W{(nh,n")] _1W2L (nt,n'), 9"t = Wl (n®, nf) Wi (n", nR)]_l.
We also need to introduce the following objects

Definition 18.

(1) Given a diagonal matrix d € diag,,, we define the semi-infinite block matrices

Si(I—dr*hs;t, H=1L, H =1,

So(I—dr*h)s;t, H=R, H =1L,

Zy N1 —drT)Z,, H H’
H

o (d) = .
Z7 N1 —dr™h) 2y, R, H'

:R’
= R.

(2) The shifts are

7L (ninf) — (ni +1,nf) 7L (ni,nlj) — (ni,nf +1)
+ a—r ’ - nt — nk

b

TE . ny — N TR . np —ng
o\ nf) — f+1,05) )7 -\ nf) — et r1) )

For any diagonal matrix d = Y ", d,E, , € diag,,, d, € C, we introduce the semi-
infinite matrices

m

H,H __ H,H'

At =N g, P
a=1

where Pf’H/ was defined in (37); observe that when d = cl,,,, ¢ € C, we have dHH = (I

Notice that the (55 H are just particular combinations of the block Jacobi matrices J
S (d) = 1 — @™ H (JH)

Proposition 31. If g™ (nF,n®), (TH ¢"")(n",n®), H,H' = L, R, admit a block LU fac-
torization, then the & matrices introduced in Definition 18(1) also admit a block LU
factorization.

Proof. We have

Tig"h = (I-df

+1\ L
ifni-‘rlT )g

— SI(TES) T (TES) S5 = Si(I—dk o T ST =0 (dE . ),

Tig" = (I- di,niJrlTjFl)gR
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= 2 (TE2)(T42) 20 = 25 (L= df oy (T 20 = 027 (0 e ),
Tigh =g"(1- dﬁ,nﬁﬂril)

—  SI(TES) T (T£8)Sy " = So(1—df yne T4 S5 =000 (dF e y),

ngR = gR(]I —df

T1
i,n§+1T )

= Z2_1 (TfZ2) (szl)_lzl = Zl_l (]I o dinnglTjFl) 5R R(di nR+1)

Therefore, for H = L, R,

e O IR (g IR )_ (Tfs)sr" e 2,
(08", = (Tfs:)s3 e %, = (5 (02
(6 =2z, (1H2,) € 2, (64" ) =z 18z ew. O

Definition 19. We define

(5i,L)+ (T£SQ)SQ_ , H=L, H =1L,

w650 (Ti S))S;', H=R, H =1,
(.Uj: = L.R - ;L

(5i ) (TiZ1)7 H = La H _R7

((sij)+ ZyYTEZy), H=R, H =R.

We are ready to derive discrete integrability.
Theorem 4.

o The discrete linear systems

Tiwk = twlk o rEwlR =whRJAE =12 H=LR

e Discrete Lax equations hold

THJY = WL gE (W™ TH IR — (WYL RGIE g — LR,

o Intertwining matriz

TH Oy = (W) oy Wi, BH=LR
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e Zakharov—-Shabat equations

(waf/’L)wf’L = (TbH/wf’L)wf/’L, wf’R(Tanf/’R) = wf/’R(TbH/wf’R),

a,b=+, H H =L,R.

e Continuous-discrete equations

AL / /
+ H'.L hH,L _ (mH »H,L\ H'.L
761'1_1 wi Bj,a = (Tﬁ: Bj,a )wi 5
J,a
H/
Owy * 4 BB H Ry _ H’,R(T ’BH,R)
TotH ja % =Wy = Pha )
J,a

with HHH =L R, a=1,...,mand j =0,1,....

From these results, one may derive discrete matrix equations for the Verblunsky co-
efficients.

It also follows that these flows are extensions of Darboux transformations, see [13]
for the scalar case. Each of these discrete shifts is generalization of the typical Darboux
transformation corresponding to the flip of the upper and lower triangular factors of the
operators Jf ' These flips occur in some specific cases as follows. Let us assume that
the diagonal matrices dij do not depend on j; then,

I { (0" )N )y, H =L,

)
- (67R)_ (553, H =L,

TE pHgHH _ (68 (602 H =L
o @5, B = L.

It is clear that the shift corresponds to the flip of the factors in the Gaussian factoriza-
tion of the 0% H matrices, just as in the Darboux transformations. When the constant
sequences di = e, with ¢ € C scalars, we have that 5f A are pentadiagonal block
matrices (main diagonal and the two next diagonals above and below it), and therefore
the Gauss—Borel factorizations give upper or lower block tridiagonal matrices, (65 ’H/)+

and (5f’H/),, respectively. This is quite close to some results in the talk [28].
8.8. Miwa shifts

In our unsuccessful search for a neat 7-function theory in this matrix scenario, we
have studied the action of Miwa shifts. Despite we did not find appropriate 7-functions,
we found interesting relations among Christoffel-Darboux kernels and the Miwa trans-
formations of the MOLPUC. These relations do in fact lead in the scalar case to the
T-function representation of MOLPUC. Unfortunately, apparently that is not the case
in the matrix scenario.
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Miwa shifts are coherent time translations that lead to discrete type flows. Given
a diagonal matrix w = diag(wy,...,w,) € C™*™, we introduce four different M7+,
H = L, R, coherent shifts

L+ . 4L L w* L L L w”

My ™ o), = by — T My~ ity q by — I

R R R w” R R R w*
. — .

For each Miwa shift, we only write down those times with a non-trivial transformation.
When these shifts act on the deformed matrix measure, we get new matrix measures

AMG* [ = (1 —wz™")dp,  dMPF[p] = dp(l —wz™"), (49)
with corresponding left and right moment matrices given by

mg,ﬂ: [gL} — (]Iinil)gL’ mL:I:[g ] (H*”LUT:Fl)gR,

w

ME*E[g"] = g" (M —wr*"),  ME*F[g"] = g" (I —wTT). (50)
From these we can deduce the next

Theorem 5. For every diagonal matriz w € diag,,, the following relations between Miwa
shifted and non-shifted Christoffel-Darbouz kernels and MOLPUC hold

KR (o 0y = ol (K2R (2, u) (1 - wu)
n (mL,Jr[( L)(Ql)](z)) mLJr[h ](}151)71(90{4)(21)@)7
KR,[QZ}( ) mL +[KR 21— 1]] (H wi— )
(R ”Mz)im * b (o) () @)
KL’[QI](z,u) _ mi [KL J[21-1] ] (]I )
+ (5 [(ef) V] =) mE BT (h ) T (eh) T ),
R [2041] (2,u) = Smﬁ;‘ [KR,[QI]] (z,u) (I — wi)
+ (o) ] )amE [ng] (hd) ™ (o) (w)
KPP (2 0) = (1— wz ) mBE+ K21 (2, 0)
+((#5) 7V (@) B [ (o) ] (),
KBz, 0) = (1 - wa) 3 (K70 2,0

+ (o) (@) (M (o5 ] (),
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KB (2 u) = (1— wz) M [KL’[Ql]] (2,u)

+((5) @) B [0 ] (),
K2 (z,u) = (]I — wzfl)i)ﬁf]’* [KR’[Qlfl]] (z,u)

+ ()Y @) (B (08 BV ()

Proof. We just give the main ideas of the proof not dealing with details. Let us consider
(50) at the light of the Gauss—Borel factorizations (7) and (8)

MEE(S,]S5 1 = ME+[S4][I — wY*] ST,
-1 -1
(ME*[21]) " 2 = (ME*([Z,]) [T — wY T 2y,
S1(MEE[S1]) ™" = S[1 - wr ] (MEF[S]) 7
Zy ' MEE(Z,) = 27 1 — wY T mEE (2]
Each of these equalities defines a semi-infinite matrix relating shifted and non-shifted
polynomials. At this point it is important to stress that the LHS in the two first equations
are upper triangular semi-infinite matrices, while the two last equations have in the RHS
upper triangular semi-infinite matrices. Observe also that in the two first equations,
because of the RHS only the main, the first and the second block diagonals over the first
have non-zero blocks while in the LHS of the two last equations only the main diagonal
and the two immediate diagonals below it have non-zero blocks. Then we proceed as
in the proof of the Christoffel-Darboux formula in Theorem 2. To get a glance of the

technique, let us illustrate it for the first equation. On the one hand, we have for the
2l-th and (2 + 1)-th block rows

ML+ [S:)55
= MmLF[S)][1 — wY] St

' L, _
0 Al AR WAy o4 —w 0

— L, — L, 1
=] o0 0 M (A (hE )T~ gy e+ 0

On the other hand,

(ML [65] (2)) ' MEA[55]55 1 = (65 ()",
MEA[S][T — wY ]Sy ¢ (u) = MEH [6F] () (T — w).

Then, by appropriate scalar product pairings, we get the result. 0O
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An appropriated choice of the variables allows us to express the rows or columns of
the kernel in terms of the rows or columns of a product of a shifted and a non-shifted
polynomial

Corollary 3. If w = diag(w1, ..., wn), wi € C, we have

KRPE (2,00 Ex e

= (ML () ] ) 'L (] () T (09) (i) B
KR ) By,

= mEH () @) ()mE* [ ] () T () Y (@) B
KB (2 wy) By

= (ML [(02) V) ) o [nE ] (W) T (0F) Y (wn) B,
KRRPH (2 5,1 By,

=L [(oF) ] ()mE (] () T ((B) ) (w:1)) B

Er o K52 (g, w) = By ((95) @7 (@) '+ [ (08) # 7] (w),

B b K (wit ) = B (0) ) (i) (B [(5) ] (W),
B K5 (@0 ) = B ((98) ) (@) o [(oF) ™) (w),

B KB (wy u) = By g (08) 27 () (07 [ (05) * V] (w))

Let us consider what happens when instead of a diagonal matrix w is proportional to
the identity matrix. In this case, (49) informs us that left and right handed Miwa shifts
coincide. We only have two Miwa shifts 9t where now w € C

AME[u] = (1 —wzT)dp. (51)

In this case, Corollary 3 would be written in much a simpler way (closer to the scalar
case):

Proposition 32. The following relations hold

[(e5) " @) 't ()

m, (hai ) (hsi- 1)_1( B (w) =
(o) (w)mny, (hk )

0t (ki) (1)~ [(05) ™V (@)]' =
(1) (w) o (n5)

N(w™")ng,
)(zl)(“l)]
) (@)] n,
) (w),

2 )QZH w)}Thgﬁ-la

$1

Ry
(o5
(2

P

(
[
[
(
@

o1
(
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(2l+1)

M, (k) (hE) ™ [(e8) ) (@71)] " = 2(})
[(e5)® (@7 1)) o u,<hm>:w<@?><”“ (2)h%1
M (k) (hh) ™ (F) ) () = [w(eB) @ (@)]"

Proof. See Appendix A O
Now, we can state

Theorem 6. The CMV matriz Laurent orthogonal polynomials can be expressed as follows

(1) (@) = 2L, (k) (Bhy) 7] - [ (hE) ()T, (52)
(1) () = =D [ams (h) (n5) 1] - [ (W) () 1. (53)
() (2 1>1*= -l[< BTtz (hE)] - () ()] (k)TN (5)
[(5) 20 )T = 2 () T o ()] [(hE) ™ oot ()] (k)
(55)
(‘P )(21)( )= [(ho) 193tj_1(h03)] [(hgl—l)ilmj—l(hzf—l)](hg)il’
(56)
(o) 2 (2) = 2= O[T oz (k)] - () ™11 (ko) (Bhiy) ™
(57)
[(B) ] =27z () () '] - [ () () ), (58)
[(B) V()T = 2, (o) (k) 7] - [, () (nE) ). (59)

Proof. See Appendix A O

This is the furthest we have managed to take our 7 description of the MOLPUC
search. The reader may have noticed that forgetting about the R and L labels and
the noncommutativity of the matrix norms we would be left with a quotient of Miwa
shifted and non-shifted norms which in the scalar case coincides with the quotient of the
determinants of the truncated Miwa shifted and non-shifted moment matrices.

Appendix A. Proofs

Proof of Proposition 1. Assuming det A # 0 for any block matrix M = ( P g) we can
write in terms of Schur complements

M- I o0\/A 0O I A'B
~(oa 1) (6 a0a) 0 "17)
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Thus, as g7 is given for a matrix quasi-definite measure

upy [T 0 [(gMHAgMIT )\ o1 )’

0

where vy = (vo,...,v-1) and wll = w are two matrix vectors. Applying the
wl—l
same factorization to (g™, we get
oy [ Remnxesy 00 [(g™!Y] 0 0
@)= -y [TO 0 [(g™ (g1 0
Uflfl] * 1 0 0 (gH)[l+1]/(gH)[l]
H(l—l)x(l—l) ‘5[l71] w' 1-1]

X 0 I *
0 0 I

Finally, the iteration of these factorizations leads to

r o ... 0
I+1 * ' :
(gH)[+]: . .
* * I
(g™M,/ (g0 0 0
0 (g™ /(g
X
: - . 0
0 0 (g (gHHl
I x *
<0 ’ (A1)
N
0 0 I

for H = L, R. Since this would have been valid for any [, it would also hold for the direct
limit @(gH)[l]; ie., for g with H=L,R. O

Proof of Lemma 1. Notice is that the third equality of each expression is the second one

written in terms of Schur complements. Therefore, just the first and second equalities of
each expression need to be proven. The LU factorization leads to

SFZ’” (gL) m_ —SF” (gL) [zz,z]’
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Sg] ((gL) [l]) -1 _ Sy]

from where the result follows immediately. As an illustration, let us derive the first
expression; on the one hand,

l
() () = S (S
7=0

-1 1

=x = 3 3 (19", (61 7,1

m=0 j=0
=D = (6o (@a - (@91) () 7,

and on the other,

m=0 j=0
[[4+1]7-1
= (5, (1M @
=(S2)y(0 0 ... 0 H)((gL)UH])ﬂX[lH]_

Proceeding in a similar manner, one gets all the other identities.” O

Proof of Theorem 2. We will only prove the first equation as the other three are proven
in a similar way. In particular, we first prove the second equality of the first equation.
We are interested in evaluating the expression

(5™ @M ()™ ()

in two different ways. On the one hand, we could first let J act to the right. Truncating
the expression

Tl (2) = 207 (2),
we have

3 It is interesting to notice that in order to prove the right case expressions, once we have worked out the
left ones, there is no need to go over the same calculations again. It is enough to realize that

gaf(,%) = xT(2)Z1 same structure as [goé‘(z)rf = XT(Z)Sgl,

golL (z) = S1x(z) same structure as [595(2)}T = Zz_lx(z).
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[T (eh) (=) =

2 (1) (0 (2"
= (eF) D (=)

ST N R 0 S B O TR ST LU o R GO P C Dl CO)

L YRERRUY RS e O DG LN GO RVE SRR LY (RPN It 08 COVRIPS LN O S L A CLO Il 157 oSN LECE PN O LG Lt N L)
But

2 (90%) (=2 (Z/) = _akaflh2Rk72 [h2Rk73] - (901L) (#=9) (ZI)

- 04%,21@ 1 [0‘§2k Q}T(%L)(%_m (Z/)

= oo (1) V) + (01 ()
Z/(%)(ZlC 1)( )—th l[th 3] 1(%01L)(2k_3)(2/)
+h§k—1[h§k—2]il[a§2k z]T(SﬁlL)(%%) (2/)

- [O‘QZk—l]TO‘lL% (7 )(% 1)(21) + [O‘Q%—lr(%L)(%) (<),

so that we obtain

()@ [ (o)) ()

= ([N [V E) - [T
2 (1) ()
2 (e )“’( )

(k)22 (2 5 (k)@ (2
(BB (1) [abye ] (k) ) (2)

On the other hand, we could let J¥ act to the left and remember that
[(e5) @] 7" =27 (eh) ()]
So, truncating the expression as we did when J% acted to the right, we are left with
()] (7)™
== )@ )@

[(e5) 2 ()] (- af%> + (@) V@) (~ [aftora] adar).

But we also have
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)TV = [0 TP (—aka) + [(60) V] (- [offar] af )
o) ()] [~k oy B (hE )]
4 )(Zkﬂ)(z)] [h2k+1(h§k—1)71]'

So, inserting it into the equation we are interested in, we have

[(5) ][5 2] (o) 9 ()
= G )V @D P @) e5) ™ <)) Tk g B () T

() @) e (h8) )
(e1) ()
(eh) V()

LYo
LM (z
(o)1 ()

Hence, we are left with the result we wanted to prove

)™ @) () ) + [[65) @) ad g b (B ) ™
— () V@] e (W) T )T ()
=[5 @] 2 (1)) = [0 @)
+ 5P @) [ofa] (1) ™ ()

Finally, the first equality in the first equation follows from the just proven result and
Proposition 20. As was said at the beginning of this proof, the rest of the relations are
proven in the exact same way. O

Proof of Proposition 26. First of all, we have

83 Wo(t") = [Baax(MWIWo(t") = 0,;Wo(t") = x (1) Wo (),
Jua
a . .
O V() = Vo) ) Bl = O Talt) = V()
Ja

The previous derivatives make sense and are well defined since the two factors in the
results commute. Hence, we have

af Ht) = [(%sut))sl(t)-lm(t) (B9 W)
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V0 = | (50 5507~ S0 Famn M50 [ W)

J,a

Jra

0 0
W0 = | (55200
J,a

19} [ _ 0 _

S WEO = WED)| 2207 (57 2:0)) = 220 [Baax(17) ) 2200,
J.a L J.a

0w = Wi 2 (o 2at)

otf, I otr, ’
17} [ _ 0 _ NG

S W) = Wi 2007 (55 20) + 2107 () Bad) 2200
j7a‘ - j’a
0w = wiw| 20 (~-z0)].

ott, I ot

Now, if we let 83, act on both sides of the first expression in (42), we obtain

(%Sﬂt))&(t)l + S1(0)[Eaax(@)V]S1(8) 7 = (atiLSQ(t)>Sz(t)l’

(i 5:(0) 807 = So0 ) Bu]t) ™ = (5100 )5

which implies

Similarly, let &LH act on both sides of the second expression in (42)
J,a

220 (1 220)) = 20 [Euix(0) ) 22(0) = 2 (5112100
AR (%Zﬂt)) + 20 (P YV Bl 20(t) = 237 <6%22(t)>.

This means
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= (Zo(t) " [Eaax(T™) ) 22(1))

= () [Eaax(@ V) 21(1)) _,

With all these results, it is easy to prove both the linear systems for the wave functions
and the Lax equations. For the flows of the intertwining operators, we use these relations
together with (41), the first expression for the right times and the second one for the
left times; then just recall (40). Finally, the Zakharov—Shabat equations are just the

compatibility conditions of the Lax equations. O

Proof of Proposition 32. First we use (19) and apply a Miwa shift

AME () (w)

W (1) = f (1)) .
T

1u

Second, from Theorem 5 (wy = w for k=1,...,m), we get

([(eH) ™ @)]") ™ KB w,0) = 0 [(F) ] (),

so that

T
T

= D™ W) ™ D)V
T

() (o) P ) Bt (b (31)

= el w a1 (0w e (o 0

1u
T

= (B (W hE  (by (19)).

This same procedure applies for the proof of the remaining formulae.

)
210) = (20 a1 ™)) 2200) .
)

210)) = (2107 [Eaar (™)) 210)..

5))

O
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Proof of Theorem 6. Since we can take any value for wi,ws, let us consider them our
variables and name them w; = ws = z. Now by iteration of the formulae in Proposi-
tion 32, we get

[(eF) D ] = oy () () ™ omE, (b)) () T [(5) P (7)) 4
(1) (2) =ty (W) (i) ™, (b)) () R, (n) (n) 4,
[(5) V(] =2[(p L)(”(fl)] ML (BF) - (hgh) " (R5) (Rgrr)
(#2) ) (2) = 2! [1) "5 (1) () "ML () - () G (R )

x (hgi_y) " o5 () (hE)
(1) (2) = o (nfh) () ™' () (RE ) T ()

x (W) 7 (ph) M (2)2 7,

[(5)® (0] = oz () ()™ s (n) (h)
(D) @) = ()Y ()m (BE) - (hy ) T (nk )
x (nh) "oz (k) (W)

() (0] = = (nf) "oz () - (W) Tz (W) ()

Finally, noticing that

1 1
M (1) = B () =T L), =1 (07,0
mz (hg) = mz(h(?) =I- Z(gL)lo =I- Z(gR)Ol’

we get

[(e0) ()" = 21 F0%)ey ) () = 2o (B (4E)
() V) = S (1= 2(9"),) = 2 (nE),
() V) = 21— 26"y, ) ()" = Sz () ()

and the result is proven. 0O
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Appendix B. Explicit coefficients of J and C

Proposition 33. The following expressions correspond to the block non-zero elements

of (JH)E1:
T ooy = —hEradtann (h_1) 7 () gims = P [0donn] (hBir) ™
JL)2k,2k —hgorio [0 2k] (h3x) E (JR)Qk,% = —hs, [0‘2L,2k+1]faf2k (hfk)ilv
‘]L)zk,2k+1 = —01142, (JR)gk,2k+1 == [a§2k+2]Tv
I pezirs =L () ooy = L
JL)ngrLgk,l = h§k+1 (hgk—l)_l7 (JR)2k+172k,1 = h§k+1 (hék—1)_1,
TY) g1 op = Mo [0 o) (hd) (T%) gsron = herr0tton (hd) g
JL)2k+1,21c+1 = [a§2k+1]TO‘1L,2k+2’ (‘]R)2k+1,2k+1 = —07 k11 [ai%uﬁ
JL)2k+1,2k+2 = [ag%ﬂ]T’ (JR)QHLQHQ = T gpp1s

1

JE 0,0 ~hgai l(ho) ) 0,0 _hé%[o‘il] t (h(})%)_l’

L
J 01 a127

JL

(")
(/")
(/)
(79,
(/%)
(/)

02

=
k=)
A
\_/
I
—
~—~ o~
<
s}
S— N— S— S— SN— SN—
—
o S
>
P
—
>
e
SN—
—

T)10 = [al,z]*af?, I, , = —af [ofh,]",

J* 12 = [amr JE 12 = T2
((J5) )i Lok = ~[afaia]", ((JR)71)2k71,2k = —afokt1,
((J* 1)2k oo = —0fa[odio ]’ ((U7) )okon =~ [ofioy] Tad o,
((J* 1)2k+1 ok = ~h2ks1 [0F 2k 2] "(nk)

)

)

)

(%" )2k+1 e = —hhofa s (RE)
)

)

)

1 -1 -1 -1
((JL )2k+2 2k (hL)2k+2 (hQLk) ’ ((JR) )2k+2 2k T (hR)2k+2 (hfk) )
((JL 1)2k 1,2k41 =1 ((JR)_l)Qk—1,2k+1 =1

1 ~1 1
((JL )2k2k+1 O‘1L2k7 ((JR) )2k,2k+1:[a§2k]’
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((JL 1)2k+1 2k+1 h§k+1 [a§,2k+2] To‘ﬁékﬂ (h§k+1) _1’
( ) )2kz+1 2k+1 = _h§k+1a{{2k+2 [Oé/,Qk-i-l] f (hék-l—l)ila
-1

)
(

((JL) 1)2k+2 2k41 h2k+2af2k+1 (h2k+1) )
(

-1
( ) )2k+22k+1 (hR)2k+2[a§2k+1} (h2Lk+1) )

1

1 T
((JL) )00 [a2 1] ) ((JR) )00 al 1
(7)), g = =hi[ads]" () (7)), = ~hiafa(hf)
((75) )y = ( he) (7)) = hR(hR) )
1 1
((75) )or = ((T%) )or =
((5) )y, = =hflada) ol (b)) (I, = —hfafslad,] (b)) 7,
((5)" 1)21 haft (), (%)~ 1)21_hR[0‘2 ATy
Proposition 34. The following expressions correspond to the block non-zero elements
[+1],
ofC'[O] :
(C[O])Qk 2k—1 = h [( )Qk 1] =1I- [Off,zk]faf%’
(C[o])%,% = [a§2kr = h2k [aé%r[hQLkTIa
(O[o])2k+1,2k+1 = —011L,2k+2 = _h2k+10‘§2k+2 [h2Rk;+1} _17
(C[o])2k+1,2k+2 =1= h§k+1 []I - a§2k+2 [052L,2k+2] T] [(hL)2k+2] 71,

(Clop )azus = D2 (") g y] " =T adoy[afin]',
(C[_]l)zk,zk = 0‘1L2k = h2k0‘1 2%k [h ] 1,

(C[B]l)zk+1,zk+1 = _[afzkwr = —hjji [a§2k+2]T [h3pes1] -
(Clol)ansrzprs = 1= o1 [T = [05 24 4] foftyyyo] M ya]

Proposition 35. The following expressions correspond to the block non-zero elements
+
of 5
C _ _[.,R T__hR L ThL -1
( [—1])2k,2k— [042,2k+1] = Qk[a2,2k+1] [Qk} )

—1
(C[—l]—l)%,% = _0‘1L,2k+1 = _hékaé,QkJrl [hgk] ,

(Cr—p)2k26+1 =1 (C[_—ll])Qk,Qlc+1 =L
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Appendix C. Complete recursion relations

Here we give a more complete set of recursion relations for the MOLPUC.

Proposition 36. The five term CMYV recursion relations are

2(90%)(%)(2) = _af2k+1 (]I - [% Zk} o31 Zk)( )(% Y af%ﬂ [Oé%,zk]T(% )(%)
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20DV () = (1 - [0l ot o) (T —[Rk*af W) ()

(]I - [az 2k+1] Tal 2k+1) [az Qk] ‘PlL)
( )(2k+1

)

(
ﬁﬁ%d%mw ] (o)
)

Z(<P1L)(O)(Z) = (801 )(O) Qa; 2(901 )(1) ( )(2 )
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Appendix D. Projections in modules

For a ring Ml and left and right modules V' and W over M, respectively, bilinear forms
are applications

G:VxW-—M
such that

G(miv1 + mavg, w) = m1G(v1,w) + maoG(vg,w), VYmy,mg € M, v,v1,v9 €V,
G(v,wimy + wamse) = G(v,w1)my + G(v,w2)ma, VYmi,mo € M, w,wy,we € W.

In free modules, any such bilinear form can be represented by a unique [ x r matrix
denoted also by G, with coefficients in the ring M, as follows

G:VxW—M,
wo
G,w):=(vg ... v-1)G

Wip—1



Given free submodules V € V and W C W of the modules (not necessarily free) V, W
and two bases {ep,...,e; ,} € V and {fo,..., fr_1} C W of V and W, respectively,
we denote G;; = G(e;, f;). For the same rank, [ = 7, the matrix G = (G, ;) can be
assumed to be invertible, G € GL(I,M) 2 GL(lm,C). In such case, we introduce the
G-dual vectors to e;, f; defined as

-1 o1
e; = i (Gil)j,w f; = Z(Gil)j,iei'
=0 i=0

These vectors have some interesting properties:

(1) If we change basis é; = Zi;é ajiei and f; = Zi;é ibi j, then

i1 R -1
G=d e Fr=2 07,0
i=0 i=0

where we have used the matrices a = (a; ;) and b= (b;;), a,b € GL(I, M).
(2) The sets of dual vectors {e} ﬁ;é and {f ﬁ;(l) are bases with duals given by

(€) =e  (f) =1
(3) Tt is easy to see that they satisfy the biorthogonal type identity
Gles€]) =G(ff, ;) =614, Vi, j=0,....01—1

Given the bilinear form G, we can construct the associated projections on these

These constructions are relevant when considering the Christoffel-Darboux operators
and formulae in the matrix context.
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