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Matrix orthogonal Laurent polynomials in the unit circle and the theory 
of Toda-like integrable systems are connected us-ing the Gauss–Borel 
factorization of two, left and a right, Cantero–Morales–Velázquez block 
moment matrices, which are constructed using a quasi-definite matrix 
measure. A b l o c k  Gauss–Borel factorization problem of these moment 
matrices leads to two sets of biorthogonal matrix orthogonal Laurent 

mials, which can be expressed in 
dered trun-cations of the block 
lock extension of the Christoffel–
tions of the quasi-definite matrix 
s of Toda type are studied. The 
x scenario; wave and adjoint wave 
equations, bilinear equa-tions and 
ux transfor-mations. We generalize 
matrix extension of the Toeplitz 
of Szegő polynomials. An analysis 
nding of interesting connections 
nd Miwa shifts of the matrix or-
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 orthogonal Laurent polynomials in the
MOLPUC). To explain better our aims 
gonal polynomials, Laurent orthogonal 
lso some facts about integrable systems.

C : |z| = 1} and D := {z ∈ C : |z| < 1}
 use the parametrization z = eiθ with
omplex Borel measure μ supported in T
surable sets onto non-negative numbers, 
th respect to the Lebesgue measure dθ) 
situation the orthogonal polynomials in 
are defined as those monic polynomials 
m of equations, called orthogonality re-
. , n − 1 [90]. The connections between
) supported in the interval [−1, 1] and 

 for example [53,22]. Let us observe that 
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1. Introduction

In this paper we extend previous results on
unit circle (OLPUC) [13] to the matrix realm (
and results we need a brief account on ortho
polynomials and their matrix extensions, and a

1.1. Historical background

1.1.1. Szegő polynomials
We will denote the unit circle by T := {z ∈

stands for the unit disk; when z ∈ T we will
θ ∈ [0, 2π). In the scalar case, one deals with a c
that is said to be positive definite if it maps mea
that in the absolutely continuous situation (wi
has the form w(θ)dθ. For the positive definite 
the unit circle (OPUC) or Szegő polynomials 
Pn of degree n that satisfy the following syste
lations:

´
T
Pn(z)z−kdμ(z) = 0, for k = 0, 1, . .

orthogonal polynomials on the real line (OPRL
OPUC have been explored in the literature, see



for this analysis the use of spectral theory techniques requires the study of the oper-
ator of multiplication by z. Recursion relations for OPRL and OPUC are well known; 
however, in the real case, the three term recurrence laws provide a tridiagonal matrix, 
the so-called Jacobi operator, while in the unit circle support case, the problem leads to 
a Hessenberg matrix [61], being a more involved scenario that the Jacobi one (as it is 
not a sparse matrix with a finite number of non-vanishing diagonals). In fact, OPUCs
recursion relation requires the introduction of reciprocal or reverse Szegő polynomials 
P ∗
l (z) := zlPl(z̄−1) and the reflection or Verblunsky (Schur parameters is another usual

name) coefficients αl := Pl(0). The recursion relations for the Szegő polynomials can be
written as 

(
Pl

P∗
l

)
=
( z αl

zᾱl 1
) ( Pl−1

P∗
l−1

)
. There exist numerous studies on the zeroes of the

OPUC [10,16,19,54,58,60,74,80] with interesting applications to signal analysis theory 
[63,65,82,83]. Despite the mentioned advances for the OPUC theory, the corresponding 
state of the art in the OPRL context is still much more developed. An issue to stress here 
is that Szegő polynomials are, in general, not a dense set in the Hilbert space L2(T, μ);
Szegő’s theorem implies for a non-trivial probability measure dμ on T with Verblunsky 
coefficients {αn}∞n=0 that the corresponding Szegő’s polynomials are dense in L2(T, μ)
if and only if 

∏∞
n=0(1 − |αn|2) = 0. For an absolutely continuous probability measure

sity in L2(T, μ) of the OPUC holds iff
−∞ is fulfilled [89]. We refer the reader
detailed studied of OPUC.

l line (OLPRL) were introduced in [66,
t problem. When this moment problem

nown as Laurent polynomials, such that
 The theory of Laurent polynomials on
e theory of orthogonal polynomials, see 
urent polynomials was carried from the 
roadened the matter (e.g. [37,29,35,36]), 
d’s theorem, quadrature problems, and 
oral–Velázquez (CMV) [29] representa-
s of Szegő polynomials, as we mentioned 
L2(T, μ), this is not true in general for
UC in the CMV representation and the 
ment of complicated recursion relations 
uation. Other papers have reviewed and 
xample [87,68]; in particular alternative 
space of OLPUC can be found in [36]. 
f the CMV theory [87] is illuminating. 
MV ordering goes back to the previous
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Kolmogorov’s density theorem ensures that den
the so-called Szegő’s condition 

´
T

log(w(θ))dθ =
to Barry Simon’s books [85] and [86] for a very 

1.1.2. Orthogonal Laurent polynomials
Orthogonal Laurent polynomials on the rea

67] in the context of the strong Stieltjes momen
has a solution, there exist polynomials {Qn}, k´
R
x−n+jQn(x)dμ(x) = 0 for j = 0, . . . , n − 1.

the real line was developed in parallel with th
[33,43,64] and [81]. The theory of orthogonal La
real line to the circle [91] and subsequent works b
treating subjects like recursion relations, Favar
Christoffel–Darboux formulae. The Cantero–M
tion is a hallmark in the study of certain aspect
already while the OLPUC are always dense in 
the OPUC [25,37]. The bijection between OLP
ordinary Szegő polynomials implies the replace
with five term relations similar to the OPRL sit
broadened the study of CMV matrices, see for e
or generic orders in the base used to span the 
In particular, the reading of Simon’s account o
In fact, the discovery of the advantages of the C
work [93].



1.1.3. Matrix orthogonal polynomials
Orthogonal polynomials with matrix coefficients on the real line were considered in 

detail by Krein [69,70] in 1949, and thereafter were studied sporadically until the last 
decade of the XX-th century. Some relevant papers on this subject are [20,56,17]; in 
particular, in [17] the scattering problem is solved for a kind of discrete Sturm–Liouville 
operators that are equivalent to the recursion equation for scalar orthogonal polynomials. 
They found that polynomials that satisfy a relation of the form

xPk(x) = AkPk+1(x) + BkPk(x) + A∗
k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite measure. This is a matrix version of 
Favard’s theorem for scalar orthogonal polynomials. Then, in the 1990s and the 2000s
some authors found that matrix orthogonal polynomials (MOPs) satisfy in certain cases 
some properties that satisfy scalar-valued orthogonal polynomials; for example, Laguerre, 
Hermite and Jacobi polynomials, i.e., the scalar-type Rodrigues’ formula [47,48,34] and 
a second order differential equation [44,46,24]. Later on, it has been proven [45] that 
operators of the form D = ∂2F2(t) + ∂1F1(t) + ∂0F0 have as eigen-functions different
infinite families of MOPs. Moreover, in [24] a new family of MOPs satisfying second order 

t behave asymptotically as the identity 
emann–Hilbert problem for this matrix 
rete versions of Painlevé I were explored,
Riemann–Hilbert problems see also [62]. 
OPs are expressed in terms of Schur 

in the standard scalar case. For a survey 
 reader to [39].

el factorization
r developments performed by the Kyoto 
escription of the integrable hierarchies. It 
n between factorization problems, dress-
t, Ueno and Takasaki [92] performed an 
liton-like solutions. Adler and van Moer-
een the Lie-group factorization, applied 
crete Kadomtsev–Petviashvilii (KP) —
moment matrix that comes from orthog-
gonal polynomials are closely related to 
e [21,52,71,11] for further developments 
component Toda lattices and generalized 
UC and the Toda type associated lattice, 
 A relevant reduction of the equations of 
ontext of Schur flows when the measure 
[88] and [49]), another interesting paper 
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differential equations, whose coefficients do no
matrix, was found; see also [30]. In [31] the Ri
situation and the appearance of non-Abelian disc
showing singularity confinement — see [32]; for 
Let us mention that in [75,76] and [27] the M
complements that play the role of determinants 
on matrix orthogonal polynomials, we refer the

1.1.4. Integrable hierarchies and the Gauss–Bor
The seminal paper of M. Sato [84] and furthe

school [40–42] settled the Lie-group theoretical d
was Mulase [78] the one who made the connectio
ing procedures and integrability. In this contex
analysis of the Toda type hierarchies and their so
beke [4–8,3,9] have clarified the connection betw
to Toda type hierarchies — what they call dis
and the Gauss–Borel factorization applied to a 
onality problems; thus, the corresponding ortho
specific solutions of the integrable hierarchy. Se
in relation with the factorization problem, multi
orthogonality. In [3] a profound study of the OP
called the Toeplitz lattice (TL), was performed.
the TL has been found by Golinskii [59] in the c
is invariant under conjugation (also studied in 



on this subject is [77]. The Toeplitz lattice was proven to be equivalent to the Ablowitz–
Ladik lattice (ALL) [1,2], and that work has been generalized to the link between matrix 
orthogonal polynomials and the non-Abelian ALL in [27]. Both of them have to deal 
with the Hessenberg operator for the multiplication by z. Research about the integrable 
structure of Schur flows and its connection with ALL has been done (in recent and not so 
recent works) from a Hamiltonian point of view in [79], and other works also introduce 
connections with Laurent polynomials and τ -functions, like [50,51,23].

1.2. Preliminary material

1.2.1. Semi-infinite block matrices
For the matrix extension considered in the present work we need to deal with block 

matrices and block Gauss–Borel factorizations. For each m ∈ N, the directed set of 
natural numbers, we consider ring of the complex m ×m matrices Mm := Cm×m, and its
direct limit M∞ := lim−→ Mm, the ring of semi-infinite complex matrices. We will denote
by diagm ⊂ Mm the set of diagonal matrices. For any A ∈ M∞, Aij ∈ C denotes the
(i, j)-th element of A, while (A)ij ∈ Mm denotes the (i, j)-th block of it when subdivided
into m ×m blocks. We will denote by G∞ the group of invertible semi-infinite matrices 

 are U , the invertible upper triangular 
gular — by blocks — matrices with the 
 corresponding restriction on invertible 
. Block diagonal matrices will be denoted
i ∈ Mm}. Given a semi-infinite matrix

atrix

,l−1

,l−1
...
1,l−1

⎞⎟⎟⎟⎠ ∈ Mml, (A)i,j ∈ Mm,

l,≥l]

[≥l]

)
, (1)

ix A where, for example, A[l,≥l] denotes
l, j ≥ l. Very much related to the block

nts. The Schur complement with respect 

(ai,j) ∈ Mp, D ∈ Mq,
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of M∞. In this paper two important subgroups
— by blocks — matrices, and L , the lower trian
identity matrix along their block diagonal. The
upper triangular block matrices is denoted by Û
by D = {D ∈ M∞ : (D)i,j = di · δi,j with d

A ∈ M∞, we consider its l-th block leading subm

A[l] =

⎛⎜⎜⎜⎝
(A)0,0 (A)0,1 . . . (A)0
(A)1,0 (A)1,1 . . . (A)1

...
(A)l−1,0 (A)l−1,1 . . . (A)l−

and we write

A =
(

A[l] A[

A[≥l,l] A

for the corresponding block partition of a matr
all the (A)i,j-th blocks of the matrix A with i <
partition of a matrix M are the Schur compleme
to the upper left block of the block partition

M =
(
A B

C D

)
∈ Mp+q, A =

is



M�A := SC
(

(ai,j) B

C D

)
:= D − CA−1D,

where we have assumed that A is an invertible matrix.

1.2.2. Quasi-definiteness
Let us recall the reader that measures and linear functionals are closely connected; 

given a linear functional L on Λ[∞], the set of Laurent polynomials on the circle — or
polynomial loops LpolC, we define the corresponding moments of L as cn := L[zn] for all
the possible integer values of n ∈ Z. The functional L is said to be Hermitian whenever 
c−n = cn, ∀n ∈ Z. Moreover, the functional L is defined as quasi-definite (positive
definite) when the principal submatrices of the Toeplitz moment matrix (Δi,j), Δi,j :=
ci−j , associated to the sequence cn, are non-singular (positive definite), i.e., ∀n ∈ Z,
Δn := det(ci−j)ni,j=0 �= 0 (> 0). Some aspects on quasi-definite functionals and their
perturbations are studied in [15,26]. It is known [57] that when the linear functional L is 
Hermitian and positive definite, there exists a finite positive Borel measure with a support
lying on T such that L[f ] =

´
T
fdμ, ∀f ∈ Λ[∞]. In addition, a Hermitian positive definite

·〉L : Λ[∞]×Λ[∞] 
→ C as 〈f, g〉L = L[fḡ],
⊂ Λ[∞] are said to be orthogonal with
es of L it is easy to see that 〈·,·〉L is a 
el measure associated to L we are led to 
osure of Λ[∞]. The more general setting,
a corresponding quasi-definite complex 
orm 〈·,·〉L is defined for any such linear 
n the first entry) and skew-linearity (in 
 no symmetry allowing the interchange 
notion of orthogonality and say that f is 
reful as in this general situation it could 

ality
ed on T is said to be Hermitian and/or
, the matrix μ(B) is a Hermitian and/or 
ures μi,j , i, j = 1, . . . , m, are absolutely
sure on the circle dθ, according to the 
pressed using complex weight (density 
 functions wi,j, i, j = 1, . . . , m, so that
on, the matrix measure μ is Hermitian
is a positive definite Hermitian matrix.
, whenever it is convenient, the complex 
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linear functional L defines a sesquilinear form 〈·,
∀f, g ∈ Λ[∞]. Two Laurent polynomials {f, g} 
respect to L if 〈f, g〉L = 0. From the properti
scalar product and if μ is the positive finite Bor
the corresponding Hilbert space L2(T, μ), the cl
when L is just quasi-definite is associated to 
measure μ, see [55]. As before, a sesquilinear f
functional L; thus, we just have the linearity (i
the second entry) properties. However, we have
of the two arguments. We formally broaden the 
orthogonal to g if 〈f, g〉L = 0, but we must be ca
happen that 〈f, g〉L = 0 but 〈g, f〉L �= 0.

1.2.3. Matrix Laurent polynomials and orthogon
A matrix-valued measure μ = (μi,j) support

positive definite, if for every Borel subset B of T
positive definite matrix. When the scalar meas
continuous with respect to the Lebesgue mea
Radon–Nikodym theorem, it can be always ex
or Radon–Nikodym derivative of the measure)
dμi,j(θ) = wi,j(θ)dθ, θ ∈ [0, 2π). If, in additi
and positive definite, then the matrix (wi,j(θ))
For the sake of notational simplicity we will use
notation dμ(z) = ieiθdμ(θ).



The moments of the matrix measure μ are

cn := 1
2π

˛

T

z−n dμ(z)
iz = 1

2π

2πˆ

0

e−inθdμ(θ) ∈ Mm,

while the Fourier series of the measure is

Fμ(u) :=
∞∑

n=−∞
cnu

n, (2)

that for absolutely continuous measures, dμ(θ) = w(θ)dθ satisfies Fμ(θ) = w(θ). Let
D(0; r, R) = {z ∈ C : r < |z| < R} denote the annulus around z = 0 with interior and 
exterior radii r and R, Rij,± := (lim supn→∞

n
√
|cij,±n| )∓1 and R+ = mini,j=1,...,m Rij,+

and Rij,− = maxi,j=1,...,m Rij,−. Then, according to the Cauchy–Hadamard theorem,
the series Fμ(z) converges uniformly in any compact set K, K ⊂ D(0; R−, R+).

The space Λm,[p,q] := Mm{Iz−p, Iz−p+1, . . . , Izq} (where I ∈ Mm is the identity
matrix) of complex Laurent polynomials with m ×m matrix coefficients and the corre-

free module of rank p + q+1. We denote
lynomials or polynomial loops in Mm.

e following left and right matrix-valued
idered as left and right modules for the

)
f(z)† ∈ Mm, (3)

z)
g(z) ∈ Mm. (4)

he following two properties hold:

 f, g1 + g2〉 〉H = 〈 〈f, g1〉 〉H + 〈 〈f, g2〉 〉H for

〈 〈f, g〉 〉L, 〈 〈fm, g〉 〉R = m†〈 〈f, g〉 〉R and
nd m ∈ Mm.

hen so are these forms; i.e.,

H = L,R.

ositive definite Hermitian measure, we 
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sponding restrictions on their degrees is an Mm

by LpolMm the infinite set of Laurent matrix po
Given a matrix measure μ, we introduce th

sesquilinear forms in the loop space LMm cons
ring Mm, respectively,

〈〈f, g〉〉L :=
˛

T

g(z)dμ(z
iz

〈〈f, g〉〉R :=
˛

T

f(z)† dμ(
iz

The sesquilinearity of these forms means that t

(1) 〈 〈f1 + f2, g〉 〉H = 〈 〈f1, g〉 〉H + 〈 〈f2, g〉 〉H and 〈〈
all f, f1, f2, g, g1, g2 ∈ LMm and H = L, R.

(2) 〈 〈mf, g〉 〉L = 〈 〈f, g〉 〉Lm†, 〈 〈f, mg〉 〉L = m

〈 〈f, gm〉 〉R = 〈 〈f, g〉 〉Rm, for all f, g ∈ LMm a

Moreover, if the matrix measure is Hermitian, t

〈〈f, g〉〉†H = 〈〈g, f〉〉H ,

Actually, from these sesquilinear forms, for a p
can derive the corresponding scalar products



〈f, g〉†H = 〈f, g〉H := Tr
[
〈〈f, g〉〉H

]
, ‖f‖2

H = 〈f, f〉H , H = L,R,

and corresponding Hilbert spaces HH with a norm — of Frobenius type — given by

‖f‖H = +
√

〈f, f〉H , H = L,R.

A set {pl}Nl=0 ⊂ HH , H = L, R, is an orthogonal set if and only if

〈〈
pHl , pHj

〉〉
K

= δijhj , hj ∈ Mm.

1.3. On the content of the paper

In previous papers we have approached the study of the link between orthogonality 
and integrability within an algebraic/group theoretical point of view. Our keystone relies 
on the fact that a number of facets of orthogonality and integrability can be described 
with the aid of the Gauss–Borel factorization of an infinite matrix. This approach was 
applied in [12] for the analysis of multiple orthogonal polynomials of mixed type, allow-
ing for an algebraic proof of the Christoffel–Darboux formula, alternative to the analytic 

nd constrained therefore by convenient 
 was also used successfully in [13], where
 a given measure on the unitary circle, 
on leads to OLPUC. Recursion relations 
 in a straightforward manner. Also con-
on theory were extended to the circular 
es and shift operators. In this last paper 
efinite, condition that implies the exis-
ention that we have applied this method 
ulae in other situations, see [18,14].
ck matrices, whose coefficients (matrices 
rdered in a Cantero–Morales–Velázquez 
responding block Gauss–Borel factoriza-
s to MOLPUC. To be more precise, we 
al families of matrix Laurent polynomi-
 the matrix measure is Hermitian, these 
 in two families of MOLPUC. Following 
f bordered truncated moment matrices. 

 Gauss–Borel factorization, the five term 
 formula. Let us stress that in this paper 
d in [13] that clarifies the appearance of 
aic proofs. The recursion relations indi-
atrix measure lead to integrable systems 
ments: wave and adjoint wave functions, 
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one, based on the Riemann–Hilbert problem (a
analytic conditions) given in [38]. This approach
a CMV ordering of the Fourier basis gave, for
a moment matrix whose Gauss–Borel factorizati
and Christoffel–Darboux formula appeared also
tinuous and discrete deformations and τ -functi
case under the suitable choice of moment matric
we only requested to the measure to be quasi-d
tence of the Gauss–Borel factorization. Let us m
in the finding of Christoffel–Darboux type form

In this paper we consider two semi-infinite blo
in Cm×m) are left and right matrix moments, o
style, of a matrix measure on the circle. The cor
tion of these CMV block moment matrices lead
get the right and left versions of two biorthogon
als and corresponding Szegő polynomials. When
two families happen to be proportional resulting
[75,27] we express them as Schur complements o
We also prove, in an algebraic manner using the
recursion relations and the Christoffel–Darboux
we introduce an intertwining operator η not use
reciprocal polynomials and simplifies the algebr
cate which deformations of the quasi-definite m
of Toda type. Thus, we discuss the following ele



Lax and Zakharov–Shabat equations, bilinear equations and discrete flows — connected 
with Darboux transformations. In this context we find a generalization of the matrix 
Cafasso’s extension of the Toeplitz lattice for the Verblunsky coefficients of Szegő poly-
nomials. The Cafasso flows correspond to what we call total flows, which are only a 
part of the integrable flows associated to MOLPUC. We unsuccessfully tried to get a 
matrix τ theory, but despite this failure, we get interesting byproducts. We analyze the 
role of Miwa shifts in this context and, as a collateral effect, nicely connect them with 
the Christoffel–Darboux kernels. These formulae suggest a link of these kernels with the 
Cauchy propagators that in the Grassmannian ∂̄ approach to multicomponent KP hier-
archy was used in [72,73]. This identification allows us to give in Theorem 6 expressions 
of the MOLPUC in terms of products of their Miwa shifted and non-shifted quasi-norms. 
Despite that these expressions lead to the τ -function representation in the scalar case,
this is not the case within the matrix context.

Let us mention that the submodules of matrix Laurent polynomials considered in 
this paper have the higher and lower powers constrained to be of some particular form, 
implied by the chosen CMV ordering. In [13] this limitation was overcome by the in-
troduction of extended CMV orderings of the Fourier basis, which allowed for general 
subspaces of Laurent polynomials. A similar procedure can be performed in this matrix 

osely the ideas of [13], we prefer to avoid 

n 2 is devoted to orthogonality theory, 
t and right block CMV moment matri-
factorizations in Section 2.2, getting the 
nd matrix Szegő polynomials and their 
ion relations and Schur complement ex-
ions of the moment matrices. Then, in 
d functions that are connected with the 
relevant later on for the adjoint Baker 

elations from the Gauss–Borel factoriza-
–Darboux formulae for this non-Abelian
n this case, the projection operators are 
t in the Hermitian definite positive situ-
ard geometrical sense. The integrability 
e deformations of the moment matrices,
harov–Shabat equations in Section 3.1; 
fasso’s Toeplitz lattice and the bilinear 
, we extend to this matrix context the 
ly related to Darboux transformations 
tions fulfilled by the MOLPUC in Sec-
he action of Miwa transformations and 
de the paper with a series of appendices 

9

situation; but, as its development follows very cl
its inclusion here.

The layout of this paper is as follows. Sectio
in particular in Section 2.1 we consider the lef
ces and perform corresponding block Gaussian 
associated families of right and left MOLPUC a
biorthogonality relations. We also get the recurs
pressions of them in terms of bordered truncat
Section 2.3 we introduce the matrix second kin
Fourier series of the measure and that will be 
functions. The reconstruction of the recursion r
tions is performed in Section 2.4; the Christoffel
scenario are given in Section 2.5. Observe that i
projectors in a module over the ring Cm×m, tha
ation lead to orthogonal projections in the stand
aspects are treated in Section 3. Given adequat
we find wave functions, Lax equations and Zak
here we also consider a generalization of the Ca
equations formulation of the hierarchy. Finally
discrete flows for the Toeplitz lattice, intimate
in Section 3.2 and also derive the bilinear equa
tion 3.1.3. Finally, in Section 3.3 we consider t
get the previously mentioned results. We conclu
that serve as support of certain sections.



Finally, let us stress that this paper is not just an extension of the results of [13] to 
the matrix realm but we also have introduced important elements not discussed there, 
which also hold in that scalar case, as the η operator, a different proof of the Christof-
fel–Darboux formula with no need of associated polynomials and new relations between 
Christoffel–Darboux kernels and Miwa shifted MOLPUC.

2. Matrix orthogonality and block Gauss–Borel factorization

In this section, inspired by the CMV construction [29] and the previous work [13], for 
a given matrix measure, we introduce an appropriate block moment matrix that, when 
factorized as a product of lower and upper block matrices, gives a set of biorthogonal 
matrix Laurent polynomials on the unit circle. This Borel–Gauss factorization problem 
also allows us to derive the recursion relations and the Christoffel–Darboux theory.

2.1. The CMV right and left moment matrices for quasi-definite matrix measures

 will be relevant in the construction of 

,

2,

−1, Iz, Iz−2, Iz2, . . .
)�

.

 l-th component of the matrix vector χ

2), . . .
)�

.

atrices of the measure μ are

0 c−1 c1 c−2 . . .

1 c0 c2 c−1 . . .

−1 c−2 c0 c−3 . . .

2 c1 c3 c0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ , (5)
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The following m × m matrix-valued vectors
biorthogonal families of MOLPUC

Definition 1. The CMV vectors are given by

χ1(z) :=
(
I, 0, Iz, 0, Iz2, . . .

)�
,

χ2(z) :=
(
0, I, 0, Iz, 0, Iz2, . . .

)�
χ∗
a(z) := z−1χa

(
z−1), a = 1,

χ(z) := χ1(z) + χ∗
2(z) =

(
I, Iz

In the sequel, the matrix χ(l) will denote the

χ =
(
χ(0), χ(1), χ(

Definition 2. The CMV left and right moment m

gL :=
˛

T

χ(z)dμ(z)
iz
(
χ(z)

)† = 2π

⎛⎜⎜⎜⎜⎜⎝
c

c

c

c



gR :=
˛

T

(
χ(z)�

)† dμ(z)
iz χ(z)� = 2π

⎛⎜⎜⎜⎜⎜⎝
c0 c1 c−1 c2 . . .

c−1 c0 c−2 c1 . . .

c1 c2 c0 c3
c−2 c−1 c−3 c0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ . (6)

Notice that when dμ(θ) is Hermitian, so are the moment matrices gL and gR.
In the scalar case [13], the only requirement that the moment matrix needs to meet is 

to be Gaussian factorable; i.e., all the principal minors of the matrix are requested to be 
not degenerated. The measure from which this moment matrix is constructed receives the 
name of quasi-definite measure. This condition is related to the existence of biorthogonal
polynomials of all degrees — also called non-triviality of the measure. In the matrix case,
the requirement is a bit more relaxed.

Definition 3. The matrix measure μ is said to be quasi-definite if its truncated moment 
matrices satisfy

det
((
gH
)[l]) �= 0 for H = R,L and l = 1, 2, 3, . . . .

tuation from the scalar case in which all
hile in the matrix case only the ml-order 
 Actually, this is the only restriction — 
from hereon the matrix measures must 

, R, of a matrix quasi-definite measure μ

s
sure μ, the set of monic matrix polyno-
= l, H = L,R, satisfying

−j = 0, j = 0, . . . , l − 1,

z)
]† = 0, j = 0, . . . , l − 1,

)
zj = 0, j = 0, . . . , l − 1,

11
Notice that (gH)[l] ∈ Mml; a quite different si
the principal minors had to be non-degenerate, w
principal minors should meet this requirement.
besides having compact support on T — that 
satisfy, since when this condition holds

Proposition 1. The moment matrices gH , H = L

admit a block Gauss–Borel factorization.

Proof. See Appendix A. �
2.1.1. The generalized matrix Szegő polynomial
Definition 4. Given a matrix quasi-definite mea
mials {PL

i,l}∞l=0, {PR
i,l}∞l=0, i = 1, 2, with degPH

i,l

〈〈
zjI, PL

1,l(z)
〉〉

L
=
˛

T

PL
1,l(z)

dμ(z)
iz z

〈〈
PL

2,l(z), zjI
〉〉

L
=
˛

T

zj
dμ(z)

iz
[
PL

2,l(

〈〈
PR

2,l(z), zjI
〉〉

R
=
˛

T

[
PR

2,l(z)
]† dμ(z

iz



〈〈
zjI, PR

1,l(z)
〉〉

R
=
˛

T

z−j dμ(z)
iz PR

1,l(z) = 0, j = 0, . . . , l − 1,

are said to be Szegő polynomials.

Proposition 2. The matrix Szegő polynomials introduced in Definition 4 for the quasi-
definite situation exist and are unique. Moreover, there exist matrices hH

r ∈ Mm,
H = L, R, such that the biorthogonality conditions are fulfilled

δr,jh
H
r :=

〈〈
PH

2,r, P
H
1,j
〉〉

H
, H = R,L.

Now we introduce the matrix extension of the Verblunsky coefficients.

Definition 5. The Verblunsky matrices of a matrix quasi-definite measure are

αH
i,l := PH

i,l (0), i = 1, 2, l = 1, 2, 3, . . . , H = L,R,

and the reciprocal or reversed Szegő matrix polynomials are given by( ) ( ( ))†
, H = L,R.

ite case, the matrices hH
l , H = L, R,

 “matrix-valued norms” for the matrix 
races is a norm indeed.

torization of the moment matrices (5)
el factorizations, for both the right and 

S2 ∈ U , Ŝ2 ∈ Û , DL ∈ D , (7)

, Z1 ∈ U , Ẑ1 ∈ Û , DR ∈ D . (8)

e use the notation

.
)
, H = L,R. (9)

ian case, the two normalized matrices of 

† = Ẑ1
−1

, (10)

 (DH)† = DH , H = L, R.

12
PH
l

∗(z) := zl PH
l z̄−1

Notice that in the Hermitian positive defin
l = 0, 1, 2, . . . , can be interpreted as a kind of
Szegő polynomials, as the square-root of their t

2.2. The CMV matrix Laurent polynomials

We consider now the m × m block LU fac
and (6); in fact, there are two block Gauss–Bor
left moment matrices, to consider

gL := S−1
1 DLŜ2 = S−1

1 S2, S1 ∈ L ,

gR := Z2D
RẐ1

−1
= Z2Z

−1
1 , Z2 ∈ L

For the entries of the block diagonal matrices, w

DH = diag
(
DH

0 , DH
1 , . .

The reader should notice that in the Hermit
the factorization are related

S†
1 = Ŝ2

−1
, Z2

and the block diagonal matrices are Hermitian;



Definition 6. We introduce the following partial CMV matrix Laurent polynomials

φL
1,1 := S1χ1(z), φL

1,2 := S1χ
∗
2(z),

φL
2,1 :=

(
S−1

2
)†
χ1(z), φL

2,2 :=
(
S−1

2
)†
χ∗

2(z),

φR
1,1 := χ�

1 (z)Z1, φR
1,2 :=

[
χ∗

2
]�(z)Z1,

φR
2,1 := χ�

1 (z)
(
Z−1

2
)†
, φR

2,2 :=
[
χ∗

2
]�(z)

(
Z−1

2
)†
,

and CMV matrix Laurent polynomials

φL
1 := φL

1,1 + φL
1,2 = S1χ(z), φL

2 := φL
2,1 + φL

2,2 =
(
S−1

2
)†
χ(z), (11)

φR
1 := φR

1,1 + φR
1,2 = χ�(z)Z1, φR

2 := φR
2,1 + φR

2,2 = χ�(z)
(
Z−1

2
)†
. (12)

Notice that these semi-infinite vectors with matrix coefficients (ϕH
j )(l)(z), l = 0, 1, . . . ,

can be written as⎛⎜ (ϕL
j )(0)(z)
L (1)

⎞⎟ (( )(0)(z), (ϕR
j

)(1)(z), . . .), j = 1, 2.

ϕR
2
)(l)(z) =

(
ϕR

1
)(l)(z)DR

l ,

(13)

stence is ensured for quasi-definite ma-
t polynomials satisfy biorthogonal type 

ϕH)(l)1 }∞l=0 and {(ϕH)(l)2 }∞l=0, H = L, R,
 the unit circle

= L,R, j, k = 0, 1, . . . . (14)

χ(z)†
)
S−1

2 = S1g
LS−1

2 = I,

z)
χ(z)�

)
Z1 = Z−1

2 gRZ1 = I. �

13
φL
j =: ⎝ (ϕj ) (z)

...
⎠ , φR

j =: ϕR
j

For the Hermitian case, we have(
ϕL

2
)(l)(z) =

(
DL

l

)−1(
ϕL

1
)(l)(z), (

l = 0, 1, . . . .

2.2.1. Biorthogonality
From the Gaussian factorization, whose exi

trix measures, we infer that these matrix Lauren
relations.

Theorem 1. The matrix Laurent polynomials {(
introduced in (11) and (12), are biorthogonal on

〈〈(
ϕH

2
)(j)

,
(
ϕH

1
)(k)〉〉

H
= Iδj,k, H

Proof. It is straightforward to check that
˛

T

φL
1 (z)dμ(z)

iz
(
φL

2 (z)
)† = S1

( ˛
T

χ(z)dμ(z)
iz

˛

T

(
φR

2 (z)
)† dμ(z)

iz φR
1 (z) = Z−1

2

( ˛
T

χ(z)dμ(
iz



In order to relate the CMV matrix Laurent polynomials to the Szegő polynomials, we 
rewrite the quasi-orthogonality conditions from Theorem 1

˛

T

(
ϕL

1
)(2l)(z)dμ(z)

iz z−k = 0, k = −l, . . . , l − 1,

˛

T

(
ϕL

1
)(2l+1)(z)dμ(z)

iz z−k = 0, k = −l, . . . , l,

˛

T

zk
dμ(z)

iz
[(
ϕL

2
)(2l)(z)]† = 0, k = −l, . . . , l − 1,

˛

T

zk
dμ(z)

iz
[(
ϕL

2
)(2l+1)(z)

]† = 0, k = −l, . . . , l, (15)

˛

T

[(
ϕR

2
)(2l)(z)]† dμ(z)

iz zk = 0, k = −l, . . . , l − 1,

˛ [(
ϕR

2
)(2l+1)(z)

]† dμ(z)
iz zk = 0, k = −l, . . . , l,

0, k = −l, . . . , l − 1,

0, k = −l, . . . , l. (16)

ure μ, the matrix Szegő polynomials and 
d in the following way for the left case

) = PL
1,2l(z),

) =
(
PR

2,2l+1
)∗(z),

) = PL
2,2l(z),

) =
(
PR

1,2l+1
)∗(z), (17)

= PR
2,2l(z),

=
(
PL

1,2l+1
)∗(z),

= PR
1,2l(z),

=
(
PL

2,2l+1
)∗(z) (18)
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T ˛

T

z−k dμ(z)
iz
(
ϕR

1
)(2l)(z) =

˛

T

z−k dμ(z)
iz
(
ϕR

1
)(2l+1)(z) =

Proposition 3. For a quasi-definite matrix meas
the CMV matrix Laurent polynomials are relate

zl
(
ϕL

1
)(2l)(z

zl+1(ϕL
1
)(2l+1)(z

zl
(
DL

2l
)†(

ϕL
2
)(2l)(z

zl+1(DL
2l+1
)†(

ϕL
2
)(2l+1)(z

and

zl
(
ϕR

2
)(2l)(z)

zl+1(ϕR
2
)(2l+1)(z)

zl
(
ϕR

1
)(2l)(z)DR

2l

zl+1(ϕR
1
)(2l+1)(z)DR

2l+1

for the right case.



Proof. Taking the differences between the RHS and LHS of the equalities, we get matrix 
polynomials, of degree d = 2l − 1, 2l, that when paired via 〈 〈·,·〉 〉H , H = L, R, to all the
powers zj , j = 0, . . . , q cancels. Therefore, as we have a quasi-definite matrix measure, 
with moment matrices having non-null principal block minors, the only possibility for 
the difference is to be 0. �

The last identifications together with (4) define some of the entries of the Gaussian 
factorization matrices.

Proposition 4. The matrix quasi-norms hH
k introduced in Definition 4 and the coefficients

DH
k given in (9) satisfy

hL
2l = DL

2l, hL
2l+1 = DR

2l+1,

hR
2l = DR

2l, hR
2l+1 = DL

2l+1.

For the first non-trivial block diagonal of the factors in the Gauss–Borel factorization,
we get

torization can be written more explicitly 
s

0 . . .

0 . . .

0 . . .

I 0 . . .

,4 I

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∗ . . .

∗ . . .

∗ . . .

[αL
2,4]†

I
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

0 0 . . .

0 0 . . .

0 0 . . .

I 0 . . .
R
2,4]† I

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Proposition 5. The matrices of the block LU fac
in terms of the Verblunsky coefficients as follow

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
[αR

2,1]† I 0 0
∗ αL

1,2 I 0
∗ ∗ [αR

2,3]†
∗ ∗ ∗ αL

1
...

...
...

Ŝ2
−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I αR
1,1 ∗ ∗

0 I [αL
2,2]† ∗

0 0 I αR
1,3

0 0 0 I

0 0 0 0
...

...
...

...

Z−1
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0
αL

1,1 I 0
∗ [αR

2,2]† I

∗ ∗ αL
1,3

∗ ∗ ∗ [α
...

...
...



Ẑ1 =

⎛⎜⎜⎜⎜⎜⎝
I [αL

2,1]† ∗ ∗ ∗ . . .

0 I αR
1,2 ∗ ∗ . . .

0 0 I [αL
2,3]† ∗ . . .

0 0 0 I αR
1,4

...
...

...
...

. . . . . .

⎞⎟⎟⎟⎟⎟⎠ .

This gives the following structure for the MOLPUC

Proposition 6.

(1) The MOLPUC are of the form

(
φL

1
)(2l) = αL

1,2lz
−l + · · · + zl,(

φL
1
)(2l+1) = z−l−1 + · · · +

(
αR

2,2l+1
)†
zl,(

φL
2
)(2l) =

((
hL

2l
)†)−1(

αL
2,2lz

−l + · · · + zl
)
,(

φL
)(2l+1) =

((
hR

)†)−1(
z−l−1 + · · · +

(
αR

1,2l+1
)†
zl
)
,

hR
2l
)−1

,

,2l+1
)†
zl
)(
hL

2l+1
)−1

,

1z
l.

l

L
2l =

˛

T

(
φL

1
)(2l)(z)dμ(z)

iz z−l,

L
2l+1 =

˛

T

((
φR

2
)(2l+1)(z)

)† dμ(z)
iz z−l−1.

(19)

with the explicit expressions of the first 
elations (15) and (16). �
5 that in the Hermitian context, we have

16
2 2l+1(
φR

1
)(2l) =

(
αR

1,2lz
−l + · · · + zl

)(
(
φR

1
)(2l+1) =

(
z−l−1 + · · · +

(
αL

2(
φR

2
)(2l) = αR

2,2lz
−l + · · · + zl,(

φR
2
)(2l+1) = z−l−1 + · · · + αL

1,2l+

(2) The “quasi-norms” and the MOLPUC fulfil

hR
2l+1 =

˛

T

(
φL

1
)(2l+1)(z)dμ(z)

iz zl+1, h

hR
2l =

˛

T

((
φR

2
)(2l)(z))† dμ(z)

iz zl, h

Proof.

(1) Use (7), (8) and Propositions 4 and 5.
(2) Consider the biorthogonality (14) together 

item in this proposition and orthogonality r

Recalling (10), we conclude from Proposition



αH
1,l = αH

2,l, H = L,R, l = 0, 1, . . . ,(
DH

l

)† = DH
l , H = L,R, l = 0, 1, . . . .

It is not difficult to see comparing the previous result with the proof of the Gaussian 
factorization (A.1) that in terms of Schur complements, we have

Proposition 7.

(1) The matrices DH
l ∈ Cm×m, H = L, R, l = 0, 1, . . . , from the diagonal block of the 

bock LU factorization can be written as the following Schur complements

DH
l =

(
gH
)[l+1]

�
(
gH
)[l]

, H = L,R, l = 0, 1, . . . . (20)

(2) The Verblunsky matrices can be expressed as

αL
1,2k = −

2k−1∑
i=0

(
gL
)
2k,i

(((
gL
)[2k])−1)

i,2k−1,

,i

(((
gL
)[2k+1])−1)

i,2k,

i

(((
gR
)[2k])−1)

i,2k−1,

,i

(((
gR
)[2k+1])−1)

i,2k,

2k])−1)
2k−1,i

(
gL
)
i,2k,

k+1])−1)
2k,i

(
gL
)
i,2k+1,

2k])−1)
2k−1,i

(
gR
)
i,2k,

k+1])−1)
2k,i

(
gR
)
i,2k+1.

trix Laurent polynomials
rnative expressions for the MOLPUC 
f Schur complements of bordered trun-
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[
αR

2,2k+1
]† = −

2k∑
i=0

(
gL
)
2k+1

[
αR

2,2k
]† = −

2k−1∑
i=0

(
gR
)
2k,

αL
1,2k+1 = −

2k∑
i=0

(
gR
)
2k+1

[
αL

2,2k
]† = −

2k−1∑
i=0

(((
gL
)[

αR
1,2k+1 = −

2k∑
i=0

(((
gL
)[2

αR
1,2k = −

2k−1∑
i=0

(((
gR
)[

[
αL

2,2k+1
]† = −

2k∑
i=0

(((
gR
)[2

2.2.2. Alternative ways to express the CMV ma
For later use, we now present some alte

(ϕH
i )(l)(z), H = L, R, l = 0, 1, . . . in terms o

cated matrices



Lemma 1. The next expressions hold true

(
ϕL

1
)(l)(z) = (S2)ll ( 0 0 . . . 0 I )

((
gL
)[l+1])−1

χ[l+1]

= χ(l) −
(
(gL)l,0 (gL)l,1 · · · (gL)l,l−1

)((
gL
)[l])−1

χ[l]

= SC

⎛⎜⎜⎜⎜⎜⎜⎝
(gL)0,0 (gL)0,1 . . . (gL)0,l−1 χ(z)(0)
(gL)1,0 (gL)1,1 . . . (gL)1,l−1 χ(z)(1)

...
...

(gL)l−1,0 (gL)l−1,1 . . . (gL)l−1,l−1 χ(z)(l−1)

(gL)l,0 (gL)l,1 . . . (gL)l,l−1 χ(z)(l)

⎞⎟⎟⎟⎟⎟⎟⎠ , (21)

[(
ϕL

2
)(l)(z)]† =

(
χ[l+1])†((gL)[l+1])−1

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0
I

⎞⎟⎟⎟⎟⎟⎠

−1

⎛⎜⎜⎜⎝
(gL)0,l
(gL)1,l

...
(gL)l−1,l

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠(DL

)
l

. . . (gL)0,l−1 (gL)0,l

. . . (gL)1,l−1 (gL)1,l
...

. . . (gL)l−1,l−1 (gL)l−1,l

. . . [χ(z)†](l−1) [χ(z)†](l)

⎞⎟⎟⎟⎟⎟⎟⎠
(
DL
)
l

(22)

(gR)0,l
(gR)1,l

...
gR)l−1,l

⎞⎟⎟⎟⎠((DR
)−1)

l

18
=

⎛⎜⎜⎜⎝(χ(l))† − (χ[l])†((gL)[l]
)

= SC

⎛⎜⎜⎜⎜⎜⎜⎝
(gL)0,0 (gL)0,1
(gL)1,0 (gL)1,1

...
(gL)l−1,0 (gL)l−1,1

[χ(z)†](0) [χ(z)†](1)

and

(
ϕR

1
)(l)(z) =

[
χ[l+1]]�((gR)[l+1])−1

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0
I

⎞⎟⎟⎟⎟⎟⎠

=
[
χ(l)]� −

[
χ[l]]�((gR)[l])−1

⎛⎜⎜⎜⎝
(



= SC

⎛⎜⎜⎜⎜⎜⎜⎝
(gR)0,0 (gR)0,1 · · · (gR)0,l−1 (gR)0,l
(gR)1,0 (gR)1,1 · · · (gR)1,l−1 (gR)1,l

...
...

...
...

(gR)l−1,0 (gR)l−1,1 . . . (gR)l−1,l−1 (gR)l−1,l

[χ(z)�](0) [χ(z)�](1) . . . [χ(z)�](l−1) [χ(z)�](l)

⎞⎟⎟⎟⎟⎟⎟⎠
((
DR
)−1)

l
,

[(
ϕR

2
)(l)(z)]† =

(
DR
)
l
( 0 . . . 0 I )

((
gR
)[l+1])−1[(

χ[l+1])�]†
=
[(
χ(l))�]† − ( (gR)l,0 · · · (gR)l,l−1

)((
gR
)[l])−1[(

χ[l])�]†

= SC

⎛⎜⎜⎜⎜⎜⎜⎝
(gR)0,0 (gR)0,1 . . . (gR)0,l−1 [(χ(z)�)†](0)
(gR)1,0 (gR)1,1 . . . (gR)1,l−1 [(χ(z)�)†](1)

...
...

(gR)l−1,0 (gR)l−1,1 . . . (gR)l−1,l−1 [(χ(z)�)†](l−1)

(gR)l,0 (gR)l,1 . . . (gR)l,l−1 [(χ(z)�)†](l)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Proof. See Appendix A. �
Schur complements for the matrix Szegő 
atrices of the right and left block CMV 
essions given in [27] in terms of standard 

can be rewritten as the following Schur 
nt matrices

χ(z)[2l]

,2l−1 χ(z)(2l)

)
,

1] χ∗(z)[2l+1]

(gR)2l+1,2l−1 χ∗(z)(2l+1)

)
,

2l
l)

⎞⎟⎟⎟⎟⎠ ,

(gR)0,2l+1
...

(gR)2l,2l+1

χ∗(z)†)(2l+1)

⎞⎟⎟⎟⎟⎠ ,

19
Following [27] we give expressions in terms of 
polynomials, in terms of bordered truncated m
moment matrices, extending though similar expr
block moment matrices.

Corollary 1. The left matrix Szegő polynomials 
complements of bordered truncated CMV mome

PL
1,2l(z) = zl SC

(
(gL)[2l]

(gL)2l,0 . . . (gL)2l

PL
1,2l+1(z) = zl+1 SC

(
(gR)[2l+

(gR)2l+1,0 . . .

[
PL

2,2l(z)
]† = z̄l SC

⎛⎜⎜⎜⎜⎝
(gL)0,2l

(gL)[2l]
...

(gL)2l−1,
(χ(z)†)[2l] (χ(z)†)(2

[
PL

2,2l+1(z)
]† = z̄l+1 SC

⎛⎜⎜⎜⎜⎝ (gR)[2l+1]

(χ∗(z)†)[2l+1] (

while for the right polynomials we have



PR
1,2l(z) = zl SC

⎛⎜⎜⎜⎜⎝
(gR)0,2l

(gR)[2l]
...

(gR)2l−1,2l

(χ(z)�)[2l] (χ(z)�)(2l)

⎞⎟⎟⎟⎟⎠ ,

PR
1,2l+1(z) = zl+1 SC

⎛⎜⎜⎜⎜⎝
(gL)0,2l+1

(gL)[2l+1] ...
(gL)2l,2l+1

(χ∗(z)�)[2l+1] (χ∗(z)�)(2l+1)

⎞⎟⎟⎟⎟⎠ ,

[
PR

2,2l(z)
]† = z̄l SC

(
(gR)[2l] (χ(z)†)[2l]

(gR)2l,0 . . . (gR)2l,2l−1 (χ(z)†)(2l)

)
,

[
PR

2,2l+1(z)
]† = z̄l+1 SC

(
(gL)[2l+1] (χ∗(z)†)[2l+1]

(gR)2l+1,0 . . . (gR)2l+1,2l−1 (χ∗(z)†)(2l+1)

)
.

Proof. These relations appear when one introduces in (17) and (18) the expressions of 
the CMV polynomials in terms of Schur complements. �

vious left objects

∗
2
∗
2

)
=
(

S1χ1 S1χ
∗
2

[S−1
2 ]†χ1 [S−1

2 ]†χ∗
2

)
,

=
[

[S2]† 0
0 S−1

1

][
[S−1

1 ]† 0
0 S2

]

�
1
∗
2]�

)[
Z1 0
0 [Z−1

2 ]†

]
,

,1 φR
2,1

,2 φR
2,2

)
,][

[Z2]† 0
0 Z−1

1

]

20
2.3. Matrix second kind functions

The following matrix fashion of rewriting pre

(
φL

1,1 φL
1,2

φL
2,1 φL

2,2

)
=
[
S1 0
0 [S−1

2 ]†

](
χ1 χ

χ1 χ(
φL

1
φL

2

)
=
(
φL

1,1 φL
1,2

φL
2,1 φL

2,2

)(
1
1

)
,[

[gL]† 0
0 gL

]
=
[

[S2]†[S−1
1 ]† 0

0 S−1
1 S2

]

and the right ones

(
φR

1,1 φR
2,1

φR
1,2 φR

2,2

)
=
(

χ�
1 χ

[χ∗
2]� [χ

(
φR

1 φR
2
)

= ( 1 1 )
(
φR

1
φR

1[
[gR]† 0

0 gR

]
=
[

[Z−1
1 ]† 0
0 Z2

inspires the next



Definition 7. The partial matrix CMV second kind sequences are given by

(
CL

1,1 CL
1,2

CL
2,1 CL

2,2

)
:=
[

[S−1
1 ]† 0
0 S2

](
χ∗

1 χ2
χ∗

1 χ2

)
=
(

[S−1
1 ]†χ∗

1 [S−1
1 ]†χ2

S2χ
∗
1 S2χ2

)
,

(
CR

1,1 CR
2,1

CR
1,2 CR

2,2

)
:=
(

[χ∗
1]� [χ∗

1]�
χ�

2 χ�
2

)[
[Z−1

1 ]† 0
0 Z2

]
=
(

[χ∗
1]�[Z−1

1 ]† [χ∗
1]�Z2

χ�
2 [Z−1

1 ]† χ�
2 Z2

)
,

and the corresponding matrix CMV second kind sequences are(
CL

1
CL

2

)
=
(
CL

1,1 CL
1,2

CL
2,1 CL

2,2

)(
1
1

)
,

(
CR

1 CR
2
)

= ( 1 1 )
(
CR

1,1 CR
2,1

CR
1,2 CR

2,2

)
.

Complementary to the above definition

Definition 8. The associated CMV Fourier series are

=
(

[gL]†χ∗
1 [gL]†χ2

gLχ∗
1 gLχ2

)
,

0
gR

]
=
(

[χ∗
1]�[gR]† [χ∗

1]�gR
χ�

2 [gR]† χ�
2 g

R

)
,

elated in the following way

ΓR
1
)

=
(
CR

1 CR
2
) [ [Z2]† 0

0 Z−1
1

]
.

 as Schur complements as follows

(gL)0,l
...

(gL)l−1,l

(ΓL
2 (z)†)(l)

⎞⎟⎟⎟⎟⎠(D−1
L

)
l
,

)[l] (Γ1(z))[l]

. (gL)l,l−1 (Γ1(z))(l)

)
,
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(
ΓL

2,1 ΓL
2,2

ΓL
1,1 ΓL

1,2

)
:=
[

[gL]† 0
0 gL

](
χ∗

1 χ2
χ∗

1 χ2

)
(
ΓR

2,1 ΓR
1,1

ΓR
2,2 ΓR

1,2

)
:=
(

[χ∗
1]� [χ∗

1]�
χ�

2 χ�
2

)[
[gR]†

0

for which we have:

Proposition 8.

(1) The elements ΓH and CH , H = L, R, are r

(
ΓL

2
ΓL

1

)
=
[

[S2]† 0
0 S−1

1

](
CL

1
CL

2

)
,

(
ΓR

2

(2) The second kind functions can be expressed

[(
CL

1
)(l)(z)]† = SC

⎛⎜⎜⎜⎜⎝ (gL)[l]

(ΓL
2 (z)†)[l]

(
CL

2
)(l)(z) = SC

(
(gL

(gL)l,0 . .



[(
CR

1
)(l)(z)]† = SC

(
(gR)[l] (ΓR

2 (z)†)[l]

(gR)l,0 . . . (gR)l,l−1 (ΓR
2 (z)†)(l)

)
,

(
CR

2
)(l)(z) = SC

⎛⎜⎜⎜⎜⎝
(gR)0,l

(gR)[l]
...

(gR)l−1,l

(ΓR
1 (z))[l] (ΓR

1 (z))(l)

⎞⎟⎟⎟⎟⎠(D−1
R

)
l
.

(3) In terms of the matrix Laurent orthogonal polynomials and the Fourier series of the 
matrix measure, we have

(
CL

1
)(l)(z) = 2πz−1(ϕL

2
)(l)(

z−1)F †
μ(z),(

CL
2
)(l)(z) = 2πz−1(ϕL

1
)(l)(

z−1)Fμ

(
z−1),(

CR
1
)(l)(z) = 2πz−1F †

μ(z)
(
ϕR

2
)(l)(

z−1),(
CR

2
)(l)(z) = 2πz−1Fμ

(
z−1)(ϕR

1
)(l)(

z−1). (23)

 directly from comparison of the struc-
with the definitions of the CMV matrix 

re as φL
1 = S1χ replacing ΓL

1 ←→ χ.

ll only prove one of the cases since the 
 procedure. First, from the definition of 

†

[
dμ(u)

iu

]†[
χ(u)

]�
Z−1

2

[
dμ(u)

iu

]†
φR

2 (u).

trices, we get

(θ)
]†(

ϕR
2
)(l)(eiθ)

22
Proof. The first part of the proposition follows
ture of the relations from the previous lemma 
polynomials. For example

ΓL
1 = S−1

1 CL
2 ⇒ CL

2 = S1Γ
L
1 same structu

For the second part of the proposition, we sha
rest of them can be proven following the same
the second kind functions, we have

CR
1 (z) =

(
χ∗(z)

)�[
Z−1

1
]†

=
(
χ∗(z)

)�[
gR
]†(

Z−1
2
)

=
[
χ∗(z)

]� ˛

T

[
χ�(u)

]†
=
[
χ∗(z)

]� ˛

T

[
χ�(u)

]†
Taking the l-th component of this vector of ma

(
CR

1
)(l)(z) =

2πˆ

0

∑
n=−∞

zn−1einθ[dμ



=
∑

k,n=−∞
zn−1

2πˆ

0

ei(n+k)θ[dμ(θ)
]†(

ϕR
2,k
)(l)

= 2πz−1
( ∑

k=−∞

(
ϕR

2,k
)(l)

z−k

)( ∑
n=−∞

c†n+kz
n+k

)
= 2πz−1F †

μ(z)
(
ϕR

2
)(l)(

z−1). �
Recalling the previously stated relation between the ΓH and the CH , it follows from 

Proposition 8 that

Proposition 9. The associated CMV Fourier series satisfy

ΓL
1,j = 2πz−1Fμ

(
z−1)χ(j)(z−1), ΓL

2,j = 2πz−1F †
μ(z)χ(j)(z−1),

ΓR
1,j = 2πz−1Fμ

(
z−1)χ(j)(z−1), ΓR

2,j = 2πz−1F †
μ(z)χ(j)(z−1).

Another interesting representation of these functions is

Proposition 10. The second kind functions have the following Cauchy integral type for-

μ(u)
iu

[
φL

2 (u)
]†
,

1 u

u− z−1

]
, |z| > 1,

† dμ(u)
iu

[
φL

2 (u)
]†
,

−1 u

u− z−1

]
, |z| < 1,

z−1 u

u− z−1

]†
,

(u)
iu φR

1 (u), |z| > 1,

−z−1 u

u− z−1

]†
,

dμ(u)
iu φR

1 (u), |z| < 1.
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mulae

[
CL

1,1(z)
]† =

˛

T

[
z−1 u

u− z−1

]† d

CL
2,1(z) =

˛

T

φL
1 (u)dμ(u)

iu

[
z−

[
CL

1,2(z)
]† =

˛

T

[
−z−1 u

u− z−1

]

CL
2,2(z) =

˛

T

φL
1 (u)dμ(u)

iu

[
−z

[
CR

1,1(z)
]† =

˛

T

[
φR

2 (u)
]† dμ(u)

iu

[
[
CR

2,1(z)
]

=
˛

T

[
z−1 u

u− z−1

]
dμ

[
CR

1,2(z)
]† =

˛

T

[
φR

2 (u)
]† dμ(u)

iu

[
[
CR

2,1(z)
]

=
˛

T

[
−z−1 u

u− z−1

]



Proof. Direct substitution leads to

[
CL

1,1
]
(z)† =

˛

T

[∑
n=0

z−1(uz)−n

]† dμ(u)
iu

[
φL

2 (u)
]†
,

CL
2,1(z) =

˛

T

φL
1 (u)dμ(u)

iu

[∑
n=0

z−1(uz)−n

]
,

[
CL

1,2(z)
]† =

˛

T

[∑
n=0

u(uz)n
]† dμ(u)

iu
[
φL

2 (u)
]†
,

CL
2,2(z) =

˛

T

φL
1 (u)dμ(u)

iu

[∑
n=0

u(uz)n
]
,

[
CR

1,1(z)
]† =

˛

T

[
φR

2 (u)
]† dμ(u)

iu

[∑
n=0

z−1(uz)−n

]†
,

CR
2,1(z) =

˛

T

[∑
n=0

z−1(uz)−n

]
dμ(u)

iu φR
1 (u),

)
[∑
n=0

u(uz)n
]†
,

]
dμ(u)

iu φR
1 (u).

ions of the proposition. We will not deal 
ussion follows the ideas of [13]. �

roduce the following

 the block semi-infinite matrix Ei,j whose
here the identity of Mm appears. Then,

=
∞∑
j=0

E2j+1,2j+1,

2j,3+2j , Λ :=
∞∑
j=0

Ej,j+1,

E1,1Λ
�.
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[
CR

1,2(z)
]† =

˛

T

[
φR

2 (u)
]† dμ(u

iu

CR
2,1(z) =

˛

T

[∑
n=0

u(uz)−n

But these are the series expansions of the funct
here with convergence problems since their disc

2.4. Recursion relations

In order to get the recursion relations we int

Definition 9. For each pair i, j ∈ Z+, we consider
only non-zero m ×m block is the (i, j)-th block w
we define the projectors

Π1 :=
∞∑
j=0

E2j,2j , Π2 :

and the following matrices

Λ1 :=
∞∑
j=0

E2j,2+2j , Λ2 :=
∞∑
j=0

E1+

Υ := Λ1 + Λ�
2 +



The matrix Υ , which can be written more explicitly as follows

Υ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I 0 0 0 0 0 0 0 · · ·
I 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 I 0 0 0 0 0 · · ·
0 I 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 I 0 0 0 · · ·
0 0 0 I 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 I 0 · · ·
0 0 0 0 0 I 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 I 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

satisfies

Υ † = Υ−1 = Υ�

ons hold true

−1χ(z) = z−1χ(z), (24)

(z)�Υ = z−1χ(z)�. (25)

(z) = z−1Π2χ(z),

(z) =
(
zΠ2 − E1,1Λ

�)χ(z). �
 are obtained

 with Υ ; i.e.,

= L,R. (26)

dμ(z)
iz
(
z−1χ(z)

)† = gLΥ,

dμ(z)
iz z−1χ(z)� = gRΥ. �

25
and has the following properties

Proposition 11. The next eigen-value type relati

Υχ(z) = zχ(z), Υ

χ(z)�Υ−1 = zχ(z)�, χ

Proof. It follows from the relations

Λ1χ(z) = zΠ1χ(z), Λ2χ

Λ�
1 χ(z) =

(
z−1Π1 −E0,0Λ

)
χ(z), Λ�

2 χ

From these, the following symmetry relations

Proposition 12. The moment matrices commute

ΥgH = gHΥ, H

Proof. It is a consequence of

ΥgL =
˛

T

zχ(z)dμ(z)
iz χ(z)† =

˛

T

χ(z)

ΥgR =
˛

T

zχ(z)dμ(z)
iz χ(z)� =

˛

T

χ(z)



We now introduce another important matrix in the CMV theory

Definition 10. The intertwining matrix η is

η :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0 0 · · ·
0 0 I 0 0 0 0 · · ·
0 I 0 0 0 0 0 · · ·
0 0 0 0 I 0 0 · · ·
0 0 0 I 0 0 0 · · ·
0 0 0 0 0 0 I · · ·
0 0 0 0 0 I 0 · · ·
...

...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which, as the reader can easily check, has the following properties

η−1 = η, ηχ(z) = χ
(
z−1), χ(z)�η = χ

(
z−1)�.

When z ∈ T, we have that ηχ = χ̄ and χ�η = χ† which lead to the intertwining property

ces satisfy the intertwining type property

.

˛

T

χ(z̄)dμ(z)
iz χ

(
z̄−1)�

R. �

ed by

η.

We first notice that

1,

2,

pS−1
2 , p ∈ Z.
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Proposition 13. The left and right moment matri

ηgR = gLη

Proof. It is straightforward to realize that

ηgLη =
˛

T

ηχ(z)dμ(z)
iz χ(z)†η =

=
˛

T

χ(z)dμ(z)
iz χ(z)� = g

Proposition 14. The matrices Υ and η are relat

ηΥ = Υ−1

Now we proceed to the dressing of Υ and η. 

Proposition 15. The following equations hold

S1ΥS
−1
1 = S2ΥS

−
2

Z−1
1 ΥZ1 = Z−1

2 ΥZ

Z−1
2 ηΥ pS−1

1 = Z−1
1 ηΥ



Those equations allow us to define

Definition 11. Let us define

JL := S1ΥS
−1
1 = S2ΥS

−1
2 , JR := Z−1

1 ΥZ1 = Z−1
2 ΥZ2, (27)

and for any p ∈ Z, introduce

C[p] = Z−1
2 ηΥ pS−1

1 = Z−1
1 ηΥ pS−1

2 . (28)

Observations.

(1)

C[−|p|] = Z−1
2 ηΥ−|p|S−1

1 = Z−1
2 Υ |p|ηS−1

1 .

1
−1

ηŜ2
−1

DL = DRZ†
2ηS

†
1D

L

as follows

L
)p−l = [C[l]]−1C[p].

these matrices

)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 0 0 0 · · ·

∗ ∗ ∗ ∗ 0 0 0 0 0 0 · · ·
0 0 ∗ ∗ ∗ ∗ 0 0 0 0 · · ·
0 0 ∗ ∗ ∗ ∗ 0 0 0 0 · · ·
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 · · ·
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 · · ·
0 0 0 0 0 0 ∗ ∗ ∗ ∗ · · ·
0 0 0 0 0 0 ∗ ∗ ∗ ∗ · · ·
0 0 0 0 0 0 0 0 ∗ ∗ · · ·
...

...
...

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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(2) In the Hermitian case,

C[0] = Z−1
2 ηS−1

1 = Z−1
1 ηS−1

2 = DRẐ

=⇒ C†
[0] = DLC−1

[0] D
R.

Proposition 16. Powers of JH can be expressed 

(
JR
)l−p = C[p][C[l]]−1,

(
J

Now we give the schematic shape of some of 

JH =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0 0 0 0 0 · · ·
∗ ∗ 0 0 0 0 0 0 0 · · ·

0 ∗ ∗ ∗ ∗ 0 0 0 0 0 · · ·
0 ∗ ∗ ∗ ∗ 0 0 0 0 0 · · ·
0 0 0 ∗ ∗ ∗ ∗ 0 0 0 · · ·
0 0 0 ∗ ∗ ∗ ∗ 0 0 0 · · ·
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 · · ·
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 · · ·
0 0 0 0 0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 0 0 0 ∗ ∗ ∗ · · ·
...

...
...

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(
JH



C[0] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 0 · · ·
0 ∗ ∗ ∗ 0 0 0 · · ·
0 0 ∗ ∗ ∗ 0 0 · · ·
0 0 0 ∗ ∗ ∗ 0 · · ·
0 0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 0 ∗ ∗ · · ·
...

...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C[−1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 0 · · ·
0 ∗ ∗ ∗ 0 0 0 · · ·
0 0 ∗ ∗ ∗ 0 0 · · ·
0 0 0 ∗ ∗ ∗ 0 · · ·
0 0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 0 ∗ ∗ · · ·
...

...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here the ∗ are non-zero m ×m blocks that, thanks to the factorization problem, can 
be written in terms of the Verblunsky coefficients as we will see later. The shape of 
each matrix is a consequence of the two possible definitions (in terms of upper or lower 
block-triangular matrices). For the explicit form of these matrices, see Appendix B.

A first consequence is the following relations among Verblunsky coefficients and the 
matrix quasi-norms of the Szegő polynomials

Proposition 17. The following relations are fulfilled

hL
mαR

1,m+1 = αL
1,m+1h

R
m,

,m+1
]†
hL
m = hR

m

[
αL

2,m+1
]†
,

hR
k =

(
I−
[
αR

2,k
]†
αL

1,k
)
hR
k−1,

hR
k = hR

k−1
(
I−
[
αL

2,k
]†
αR

1,k
)
,

s of C±1
[0] and C±1

[−1]. �
 coincide in the Hermitian case.

 hold

JL
)−1

ΦL
1 = z−1ΦL

1 ,]†)−1
ΦL

2 = zΦL
2 ,[

JR
]†)−1 = z−1ΦR

2 ,

R
1 (JR)−1 = zΦR

1 ,

R
1 (z)C[p] = zp

(
ΦL

2
(
z̄−1))†.

28
hR
m

[
αL

2,m
]† =

[
αR

2,m
]†
hL
m,

αL
1,mhR

m = hL
mαR

1,m,
[
αR

2

hL
k =

(
I− αL

1,k
[
αR

2,k
]†)

hL
k−1,

hL
k = hL

k−1
(
I− αR

1,k
[
αL

2,k
]†)

,

Proof. Just compare the two possible definition

Notice that the two relations in each column

Proposition 18. The next eigen-value properties

JLΦL
1 = zΦL

1 ,
(

[
JL
]†
ΦL

2 = z−1ΦL
2 ,

([
JL

ΦR
2
[
JR
]† = zΦR

2 , ΦR
2
(

ΦR
1 J

R = z−1ΦR
1 , Φ

and the following properties are fulfilled

C[p]Φ
L
1 (z) = zp

(
ΦR

2
(
z̄−1))†, Φ



Proof. The results follow directly from the action of Υ±1 and η on χ and the definitions
of JH , C[p] and ΦH

i . For example

JLΦL
1 = S1ΥS

−1
1 S1χ(z) = S1Υχ(z) = zS1χ(z) = zΦL

1 ,

C[p]Φ
L
1 = Z−1

2 ηΥ pS−1
1 S1χ(z) = Z−1

2 ηzpχ(z) = zpZ−1
2 χ
(
z−1) = zp

(
ΦR

2
(
z̄−1))†.

For the remaining relations, one proceeds in a similar way. �
This last proposition implies

Proposition 19. The following recursion relations for the left Laurent polynomials hold

z
(
ϕL

1
)(2k) = −αL

1,2k+1
(
I−
[
αR

2,2k
]†
αL

1,2k
)(
ϕL

1
)(2k−1) − αL

1,2k+1
[
αR

2,2k
]†(

ϕL
1
)(2k)

− αL
1,2k+2

(
ϕL

1
)(2k+1) +

(
ϕL

1
)(2k+2)

,

z
(
ϕL

1
)(2k+1) =

(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)(
I−
[
αR

2,2k
]†
αL

1,2k
)(
ϕL

1
)(2k−1)

+
(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)[
αR

2,2k
]†(

ϕL
1
)(2k)

[
αR

2,2k+1
]†(

ϕL
1
)(2k+2)

,

1
[
αL

1,2k
]†(

ϕL
2
)(2k)

k+1)(z)

,2k+2
[
αL

1,2k+2
]†)(

ϕL
2
)(2k+2)(z),

2k)(z) −
[
αL

1,2k+1
]†
αR

2,2k+2
(
ϕL

2
)(2k+1)(z)

+2
]†)(

ϕL
2
)(2k+2)(z),

)[
αR

2,2k
]†
αL

1,2k+1

+1
]†
αL

1,2k+1
)

,2k+2
)(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)
,]† − (ϕR

1
)(2k+1)

αL
1,2k+2

[
αR

2,2k+1
]†

L
1,2k+2

)[
αR

2,2k+1
]†
,

αR
2,2k+1 −

(
ϕR

2
)(2k)[

αL
1,2k
]†
αR

2,2k+1

+2)
,)(

I− αR
2,2k+1

[
αL

1,2k+1
]†)
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−
[
αR

2,2k+1
]†
αL

1,2k+2
(
ϕL

1
)(2k+1) +

z
(
ϕL

2
)(2k)(z) = −αR

2,2k+1
(
ϕL

2
)(2k−1)(z) − αR

2,2k+

−
(
I− αR

2,2k+1
[
αL

1,2k+1
]†)(

ϕL
2
)(2

+
(
I− αR

2,2k+1
[
αL

1,2k+1
]†)(

I− αR
2

z
(
ϕL

2
)(2k+1)(z) =

(
ϕL

2
)(2k−1)(z) +

[
αL

1,2k
]†(

ϕL
2
)(

+
[
αL

1,2k+1
]†(

I− αR
2,2k+2

[
αL

1,2k

while for the right polynomials, relations are

z
(
ϕR

1
)(2k) = −

(
ϕR

1
)(2k−1)

αL
1,2k+1 −

(
ϕR

1
)(2k

−
(
ϕR

1
)(2k+1)

αL
1,2k+2

(
I−
[
αR

2,2k

+
(
ϕR

1
)(2k+2)(

I−
[
αR

2,2k+2
]†
αL

1

z
(
ϕR

1
)(2k+1) =

(
ϕR

1
)(2k−1) +

(
ϕR

1
)(2k)[

αR
2,2k

+
(
ϕR

1
)(2k+2)(

I−
[
αR

2,2k+2
]†
α

z
(
ϕR

2
)(2k) = −

(
ϕR

2
)(2k−1)(

I− αR
2,2k
[
αL

1,2k
]†)

−
(
ϕR

2
)(2k+1)

αR
2,2k+2 +

(
ϕR

2
)(2k

z
(
ϕR

2
)(2k+1) =

(
ϕR

2
)(2k−1)(

I− αR
2,2k
[
αL

1,2k
]†



+
(
ϕR

2
)(2k)[

αL
1,2k
]†(

I− αR
2,2k+1

[
αL

1,2k+1
]†)

−
(
ϕR

2
)(2k+1)

αR
2,2k+1

[
αL

1,2k+1
]† +

(
ϕR

2
)(2k+2)[

αL
1,2k+1

]†
.

We have written down just the recursion relations for z and not those for z−1, which
can be derived similarly to these ones. For the complete recursion expressions, see Ap-
pendix C.

Proposition 20. The following relations hold true

((
ϕR

2
)(2k)(

z̄−1))† =
(
I−
[
αR

2,2k
]†
αL

1,2k
)(
ϕL

1
)(2k−1)(z) +

[
αR

2,2k
]†(

ϕL
1
)(2k)(z),((

ϕR
2
)(2k+1)(

z̄−1))† = −αL
1,2k+2

(
ϕL

1
)(2k+1)(z) +

(
ϕL

1
)(2k+2)(z),((

ϕL
2
)(2k)(

z̄−1))† =
(
ϕR

1
)(2k−1)(z) +

(
ϕR

1
)(2k)(z)

[
αR

2,2k
]†
,((

ϕL
2
)(2k+1)(

z̄−1))†
= −

(
ϕR

1
)(2k+1)(z)αL

1,2k+2 +
(
ϕR

1
)(2k+2)(z)

(
I−
[
αR

2,2k+2
]†
αL

1,2k+2
)
,(( ) ( )) [ ] ( )

(z) +
(
ϕL

1
)(2k+1)(z),

αL
1,2k+1

(
ϕL

1
)(2k+1)(z),)(2k)(z)αL

1,2k+1,

z)
(
I− αL

1,2k+1
[
αR

2,2k+1
]†)

.

ng into (18) the expressions of the blocks 

ecursion relations in Proposition 20, one 
egő polynomials:

l+2(z) = −αL
1,2l+2

(
PR

2,2l+1(z)
)∗

1(z)
)∗ =

(
αR

2,2l
)†
PL

1,2l(z)
L
2,2l
)†) = PR

1,2l(z)
(
αL

2,2l
)†

l+2(z) = −
(
PL

2,2l+1(z)
)∗
αL

1,2l+2

l(z)
)∗ =

(
αR

2,2l+1
)†
zPL

1,2l(z)
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1
z

ϕR
2

(2k)
z̄−1 † = − αR

2,2k+1
†
ϕL

1
(2k)

1
z

((
ϕR

2
)(2k+1)(

z̄−1))†
=
(
I− αL

1,2k+1
[
αR

2,2k+1
]†)(

ϕL
1
)(2k)(z) +

1
z

((
ϕL

2
)(2k+1)(

z̄−1))† =
(
ϕR

1
)(2k)(z) +

(
ϕR

1

1
z

((
ϕL

2
)(2k)(

z̄−1))†
= −

(
ϕR

1
)(2k)(z)

[
αR

2,2k+1
]† +

(
ϕR

1
)(2k+1)(

Proof. These relations appear just by substituti
of (JH)±1, C[0], C[−1]. �

Using Proposition 19 and the matrix CMV r
derives the recursion relations for the matrix Sz

zPL
1,2l+1(z) − PL

1,2(
PR

2,2l(z)
)∗ − (I− (αR

2,2l
)†
αL

1,2l
)(
PR

2,2l−(
PL

2,2l(z)
)∗ − (PL

2,2l−1(z)
)∗(

I− αR
1,2l
(
α

zPR
1,2l+1(z) − PR

1,2(
PR

2,2l+1(z)
)∗ − (PR

2,2



PL
1,2l+1(z) −

(
I− αL

1,2l+1
(
αR

2,2l+1
)†)

zPL
1,2l(z) = αL

1,2l+1
(
PR

2,2l+1(z)
)∗

PR
1,2l+1(z) − zPR

1,2l(z)
(
I−
(
αL

2,2l+1
)†
αR

1,2l+1
)

=
(
PL

2,2l+1(z)
)∗
αR

1,2l+1(
PL

2,2l(z)
)∗ − (PL

2,2l+1(z)
)∗ = −zPR

1,2l(z)
(
αL

2,2l+1
)†

which after the prescription

xl
N := αL

1,N xr
N := αR

1,N

ylN :=
(
αL

2,N
)†

yrN :=
(
αR

2,N
)†

coincide with the formulae in [27].

2.5. Christoffel–Darboux theory

To conclude this section, we show how the Gaussian factorization leads to the 
Christoffel–Darboux theorem for the matrix Laurent polynomials on the unit circle con-
text. In this particular situation we must consider two different cases. As we are working 

ions in the corresponding modules, “or-
condly, when the matrix measures are 
 scalar product, and the projections to 

potent endomorphism π ∈ EndMm
(M),

ojection π, we have Kerπ = Im(1 − π),
mposition holds: M = Im π⊕ Im(1 −π). 
onal if ππ′ = 0; observe that (1 − π) is 
ogonality is not related here to any inner 
odule. In particular, in our discussion of 
ollowing free modules

−k,k], l = 2k,
−k−1,k], l = 2k + 1.

en multiplied by the left, and denoted 
tiplication by matrices is performed by
te by V = lim−→ V[l] and W = lim−→ W[l] the
odules of matrix Laurent polynomials. 

˛

T

f(z)dμ(z)
iz g(z),
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in a non-Abelian situation, we first have project
thogonal” in the ring (our blocks) context. Se
Hermitian and positive definite, we will have a
consider are orthogonal indeed.

2.5.1. Projections in modules
Given a right or left Mm module M , any idem

π2 = π, is called a projection. For any given pr
Ker(1 −π) = Im π, and the following direct deco
Two projections π and π′ are said to be orthog
idempotent and moreover orthogonal to π. Orth
product so far, it is just a construction in the m
matrix Laurent polynomials, we introduce the f

Λ[l] := Mm

{
χ(j)}l

j=0 =
{
Λm,[
Λm,[

That we can consider as a left free module, wh
by V[l+1], or as a right free module (when mul
the right) and denoted by W[l+1]. We will deno
corresponding direct limits, the left and right m
The bilinear form

G(f, g) =
〈〈
g†, f

〉〉
L

=
〈〈
f†, g

〉〉
R

=



Gi,j :=
˛

T

χ(i)(z)dμ(z)
iz
(
χ(j)(z)

)�
,

fulfills

G = ηgR = gLη.

This can be understood as a change of basis in the left and right modules W[l] and V[l];
the left moment matrix can be understood as the matrix of the bilinear form G when 
on the left module W[l] we apply the isomorphism or change of basis represented by the
η matrix. Similarly, the right moment matrix can be understood as the matrix of the 
bilinear form G when on the right module V[l] we apply the isomorphism represented by
the η matrix. Observe that the G dual vectors introduced in Appendix D are of the form

((
ϕL

1
)
j

)∗ =
(
ϕL

2
)†
j
,

((
ϕL

2
)†
j

)∗ =
(
ϕL

1
)
j
,((

ϕR
1
)
j

)∗ =
(
ϕR

2
)†
j
,

((
ϕR

2
)†
j

)∗ =
(
ϕR

1
)
j
.

g of G projections in these left and right 

[l]
R : W −→ W[l],

iated to the bilinear form G.

(z)
]†(

ϕL
1
)(k)(

z′
)
,

z)
[(
ϕR

2
)(k)(

z′
)]†

. (29)

 Christoffel–Darboux kernels introduced 
s

〈〈(
ϕL

2
)(k)

, f
〉〉

L

(
ϕL

1
)(k)(z),
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Thus, following Appendix D, we consider the rin
modules

Definition 12.

(1) The Christoffel–Darboux projectors

π
[l]
L : V −→ V[l], π

are the ring left and right projections assoc
(2) The matrix Christoffel–Darboux kernels are

KL,[l](z, z′) :=
l−1∑
k=0

[(
ϕL

2
)(k)

KR,[l](z, z′) :=
l−1∑
k=0

(
ϕR

1
)(k)(

Proposition 21. For the projections and matrix
in Definition 12, we have the following relation

(
π

[l]
L f
)
(z) =

ˆ

T

f
(
z′
)dμ(z′)

iz′ KL,[l](z′, z) =
l−1∑
k=0

∀f ∈ V,



[(
π

[l]
L f
)
(z)
]† =

˛

T

KL,[l](z, z′)dμ(z′)
iz′

[
f
(
z′
)]† =

l−1∑
k=0

[(
ϕL

2
)(k)(z)

]†〈〈
f,
(
ϕL

1
)(k)〉〉

L
,

∀f ∈ V,(
π

[l]
R f
)
(z) =

˛

T

KR,[l](z, z′)dμ(z′)
iz′ f

(
z′
)

=
l−1∑
k=0

(
ϕR

1
)(k)(z)

〈〈(
ϕR

2
)(k)

, f
〉〉

R
,

∀f ∈ W,[(
π

[l]
R f
)
(z)
]† =

˛

T

[
f
(
z′
)]† dμ(z′)

iz KR,[l](z′, z) =
l−1∑
k=0

〈〈
f,
(
ϕR

1
)(k)〉〉

R

[(
ϕR

2
)(k)(z)

]†
,

∀f ∈ W.

Proposition 22. The Christoffel–Darboux kernels have the reproducing property

KH,[l](z, y) =
˛

T

KH,[l](z, z′)dμ(z′)
iz′ KH,[l](z′, y), H = L,R. (30)

erty of the π’s. �

itian, then

L
k

)−1(
ϕL

1
)(k)(z), ∀f ∈ V,

1〈〈(
ϕR

1
)(k)

, f
〉〉

R
, ∀f ∈ W ;

 for the projectors〉〉
H
, H = R,L.

sitive definite, we have a standard scalar 
rojections π[l]

H are orthogonal projections
rical sense as well — to the subspaces 
e that there are two different, however 

ved. In this situation, as is well known, 
ithin the truncated Laurent polynomials 
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Proof. This follows from the idempotency prop

Moreover,

Proposition 23. If the matrix measure μ is Herm

(1) the followings expansions are satisfied

(
π

[l]
L f
)
(z) =

l−1∑
k=0

〈〈(
ϕL

1
)(k)

, f
〉〉

L

(
h

(
π

[l]
R f
)
(z) =

l−1∑
k=0

(
ϕR

1
)(k)(z)

(
hR
k

)−
(2) the following Hermitian type property holds〈〈

π
[l]
Hf, g

〉〉
H

=
〈〈
f, π

[l]
Hg

When the matrix measure is Hermitian and po
product and a complex Hilbert space, and the p
— not only in the module but in the geomet
of truncated matrix Laurent polynomials; notic
equivalent, scalar products and distances invol
these projections give the best approximation w
and the corresponding left and right distances.



2.5.2. The Christoffel–Darboux type formulae
Theorem 2. For z̄z′ �= 1, the matrix Christoffel–Darboux kernels fulfill

KL,[2l](z, z′)(1 − z̄z′
)

=
(
ϕR

1
)(2l)(

z̄−1)hR
2l
(
hR

2l−1
)−1(

ϕL
1
)(2l−1)(

z′
)
−
(
ϕR

1
)(2l−1)(

z̄−1)(ϕL
1
)(2l)(

z′
)

=
[[
z
(
ϕL

2
)(2l+1)(z)

]†
hR

2l+1 −
[
z
(
ϕL

2
)(2l)(z)]†hL

2lα
R
1,2l+1

](
hR

2l−1
)−1(

ϕL
1
)(2l−1)(

z′
)

−
[[
z
(
ϕL

2
)(2l−2)(z)

]† +
[
z
(
ϕL

2
)(2l−1)(z)

]†[
αR

2,2l−1
]†](

ϕL
1
)(2l)(

z′
)
,

KL,[2l+1](z, z′)(1 − z̄z′
)

=
[
z
(
ϕL

2
)(2l+1)(z)

]†
hR

2l+1
(
hR

2l
)−1[(

ϕR
2
)(2l)]†(

z′ −1)
−
[
z
(
ϕL

2
)(2l)(z)]†[(ϕR

2
)(2l+1)]†(

z′ −1)
=
[
z
(
ϕL

2
)(2l+1)(z)

]†
hR

2l+1
[(
hR

2l−1
)−1(

ϕL
1
)(2l−1)(

z′
)

+
[
αL

2,2l
]†(

hL
2l
)−1(

ϕL
1
)(2l)(

z′
)]

−
[
z
(
ϕL

2
)(2l)(z)]†[(ϕL

1
)(2l+2)(

z′
)
− αL

1,2l+2
(
ϕL

1
)(2l+1)(

z′
)]
, (31)

(
z′
)]†

L
2,2l+1

]†](
hL

2l+1
)−1[(

ϕR
2
)(2l−1)(

z′
)]†

][(
ϕR

2
)(2l)(

z′
)]†

,

−1)− z
(
ϕR

1
)(2l)(z)(ϕL

1
)(2l+1)(

z̄′ −1)
)(
z′
)]† + αR

1,2l
(
hR

2l
)−1[(

ϕR
2
)(2l)(

z′
)]†

+2
]†[(

ϕR
2
)(2l+1)(

z′
)]†

. (32)

e have

ernels can be expressed in terms of the 

R
2l−1
)−1(

PR
2,2l−1

)∗(
z′
)

−1
)−1

PL
1,2l
(
z′
)]
,
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KR,[2l](z, z′)(1 − z̄′z
)

=
[(
ϕL

2
)(2l)]†(

z−1)hL
2l
(
hL

2l−1
)−1[(

ϕR
2
)(2l−1)

−
[(
ϕL

2
)(2l−1)]†(

z−1)[(ϕR
2
)(2l)(

z′
)]†

= z
[(
ϕR

1
)(2l+1)(z)hL

2l+1 −
(
ϕR

1
)(2l)(z)hR

2l
[
α

−z
[(
ϕR

1
)(2l−2)(z) −

(
ϕR

1
)(2l−1)(z)αL

1,2l−1

KR,[2l+1](z, z′)(1 − z̄′z
)

= z
(
ϕR

1
)(2l+1)(z)hL

2l+1
(
hL

2l
)−1(

ϕL
1
)(2l−1)(

z̄′

= z
(
ϕR

1
)(2l+1)(z)hL

2l+1
[(
hL

2l−1
)−1(

ϕR
2
)(2l−1

− z
(
ϕR

1
)(2l)(z)[(ϕR

2
)(2l+2)(

z′
)]† − [αR

2,2l

Proof. See Appendix A. �
In terms of the matrix Szegő polynomials, w

Corollary 2. The matrix Christoffel–Darboux k
matrix Szegő polynomials as follows

KL,[2l](z, z′) = (z̄z′ −1)l

1 − z̄z′
[
PR

1,2l
(
z̄−1)(h

−
(
PL

2,2l−1
)∗(

z̄−1)(hL
2l



KL,[2l+1](z, z′) = z̄l+1z′ −l

1 − z̄z′
[
PR

1,2l+1
(
z̄−1)(hR

2l
)−1(

PR
2,2l
)∗(

z′
)

−
(
PL

2,2l
)∗(

z−1)(hL
2l
)−1

PL
1,2l+1

(
z′
)]
,

KR,[2l](z, z′) = (zz̄′ −1)l

1 − z̄′z

[[
PL

2,2l
(
z̄−1)]†(hL

2l−1
)−1[(

PL
1,2l−1

)∗(
z′
)]†

−
[(
PR

1,2l−1
)∗(

z̄−1)]†(hR
2l−1
)−1[

PR
2,2l
(
z′
)]†]

,

KR,[2l+1](z, z′) = zl+1z̄′ −l

1 − z̄′z

[[
PL

2,2l+1
(
z̄−1)]†(hL

2l
)−1[(

PL
1,2l
)∗(

z′
)]†

−
[(
PR

1,2l
)∗(

z̄−1)]†(hR
2l
)−1[

PR
1,2l+1

(
z′
)]†]

,

where we assume that z̄z′ �= 1.

As we have just seen, letting an operator act to the left or to the right and comparing 
the two results has been very successful with JK . Actually we still have the operators
C0, C−1 to which we can also apply the same procedure to get some other interesting
relations for the CD kernels.

and KR hold

′
)
,)

]†
αL

1,2k+2
)(
ϕL

1
)(2k+1)(

z′
)
,

1
z̄
, z′
)

αR
2,2k+1

]†)(
ϕL

1
)(2k)(

z′
)
,

1
z̄
, z′
)
.

aring the action of C0 to the left or to

z′
)

st relation) or [2k+2] (second one). The 
he same way but using C−1 instead. �
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Proposition 24. The next relations between KL

KR,[2l+1]
(
z,

1
z̄′

)
= KL,[2l+1]

(
1
z̄
, z

KR,[2l+2]
(
z,

1
z̄′

)
−KL,[2l+2]

(
1
z̄
, z′

=
(
ϕR

1
)(2k+1)(z)

(
ϕL

1
)(2k+2)(

z′
)

−
(
ϕR

1
)(2k+2)(z)

(
I−
[
αR

2,2k+2

1
z′
KR,[2l+1]

(
z,

1
z̄′

)
− 1

z
KL,[2l+1]

(
=
(
ϕR

1
)(2k)(z)

(
ϕL

1
)(2k+1)(

z′
)

−
(
ϕR

1
)(2k+1)(z)

(
I− αL

1,2k+1
[

1
z′
KR,[2l+2]

(
z,

1
z̄′

)
= 1

z
KL,[2l+2]

(
Proof. The first two relations arise when comp
the right in

φR
1 (z)C0φ

L
1
(

and truncating the expressions up to [2k+1] (fir
other two relations are obtained proceeding in t



3. MOLPUC and two dimensional Toda type hierarchies

Once we have explored how the Gauss–Borel factorization of block CMV moment
matrices leads to the algebraic theory of MOLPUC, we are ready to show how this 
approach also connects these polynomials to integrable hierarchies of Toda type. We 
first introduce convenient deformations of the moment matrices, that as we will show 
correspond to deformations of the matrix measure. With these we will construct wave 
functions, Lax equations, Zakharov–Shabat equations, discrete flows and Darboux trans-
formations and Miwa transformations. These last transformations will lead to interesting 
relations between the matrix Christoffel–Darboux kernels, Miwa shifted MOLPUC and 
their “norms”. The integrable equations that we derive are a non-Abelian version of the 
Toeplitz lattice or non-Abelian ALL equations that extend, in the partial flows case, 
those of [27] — appearing these last ones in what we denominate total flows.

3.1. 2D Toda continuous flows

In order to construct deformation matrices which will act on the moment matrices 
re) we first introduce some definitions.

, . . . , tHj,m) ∈ diagm, j = 0, 1, 2, . . . , H =

H :=
(
tR0 , t

R
1 , t

R
2 , . . .

)�
,

monomial vector but evaluated in Υ

1, Υ 2, Υ−2, . . .
)
.

Υ )
]� ∗ tR :=

∞∑
j=0

[
χ(Υ )(j)

]�
tRj .

y blocks; i.e., the factors in Mm multiply

0
(
tR
)

:= exp
([
χ(Υ )

]� ∗ tR
)
.
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(resulting in a deformation of the matrix measu

Definition 13.

(1) Given the diagonal matrices tHj = diag(tHj,1
L, R and tHj,a ∈ C, we introduce

tL :=
(
tL0 , t

L
1 , t

L
2 , . . .

)
, t

we also impose tH0 = 0.
(2) We also consider the CMV ordered Fourier 

[
χ(Υ )

]� =
(
I, Υ, Υ−

(3) With this we introduce

tL ∗ χ(Υ ) :=
∞∑
j=0

tLj χ(Υ )(j),
[
χ(

The products in the above expressions are b
Mm block of the M∞ block matrix.

(4) The deformation matrices are

W0
(
tL
)

:= exp
(
tL ∗ χ(Υ )

)
, V



(5) The t-dependent deformation of moment matrices, gH(t), H = L, R, and their 
Gauss–Borel factorization are considered

gL(t) := W0
(
tL
)
gL
[
V0
(
−ηtR

)]−1
, gL(t) =

(
S1(t)

)−1
S2(t), (33)

gR(t) :=
[
W0
(
−tLη

)]−1
gRV0

(
tR
)
, gR(t) = Z2(t)

(
Z1(t)

)−1
. (34)

Proposition 25.

(1) The deformed moment matrices can be understood as the moment matrices for a 
deformed (t-dependent) measure given by

dμ(z, t) := exp
(
tLχ(z)

)
dμ(z) exp

(
χ(z)�tR

)
,

with the deformed Fourier series of the evolved matrix measure given by

Fμ(t)(z) := exp
(
tLχ(z)

)
F (z) exp

(
χ(z)�tR

)
. (35)

(2) The Hermitian character of the matrix measure is preserved by the deformation 
whenever tL = (tR)†η.

htly different set of flows or deformations 
3]. Despite that in that scalar situation 
ot the case in this non-Abelian scenario, 

tiplying at the left and right of the initial 

y
onstruct the integrable hierarchy

(t) := S2(t)V0
(
−ηtR

)
,

(t) := W0
(
−tLη

)
Z2(t). (36)

ions)∗(z, t) =
[(
WL

1
)−1(t)

]†
χ∗(z),)∗(z, t) =

[(
WL

2
)−1(t)

]†
χ(z),)∗(z, t) = χ∗(z)�

[(
WR

1
)−1(t)

]†
,)∗(z, t) = χ(z)�

[(
WR

2
)−1(t)

]†
.
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Observe that in this paper we introduce a slig
of the measure than those in the scalar case [1
both definitions give the very same flows that is n
as in this case we have deformation matrices mul
matrix measure, and the order is relevant.

3.1.1. The Gauss–Borel approach to integrabilit
We consider the elements that enable us to c

Definition 14.

(1) Left and right wave matrices

WL
1 (t) := S1(t)W0

(
tL
)
, WL

2

WR
1 (t) := V0

(
tR
)
Z1(t), WR

2

(2) Left and right wave and adjoint wave funct

ΨL
1 (z, t) = WL

1 (t)χ(z),
(
ΨL

1

ΨL
2 (z, t) = WL

2 (t)χ∗(z),
(
ΨL

2

ΨR
1 (z, t) = χ(z)�WR

1 (t),
(
ΨR

1

ΨR
2 (z, t) = χ∗(z)�WR

2 (t),
(
ΨR

2



(3) Left and right Jacobi vector of matrices (using our previous notation)

χ
(
JH(t)

)
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I

(JH(t))−1

JH(t)
(JH(t))−2

(JH(t))2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, H = L,R.

(4) Projection operators, a = 1, . . . , m

P (H,H′)
a :=

⎧⎪⎪⎨⎪⎪⎩
S1EaaS

−1
1 , H = L, H ′ = L,

S2EaaS
−1
2 , H = R, H ′ = L,

Z−1
2 EaaZ2, H = L, H ′ = R,

Z−1
1 EaaZ1, H = R, H ′ = R.

(37)

(5) Left and right Lax matrices

−1
2(t)−1 = JL(t),
−1Υ−1Z2(t) = JR(t), (38)

Υ−1S1(t)−1 =
(
JL(t)

)−1

ΥZ1(t) =
(
JR(t)

)−1
. (39)

, H = L, H ′ = L,

)−, H = R, H ′ = L,
)Z2)+, H = L, H ′ = R,

1)−, H = R, H ′ = R,

= L, H ′ = L,

= R, H ′ = L,

= L, H ′ = R,

= R, H ′ = R.

(40)

= Z1(t)−1ηΥ pS2(t)−1. (41)

= WR
2 (t)

(
WR

1
)−1(t). (42)
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L1(t) := S1(t)ΥS1(t) = S2(t)ΥS

R1(t) := Z1(t)−1Υ−1Z1(t) = Z2(t)

L2(t) := S2(t)Υ−1S2(t)−1 = S1(t)

R2(t) := Z2(t)−1ΥZ2(t) = Z1(t)−1

(6) Zakharov–Shabat matrices

B
(H,H′)
j,a :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(S1Eaa(χ(Υ ))(j)S−1

1 )+
−(S2Eaa(χ(Υ ))(j)S−1

2

−(Z−1
2 Eaa(χ(Υ−1))(j

(Z−1
1 Eaa(χ(Υ−1))(j)Z

B
(H,H′)
j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((χ(JL))(j))+, H

−((χ(JL))(j))−, H

−(χ((JR)−1)(j))+, H

(χ((JR)−1)(j))−, H

(7) A time dependent intertwining operator

C[p](t) = Z2(t)−1ηΥ pS1(t)−1

Observe that

gL =
(
WL

1 (t)
)−1

WL
2 (t), gR



Definition 15. For H = R, L we introduce the total derivatives

∂H,j :=
m∑

a=1

∂

∂tHj,a
.

We now present the linear systems, Lax equations and Zakharov–Shabat equations 
that characterize integrability

Proposition 26. The following equations hold:

(1) Linear systems for the wave matrices

∂WL
i

∂tHj,a
= BH,L

j,a WL
i , ∂H,jW

L
i = BH,L

j WL
i ,

∂WR
i

∂tHj,a
= WR

i BH,R
j,a , ∂H,jW

R
i = WR

i BH,R
j ,

for i = 1, 2, H = L, R, a = 1, . . . , m, j = 0, 1, . . . .

∂H,jJ
H′

=
[
BH,H′

j , JH′]
,

∂H,jP
H′,H′′

b =
[
BH,H′′

j , PH′,H′′

b

]
j = 0, 1, . . . .
or

∂C[p]

∂tHj
= −BH,R

j C[p] − C[p]B
H,L
j .

H1,H
′

j1,b1
, BH2,H

′

j2,b2

]
= 0.

e action of Υ on χ, the expression (35), 

o the CMV polynomials and the Fourier 
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(2) Lax equations

∂JH′

∂tHj,a
=
[
BH,H′

j,a , JH′]
,

∂PH′,H′′

b

∂tHj,a
=
[
BH,H′′

j,a , PH′,H′′

b

]
,

with H, H ′, H ′′ = L, R, a, b = 1, . . . , m and 
(3) Evolution of the dressed intertwining operat

∂C[p]

∂tHj,a
= −BH,R

j,a C[p] − C[p]B
H,L
j,a ,

(4) Zakharov-Shabat equations

∂BH1,H
′

j1,b1

∂tH2
j2,a2

−
∂BH2,H

′

j2,b2

∂tH1
j1,a1

+
[
B

Proof. See Appendix A �
From the definitions of the wave functions, th

and the relations (23), it follows that

Proposition 27. The wave functions are linked t
series of the measure as follows



ΨL
1 (z, t) = φL

1 (z, t) exp
(
tLχ(z)

)
,(

ΨL
1
)∗(z, t) = 2πz−1φL

2
(
z−1, t

)
F †
μ(z) exp

(
−tLχ(z)

)
,

ΨL
2 (z, t) = 2πz−1φL

1
(
z−1, t

)
Fμ

(
z−1) exp

(
−χ
(
z−1)�tR),(

ΨL
2
)∗(z, t) = φL

2 (z, t) exp
(
χ
(
z−1)�tR),

ΨR
1 (z, t) = exp

(
χ(z)�tR

)
φR

1 (z, t),(
ΨR

1
)∗(z, t) = 2πz−1 exp

(
−χ(z)�tR

)
F †
μ(z)

(
φR

2
)(
z−1, t

)
,

ΨR
2 (z, t) = 2πz−1 exp

(
−tLχ

(
z−1))Fμ

(
z−1)φR

1
(
z−1, t

)
,(

ΨR
2
)∗(z, t) = exp

(
tLχ
(
z−1))φR

2 (z, t). (43)

These wave functions are also eigen-functions of the Lax matrices (38) Li, Ri, for i = 1, 2,

LiΨ
L
i = zΨL

i , ΨR
i Ri = zΨR

i ,

L†
i

(
ΨL
i

)∗ = z
(
ΨL
i

)∗
,

(
ΨR
i

)∗
R†

i = z
(
ΨR
i

)∗
.

e
 the Lax equations acquire a dynamical 
on, in the CMV context, of the Toeplitz 
resented a non-Abelian extension of the 
partial flows presented here are, to our 

 following non-linear dynamical system 
:

−1
αL

1,k−1Ea,ah
R
k ,

Ea,a

[
αR

2,k+1
]†
hL
k ,

1
]†
Ea,a

(
hL
k−1
)−1

,

,aα
R
1,k−1

(
hR
k−1
)−1

,

Ea,aα
L
1,k+1h

R
k ,

−1[
αR

2,k−1
]†
Ea,ah

L
k ,
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3.1.2. CMV matrices and matrix Toeplitz lattic
For the CMV ordering of the Laurent basis,

non-linear system form that is the matrix versi
lattice developed in [3]. In [27] Mattia Cafasso p
TL which corresponds to our total flows. The 
knowledge, new in the literature.

Proposition 28. The Lax equations result in the
for the matrix Verblunsky coefficients H = L, R

• Partial flows

∂

∂tL1,a
αR

1,k = −
(
hL
k−1
)

∂

∂tL1,a

[
αL

2,k
]† =

(
hR
k−1
)−1

∂

∂tR1,a

[
αR

2,k
]† = hR

k

[
αL

2,k+

∂

∂tR1,a
αL

1,k = −
(
hL
k

)
Ea

∂

∂tL2,a
αR

1,k =
(
hL
k−1
)−1

∂

∂tL2,a

[
αL

2,k
]† = −

(
hR
k−1
)



∂

∂tR2,a

[
αR

2,k
]† = −hR

k Ea,a

[
αL

2,k−1
]†(

hL
k−1
)−1

,

∂

∂tR2,a
αL

1,k = hL
kα

R
1,k+1Ea,a

(
hR
k−1
)−1

,

∂

∂tL1,a
hL
k = −αL

1,kEa,a

(
αR

2,k+1
)†
hL
k ,

∂

∂tR1,a
hR
k = −hR

k

(
αL

2,k−1
)†
Ea,aα

R
1,k,

∂

∂tL2,a
hR
k = −

(
αR

2,k
)†
Ea,aα

L
1,k+1h

R
k ,

∂

∂tR2,a
hL
k = −hL

kα
R
1,k+1Ea,a

(
αL

2,k
)†
.

• Total flows [27]

∂H,1
[
αR

2,k
]† =

[
αR

2,k+1
]†(

I− α1,k
[
αR

2,k
]†)

,

k

[
αR

2,k
]†)

αL
1,k−1,]†

αR
1,k
)[
αL

2,k+1
]†
,

I−
[
αL

2,k
]†
αR

1,k
)
,

,k

]†
αL

1,k
)[
αR

2,k−1
]†
,[

αR
2,k
]†
αL

1,k
)
,

†(
I− αR

1,k
[
αL

2,k
]†)

,

αL
2,k
]†)

αR
1,k+1,

,k+1
)†
hL
k ,

−1
)†
αR

1,k,

L
1,k+1h

R
k ,

1
(
αL

2,k
)†
.

 to use the Lax equations for j, p = 1, 2
s, we go back to the partial flows, and 
at in this total case we no longer need 
ds to the result that is finally rewritten 
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∂H,1α
L
1,k = −

(
I− αL

1,

∂H,1
[
αL

2,k
]† =

(
I−
[
αL

2,k

∂H,1α
R
1,k = −αR

1,k−1
(

∂H,2
[
αR

2,k
]† = −

(
I−
[
αR

2

∂H,2α
L
1,k = αL

1,k+1
(
I−

∂H,2
[
αL

2,k
]† = −

[
αL

2,k−1
]

∂H,2α
R
1,k =

(
I− αR

1,k
[

∂H,1h
L
k = −αL

1,k
(
αR

2

∂H,1h
R
k = −hR

k

(
αL

2,k

∂H,2h
R
k = −

(
αR

2,k
)†
α

∂H,2h
L
k = −hL

kα
R
1,k+

Proof. To obtain the partial flows, it is enough
and operate. In order to obtain the total flow
sum in a. From the Lax equations, we know th
to distinguish between R, L. This procedure lea
using the relations in Proposition 17. �



3.1.3. Bilinear equations
Bilinear equations are an alternative way of expressing an integrable hierarchy devel-

oped by the Japanese school, see [40–42]. We are going to show that these MOLPUC also 
fulfill a particular type of bilinear equations. These results are the matrix extensions of 
the scalar situation described in [13]. Let us start by considering the wave semi-infinite 
matrices WH

i (t) 36 associated to the moment matrix gH , H = L, R. Since the last one 
is time independent, the reader can easily check that

Proposition 29.

(1) The wave matrices associated to different times satisfy

WL
1 (t)

(
WL

1
(
t′
))−1 = WL

2 (t)
(
WL

2
(
t′
))−1

,(
WR

1 (t)
)−1

WR
1
(
t′
)

=
(
WR

2 (t)
)−1

WR
2
(
t′
)
. (44)

(2) The vectors χ, χ∗ fulfill

sz=0
[
χ∗(z)

(
χ(z̄)

)†] = I.

n be expressed as

Resz=0
[
Uχ∗(z)

(
V †χ(z̄)

)†]
= Resz=0

[(
χ(z̄)�U†)†χ∗(z)�V

]

e wave functions satisfy

z=0
[
ΨL

2 (z, t)
[(
ΨL

2
)∗(z̄, t̃)]†], (45)

z=0
[[(

ΨR
2
)∗(z̄, t)]†ΨR

2 (z, t̃)
]
. (46)

rem can be rewritten in terms of CMV 

μ(z)
)[(

ϕL
2
)(m)(

z̄−1, t̃
)]†]

z)�
(
t̃R − tR

)))[(
ϕL

2
)(m)(

z̄−1, t̃
)]†]

,

�(t′R − tR
)))(

ϕR
1
)(m)(z, t̃)

]
t′L
)
χ(z)

)
z−1Fμ(z)

)(
ϕR

1
)(m)(z, t̃)

]
.
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Resz=0
[
χ(z)

(
χ∗(z̄)

)†] = Re

(3) One has that the product of two matrices ca

UV = Resz=0
[
Uχ(z)

(
V †χ∗(z̄)

)†] =

= Resz=0
[(
χ∗(z̄)�U†)†χ(z)�V

]
From where we derive

Theorem 3. For two different set of times t, ̃t th

Resz=0
[
ΨL

1 (z, t)
[(
ΨL

1
)∗(z̄, t̃)]†] = Res

Resz=0
[[(

ΨR
1
)∗(z̄, t)]†ΨR

1 (z, t̃)
]

= Res

From the identities in (43) the previous theo
polynomials as

Resz=0
[(
ϕL

1
)(l)(z, t)(exp

((
tL − t̃L

)
χ(z)

)
z−1F

= −Resz=∞
[(
ϕL

1
)(l)(z, t)(z−1Fμ(z) exp

(
χ(

Resz=0
[[(

ϕR
2
)(l)(

z̄−1, t
)]†(

z−1Fμ(z) exp
(
χ(z)

= −Resz=∞
[[(

ϕR
2
)(l)(

z̄−1, t
)]†(exp

((
tL −



Here we have used that Resz=∞ F (z) = − Resz=0 z
−2F (z−1). Alternatively, we can write

all the previous expressions using integrals instead of using residues. To do this, let us 
denote by γ0 and γ∞ two positively oriented circles around z = 0 and z = ∞, respectively,
included in the annulus of convergence of the Fourier series of the matrix measure, such 
that they do not include different simple poles that z = 0, ∞, respectively. Then,

j

γ0

ΨL
1 (z, t)

[(
ΨL

1
)∗(z̄, t̃)]†dz =

j

γ0

ΨL
2 (z, t)

[(
ΨL

2
)∗(z̄, t̃)]†dz, (47)

j

γ0

[(
ΨR

1
)∗(z̄, t)]†ΨL

1 (z, t̃)dz =
j

γ0

[(
ΨR

2
)∗(z̄, t)]†ΨR

2 (z, t̃)dz (48)

or, in terms of matrix Laurent orthogonal polynomials and Fourier series of the matrix 
measure:

Proposition 30. The evolved MOLPUC satisfy
j (

ϕL
1
)(l)(z, t)(exp

((
tL − t̃L

)
χ(z)

)
z−1Fμ(z)

)[(
ϕL

2
)(m)(

z̄−1, t̃
)]†dz

t̃R − tR
)))[(

ϕL
2
)(m)(

z̄−1, t̃
)]†dz,

t̃R − tR
)))(

ϕR
1
)(m)(z, t̃)dz

(z)
)
z−1Fμ(z)

)(
ϕR

1
)(m)(z, t̃)dz.

ices

,1, d±,2, . . .}, d±,j ∈ diagm,

 ∈ Z2
+, we consider the next semi-infinite

−1)(I− d+,0Υ ) · · · (I− d+,n+Υ ),

− d+,0Υ
−1) · · · (I− d+,n+Υ

−1).
er the product as each of them commutes 
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γ0

=
j

γ∞

(
ϕL

1
)(l)(z, t)(z−1Fμ(z) exp

(
χ(z)�

(
j

γ0

[(
ϕR

2
)(l)(

z̄−1, t
)]†(

z−1Fμ(z) exp
(
χ(z)�

(
=

j

γ∞

[(
ϕR

2
)(l)(

z̄−1, t
)]†(exp

((
tL − t̃L

)
χ

3.2. 2D Toda discrete flows

Given a couple of sequences of diagonal matr

d = {d+, d−}, d± = {d±,0 = 0, d±

and a pair of non-negative integers n = {n+, n−}
block matrices

ΔL
d (n) =

(
I− d−,0Υ

−1) · · · (I− d−,n−Υ

ΔR
d (n) = (I− d−,0Υ ) · · · (I− d−,n−Υ )

(
I

Observe that the order of the factors does not alt
with the others.



Definition 16. Given two couples of sequences of diagonal matrices, say dH = {dH+ , dH−},
H = L, R, we introduce the discrete flows for the right and left moment matrices

gH
(
nL, nR

)
= ΔH

dL

(
nL
)
gHΔH

dR

(
nR
)
, nH =

{
nH

+ , nH
−
}
∈ Z2

+,

gH(0, 0) = gH , H = L,R.

The property ηgL(nL, nR) = gR(nL, nR)η is easily checked and it follows that we 
have an associated measure of which these are the corresponding left and right moment 
matrices given by

dμ
(
nL, nR

)
=
[ nL

−∏
i=0

(
I− dL−,iz

−1) nL
+∏

j=0

(
I− dL+,jz

)]

× dμ
[ nR

−∏
i=0

(
I− dR−,iz

−1) nR
+∏

j=0

(
I− dR+,jz

)]
.

The measure is Hermitian if the following conditions are fulfilled

nL
± = nR

∓ = n±,

) n+∏
j=0

(I− d+,jz)
]

,iz
−1) n+∏

j=0
(I− d+,jz)

]†
.

can be ensured if we request di := d+,i =

μ

[
m∑

a=1

(
n∏

j=0
|1 − dj,az|2

)
Ea,a

]
.

on discrete variables nL, nR ∈ Z2
+, are

(
nL, nR

)
= S2

(
nL, nR

)(
ΔL

dR

(
nR
))−1

,(
nL, nR

)
=
(
ΔR

dL

(
nL
))−1

Z2
(
nL, nR

)
.
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[
dR∓,j

]† = dL±,j = d±,j ,

being the evolved measure

dμ(n+, n−) =
[

n−∏
i=0

(
I− d−,iz

−1

× dμ
[

n−∏
i=0

(
I− d−

Positive definiteness for the Hermitian situation 
[d−,i]† and n := n+ = n− so that

dμ(n) =
[

m∑
a=1

(
n∏

j=0
|1 − dj,az|2

)
Ea,a

]
d

As in the continuous case, we introduce

Definition 17. The wave matrices, depending 
defined as

WL
1
(
nL, nR

)
= S1

(
nL, nR

)
ΔL

dL

(
nL
)
, WL

2

WR
1
(
nL, nR

)
= ΔR

dR

(
nR
)
Z1
(
nL, nR

)
, WR

2



Hence

gL =
[
WL

1
(
nL, nR

)]−1
WL

2
(
nL, nR

)
, gR = WR

2
(
nL, nR

)[
WR

1
(
nL, nR

)]−1
.

We also need to introduce the following objects

Definition 18.

(1) Given a diagonal matrix d ∈ diagm, we define the semi-infinite block matrices

δH,H′

± (d) =

⎧⎪⎪⎨⎪⎪⎩
S1(I− dΥ±1)S−1

1 , H = L, H ′ = L,

S2(I− dΥ±1)S−1
2 , H = R, H ′ = L,

Z−1
2 (I− dΥ∓1)Z2, H = L, H ′ = R,

Z−1
1 (I− dΥ∓1)Z1, H = R, H ′ = R.

(2) The shifts are

TL
+ :
(

(nL
+, n

L
−) −→ (nL

+ + 1, nR
−)

nR −→ nR

)
, TL

− :
(

(nL
+, n

R
−) −→ (nL

+, n
L
− + 1)

nR −→ nR

)
,

TR
− :
(

nL −→ nL

(nR
+, n

R
−) −→ (nR

+, n
R
− + 1)

)
.

diagm, da ∈ C, we introduce the semi-

H,H′

a ,

hen d = cIm, c ∈ C, we have dH,H′ = cI.
inations of the block Jacobi matrices JH

′(
JH′)±1

.

), H, H ′ = L, R, admit a block LU fac-
efinition 18(1) also admit a block LU

,nL
±+1Υ

±1)S−1
1 = δL,L

±
(
dL±,nL

±+1
)
,
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TR
+ :
(

nL −→ nL

(nR
+, n

R
−) −→ (nR

+ + 1, nR
−)

)
,

For any diagonal matrix d =
∑m

a=1 daEa,a ∈
infinite matrices

dH,H′
=

m∑
a=1

daP

where PH,H′
a was defined in (37); observe that w

Notice that the δH,H′

± are just particular comb

δH,H′

± (d) = I− dH,H

Proposition 31. If gH(nL, nR), (TH
± gH

′)(nL, nR

torization, then the δ matrices introduced in D
factorization.

Proof. We have

TL
±gL =

(
I− dL±,nL

±+1Υ
±1)gL

=⇒ S1
(
TL
±S1

)−1(
TL
±S2

)
S−1

2 = S1
(
I− dL±

TL
±gR =

(
I− dL±,nL

±+1Υ
∓1)gR



=⇒ Z−1
2
(
TL
±Z2

)(
TL
±Z1

)−1
Z1 = Z−1

2
(
I− dL±,nL

±+1Υ
∓1)Z2 = δL,R

±
(
dL±,nL

±+1
)
,

TR
± gL = gL

(
I− dR±,nR

±+1Υ
±1)

=⇒ S1
(
TR
±S1

)−1(
TR
±S2

)
S−1

2 = S2
(
I− dR±,nR,±+1Υ

±1)S−1
2 = δR,L

±
(
dR±,nR

±+1
)
,

TR
± gR = gR

(
I− dR±,nR

±+1Υ
∓1)

=⇒ Z−1
2
(
TR
±Z2

)(
TR
±Z1

)−1
Z1 = Z−1

1
(
I− dR±,nR

±+1Υ
∓1)Z1 = δR,R

±
(
dR±,nR

±+1
)
.

Therefore, for H = L, R,

δH,L
± =

(
δH,L
±
)−1
− ·

(
δH,L
±
)
+,

(
δH,L
±
)
− =

(
TH
± S1

)
S−1

1 ∈ L ,(
δH,L
±
)
+ =

(
TH
± S2

)
S−1

2 ∈ U , δH,R
± =

(
δH,R
±
)
− ·
(
δH,R
±
)−1
+ ,(

δH,R
±
)
− = Z−1

2
(
TH
± Z2

)
∈ L ,

(
δH,R
±
)
+ = Z−1

1
(
TH
± Z1

)
∈ U . �

Definition 19. We define

−1, H = L, H ′ = L,
−1
1 , H = R, H ′ = L,

1), H = L, H ′ = R,

2), H = R, H ′ = R.

R
i ωH,R

± , i = 1, 2, H = L,R.

=
(
ωH,R
±
)−1

JRωH,R
± , H = L,R.

H,L
±
)−1

, H = L,R.
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ωH,H′

± :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(δL,L

± )+ = (TL
±S2)S2

(δR,L
± )− = (TR

±S1)S
(δL,R

± )− = Z−1
1 (TL

±Z

(δR,R
± )+ = Z−1

2 (TR
±Z

We are ready to derive discrete integrability.

Theorem 4.

• The discrete linear systems

TH
± WL

i = ωH,L
± WL

i , TH
± WR

i = W

• Discrete Lax equations hold

TH
± JL = ωH,L

± JL
(
ωH,L
±
)−1

, TH
± JR

• Intertwining matrix

TH
± C[p] =

(
ωH,R
±
)−1

C[p]
(
ω



• Zakharov–Shabat equations(
TH
a ωH′,L

b

)
ωH,L
a =

(
TH′

b ωH,L
a

)
ωH′,L
b , ωH,R

a

(
TH
a ωH′,R

b

)
= ωH′,R

b

(
TH′

b ωH,R
a

)
,

a, b = ±, H,H ′ = L,R.

• Continuous-discrete equations

∂ωH′,L
±

∂tHj,a
+ ωH′,L

± BH,L
j,a =

(
TH′

± BH,L
j,a

)
ωH′,L
± ,

∂ωH′,R
±

∂tHj,a
+ BH,R

j,a ωH′,R± = ωH′,R
±

(
TH′

± BH,R
j,a

)
,

with H, H ′ = L, R, a = 1, . . . , m and j = 0, 1, . . . .

From these results, one may derive discrete matrix equations for the Verblunsky co-
efficients.

It also follows that these flows are extensions of Darboux transformations, see [13]
for the scalar case. Each of these discrete shifts is generalization of the typical Darboux 

pper and lower triangular factors of the 
ific cases as follows. Let us assume that
then,

H ′ = L,

H ′ = L,

(δH,L)−1
− , H ′ = L,

1(δH,R)−, H ′ = L.

of the factors in the Gaussian factoriza-
ux transformations. When the constant 
 have that δH,H′

± are pentadiagonal block 
nals above and below it), and therefore 
er block tridiagonal matrices, (δH,H′

± )+
 some results in the talk [28].

tion theory in this matrix scenario, we 
we did not find appropriate τ -functions,
l–Darboux kernels and the Miwa trans-
o in fact lead in the scalar case to the 
unately, apparently that is not the case 
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transformation corresponding to the flip of the u
operators δH,H′

± . These flips occur in some spec
the diagonal matrices dH±,j do not depend on j; 

δH,H′

± =
{

(δH,L)−1
− (δH,L

± )+,
(δH,R)−(δH,R

± )−1
+ ,

TH
±−→ TH

± δH,H′

± =
{

(δH,L
± )+

(δH,R
± )−+

It is clear that the shift corresponds to the flip 
tion of the δH,H′

± matrices, just as in the Darbo
sequences dH±,j = cH± Im, with cH± ∈ C scalars, we
matrices (main diagonal and the two next diago
the Gauss–Borel factorizations give upper or low
and (δH,H′

± )−, respectively. This is quite close to

3.3. Miwa shifts

In our unsuccessful search for a neat τ -func
have studied the action of Miwa shifts. Despite 
we found interesting relations among Christoffe
formations of the MOLPUC. These relations d
τ -function representation of MOLPUC. Unfort
in the matrix scenario.



Miwa shifts are coherent time translations that lead to discrete type flows. Given 
a diagonal matrix w = diag(w1, . . . , wm) ∈ Cm×m, we introduce four different MH,±

w ,
H = L, R, coherent shifts

ML,+
w : tL2k 
→ tL2k − wk

k
, ML,−

w : tL2k−1 
→ tL2k−1 −
wk

k
,

MR,+
w : tR2k 
→ tR2k − wk

k
, MR,−

w : tR2k−1 
→ tR2k−1 −
wk

k
.

For each Miwa shift, we only write down those times with a non-trivial transformation. 
When these shifts act on the deformed matrix measure, we get new matrix measures

dML,±
w [μ] =

(
1 − wz±1)dμ, dMR,±

w [μ] = dμ
(
1 − wz±1), (49)

with corresponding left and right moment matrices given by

ML,±
w

[
gL
]

=
(
I− wΥ±1)gL, ML,±

w

[
gR
]

=
(
I− wΥ∓1)gR,

MR,±
w

[
gL
]

= gL
(
I− wΥ±1), MR,±

w

[
gR
]

= gR
(
I− wΥ∓1). (50)

m, the following relations between Miwa
els and MOLPUC hold

)

L,+
w

[
hL

2l
](
hL

2l
)−1(

ϕL
1
)(2l)(u),

ū−1)[
hL

2l−1
](
hL

2l−1
)−1((

ϕR
2
)(2l−1)(u)

)†
,

−1)
L,−
w

[
hR

2l−1
](
hR

2l−1
)−1(

ϕL
1
)(2l−1)(u),

¯)[
hL

2l
](
hL

2l
)−1((

ϕR
2
)(2l)(u)

)†
,

z, u))(2l−1)](u),

)
(2l)](u)

)†
,
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From these we can deduce the next

Theorem 5. For every diagonal matrix w ∈ diag
shifted and non-shifted Christoffel–Darboux kern

KL,[2l+1](z, u) = ML,+
w

[
KL,[2l]](z, u)(I− wu

+
(
ML,+

w

[(
ϕL

2
)(2l)](z))†M

KR,[2l](z, u) = ML,+
w

[
KR,[2l−1]](z, u)

(
I− w

+ ML,+
w

[(
ϕR

1
)(2l−1)](z)ML,+

w

KL,[2l](z, u) = ML,−
w

[
KL,[2l−1]](z, u)

(
I− wu

+
(
ML,−

w

[(
ϕL

2
)(2l−1)](z))†M

KR,[2l+1](z, u) = ML,−
w

[
KR,[2l]](z, u)(I− wu

+ ML,−
w

[(
ϕR

1
)(2l)](z)ML,−

w

KL,[2l](z, u) =
(
I− wz̄−1)MR,+

w

[
KL,[2l−1]](

+
((
ϕL

2
)(2l−1)(z)

)†
MR,+

w

[(
ϕL

1

KR,[2l+1](z, u) = (I− wz)MR,+
w

[
KR,[2l]](z, u

+
(
ϕR

1
)(2l)(z)(MR,+

w

[(
ϕR

2
)



KL,[2l+1](z, u) = (I− wz̄)MR,−
w

[
KL,[2l]](z, u)

+
((
ϕL

2
)(2l)(z))†MR,−

w

[(
ϕL

1
)(2l)](u),

KR,[2l](z, u) =
(
I− wz−1)MR,−

w

[
KR,[2l−1]](z, u)

+
(
ϕR

1
)(2l−1)(z)

(
MR,−

w

[(
ϕR

2
)(2l−1)](u)

)†
.

Proof. We just give the main ideas of the proof not dealing with details. Let us consider 
(50) at the light of the Gauss–Borel factorizations (7) and (8)

ML,±
w [S2]S−1

2 = ML,±
w [S1]

[
I− wΥ±1]S−1

1 ,(
ML,±

w [Z1]
)−1

Z1 =
(
ML,±

w [Z2]
)−1[

I− wΥ∓1]Z2,

S1
(
MR,±

w [S1]
)−1 = S2

[
I− wΥ±1](MR,±

w [S2]
)−1

,

Z−1
2 MR,±

w [Z2] = Z−1
1
[
I− wΥ∓1]MR,±

w [Z1].

Each of these equalities defines a semi-infinite matrix relating shifted and non-shifted
ss that the LHS in the two first equations 
e the two last equations have in the RHS 
e also that in the two first equations, 
the second block diagonals over the first 
o last equations only the main diagonal 
e non-zero blocks. Then we proceed as 
a in Theorem 2. To get a glance of the 
ion. On the one hand, we have for the 

2 −w 0 · · ·
R
2l+1)−1 −(ML,+

w [αR
2,2l+1])†w ∗ 0

. . .

⎞⎟⎟⎟⎟⎠.

(
φL

2 (z)
)†
,

L,+
w

[
φL

1
]
(u)(I− wu).

e get the result. �
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polynomials. At this point it is important to stre
are upper triangular semi-infinite matrices, whil
upper triangular semi-infinite matrices. Observ
because of the RHS only the main, the first and 
have non-zero blocks while in the LHS of the tw
and the two immediate diagonals below it hav
in the proof of the Christoffel–Darboux formul
technique, let us illustrate it for the first equat
2l-th and (2l + 1)-th block rows

ML,+
w [S2]S−1

2

= ML,+
w [S1][I− wΥ ]S−1

1

=

⎛⎜⎜⎜⎜⎝
. . .

. . .
· · · 0 M

L,+
w [hL

2l](hL
2l)−1 wαL

1,2l+
· · · 0 0 M

L,+
w [hR

2l+1](h

On the other hand,

(
ML,+

w

[
φL

2
]
(z)
)†
ML,+

w [S2]S−1
2 =

ML,+
w [S1][I− wΥ ]S−1

1 φL
1 (u) = M

Then, by appropriate scalar product pairings, w



An appropriated choice of the variables allows us to express the rows or columns of 
the kernel in terms of the rows or columns of a product of a shifted and a non-shifted
polynomial

Corollary 3. If w = diag(w1, . . . , wm), wk ∈ C, we have

KL,[2l+1](z, w−1
k

)
Ek,k

=
(
ML,+

w

[(
ϕL

2
)(2l)](z))†ML,+

w

[
hL

2l
](
hL

2l
)−1(

ϕL
1
)(2l)(

w−1
k

)
Ek,k,

KR,[2l](z, w̄k)Ek,k

= ML,+
w

[(
ϕR

1
)(2l−1)](z)ML,+

w

[
hL

2l−1
](
hL

2l−1
)−1((

ϕR
2
)(2l−1)(w̄k)

)†
Ek,k,

KL,[2l](z, wk)Ek,k

=
(
ML,−

w

[(
ϕL

2
)(2l−1)](z))†ML,−

w

[
hR

2l−1
](
hR

2l−1
)−1(

ϕL
1
)(2l−1)(wk)Ek,k,

KR,[2l+1](z, w̄−1
k

)
Ek,k

= ML,−
w

[(
ϕR

1
)(2l)](z)ML,−

w

[
hL

2l
](
hL

2l
)−1((

ϕR
2
)(2l)(

w̄−1
k

))†
Ek,k,(( )

)
)†
MR,+

w

[(
ϕL

1
)(2l−1)](u),

−1
k

)(
MR,+

w

[(
ϕR

2
)(2l)](u)

)†
,

−1
k

))†
MR,−

w

[(
ϕL

1
)(2l)](u),(

MR,−
w

[(
ϕR

2
)(2l−1)](u)

)†
.

f a diagonal matrix w is proportional to 
s that left and right handed Miwa shifts 
ere now w ∈ C

z±1)dμ. (51)

uch a simpler way (closer to the scalar 

)
=
(
ϕR

1
)(2l)(

w−1)hR
2l,

) =
[(
ϕR

2
)(2l)(

w̄−1)]†,)
=
[(
ϕL

2
)(2l)(

w̄−1)]†hL
2l,

† =
(
ϕL

1
)(2l)(

w−1),)
=
[
w̄
(
ϕL

2
)(2l+1)(w̄)

]†
hR

2l+1,
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Ek,kK
L;[2l](w̄k, u) = Ek,k ϕL

2
(2l−1)(w̄k

Ek,kK
R,[2l+1](w−1

k , u
)

= Ek,k

(
ϕR

1
)(2l)(

w

Ek,kK
L,[2l+1](w̄−1

k , u
)

= Ek,k

((
ϕL

2
)(2l)(

w̄

Ek,kK
R,[2l](wk, u) = Ek,k

(
ϕR

1
)(2l−1)(wk)

Let us consider what happens when instead o
the identity matrix. In this case, (49) informs u
coincide. We only have two Miwa shifts M±

w wh

dM±
w [μ] =

(
1 − w

In this case, Corollary 3 would be written in m
case):

Proposition 32. The following relations hold

[(
ϕL

2
)(2l−1)(w̄)

]†
M+

w

(
hR

2l−1

M−
w

(
hR

2l−1
)(
hR

2l−1
)−1(

ϕL
1
)(2l−1)(w(

ϕR
1
)(2l−1)(w)M−

w

(
hL

2l−1

M+
w

(
hL

2l−1
)(
hL

2l−1
)−1[(

ϕR
2
)(2l−1)(w̄)

]
(
ϕR

1
)(2l)(

w−1)M+
w

(
hR

2l



M−
w

(
hR

2l
)(
hR

2l
)−1[(

ϕR
2
)(2l)(

w̄−1)]† = z
(
ϕL

1
)(2l+1)(w),[(

ϕL
2
)(2l)(

w̄−1)]†M−
w

(
hL

2l
)

= w
(
ϕR

1
)(2l+1)(z)hL

2l+1,

M+
w

(
hL

2l
)(
hL

2l
)−1(

ϕL
1
)(2l)(

w−1) =
[
w̄
(
ϕR

2
)(2l+1)(w̄)

]†
.

Proof. See Appendix A �
Now, we can state

Theorem 6. The CMV matrix Laurent orthogonal polynomials can be expressed as follows

(
ϕL

1
)(2l)(z) = zl

[
M

+
z−1

(
hL

2l−1
)(
hL

2l−1
)−1] · · · [M+

z−1

(
hL

0
)(
hL

0
)−1]

, (52)(
ϕL

1
)(2l+1)(z) = z−(l+1)[M−

z

(
hR

2l
)(
hR

2l
)−1] · · · [M−

z

(
hR

0
)(
hR

0
)−1]

, (53)[(
ϕL

2
)(2l)(

z̄−1)]† = z−l
[(
hL

0
)−1

M−
z

(
hL

0
)]

· · ·
[(
hL

2l−1
)
M−

z

(
hL

2l−1
)](

hL
2l
)−1

, (54)[(
ϕL

2
)(2l+1)(

z̄−1)]† = zl+1[(hR
0
)−1

M
+
z−1

(
hR

0
)]

· · ·
[(
hR

2l
)−1

M
+
z−1

(
hR

2l
)](

hR
2l+1
)−1

,

(55)

· · ·
[(
hR

2l−1
)−1

M
+
z−1

(
h R

2l−1
)](

hR
2l
)−1

,

(56))]
· · ·
[(
hL

2l
)−1]

M−
z

(
h L

2l
)(
hL

2l+1
)−1

,

(57)
−1] · · · [M−

z

(
hR

0
)(
hR

0
)−1]

, (58)
1] · · · [M+

z−1

(
hL

0
)(
hL

0
)−1]

. (59)

ke our τ description of the MOLPUC 
getting about the R and L labels and 
 would be left with a quotient of Miwa 
r case coincides with the quotient of the 
 non-shifted moment matrices.

r any block matrix M =
(
A B
C D

)
, we can 

A

)(
I A−1B

0 I

)
.
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(
ϕR

1
)(2l)(z) = zl

[(
hR

0
)−1

M
+
z−1

(
h R

0
)]

(
ϕR

1
)(2l+1)(z) = z−(l+1)[(hL

0
)−1

M−
z

(
hL

0

[(
ϕR

2
)(2l)(

z̄−1)]† = z−l
[
M−

z

(
hR

2l−1
)(
hR

2l−1
)

[(
ϕR

2
)(2l+1)(

z̄−1)]† = zl+1[M+
z−1

(
h L

2l
)(
hL

2l
)−

Proof. See Appendix A �
This is the furthest we have managed to ta

search. The reader may have noticed that for
the noncommutativity of the matrix norms we
shifted and non-shifted norms which in the scala
determinants of the truncated Miwa shifted and

Appendix A. Proofs

Proof of Proposition 1. Assuming detA �= 0 fo
write in terms of Schur complements

M =
(

I 0
CA−1 I

)(
A 0
0 M�



Thus, as gH is given for a matrix quasi-definite measure

(
gH
)[l+1] =

(
Il×l 0
v[l] I

)(
(gH)[l] 0

0 (gH)[l+1]�(gH)[l]

)(
Il×l w

[l]

0 I

)
,

where v[l] = (v0, . . . , vl−1) and w[l] =

⎛⎜⎝ w0

w1

...
wl−1

⎞⎟⎠ are two matrix vectors. Applying the 

same factorization to (gH)[l], we get

(
gH
)[l+1] =

⎛⎜⎝ I(l−1)×(l−1) 0 0
r[l−1] I 0
v′[l−1] ∗ I

⎞⎟⎠
⎛⎜⎝ (gH)[l−1] 0 0

0 (gH)[l]�(gH)[l−1] 0
0 0 (gH)[l+1]�(gH)[l]

⎞⎟⎠

×

⎛⎜⎝ I(l−1)×(l−1) s[l−1] w′ [l−1]

0 I ∗
0 0 I

⎞⎟⎠ .

s to

. . . 0

(gH)[1]
. . .

...
. . . . . 0
. . 0 (gH)[l+1]�(gH)[l]

⎞⎟⎟⎟⎟⎠

(A.1)

or any l, it would also hold for the direct 

lity of each expression is the second one 
re, just the first and second equalities of 
torization leads to

[≥l]
1
(
gL
)[≥l,l]

,
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Finally, the iteration of these factorizations lead

(
gH
)[l+1] =

⎛⎜⎜⎜⎝
I 0 . . . 0
∗ I

. . .
...

...
. . . . . . 0

∗ . . . ∗ I

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
(gH)[1]�(gH)[0] 0

0 (gH)[2]�
...

.

0 .

×

⎛⎜⎜⎜⎝
I ∗ . . . ∗
0 I

. . .
...

...
. . . . . . ∗

0 . . . 0 I

⎞⎟⎟⎟⎠ ,

for H = L, R. Since this would have been valid f
limit lim−→(gH)[l]; i.e., for gH with H = L, R. �
Proof of Lemma 1. Notice is that the third equa
written in terms of Schur complements. Therefo
each expression need to be proven. The LU fac

S
[≥l,l]
1

(
gL
)[l] = −S



S
[l]
2
((
gL
)[l])−1 = S

[l]
1

from where the result follows immediately. As an illustration, let us derive the first 
expression; on the one hand,

(
ϕL
)(l)
1 (z) =

l∑
j=0

(S1)l,jχ(j)

= χ(l) +
(
S

[≥l,l]
1 χ[l])(0)

= χ(l) −
l−1∑
m=0

l∑
j=0

((
gL
)[≥l,l])

0,m

(((
gL
)[l])−1)

m,j
χ(j)

= χ(l) −
(
(gL)l,0 (gL)l,1 · · · (gL)l,l−1

)((
gL
)[l])−1

χ[l],

and on the other,

(
ϕL
)(l)
1 (z) =

l∑ l∑(
S

[l+1]
2

)
l,m

(((
gL
)[l+1])−1)

m,j
χ(j)

]]−1)
l,j
χ(j)

I )
((
gL
)[l+1])−1

χ[l+1].

the other identities.3 �
t equation as the other three are proven 
he second equality of the first equation. 

]](
ϕL

1
)[2k](

z′
)

d first let J act to the right. Truncating 

L
1 (z),

ht case expressions, once we have worked out the 
s again. It is enough to realize that

s
[
ϕ

L
2 (z)

]† = χ
†(z)S−1

2 ,[
ϕ

R
2 (z̄)

]† = Z
−1
2 χ(z).
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m=0 j=0

=
(
S

[l+1]
2

)
l,l

([(
gL
)[l+1

= (S2)ll ( 0 0 . . . 0

Proceeding in a similar manner, one gets all 

Proof of Theorem 2. We will only prove the firs
in a similar way. In particular, we first prove t
We are interested in evaluating the expression[(

ϕL
2
)[2k](z)

]†[(
JL
)[2k

in two different ways. On the one hand, we coul
the expression

JLϕL
1 (z) = zϕ

we have

3 It is interesting to notice that in order to prove the rig
left ones, there is no need to go over the same calculation

ϕ
R
1 (z̄) = χ

†(z)Z1 same structure a

ϕ
L
1 (z) = S1χ(z) same structure as



[(
JL
)[2k]](

ϕL
1
)[2k](

z′
)

=⎛⎜⎜⎜⎝
z′(ϕL

1 )(0)(z′)

z′(ϕL
1 )(1)(z′)

.

.

.
−αL

1,2k−1hR
2k−2[hR

2k−3]−1(ϕL
1 )(2k−3)(z′) − αL

1,2k−1[αR
2,2k−2]†(ϕL

1 )(2k−2)(z′) − αL
1,2k(ϕL

1 )(2k−1)(z′)

hR
2k−1[hR

2k−3]−1(ϕL
1 )(2k−3)(z′) + hR

2k−1[hR
2k−2]−1[αR

2,2k−2]†(ϕL
1 )(2k−2)(z′) − [αR

2,2k−1]†αL
1,2k(ϕL

1 )(2k−1)(z′)

⎞⎟⎟⎟⎠.

But

z′
(
ϕL

1
)(2k−2)(

z′
)

= −αL
1,2k−1h

R
2k−2

[
hR

2k−3
]−1(

ϕL
1
)(2k−3)(

z′
)

− αL
1,2k−1

[
αR

2,2k−2
]†(

ϕL
1
)(2k−2)(

z′
)

− αL
1,2k
(
ϕL

1
)(2k−1)(

z′
)

+
(
ϕL

1
)(2k)(

z′
)

z′
(
ϕL

1
)(2k−1)(

z′
)

= hR
2k−1

[
hR

2k−3
]−1(

ϕL
1
)(2k−3)(

z′
)

+ hR
2k−1

[
hR

2k−2
]−1[

αR
2,2k−2

]†(
ϕL

1
)(2k−2)(

z′
)

−
[
αR

2,2k−1
]†
αL

1,2k
(
ϕL

1
)(2k−1)(

z′
)

+
[
αR

2,2k−1
]†(

ϕL
1
)(2k)(

z′
)
,

†
, . . . ,

[(
ϕL

2
)(2k−1)(z)

]†)
z′)
z′)

(ϕL
1 )(2k)(z′)

−1]†(ϕL
1 )(2k)(z′)

⎞⎟⎟⎟⎟⎟⎠ .

eft and remember that

[(
ϕL

2
)
(z)
]†
.

L acted to the right, we are left with

−2)(z)
]†
,

2k−1)(z)
]†(−[αR

2,2k−1
]†
αL

1,2k
))
.
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so that we obtain

[(
ϕL

2
)[2k](z)

]†[
J

[2k]
L

](
ϕL

1
)[2k](

z′
)

=
([(

ϕL
2
)(0)(z)]†, [(ϕL

2
)(1)(z)]

·

⎛⎜⎜⎜⎜⎜⎝
z′(ϕL

1 )(0)(
z′(ϕL

1 )(1)(
...

z′(ϕL
1 )(2k−2)(z′) −

z′(ϕL
1 )(2k−1)(z′) − [αR

2,2k

On the other hand, we could let JL act to the l

[(
ϕL

2
)
(z)
]†
JL = z̄−1

So, truncating the expression as we did when J

[(
ϕL

2
)[2k](z)

]†(
JL
)[2k]

=
(
z̄−1[(ϕL

2
)(0)(z)]†, . . . , z̄−1[(ϕL

2
)(2k

[(
ϕL

2
)(2k−2)(z)

]†(−αL
1,2k
)

+
[(
ϕL

2
)(

But we also have



z̄−1[(ϕL
2
)(2k−1)(z)

]† =
[(
ϕL

2
)(2k−2)(z)

]†(−αL
1,2k
)

+
[(
ϕL

2
)(2k−1)(z)

]†(−[αR
2,2k−1

]†
αL

1,2k
)

+
[(
ϕL

2
)(2k)(z)

]†[−αL
1,2k+1h

R
2k
(
hR

2k−1
)−1]

+
[(
ϕL

2
)(2k+1)(z)

]†[
hR

2k+1
(
hR

2k−1
)−1]

.

So, inserting it into the equation we are interested in, we have[(
ϕL

2
)[2k](z)

]†[(
JL
)[2k]](

ϕL
1
)[2k](

z′
)

=
(
z̄−1[(ϕL

2
)(0)(z)]†, . . . , z̄−1[(ϕL

2
)(2k−1)(z)

]†[(
ϕL

2
)(2k)(z)

]†
αL

1,2k+1h
R
2k
(
hR

2k−1
)−1

−
[(
ϕL

2
)(2k+1)(z)

]†
hR

2k+1
(
hR

2k−1
)−1)

×

⎛⎜⎜⎜⎝
(ϕL

1 )(0)(z′)
(ϕL

1 )(1)(z′)
...

(ϕL
1 )(2k−1)(z′)

⎞⎟⎟⎟⎠ .

Hence, we are left with the result we wanted to prove)(2k)(z)
]†
αL

1,2k+1h
R
2k
(
hR

2k−1
)−1

](
ϕL

1
)(2k−1)(

z′
)

ϕL
2
)(2k−2)(z)

]†
(2k)(

z′
)
.

follows from the just proven result and 
f this proof, the rest of the relations are 

∂L,jW0
(
tL
)

= χ(Υ )(j)W0
(
tL
)
,

∂R,jV0
(
tR
)

= V0
(
tR
)
χ
(
Υ−1)(j).

ell defined since the two factors in the 

t)
[
Ea,aχ(Υ )(j)

]
S1(t)−1

]
WL

1 (t),

t),
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z̄−1[(ϕL
2
)[2k](z)

]† · (ϕL
1
)[2k](

z′
)

+
[[(

ϕL
2

−
[(
ϕL

2
)(2k+1)(z)

]†
hR

2k+1
(
hR

2k−1
)−1

=
[(
ϕL

2
)[2k](z)

]† · z′(ϕL
1
)[2k](

z′
)
−
[[(

+
[(
ϕL

2
)(2k−1)(z)

]†[
αR

2,2k−1
]†](

ϕL
1
)

Finally, the first equality in the first equation 
Proposition 20. As was said at the beginning o
proven in the exact same way. �
Proof of Proposition 26. First of all, we have

∂

∂tLj,a
W0
(
tL
)

=
[
Ea,aχ(Υ )(j)

]
W0
(
tL
)

=⇒

∂

∂tRj,a
V0
(
tR
)

= V0
(
tR
)[
χ
(
Υ−1)(j)Ea,a

]
=⇒

The previous derivatives make sense and are w
results commute. Hence, we have

∂

∂tLj,a
WL

1 (t) =
[(

∂

∂tLj,a
S1(t)

)
S1(t)−1 + S1(

∂

∂tRj,a
WL

1 (t) =
[(

∂

∂tRj,a
S1(t)

)
S1(t)−1

]
WL

1 (



∂

∂tRj,a
WL

2 (t) =
[(

∂

∂tRj,a
S2(t)

)
S2(t)−1 − S2(t)

[
Ea,aχ(Υ )(j)

]
S2(t)−1

]
WL

2 (t),

∂

∂tLj,a
WL

2 (t) =
[(

∂

∂tLj,a
S2(t)

)
S2(t)−1

]
WL

2 (t),

∂

∂tLj,a
WR

2 (t) = WR
2 (t)

[
Z2(t)−1

(
∂

∂tLj,a
Z2(t)

)
− Z2(t)−1[Ea,aχ

(
Υ−1)(j)]Z2(t)

]
,

∂

∂tRj,a
WR

2 (t) = WR
2 (t)

[
Z2(t)−1

(
∂

∂tRj,a
Z2(t)

)]
,

∂

∂tRj,a
WR

1 (t) = WR
1 (t)

[
Z1(t)−1

(
∂

∂tRj,a
Z1(t)

)
+ Z1(t)−1[χ(Υ−1)(j)Ea,a

]
Z1(t)

]
,

∂

∂tLj,a
WR

1 (t) = WR
1 (t)

[
Z1(t)−1

(
∂

∂tLj,a
Z1(t)

)]
.

Now, if we let ∂
∂tHj,a

act on both sides of the first expression in (42), we obtain

(
∂

S (t)
)
S (t)−1 + S (t)

[
E χ(Υ )(j)

]
S1(t)−1 =

(
∂

∂tLj,a
S2(t)

)
S2(t)−1,

]
S2(t)−1 =

(
∂

∂tRj,a
S1(t)

)
S1(t)−1,

a,aχ(Υ )(j)
]
S1(t)−1)

+,

Ea,aχ(Υ )(j)
]
S1(t)−1)

−,

a,aχ(Υ )(j)
]
S2(t)−1)

+,

Ea,aχ(Υ )(j)
]
S2(t)−1)

−.

nd expression in (42)

1)(j)]Z2(t) = Z−1
1

(
∂

∂tLj,a
Z1(t)

)
,

)
Ea,a

]
Z1(t) = Z−1

2

(
∂

∂tRj,a
Z2(t)

)
.
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∂tLj,a
1 1 1 a,a(

∂

∂tRj,a
S2(t)

)
S2(t)−1 − S2(t)

[
χ(Υ )(j)Ea,a

which implies (
∂

∂tLj,a
S2(t)

)
S2(t)−1 =

(
S1(t)

[
E(

∂

∂tLj,a
S1(t)

)
S1(t)−1 = −

(
S1(t)

[
(

∂

∂tRj,a
S2(t)

)
S2(t)−1 =

(
S2(t)

[
E(

∂

∂tRj,a
S1(t)

)
S1(t)−1 = −

(
S2(t)

[
Similarly, let ∂

∂tHj,a
act on both sides of the seco

Z2(t)−1
(

∂

∂tLj,a
Z2(t)

)
− Z2(t)−1[Ea,aχ

(
Υ−

Z1(t)−1
(

∂

∂tRj,a
Z1(t)

)
+ Z1(t)−1[χ(Υ−1)(j

This means



Z2(t)−1
(

∂

∂tLj,a
Z2(t)

)
=
(
Z2(t)−1[Ea,aχ

(
Υ−1)(j)]Z2(t)

)
−,

Z1(t)−1
(

∂

∂tLj,a
Z1(t)

)
= −

(
Z2(t)−1[Ea,aχ

(
Υ−1)(j)]Z2(t)

)
+,

Z2(t)−1
(

∂

∂tRj,a
Z2(t)

)
=
(
Z1(t)−1[Ea,aχ

(
Υ−1)(j)]Z1(t)

)
−,

Z1(t)−1
(

∂

∂tRj,a
Z1(t)

)
= −

(
Z1(t)−1[Ea,aχ

(
Υ−1)(j)]Z1(t)

)
+.

With all these results, it is easy to prove both the linear systems for the wave functions 
and the Lax equations. For the flows of the intertwining operators, we use these relations 
together with (41), the first expression for the right times and the second one for the 
left times; then just recall (40). Finally, the Zakharov–Shabat equations are just the 
compatibility conditions of the Lax equations. �
Proof of Proposition 32. First we use (19) and apply a Miwa shift

M+(hR
)

=
˛

M+((ϕL
)(2l−1))(u)dM+

w(μ)(u)
iu ul.

, m), we get

) = M+
w

[(
ϕL

1
)(2l−1)](u),

l
(
by (51)

)
ϕL

1
)(2l−1)(u)

dμ(u)
iu ul

(
by (31)

)
l−1)(u)dμ(u)

iu ul
(
by (15)

)

e remaining formulae. �
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w 2l−1

T

w 1

Second, from Theorem 5 (wk = w for k = 1, . . .([(
ϕL

2
)(2l−1)(w̄)

]†)−1
KL,[2l](w̄, u

so that [(
ϕL

2
)(2l−1)(w̄)

]†
M+

w

(
hR

2l−1
)

=
˛

T

KL,[2l](w̄, u)dM+
w(μ)(u)
iu ul

=
˛

T

KL,[2l](w̄, u)(1 − wu)dμ(u)
iu u

=
˛

T

((
ϕR

1
)(2l)(

w−1)hR
2l
(
hR

2l−1
)−1(

−
(
ϕR

1
)(2l−1)(

w−1)(ϕL
1
)(2l)(u)

)
=
˛

T

(
ϕR

1
)(2l)(

w−1)hR
2lh

R
2l−1
(
ϕL

1
)(2

=
(
ϕR

1
)(2l)(

w−1)hR
2l
(
by (19)

)
.

This same procedure applies for the proof of th



Proof of Theorem 6. Since we can take any value for w1, w2, let us consider them our
variables and name them w1 = w2 = z. Now by iteration of the formulae in Proposi-
tion 32, we get

[(
ϕR

2
)(2l+1)(

z̄−1)]† = M
+
z−1

(
hL

2l
)(
hL

2l
)−1 · · ·M+

z−1

(
hL

1
)(
hL

1
)−1[(

ϕR
2
)(1)(

z̄−1)]†zl,(
ϕL

1
)(2l)(z) = M

+
z−1

(
hL

2l−1
)(
hL

2l−1
)−1 · · ·M+

z−1

(
hL

1
)(
hL

1
)−1

M
+
z−1

(
hL

0
)(
hL

0
)−1

zl,[(
ϕL

2
)(2l+1)(

z̄−1)]† = zl
[(
ϕL

2
)(1)(

z̄−1)]†M+
z−1

(
hR

1
)
· · ·
(
hR

2l
)−1

M
+
z−1

(
hR

2l
)(
hR

2l+1
)−1

,(
ϕR

1
)(2l)(z) = zl

[
hR

0
]−1

Mz
2
(
hR

0
)(
hR

1
)−1

M
+
z−1

(
hR

1
)
· · ·
(
hR

2l−2
)−1

Mz
2
(
hR

2l−2
)

×
(
hR

2l−1
)−1

Mz
2
(
hR

2l−1
)(
hR

2l
)−1

,(
ϕL

1
)(2l+1)(z) = M−

z

(
hR

2l
)(
hR

2l
)−1

M−
z

(
hR

2l−1
)(
hR

2l−1
)−1 · · ·M−

z

(
hR

1
)

×
(
hR

1
)−1(

ϕL
1
)(1)(z)z−l,[(

ϕR
2
)(2l)(

z̄−1)]† = M−
z

(
hR

2l−1
)(
hR

2l−1
)−1 · · ·M−

z

(
hR

0
)(
hR

0
)−1

z−l,( ) ( ) ( ) (
l−1
)−1

M−
z

(
hL

2l−1
)

l−1
)−1

M−
z

(
hL

2l−1
)(
hL

2l
)−1

.

(
gL
)
01 = I− 1

z

(
gR
)
10,(

gL
)
10 = I− z

(
gR
)
01,

zM+
z−1

(
hL

0
)
,

R
1
)−1 = zM+

z−1

(
hR

0
)(
hR

1
)−1

,

1
z
M−

z

(
hR

0
)
,

L
1
)−1 = 1

z
M−

z

(
hL

0
)(
hL

1
)−1

,
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ϕR
1

(2l+1)(z) = z−l ϕR
1

(1)(z)M−
z hL

1 · · · hL
2

×
(
hL

2l
)−1

M−
z

(
hL

2l
)(
hL

2l+1
)−1

,[(
ϕL

2
)(2l)(

z̄−1)]† = z−l
(
hL

0
)−1

M−
z

(
hL

0
)
· · ·
(
hL

2

Finally, noticing that

M
+
z−1

(
hL

0
)

= M
+
z−1

(
hR

0
)

= I− 1
z

M−
z

(
hL

0
)

= M−
z

(
hR

0
)

= I− z

we get

[(
ϕR

2
)(1)(

z̄−1)]† = z

(
I− 1

z

(
gR
)
10

)
=

[(
ϕL

2
)(1)(

z̄−1)]† = z

(
I− 1

z

(
gL
)
01

)(
h

(
ϕL

1
)(1)(z) = 1

z

(
I− z

(
gL
)
10

)
=

(
ϕR

1
)(1)(z) = 1

z

(
I− z

(
gR
)
01

)(
h

and the result is proven. �



Appendix B. Explicit coefficients of J and C

Proposition 33. The following expressions correspond to the block non-zero elements 
of (JH)±1:

(
JL
)
2k,2k−1 = −hL

2kα
R
1,2k+1

(
hR

2k−1
)−1

,
(
JR
)
2k,2k−1 = hR

2k
[
αL

2,2k+1
]†(

hL
2k−1

)−1
,(

JL
)
2k,2k = −hL

2kα
R
1,2k+1

[
αL

2,2k
]†(

hL
2k
)−1

,
(
JR
)
2k,2k = −hR

2k
[
αL

2,2k+1
]†
αR

1,2k
(
hR

2k
)−1

,(
JL
)
2k,2k+1 = −αL

1,2k+2,
(
JR
)
2k,2k+1 = −

[
αR

2,2k+2
]†
,(

JL
)
2k,2k+2 = I,

(
JR
)
2k,2k+2 = I,(

JL
)
2k+1,2k−1 = hR

2k+1
(
hR

2k−1
)−1

,
(
JR
)
2k+1,2k−1 = hL

2k+1
(
hL

2k−1
)−1

,(
JL
)
2k+1,2k = hR

2k+1
[
αL

2,2k
]†(

hL
2k
)−1

,
(
JR
)
2k+1,2k = hL

2k+1α
R
1,2k
(
hR

2k
)−1

,(
JL
)
2k+1,2k+1 = −

[
αR

2,2k+1
]†
αL

1,2k+2,
(
JR
)
2k+1,2k+1 = −αL

1,2k+1
[
αR

2,2k+2
]†
,(

JL
)
2k+1,2k+2 =

[
αR

2,2k+1
]†
,

(
JR
)
2k+1,2k+2 = αL

1,2k+1,

)
0,0 = −hR

0
[
αL

2,1
]
†
(
hR

0
)−1

,)
0,1 = −

[
αR

2,2
]†
,)

0,2 = I,)
1,0 = hL

1
(
hR

0
)−1

,)
1,1 = −αL

1,1
[
αR

2,2
]†
,)

1,2 = αL
1,2,

1)
2k−1,2k = −αR

1,2k+1,)−1)
2k,2k = −

[
αR

2,2k
]†
αL

1,2k+1,

,

−1
,

JR
)−1)

2k+2,2k =
(
hR
)
2k+2

(
hR

2k
)−1

,

+1 = I,

1 =
[
αR

2,2k
]†
,
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(
JL
)
0,0 = −hL

0 α
R
1,1
(
hL

0
)−1

,
(
JR(

JL
)
0,1 = −αL

1,2,
(
JR(

JL
)
0,2 = I,

(
JR(

JL
)
1,0 = hR

1
(
hL

0
)−1

,
(
JR(

JL
)
1,1 = −

[
αR

1,2
]†
αL

1,2,
(
JR(

JL
)
1,2 =

[
αR

1,2
]†
,

(
JR

((
JL
)−1)

2k−1,2k = −
[
αR

2,2k+1
]†
,

((
JR
)−

((
JL
)−1)

2k,2k = −αL
1,2k
[
αR

2,2k+1
]†
,

((
JR((

JL
)−1)

2k+1,2k = −hR
2k+1

[
αL

2,2k+2
]†(

hL
2k
)−1

((
JR
)−1)

2k+1,2k = −hL
2k+1α

R
1,2k+2

(
hR

2k
)

((
JL
)−1)

2k+2,2k =
(
hL
)
2k+2

(
hL

2k
)−1

,
((

((
JL
)−1)

2k−1,2k+1 = I,
((
JR
)−1)

2k−1,2k((
JL
)−1)

2k,2k+1 = αL
1,2k,

((
JR
)−1)

2k,2k+



((
JL
)−1)

2k+1,2k+1 = −hR
2k+1

[
αL

2,2k+2
]†
αR

1,2k+1
(
hR

2k+1
)−1

,((
JR
)−1)

2k+1,2k+1 = −hL
2k+1α

R
1,2k+2

[
αL

2,2k+1
]†(

hL
2k+1

)−1
,((

JL
)−1)

2k+2,2k+1 = hL
2k+2α

R
1,2k+1

(
hR

2k+1
)−1

,((
JR
)−1)

2k+2,2k+1 =
(
hR
)
2k+2

[
αL

2,2k+1
]†(

hL
2k+1

)−1
,

((
JL
)−1)

0,0 = −
[
αR

2,1
]†
,

((
JR
)−1)

0,0 = −αL
1,1,((

JL
)−1)

1,0 = −hR
1
[
αL

2,2
]†(

hL
0
)−1

,
((
JR
)−1)

1,0 = −hL
1 α

R
1,2
(
hR

0
)−1

,((
JL
)−1)

2,0 = hL
2
(
hL

0
)−1

,
((
JR
)−1)

2,0 = hR
2
(
hR

0
)−1

,((
JL
)−1)

0,1 = I,
((
JR
)−1)

0,1 = I,((
JL
)−1)

1,1 = −hR
1
[
αL

2,2
]†
αR

1,1
(
hR

1
)−1

,
((
JR
)−1)

1,1 = −hL
1 α

R
1,2
[
αL

2,1
]†(

hL
1
)−1

,((
JL
)−1)

2,1 = hL
2 α

R
1,1
(
hR

1
)−1

,
((
JR
)−1)

2,1 = hR
2
[
αL

2,1
]†(

hL
1
)−1

.

respond to the block non-zero elements 

−
[
αR

2,2k
]†
αL

1,2k,

L
2k
]−1

,

αR
1,2k+2

[
hR

2k+1
]−1

,

+2
[
αL

2,2k+2
]†][(

hL
)
2k+2

]−1
,

I− αL
1,2k
[
αR

2,2k
]†
,

−1
,

hR
2k+1

[
αL

2,2k+2
]†[

hL
2k+1

]−1
,

L
2,2k+2

]†
αR

1,2k+2
][
hR

2k+2
]−1

.

respond to the block non-zero elements 

[
αL

2,2k+1
]†[

hL
2k
]−1

,

αL
2,2k+1

[
hR

2k
]−1

,

= I,
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Proposition 34. The following expressions cor
of C [±1]

[0] :

(C[0])2k,2k−1 = hR
2k
[(
hR
)
2k−1

]−1 = I

(C[0])2k,2k =
[
αR

2,2k
]† = hR

2k
[
αL

2,2k
]†[

h

(C[0])2k+1,2k+1 = −αL
1,2k+2 = −hL

2k+1

(C[0])2k+1,2k+2 = I = hL
2k+1

[
I− αR

1,2k

(
C−1

[0]
)
2k,2k−1 = hL

2k
[(
hL
)
2k−11

]−1 =(
C−1

[0]
)
2k,2k = αL

1,2k = hL
2kα

R
1,2k
[
hR

2k
]

(
C−1

[0]
)
2k+1,2k+1 = −

[
αR

2,2k+2
]† = −(

C−1
[0]
)
2k+1,2k+2 = I = hR

2k+1
[
I−
[
α

Proposition 35. The following expressions cor
of C [±1]

[−1] :

(C[−1])2k,2k = −
[
αR

2,2k+1
]† = −hR

2k

(C[−1]−1)2k,2k = −αL
1,2k+1 = −hL

2k

(C[−1])2k,2k+1 = I
(
C−1

[−1]
)
2k,2k+1



(C[−1])2k+1,2k = I− αL
1,2k+1

[
αR

2,2k+1
]† = hL

2k+1
[
hL

2k
]−1

,(
C−1

[−1]
)
2k+1,2k = I−

[
αR

2,2k+1
]†
αL

1,2k+1 = hR
2k+1

[
hR

2k
]−1

,

(C[−1])2k+1,2k+1 = αL
1,2k+1 = hL

2k+1α
R
1,2k+1

[
hR

2k+1
]−1

,(
C−1

[−1]
)
2k+1,2k+1 =

[
αR

2,2k+1
]† = hR

2k+1
[
αL

2,2k+1
]†[

hL
2k+1

]−1
.

Appendix C. Complete recursion relations

Here we give a more complete set of recursion relations for the MOLPUC.

Proposition 36. The five term CMV recursion relations are

z
(
ϕL

1
)(2k)(z) = −αL

1,2k+1
(
I−
[
αR

2,2k
]†
αL

1,2k
)(
ϕL

1
)(2k−1) − αL

1,2k+1
[
αR

2,2k
]†(

ϕL
1
)(2k)

− αL
1,2k+2

(
ϕL

1
)(2k+1) +

(
ϕL

1
)(2k+2)

,

z
(
ϕL

1
)(2k+1)(z) =

(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)(
I−
[
αR

2,2k
]†
αL

1,2k
)(
ϕL

1
)(2k−1)

( [
R

]† L
)[

R
2,2k
]†(

ϕL
1
)(2k)

+1) +
[
αR

2,2k+1
]†(

ϕL
1
)(2k+2)

,(
ϕL

1
)(2)

,

,1
]†
αL

1,2
(
ϕL

1
)(1) +

[
αR

2,1
]†(

ϕL
1
)(2)

,

−1
[
αR

2,2k−1
]†)(

ϕL
1
)(2k−2)

(
ϕL

1
)(2k−1) − αL

1,2k
[
αR

2,2k+1
]†(

ϕL
1
)(2k)

R
2,2k+1

]†)(
ϕL

1
)(2k)

k+1) −
[
αR

2,2k+3
]†(

ϕL
1
)(2k+2)

−
[(
ϕL

2
)(2k)]†

αL
1,2k
[
αR

2,2k+1
]†

(
I− αL

1,2k+1
[
αR

2,2k+1
]†)

+2
[
αR

2,2k+2
]†)(

I− αL
1,2k+1

[
αR

2,2k+1
]†)

,

61
+ I− α2,2k+1 α1,2k+1 α

−
[
αR

2,2k+1
]†
αL

1,2k+2
(
ϕL

1
)(2k

z
(
ϕL

1
)(0)(z) = −αR

1,1
(
ϕL

1
)(0) − αL

1,2
(
ϕL

1
)(1) +

z
(
ϕL

1
)(1)(z) =

(
I−
[
αR

2,1
]†
αL

1,1
)(
ϕL

1
)(0) − [αR

2

z−1(ϕL
1
)(2k)(z) =

(
I− αL

1,2k
[
αR

2,2k
]†)(

I− αL
1,2k

+
(
I− αL

1,2k
[
αR

2,2k
]†)

αL
1,2k−1

+
[
αL

1,2k
]†(

ϕL
1
)(2k+1)

,

z−1(ϕL
1
)(2k+1)(z) = −

[
αR

2,2k+2
]†(

I− αL
1,2k+1

[
α

−
[
αR

2,2k+2
]†
αL

1,2k+1
(
ϕL

1
)(2

+
(
ϕL

1
)(2k+3)

,

z−1(ϕL
1
)(0)(z) = −

[
αR

2,1
]†(

ϕL
1
)(0) +

(
ϕL

1
)(1)

,

[
z
(
ϕL

2
)(2k)(z)

]† = −
[(
ϕL

2
)(2k−1)(z)

]†[
αR

2,2k+1
]†

−
[(
ϕL

2
)(2k+1)(z)

]†[
αR

2,2k+2
]†

+
[(
ϕL

2
)(2k+2)(z)

]†(
I− αL

1,2k



[
z
(
ϕL

2
)(2k+1)(z)

]† =
[(
ϕL

2
)(2k−1)(z)

]† +
[(
ϕL

2
)(2k)(z)

]†
αL

1,2k

−
[(
ϕL

2
)(2k+1)(z)

]†[
αR

2,2k+2
]†
αL

1,2k+1

+
[(
ϕL

2
)(2k+2)(z)

]†(
I− αL

1,2k+2
[
αR

2,2k+2
]†)

αL
1,2k+1,

[
z−1(ϕL

2
)(2k)(z)

]† =
[(
ϕL

2
)(2k−2)(z)

]† − [(ϕL
2
)(2k−1)(z)

]†[
αR

2,2k−1
]†

−
[(
ϕL

2
)(2k)(z)

]†
αL

1,2k+1
[
αR

2,2k
]†

+
[(
ϕL

2
)(2k+1)(z)

]†(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)[
αR

2,2k
]†
,[

z−1(ϕL
2
)(2k+1)(z)

]† = −
[(
ϕL

2
)(2k)(z)

]†
αL

1,2k+2 −
[(
ϕL

2
)(2k+1)]†[

αR
2,2k+1

]†
αL

1,2k+2

−
[(
ϕL

2
)(2k+2)(z)

]†
αL

1,2k+3
(
I−
[
αR

2,2k+2
]†
αL

1,2k+2
)

+
[(
ϕL

2
)(2k+3)(z)

]†(
I−
[
αR

2,2k+3
]†
αL

1,2k+3
)

×
(
I−
[
αR

2,2k+2
]†
αL

1,2k+2
)
,

k)[
αR

2,2k
]†
αL

1,2k+1

k+1
]†
αL

1,2k+1
)

L
,2k+2

)(
I−
[
αR

2,2k+1
]†
αL

1,2k+1
)
,]† − (ϕR

1
)(2k+1)

αL
1,2k+2

[
αR

2,2k+1
]†

αL
1,2k+2

)[
αR

2,2k+1
]†
,

1

R
1
)(2k+1)(

I− αL
1,2k+1

[
αR

2,2k+1
]†)

αL
1,2k,

2k−1)
αL

1,2k−1
[
αR

2,2k
]†

2k
[
αR

2,2k
]†)

2k+1
]†)(

I− αL
1,2k
[
αR

2,2k
]†)

,

†)[(
ϕR

2
)(2k+1)(z)

]†
)
]† − [αR

2,2k+2
]†[(

ϕR
2
)(2k+1)(z)

]†

62
z
(
ϕR

1
)(2k) = −

(
ϕR

1
)(2k−1)

αL
1,2k+1 −

(
ϕR

1
)(2

−
(
ϕR

1
)(2k+1)

αL
1,2k+2

(
I−
[
αR

2,2

+
(
ϕR

1
)(2k+2)(

I−
[
αR

2,2k+2
]†
α1

z
(
ϕR

1
)(2k+1) =

(
ϕR

1
)(2k−1) +

(
ϕR

1
)(2k)[

αR
2,2k

+
(
ϕR

1
)(2k+2)(

I−
[
αR

2,2k+2
]†

z−1(ϕR
1
)(2k) =

(
ϕR

1
)(2k−2) +

(
ϕR

1
)(2k−1)

αL
1,2k−

−
(
ϕR

1
)(2k)

αL
1,2k
[
αR

2,2k+1
]† +

(
ϕ

z−1(ϕR
1
)(2k−1) = −

(
ϕR

1
)(2k−2)[

αR
2,2k
]† − (ϕR

1
)(

−
(
ϕR

1
)(2k)[

αL
1,2k+1

]†(
I− αL

1,

+
(
ϕR

1
)(2k+1)(

I− αL
1,2k+1

[
αR

2,

[
z
(
ϕR

2
)(2k)(z)

]† = −
[
αR

2,2k+1
]†(

I− αL
1,2k
[
αR

2,2k
]

−
[
αR

2,2k+1
]†
αL

1,2k
[(
ϕR

2
)(2k)(z

+
[(
ϕR

2
)(2k+2)(z)

]†
,



[
z
(
ϕR

2
)(2k+1)(z)

]† =
(
I− αL

1,2k+1
[
αR

2,2k+1
]†)(

I− αL
1,2k
[
αR
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2
)(2k−1)(z)

]†
+
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αL
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[(
ϕR

2
)(2k)(z)
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[
αR
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]†[(

ϕR
2
)(2k+1)(z)

]† + αL
1,2k+1

[(
ϕR

2
)(2k+2)(z)

]†
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z
(
ϕR

2
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[
αR

2,1
]†[(
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2
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ϕR
2
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ϕR

2
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z
(
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2
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2
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2
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[
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+
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)(2k−1)(z)
]† − αL

1,2k+1
[(
ϕR

2
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2
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d W over M, respectively, bilinear forms 

M

w), ∀m1,m2 ∈ M, v, v1, v2 ∈ V,

m2, ∀m1,m2 ∈ M, w, w1, w2 ∈ W.

be represented by a unique l× r matrix 
M, as follows

1 )G

⎛⎜⎝ w0
...

wl−1

⎞⎟⎠ .
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− α1,2k α2,2k−1 ϕ2

+
[(
ϕR

2
)(2k+1)(z)

]†
,[

z−1(ϕR
2
)(0)(z)]† = −α1,1

[(
ϕR

2
)(0)(z)]† +

[(
ϕ

Appendix D. Projections in modules

For a ring M and left and right modules V an
are applications

G : V ×W −→

such that

G(m1v1 + m2v2, w) = m1G(v1, w) + m2G(v2,

G(v, w1m1 + w2m2) = G(v, w1)m1 + G(v, w2)

In free modules, any such bilinear form can 
denoted also by G, with coefficients in the ring

G : V ×W −→ M,

G(v, w) := ( v0 . . . vl−



Given free submodules Ṽ ⊂ V and W̃ ⊂ W of the modules (not necessarily free) V, W
and two bases {e0, . . . , el̃−1} ⊂ Ṽ and {f0, . . . , fr̃−1} ⊂ W̃ of Ṽ and W̃ , respectively,
we denote Gi,j = G(ei, fj). For the same rank, l̃ = r̃, the matrix G̃ = (Gi,j) can be
assumed to be invertible, G̃ ∈ GL(l̃, M) ∼= GL(l̃m, C). In such case, we introduce the
G-dual vectors to ei, fj defined as

e∗i =
l̃−1∑
j=0

fj
(
G̃−1)

j,i
, f∗

j =
r̃−1∑
i=0

(
G̃−1)

j,i
ei.

These vectors have some interesting properties:

(1) If we change basis êj =
∑l̃−1

i=0 aj,iei and f̂j =
∑l̃−1

i=0 fibi,j , then

ê∗j =
l̃−1∑
i=0

e∗i
(
a−1)

i,j
, f̂∗

i =
l̃−1∑
i=0

(
b−1)

i,j
f∗
j ,

where we have used the matrices a = (ai,j) and b = (bi,j), a, b ∈ GL(l̃, M).
1
0 are bases with duals given by

(
f∗
j

)∗ = fj .

ogonal type identity

, ∀i, j = 0, . . . , l̃ − 1.

e associated projections on these

l̃−1∑
i=0

G
(
v, e∗i

)
ei,

l̃−1∑
j=0

fjG
(
f∗
j , w
)
.

ring the Christoffel–Darboux operators 

ifference equations, J. Math. Phys. 16 (1975) 

erence equations and Fourier analysis, J. Math. 
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(2) The sets of dual vectors {e∗i }l̃−1
i=0 and {f∗

i }l̃−i=(
e∗i
)∗ = ei,

(3) It is easy to see that they satisfy the biorth

G
(
ei, e

∗
j

)
= G

(
f∗
i , fj

)
= δi,j

Given the bilinear form G, we can construct th

p : V → Ṽ , p(v) :=

q : W → W̃ , q(w) :=

These constructions are relevant when conside
and formulae in the matrix context.

References

[1] M.J. Ablowitz, J.F. Ladik, Nonlinear differential–d
598–603.

[2] M.J. Ablowitz, J.F. Ladik, Nonlinear differential–diff
Phys. 17 (1976) 1011–1018.



[3] M. Adler, P. van Moerbecke, Integrals over classical groups, random permutations, Toda and 
Toeplitz lattices, Comm. Pure Appl. Math. 54 (2001) 153–205.

[4] M. Adler, P. van Moerbeke, Group factorization, moment matrices and Toda lattices, Int. Math. 
Res. Not. IMRN 12 (1997) 556–572.

[5] M. Adler, P. van Moerbeke, Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert 
problems, Comm. Math. Phys. 207 (1999) 589–620.

[6] M. Adler, P. van Moerbeke, The spectrum of coupled random matrices, Ann. of Math. 149 (1999) 
921–976.

[7] M. Adler, P. van Moerbeke, Vertex operator solutions to the discrete KP hierarchy, Comm. Math. 
Phys. 203 (1999) 185–210.

[8] M. Adler, P. van Moerbeke, Darboux transforms on band matrices, weights and associated polyno-
mials, Int. Math. Res. Not. IMRN 18 (2001) 935–984.

[9] M. Adler, P. van Moerbeke, P. Vanhaecke, Moment matrices and multi-component KP, with appli-
cations to random matrix theory, Comm. Math. Phys. 286 (2009) 1–38.

[10] M. Alfaro, Una expresión de los polinomios ortogonales sobre la circunferencia unidad, in: Actas III 
Jornadas Matemáticas Hispano-Lusas, vol. 2, Sevilla, 1974, 1982, pp. 1–8.

[11] C. Álvarez-Fernández, U. Fidalgo, M. Mañas, The multicomponent 2D Toda hierarchy: generalized 
matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems, 
Inverse Problems 26 (2010) 055009, 17 pp.

[12] C. Álvarez-Fernández, U. Fidalgo, M. Mañas, Multiple orthogonal polynomials of mixed type: 
Gauss–Borel factorization and the multi-component 2D Toda hierarchy, Adv. Math. 227 (2011) 
1451–1525.

[13] C. Álvarez-Fernández, M. Mañas, Orthogonal Laurent polynomials on the unit circle, extended 
CMV ordering and 2D Toda type integrable hierarchies, Adv. Math. 240 (2013) 132–193.

el–Darboux formula for generalized matrix or-
rXiv:1311.0563 [math.CA], 2013.
fications of quasi-definite linear functionals via 
tions, Indag. Math. 15 (2004) 1–20.
s relations for general orthogonal polynomials, 

blem for a discrete Sturm–Liouville operator, 

arboux formula for multiple orthogonal poly-
 2013.
gonal polynomials on arcs of the unit circle, 

Self-Adjoint Operators, Transl. Math. Monogr., 

 operators constructions and multi-component 

ection between orthogonal polynomials on the 
Math. 177 (2005) 205–223.
ynomials, Toeplitz determinants, minimal Toda 
prox. 26 (2007) 383–430.

rix polynomials satisfying differential equations 
s, Integral Transforms Spec. Funct. 23 (2012) 

jåstad, Orthogonal Rational Functions, Cam-
ridge University Press, Cambridge, 1999.

erturbation of a quasi-definite Hermitian func-
ppl. 369 (2003) 235–250.
he unit circle and the non-Abelian Ablowitz–
) 365211.
z, CMV matrices and spectral transformations 
nal Polynomials Minisymposium in ILAS 2013, 
gebra Society, Providence, RI, June 3–7, 2013.
l matrices and zeros of orthogonal polynomials 
29–56.

65
[14] C. Álvarez-Fernández, M. Mañas, On the Christoff
thogonal polynomials of multigraded Hankel type, a

[15] R. Álvarez-Nodarse, J. Arvesú, F. Marcellán, Modi
addition of delta and derivatives of delta Dirac func

[16] M. Ambroladze, On exceptional sets of asymptotic
J. Approx. Theory 82 (1995) 257–273.

[17] A.I. Aptekarev, E.M. Nikishin, The scattering pro
Math. USSR Sb. 49 (1984) 325–355.

[18] G. Araznibarreta, M. Mañas, Another Christoffel–D
nomials of mixed type, arXiv:1310.7240 [math.CA],

[19] D. Barrios, G. López, Ratio asymptotics for ortho
Constr. Approx. 15 (1999) 1–31.

[20] Yu.M. Berezanskii, Expansions in Eigenfunctions of 
vol. 17, American Mathematical Society, 1968.

[21] M.J. Bergvelt, A.P.E. ten Kroode, Partitions, vertex
KP equations, Pacific J. Math. 171 (1995) 23–88.

[22] E. Berriochoa, A. Cachafeiro, J. Garcia-Amor, Conn
unit circle and bounded interval, J. Comput. Appl. 

[23] M. Bertola, M. Gekhtman, Biorthogonal Laurent pol
orbits and isomonodromic tau functions, Constr. Ap

[24] J. Borrego, M. Castro, A.J. Durán, Orthogonal mat
with recurrence coefficients having non-scalar limit
685–700.

[25] A. Bultheel, P. González-Vera, E. Hendriksen, O. N
bridge Monogr. Appl. Comput. Math., vol. 5, Camb

[26] A. Cachafeiro, F. Marcellán, C. Pérez, Lebesgue p
tional. The positive definite case, Linear Algebra A

[27] M. Cafasso, Matrix Biorthogonal Polynomials on t
Ladik hierarchy, J. Phys. A: Math. Theor. 42 (2009

[28] M.J. Cantero, L. Moral, F. Marcellan, L. Velázque
of measures, talk given in the Matrices and Orthogo
The 18th Conference of the International Linear Al

[29] M.J. Cantero, L. Moral, L. Velázquez, Five-diagona
on the unit circle, Linear Algebra Appl. 362 (2003) 



[30] M.J. Cantero, L. Moral, L. Velázquez, Differential properties of matrix orthogonal polynomials, 
J. Concr. Appl. Math. v3 (2008) 313–334.

[31] G.A. Cassatella-Contra, M. Mañas, Riemann–Hilbert problems, matrix orthogonal polynomials and 
discrete matrix equations with singularity confinement, Stud. Appl. Math. 128 (2011) 252–274.

[32] G.A. Cassatella-Contra, M. Mañas, P. Tempesta, Singularity confinement for matrix discrete 
Painlevé equations, arXiv:1311.0557 [math.CA], 2013.

[33] L. Cochran, S.C. Cooper, Orthogonal Laurent polynomials on the real line, in: S.C. Cooper, W.J. 
Thron (Eds.), Continued Fractions and Orthogonal Functions, in: Lect. Notes Pure Appl. Math. 
Ser., vol. 154, Marcel Dekker, New York, 1994, p. 47100.

[34] R.D. Costin, Matrix valued polynomials generated by the scalar-type Rodrigues’ formulas, J. Ap-
prox. Theory 161 (2009) 693–705.

[35] R. Cruz-Barroso, L. Daruis, P. González-Vera, O. Njastadb, Sequences of orthogonal Laurent poly-
nomials, biorthogonality and quadrature formulas on the unit circle, J. Comput. Appl. Math. 200 
(2007) 424–440.

[36] R. Cruz-Barroso, S. Delvaux, Orthogonal Laurent polynomials on the unit circle and snake-shaped 
matrix factorizations, J. Approx. Theory 161 (2009) 65–87.

[37] R. Cruz-Barroso, P. González-Vera, A Christoffel–Darboux formula and a Favard’s theorem for 
Laurent orthogonal polynomials on the unit circle, J. Comput. Appl. Math. 179 (2005) 157–173.

[38] E. Daems, A.B.J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non-intersecting 
Brownian motions, J. Approx. Theory 146 (2007) 91–114.

[39] D. Damanik, A. Pushnitski, B. Simon, The Analytic Theory of Matrix Orthogonal Polynomials, 
Surv. Approx. Theory 4 (2008) 1–85.

[40] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Operator approach to the Kadomtsev–Petviashvili 
equation. Transformation groups for soliton equations. III, J. Phys. Soc. Jpn. 50 (1981) 3806–3812.

rmation groups for soliton equations. Euclidean 
bl. Res. Inst. Math. Sci. 18 (1982) 1077–1110.
nsformation groups for soliton equations, in: 
stems-Classical Theory and Quantum Theory, 

iz, Strong Stieltjes distributions and orthogonal 
res and Padé approximation, Math. Comp. 74 

 symmetric second order differential operator, 

rential operators having several families of or-
. Math. Res. Not. IMRN 2008 (2008), Article 

olynomials satisfying second order differential 
1–484.
lynomials, scalar-type Rodrigues’ formulas and 
67–280.
r orthogonal matrix polynomials satisfying sec-
 22 (2005) 255–271.
hys. A: Math. Gen. 32 (1999) 4671–4680.

rbits and integrable lattices, J. Math. Phys. 41 

oblem for elementary co-adjoint orbits, Inverse 

 KP hierarchy, Linear Algebra Appl. 338 (2001) 

dó, Budapest, 1971, Pergamon Press, Oxford, 

nal polynomials on the unit circle, Ann. Polon. 

n and Approximation, Oxford University Press, 

ogonal polynomials on the real line, Circuits 

66
[41] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transfo
Lie algebras and reduction of the KP hierarchy, Pu

[42] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Tra
M. Jimbo, T. Miwa (Eds.), Nonlinear Integrable Sy
World Scientific, Singapore, 1983, pp. 39–120.

[43] C. Díaz-Mendoza, P. González-Vera, M. Jiménez-Pa
Laurent polynomials with applications to quadratu
(2005) 1843–1870.

[44] A.J. Durán, Matrix inner product having a matrix
Rocky Mountain J. Math. 27 (1997) 585–600.

[45] A.J. Durán, M.D. de la Iglesia, Second order diffe
thogonal matrix polynomials as eigenfunctions, Int
ID rnn084, 24 pp.

[46] A.J. Durán, F.J. Grünbaum, Orthogonal matrix p
equations, Int. Math. Res. Not. IMRN 10 (2004) 46

[47] A.J. Durán, F.J. Grünbaum, Orthogonal matrix po
Pearson equations, J. Approx. Theory 134 (2005) 2

[48] A.J. Durán, F.J. Grünbaum, Structural formulas fo
ond order differential equations, I, Constr. Approx.

[49] L. Faybusovich, M. Gekhtman, On Schur flows, J. P
[50] L. Faybusovich, M. Gekhtman, Elementary Toda o

(2000) 2905–2921.
[51] L. Faybusovich, M. Gekhtman, Inverse moment pr

Problems 17 (2001) 1295–1306.
[52] R. Felipe, F. Ongay, Algebraic aspects of the discrete

1–17.
[53] G. Freud, Orthogonal Polynomials, Akadémiai Kia

1985.
[54] P. García, F. Marcellán, On zeros of regular orthogo

Math. 58 (1993) 287–298.
[55] W. Gautschi, Orthogonal Polynomials: Computatio

New York, 2004.
[56] J.S. Geronimo, Scattering theory and matrix orth

Systems Signal Process. 1 (1982) 471–495.



[57] Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications, series and approxima-
tions, in: Amer. Math. Soc. Transl. Ser. 1, vol. 3, Amer. Math. Soc., Providence, RI, 1962, pp. 1–78.

[58] E. Godoy, F. Marcellán, Orthogonal polynomials on the unit circle: distribution of zeros, J. Comput. 
Appl. Math. 37 (1991) 195–208.

[59] L. Golinskii, Schur flows and orthogonal polynomials on the unit circle, Sb. Math. 197 (2006) 1145.
[60] L. Golinskii, A. Zlatos, Coefficients of orthogonal polynomials on the unit circle and higher order 

Szegő theorems, Constr. Approx. 26 (2007) 361–382.
[61] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The John Hopkins University Press, 

Baltimore, CA, 1996.
[62] F. Grünbaum, M.D. de la Iglesia, A. Martínez-Finkelshtein, Properties of matrix orthogonal poly-

nomials via their Riemann–Hilbert characterization, SIGMA 7 (2011) 098, 31 pp.
[63] W.B. Jones, O. Njåstad, Applications of Szegő polynomials to digital signal processing, Rocky 

Mountain J. Math. 21 (1991) 387–436.
[64] W.B. Jones, O. Njåstad, W.J. Thron, Two-point Padé expansions for a family of analytic functions, 

J. Comput. Appl. Math. 9 (1983) 105.123.
[65] W.B. Jones, O. Njåstad, W.J. Thron, H. Waadeland, Szegő polynomials applied to frequency anal-

ysis, J. Comput. Appl. Math. 46 (1993) 217–228.
[66] W.B. Jones, W.J. Thron, Orthogonal Laurent polynomials and Gaussian quadrature, in: K.E. 

Gustafson, W.P. Reinhardt (Eds.), Quantum Mechanics in Mathematics Chemistry and Physics, 
Plenum, New York, 1981, pp. 449–455.

[67] W.B. Jones, W.J. Thron, H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. 
Soc. 261 (1980) 503–528.

[68] R. Killip, I. Nenciu, CMV: the unitary analogue of Jacobi matrices, Comm. Pure Appl. Math. 60 
(2006) 1148–1188.

nt problem, Dokl. Akad. Nauk SSSR 69 (1949) 

on theory of hermitian operators with deficiency 
vol. 97, Amer. Math. Soc., Providence, Rhode 

dez, The multicomponent 2D Toda hierarchy: 
s 25 (2009) 065007, 31 pp.
 methods for geometric nets: I. Conjugate nets, 

ng methods for geometric nets: II. Orthogonal 
 7181.
os of polynomials orthogonal on the unit circle, 

on the real line: some extensions of the classical 
.

 on the unit circle: some extensions of the clas-

gonal polynomials on the unit circle and its 
39 (2002) 75–94.
v–Petviashvili equation, Adv. Math. 54 (1984) 

 via orthogonal polynomials on the unit circle, 

heir zeros, Acta Sci. Math. (Szeged) 53 (1–2) 

f orthogonal L-polynomials, in: H. Waadeland, 
 Fractions, Det Kongelige Norske Videnskabers 

ted with Wiener–Levinson filters, J. Comput. 

olynomials associated with trigonometric poly-
51.
infinite dimensional Grassmann manifolds, Res. 

67
[69] M.G. Krein, Infinite J-matrices and a matrix mome
125–128.

[70] M.G. Krein, Fundamental aspects of the representati
index (m, m), in: Amer. Math. Soc. Transl. Ser. 2, 
Island, 1971, pp. 75–143.

[71] M. Mañas, L. Martínez Alonso, C. Álvarez-Fernán
discrete flows and string equations, Inverse Problem

[72] M. Mañas, L. Martínez Alonso, E. Medina, Dressing
J. Phys. A: Math. Gen. 33 (2000) 2871.

[73] M. Mañas, L. Martínez Alonso, E. Medina, Dressi
and Egorov nets, J. Phys. A: Math. Gen. 33 (2000)

[74] H.N. Mhaskar, E.B. Saff, On the distribution of zer
J. Approx. Theory 63 (1990) 30–38.

[75] L. Miranian, Matrix valued orthogonal polynomials 
theory, J. Phys. A: Math. Gen. 38 (2005) 5731–5749

[76] L. Miranian, Matrix valued orthogonal polynomials
sical theory, Canad. Math. Bull. 52 (2009) 95–104.

[77] A. Mukaihira, Y. Nakamura, Schur flow for ortho
integrable discretization, J. Comput. Appl. Math. 1

[78] M. Mulase, Complete integrability of the Kadomtse
57–66.

[79] I. Nenciu, Lax pairs for the Ablowitz–Ladik system
Int. Math. Res. Not. IMRN 11 (2005) 647–686.

[80] P. Nevai, V. Totik, Orthogonal polynomials and t
(1989) 99–104.

[81] O. Njåstad, W.J. Thron, The theory of sequences o
H. Wallin (Eds.), Padé Approximants and Continued
Selskabs Skrifter, 1983, pp. 54–91.

[82] K. Pan, Asymptotics for Szegő polynomials associa
Appl. Math. 46 (1993) 387–394.

[83] K. Pan, E.B. Saff, Asymptotics for zeros of Szegő p
nomials signals, J. Approx. Theory 71 (1992) 239–2

[84] M. Sato, Soliton equations as dynamical systems on 
Inst. Math. Sci. Kokyuroku 439 (1981) 30–46.



[85] B. Simon, Orthogonal Polynomials on the Unit Circle, part 1: Classical Theory, AMS Colloq. Ser., 
American Mathematical Society, Providence, RI, 2005.

[86] B. Simon, Orthogonal Polynomials on the Unit Circle, part 2: Spectral Theory, AMS Colloquium 
Series, American Mathematical Society, Providence, RI, 2005.

[87] B. Simon, CMV matrices: five years after, J. Comput. Appl. Math. 208 (2007) 120–154.
[88] B. Simon, Zeros of OPUC and long time asymptotics of Schur and related flows, Inverse Probl. 

Imaging 1 (2007) 189–215.
[89] B. Simon, Szegő’s Theorem and Its Descendants, Princeton University Press, Princeton, New Jersey, 

2011.
[90] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. XXIII, American Mathe-

matical Society, Providence, Rhode Island, 1975.
[91] W.J. Thron, L-polynomials orthogonal on the unit circle, in: A. Cuyt (Ed.), Nonlinear Methods 

and Rational Approximation, Reidel Publishing Company, Dordrecht, 1988, pp. 271–278.
[92] K. Ueno, K. Takasaki, Toda lattice hierarchy, in: Group Representations and Systems of Differential 

Equations, in: Adv. Stud. Pure Math., vol. 4, 1984, pp. 1–95.
[93] D.S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev. 35 (1993) 430–471.
68




