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Abstract Recent literature proved the existence of an unbounded market price of risk (MPR) or max-

imum generalized Sharpe ratio (GSR) if one combines the most important Brownian-motion-linked ar-

bitrage free pricing models with a coherent and expectation bounded risk measure. Furthermore, explicit

sequences of portfolios with a theoretical (risk, return) diverging to (−∞,+∞) were constructed and

their performance tested. The empirical evidence revealed that the divergence to (−∞,+∞) is only the-

oretical (not real), but the MPR is much larger than the GSR of the most important international stock

indices. The natural question is how to modify the available pricing models so as to prevent the caveat

above. The theoretical MPR cannot equal inf nity but must be large enough (consistent with the empir-

ical findings) and this will be the focus of this paper. It will be shown that every arbitrage free pricing

model can be improved in such a manner that the new stochastic discount factor (SDF ) satisfie the two

requirements above, and the new MPR becomes bounded but large enough. This is important for several

reasons; Firstly, if the existent models predict unrealistic price evolutions then these mistakes may imply

important capital losses to practitioners and theoretical errors to researchers. Secondly, the lack of an un-

bounded MPR is much more coherent and consistent with equilibrium. Finally, the major discrepancies

between the initial pricing model and the modifie one will affect the tails of their SDF , which seems to

justify several empirical caveats of previous literature. For instance, it has been pointed out that it is not

easy to explain the real quotes of many deeply OTM options with the existing pricing models.
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1. Introduction

Risk measures are becoming more and more studied in actuarial and financia mathematics.

Among many others, important examples are the actuarial risk measures (Goovaerts and Laeven,

2008), coherent risk measures (Artzner et al., 1999), convex risk measures (Follmer and Schied,

2002), expectation bounded risk measures (Rockafellar et al., 2006), riskiness indices (Aumann

and Serrano, 2008), satisfying measures (Brown and Sim, 2009), dynamic risk measures (Cherid-

ito and Tianhui, 2009), maturity-independent risk measures (Zariphopoulou and Gordan, 2010),

set valued risk measures (Hamel and Heyde, 2010) conditional risk measures (Filipovic et al.,

2012), etc. The introduction of new risk measures has generated new looks for many classi-

cal financia problems. Among many other revisited topics, interesting examples are pricing and

hedging issues (Wang, 2000, Nakano, 2004, etc.), risk management methods (Basak and Shapiro,

2001) and asset allocation problems (Dupacová and Kopa, 2014, Zhao and Xiao, 2016, etc.).

Regarding portfolio selection and asset allocation, Balbás et al. (2010) proved the existence of an

unbounded generalized Sharpe ratio (i.e., return/risk ratio) if one combines the most important

Brownian-motion-linked arbitrage free pricing models (Black and Scholes, stochastic volatili-

ty, etc.) with a coherent and expectation bounded risk measure.1 The same authors proved that

several pricing models reflec similar shortcomings when combined with some deviations. For in-

stance, the Black and Scholes model predicts the existence of sequences of self-fina cing strate-

gies with an expected return diverging to +∞ and an absolute deviation converging to zero.

These theoretical finding were more deeply studied in Balbás et al. (2016a), where explicit se-

quences of portfolios with a (risk, return) diverging to (−∞,∞) were constructed. The risk was

measured with coherent and expectation bounded risk measures, and the constructed sequence of

portfolios had a slight sensitivity with respect to the selected risk measure, i.e., significan risk

measure changes did not modify any portfolio in the sequence. These portfolios (henceforth,

desirable strategies, DS) were composed of derivatives and their performance was empirically

tested in several American and European markets. The empirical evidence revealed that the di-

vergence to (−∞,∞) was only theoretical (not real), but the generalized Sharpe ratio (GSR) of
1See also Stoica and Li (2010) and Assa (2015) for interesting discussions about this caveat.
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every DS was much larger than the value of this ratio for its underlying asset.

The theoretical and empirical finding of Balbás et al. (2010) and (2016a) suggest three potential

implications. On the one hand, the existing theoretical models for pricing derivatives are provok-

ing the drawback above, since modification of the risk measure do not overcome the problem,

and some deviations lead to similar conclusions. On the other hand, the existing pricing models

are not able to explain the stochastic price evolution of many derivatives, because the empirical

optimalGSR is systematically lower than that predicted by the model. Finally, however, the error

committed by the theoretical pricing models seems to be moderate, since they are able to inspire

the construction of strategies of derivatives outperforming their underlying assets, and the supe-

riority of these DS may be empirically validated. These three implications motivate the natural

Question Q below, which is the focus of this paper;

Question Q; Can a slight/moderate modificatio of an existing pricing model recover the absence

of DS and simultaneously lead to an optimal GSR consistent with the empirical evidence?

As will be seen, the answer to Question Q will be “yes”. This is important for several reasons.

First, the existence of DS in arbitrage-free pricing models is a serious drawback of the model

from a theoretical point of view. Indeed, traders trying to implement DS should buy some “un-

derpriced” securities and sell the “overpriced” ones, and this additional trading should modify the

price process (the model). Second, if the existent models predict an unrealistic price evolution of

a DS, then they may also make mistakes when pricing and hedging some other derivatives, pro-

voking errors that may affect practitioners and researchers. In this sense, the improvement of the

available pricing models may be interesting from theoretical and practical viewpoints.

The outline of the paper is as follows. Section 2 will present the general framework, the problem

and some basic properties. We will pose the problem in the abstract setting of Hilbert spaces.

The firs reason is that Hilbert spaces will allow us to integrate many different particular cases in

a single formulation. In particular, Examples 1 and 2 will illustrate how our setting can involve

complete pricing models, incomplete models, uncertainty free models and ambiguous pricing

models. As a second reason justifying the use of Hilbert spaces, let us point out that the existence

ofDS is closely related to many geometric properties of the classical spaces of random variables,

and therefore the caveat may be overcome with “geometric solutions”, which are easily detected

with the abstract approach. In fact, the price modificatio preventing DS will be given by means
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of projections and orthogonal projections.2

Sections 3 and 4 contain the most important results of this paper. In particular, Theorems 5 and

8 (Section 3) and Theorem 11 (Section 4) provide us with the positive answer to Question Q.

These results, along with their corollaries, yield the lowest modificatio of a pricing model such

that the new prices prevent the existence of DS and generate an optimal GSR compatible with

the empirical evidence. All the given statements apply for risk measures. Similar results (with

essentially similar proofs) could be given for deviations, though we will omit them in order to

shorten the exposition.

Many risk measurement linked papers frequently present examples constructed with the Condi-

tional Value at Risk (CV aR) of Rockafellar and Uryasev (2000). This coherent and expectation

bounded risk measure may be easily optimized and interpreted in terms of potential capital losses

(Rockafellar and Uryasev, 2000), outperforms the standard deviation with respect to the second

order stochastic dominance (Ogryczak and Ruszczynski, 1999 and 2002) and has natural exten-

sions to ambiguous frameworks (Zhu and Fukushima, 2009), among many other good properties.

Section 5 ends this paper with someCV aR linked properties and toy examples illustrating and in-

terpreting the main theorems above. Under the CV aR, we will see that the modificatio of prices

will modify the stochastic discount factor (SDF ) in such a manner that its logarithm becomes

essentially bounded. The major differences between the initial SDF and the modifie one will

be concentrated on their tails. This findin seems to be consistent with the empirical evidence,

which suggests that many classical pricing models have problems to explain the real quotations

of OTM options (Bondarenko, 2014). Overall, the examples of Section 5 will present concrete

arbitrage free pricing models overcoming the existence of DS , and they will illustrate the theo-

retical finding of this paper. UnboundedGSR and market price of risk (MPR) can be overcome

in such a manner that the new ones become finit and equal a desired target. The desired MPR

can be respected, and then the price modificatio will be “as small as possible”. The modifie

price process will reflec lower volatilities and will moderate the tail behavior of the SDF . Any-

way, it may be worthwhile to point out that the objective of this paper is theoretical. The modifie

pricing model will depend on desired MPR. This value may be calibrated to market but we will

not address this issue, which is beyond our scope. Section 6 will conclude the paper.
2Previous literature has proved that Hilbert space linked approaches may be interesting to solve deep problems

in Financial Mathematics (see, for instance, Schachermayer, 1992).
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2. Preliminaries and notations

Consider a Hilbert space Y endowed with the inner product 〈., .〉 and the norm ‖.‖, an element

y� ∈ Y and a linear and continuous function � : Y → IR given by � (y) = 〈y, y�〉 for every

y ∈ Y (Choquet, 1966). A closed subspace U ⊂ Y will be called stable, and we will fi u0 ∈ U
with

〈u0, y�〉 = � (u0) = 1. (1)

Consider two convex and weakly compact sets K ⊂ � ⊂ Y and the function

ρ (y) = Max {− 〈y, z〉 ; z ∈ �} (2)

for every y ∈ Y . If (2) holds then it may be proved that � is unique, and z ∈ � if and only if

−〈y, z〉 ≤ ρ (y) for every y ∈ Y . (2) implies that ρ is continuous, sub-additive (ρ (y1 + y2) ≤
ρ (y1) + ρ (y2) for yi ∈ Y , i = 1, 2) and positively homogeneous (ρ (λy) = λρ (y) for λ ≥ 0 and

y ∈ Y ). We will also assume that

u0 ∈ K ⊂ �, (3)

and therefore ρ (y) ≥ −〈y, u0〉 for every y ∈ Y . Finally, let us assume that

〈z, u0〉 = 1 (4)

holds for every z ∈ �, which is equivalent to

ρ (y + ku0) = ρ (y)− k (5)

for every k ∈ IR and every y ∈ Y . Notice that (3) and (4) lead to

‖u0‖2 = 〈u0, u0〉 = 1. (6)

Consider Problem  Min ρ (y)

〈y, y�〉 ≤ 1; 〈y, f〉 ≥ R, ∀f ∈ K
(7)

y ∈ Y being the decision variable and R > 1. Straightforward extensions of several arguments
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in Balbás et al. (2016b) can show that the dual problem of (7) is

Max (R− 1)λ− 1,

 z + λf = (λ+ 1) y�

f ∈ K; z ∈ �; λ ≥ 0
(8)

(λ, f, z) ∈ IR × Y × Y being the decision variable. Obviously, the solution of (8) (if it exists)

does not depend on R > 1 and may be found by solving

Max λ,

 z + λf = (λ+ 1) y�

f ∈ K; z ∈ �; λ ≥ 0
(9)

Though we are dealing with an abstract approach, the relationships between (7) and (9) are quite

similar to those found in Balbás et al. (2016b) for a general portfolio choice problem (see Exam-

ples 1 and 2 below), and therefore their proofs will be omitted. Moreover, in order to improve the

reader intuition, ρ will be called “robust risk”, and for y ∈ Y such that � (y) = 1 the value

Min {〈y, f〉 ; f ∈ K)} (10)

will be called “robust return relative to K”.

The change of variable

β =
1

1 + λ
, or λ =

1− β
β

(11)

leads to Problem

Min β,

 βz + (1− β) f = y�

f ∈ K, z ∈ �, 0 ≤ β ≤ 1
(12)

which is equivalent to (9) and has a solution (β�, f �, z�) if it is feasible. Remark 1 below shows

that there may be four disjoint and complementary situations.

Remark 1 Case 1. y� ∈ K. In such a case (7) is not feasible if R > 1. We will say that

the market is K−risk-neutral. Besides, (λ, y�, y�) is obviously (9)−feasible for every λ ≥ 0,

and both (8) and (9) are feasible and unbounded (the (9)-optimal value becomes λ� = ∞).
(0, y�, y�) is (12)−feasible and therefore β� = 0 is the optimal value of (12). We will say that the

(�,K,�)−capital market line ((�,K,�) − CML) is horizontal, and the market price of risk

(MPR)M(�,K,�) = 0 will vanish (under the framework of Examples 1 and 2 below every robust
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expected return equals 1 and does not depend on the portfolio risk).

Case 2. y� /∈ K, y� ∈ � and 0 < β� < 1 (and therefore∞ > λ� > 0). Taking into account the

objective function of (8), the optimal risk is ρ = (R− 1)λ� − 1 or, equivalently,

R =
1

λ�
(ρ+ 1) + 1 =

β�

1− β� (ρ+ 1) + 1 (13)

yields the relationship between the optimal risk and the guaranteed (or robust) expected return.

We will say that

M(�,K,�) =
β�

1− β� (14)

is theMPR, and (13) will be called the (�,K,�)− CML.

Case 3. y� /∈ K, y� ∈ � and β� = 1 (and therefore λ� = 0). (7) (8) and (9) are feasible, but now

the null optimal value of (9) implies that the optimal robust risk satisfie (see (8))

ρ = λ� (R− 1)− 1 = −1

and it does not depend on R. In fact, one can construct sequences of portfolios (or (7)-feasible

elements) whose robust expected return is as large as desired (R tends to +∞) while their risk is
as close to−1 as desired. There is noMPR because every guaranteed expected return is reached

with a similar risk level. The (�,K,�) − CML is vertical, and we will accept the convention

M(�,K,�) =∞.3

Case 4. y� /∈ �. Then, (7) is unbounded for every R > 1 and one can construct a sequence

of portfolios guaranteeing an expected return as large as desired (R tends to +∞) and whose
risk is as negative as desired (ρ tends to −∞). Once again, we will accept the convention above
M(�,K,�) =∞. �

Cases 1 and 2 above may be natural and, extending the approach of Balbás et al. (2010), we will

say that (�,K,�) is strongly compatible (and compatible) if they hold. If Case 3 holds then we

will say that (�,K,�) is compatible but it is not strongly compatible. If Case 4 holds we will say

that (�,K,�) is not compatible.

Remark 2 (Recovering compatibility) Though our framework is more general, following a proof

3Throughout this paper we will accept the convention
β

1− β =∞ if β = 1.
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of Balbás and Balbás (2009) one can replace ρ with a new “quite similar risk measure ~ρ” given

by

~ρ (y) := Max {ρ (y) ,−� (y)} (15)

for every y ∈ Y . It is easy to see that (2), (3) and (5) still hold if ~ρ replaces ρ and

~� = {wz + (1− w) y�; z ∈ �, 0 ≤ w ≤ 1} ⊃ � (16)

replaces ~�.
(

�,K, ~�
)
is compatible ((16) trivially shows that y� ∈ ~�) and will be called the

compatible modificatio of (�,K,�). Moreover, ~ρ = ρ if and only if (�,K,�) is compatible,

and if and only if ~� = �. �

Suppose that (�,K,�) is not compatible. ~ρ permits us to recover compatibility. However, Propo-

sition 1 below shows that there are no “minor” modification of ρ allowing us to reach strong

compatibility. Besides, dealing with particular cases of Example 1 below, Balbás et al. (2010)

have shown that for many important pricing models (Black and Scholes, Heston, other stochastic

volatility models, etc.) and risk measures (CV aR, spectral risk measures, etc.) “minor” modifi

cations of ~ρ will not solve this caveat either.4

Proposition 1 a) M(�,K,�) = 0 if and only ifM(�,K, ~�) = 0. In other words, (�,K,�) satisfie

Case 1 of Remark 1 if and only if
(

�,K, ~�
)
satisfie Case 1 of Remark 1.

b) 0 < M(�,K,�) <∞ if and only if 0 < M(�,K, ~�) <∞. In other words, (�,K,�) satisfie Case

2 of Remark 1 if and only if
(

�,K, ~�
)
satisfie Case 2 of Remark 1. If so,M(�,K, ~�) = M(�,K,�).

c) M(�,K,�) = ∞ if and only ifM(�,K, ~�) = ∞. In other words, (�,K,�) satisfie Cases 3 or 4

of Remark 1 if and only if
(

�,K, ~�
)
satisfie Case 3 of Remark 1.

d) 0 ≤ M(�,K,�) = M(�,K, ~�) ≤ ∞. Consequently,
(

�,K, ~�
)
is strongly compatible if and only

if (�,K,�) is strongly compatible.

Proof. a) According to Remark 1, both M(�,K,�) = 0 and M(�,K, ~�) = 0 are equivalent to

y� ∈ K.
4See also Stoica and Lib (2010).
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b) If 0 < M(�,K,�) < ∞ then (�,K,�) is compatible, and therefore ~� = �, ~ρ = ρ and

M(�,K, ~�) = M(�,K,�). Conversely, suppose that 0 < M(�,K, ~�) < ∞. M(�,K,�) = 0 cannot hold

due to a). If we show thatM(�,K,�) =∞ cannot hold either the proof will be ended. Suppose that

M(�,K,�) =∞ and consider 0 < β < 1 solving (12) when ~� replaces �. There exist 0 ≤ w ≤ 1,

f ∈ K and z ∈ � such that (see(16))

β [wz + (1− w) y�] + (1− β) f = y�.

1− β > 0 and wβ ≥ 0 imply that 1− β + wβ > 0. Manipulating,

wβ

1− β + wβ
z +

1− β
1− β + wβ

f = y�.

Thus,
(

wβ
1�β+wβ

, f, z
)

is (12)-feasible, and therefore (12) has feasible solutions and its optimal

value cannot be higher than wβ
1�β+wβ

< 1.

c) It is an obvious consequence of a) and b), along with the property y� ∈ ~� (see(16)).

d) It is an obvious consequence of a), b) and c). �

Remark 3 Suppose that V ⊂ Y is a closed subspace containing U . Consider the classical

projection ϕV : Y → V .5 The restriction of � to V is given by � (v) = 〈v, ϕV (y�)〉 and the role
of K and � may be played by ϕV (K) and ϕV (�) (see (20)). In other words, if (7) and (12) are

5If C ⊂ Y is convex and closed then there exists a continuous projection ϕC : Y → C. If y ∈ Y then ϕC (y) is
characterized by two equivalent conditions (Choquet, 1966);

1) ϕC (y) ∈ C and
‖y − ϕC (y)‖ < ‖y − c‖ (17)

for every c ∈ C such that c 6= ϕC (y).
2) ϕC (y) ∈ C and

〈y − ϕC (y) , ϕC (y)〉 ≥ 〈y − ϕC (y) , c〉 (18)

for every c ∈ C.
If C is a closed subspace then ϕC is linear, it is called orthogonal projection, and for every y ∈ Y we have that

ϕC (y) is characterized by;
3) ϕC (y) ∈ C and

y − ϕC (y) ∈ C⊥, (19)

C⊥ denoting subspace orthogonal to C. In particular, 〈y − ϕC (y) , c〉 = 0 and therefore

〈y, c〉 = 〈ϕC (y) , c〉 (20)

for every y ∈ Y and every c ∈ C.
If C is a closed subspace and a ∈ Y then for the affin manifold a+ C we have that

ϕa+C (y) = a+ ϕC (y − a) (21)
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restricted to V then they become Min ρ (v)

v ∈ V ; 〈v, ϕV (y�)〉 ≤ 1; 〈v, f〉 ≥ R, ∀f ∈ ϕV (K)
(23)

and

Min β,

 βz + (1− β) f = ϕV (y�)

f ∈ ϕV (K) ; z ∈ ϕV (�) ; 0 ≤ β ≤ 1
(24)

respectively, and the remarks above still apply. If (β, f, z) is (12)-feasible we have that

ϕV (βz + (1− β) f) = ϕV (y�) ,

and (β, ϕV (f), ϕV (z)) is (24)-feasible. The obvious consequence is that the optimal value of (24)

is equal to or lower than the optimal value of (12), and thereforeM(�,ϕV (K),ϕV (�)) ≤ M(�,K,�).6

In particular,M(�,ϕU (K),ϕU (�)) ≤M(�,K,�). �

Remark 4 If V ⊂ Y is a closed subspace containing U then (16) leads to

ϕV ( ~�) = {wz + (1− w)ϕV (y�); z ∈ ϕV (�), 0 ≤ w ≤ 1}

which implies that
(

�, ϕV (K), ϕV ( ~�)
)
is the compatible modificatio of (�, ϕV (K), ϕV (�)).

In particular,M(�,ϕV (K),ϕV ( ~�)) = M(�,ϕV (K),ϕV (�)). �

Example 1 (Non-ambiguous and ambiguous complete pricing models) The abstract approach

above contains the standard framework of every complete pricing model. Indeed, consider a prob-

ability space (
,F , IP) composed of the set of states of nature 
 that may arise at a future date

T , the σ−algebra F reflectin the information available at T , and the probability measure IP.

Y = L2 (F) will represent the Hilbert space of random variables on (
,F , IP) whose expecta-

tion and variance are finit , endowed with the usual inner product and Euclidean norm. There

will exist a linear and continuous function providing investors with the current price � (y) ∈ IR

for every y ∈ Y . Furthermore, if C̃ ⊂ a+ C is a closed convex set, then

ϕC̃ = ϕC̃ ◦ ϕa+C . (22)

6In order to simplify several expressions, we still denote by Π the restriction of Π to V .
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of every marketed claim y ∈ L2 (F). If IE (.) represents mathematical expectation with respect

to IP, then the stochastic discount factor (SDF ) is the unique y� ∈ L2 (F) such that

� (y) = IE(y�y) (25)

for every y ∈ L2 (F).

A closed subspace U ⊂ Y will be composed of those pay-offs at T whose current price does

not depend on the pricing model we are dealing with. U may be said to be the space of price-

invariant marketed claims (or price-invariant assets). For instance, in practice we could consider

that � (u) is directly given by a market quotation, for every u ∈ U .

The role of u0 will be played by a riskless asset 1 ∈ U , and (1) will imply the existence of a null

riskless rate (if the interest rate rf is non null then we will assume that every pay-off has been

multiplied by the discount factor e�rfT , and therefore every y ∈ L2 (F) actually represents the

present value of a related pay-off at T ).

In order to introduceK we can consider ambiguous investors whose set of priors contains IP, and
then deal with the framework of Balbás et al. (2016b). Therefore, K ⊂L2 (F) will be a convex

and weakly compact set containing the zero variance random variable u0 = 1 (so u0 ∈ K) and
such that IP (f ≥ 0) = 1 and IE (f) = 1 for every f ∈ K. The set of priors (or ambiguity set) will
be composed of the IP−continuous probability measures p whose Radon-Nikodym derivative dp

dIP

with respect to IP belongs to K ( dp
dIP
∈ K).

The ambiguous setting above contains many particular cases. For instance, due to the Alaoglu’s

theorem and the Hahn-Banach theorem (Kopp, 1984), K may be the intersection of a closed

interval [S1, S2] ⊂ L2 (F) and the subspace of random variables whose expectation equals 1,

i.e.,

K = K [S1, S2] =
{
f ∈ L2 (F) ; IE (f) = 1, S1 ≤ f ≤ S2

}
, (26)

where 0 ≤ S1 ≤ 1 ≤ S2 and S1 and S2 are two arbitrary random variables of L2 (F). Firstly,

if S1 = 1 or S2 = 1 then the non-ambiguous (or uncertainty free) case will be included in

our framework, because K [S1, S2] = {1} will become a singleton, and the probabilities of the
states of nature will be known and given by IP. Secondly, if S1 6= 1 and S2 6= 1 then IP may

be interpreted as an estimated probability measure containing possible errors, which makes the

investor incorporate the “spread” S1 ≤ 1 ≤ S2 indicating the estimation accuracy (the accuracy

11



increases as S2 − 1 ≥ 0 and 1− S1 ≥ 0 decrease).

With respect to ρ and �, they become natural if we follow the approach of Balbás et al. (2016b)

in order to measure risks under ambiguity. A risk measure will be a function ρ : L2 (F) −→ IR

such that there exists a convex and weakly compact subset � of L2 (F) with

ρ (y) = Max {− IE (yz) ; z ∈ �} (27)

for every y ∈ L2 (F).

In the ambiguity free case (K = {1}) there are many risk measures. For instance, every expecta-
tion bounded risk measure (Rockafellar et al., 2006) and many coherent risk measures (Artzner

et al., 1999). In more general cases we can defin “the robust extension of a risk measure relative

to the set of priors K”. For instance, the robust CV aR with confidenc level 0 ≤ µ < 1 relative

to the set of priors K will be given by

RCV aR(K,µ) (y) := Max

{
CV aR(fpg,µ) (y) ;

dp

dIP
∈ K

}
(28)

for every y ∈ L2 (F), CV aR(fpg,µ) (y) denoting the usual CV aR of y if p is the selected proba-

bility measure and µ is the level of confidenc . If there exists an upper bound of K (an element
S ∈ L2 (F) such that f ≤ S holds for every f ∈ K) then Balbás et al. (2016b) show that (28) is
well define and satisfie the required conditions with

K ⊂� =

{
z ∈ L2 (F) ; IE (z) = 1 and ∃f ∈ K with 0 ≤ z ≤ f

1− µ

}
. (29)

Analogously, bearing in mind (15) and (25), we can defin the compatible robust CV aR with

confidenc level 0 ≤ µ < 1 relative to the set of priors K by means of

CRCV aR(K,µ) (y) := Max
{
RCV aR(K,µ) (y) ,−IE(y�y)

}
for every y ∈ L2 (F), and (2) and (27) will hold again if ~� replaces�, where� is given by (29)

and ~� is given by (16).

Problem (7) may be understood as a classical portfolio choice involving both, the (robust) risk

measure ρ and the robust expected return relative to the set set of priors K, which particularizes

12



(10) and is given by

IEK (y) := Min { IE (yf) ; f ∈ K)} (30)

for every priced one y ∈ L2 (F). �

Example 2 (Incomplete pricing models) The abstract setting also applies for incomplete pricing

models. Indeed, under the notations of Example 1, the role of L2 (F) may be played by a proper

closed subspace Y ⊂ L2 (F) containing reachable marketed claims. The pricing rule will be still

given by (25) for some random variable y� ∈ Y still called SDF . The existence of an available

riskless asset u0 = 1 ∈ Y and a null interest rate must be imposed too, as well as the property

1 ∈ U ⊂ Y . The risk measure (27) must be define as a function whose domain is L2 (F), but

(19) and (20) trivially imply that

ρ (y) = Max {− IE (yz) ; z ∈ ϕY (�)}

for every y ∈ Y , and therefore the role of � may be played by ϕY (�). Similarly, with respect

to the ambiguity set we have that IE (fy) = IE (ϕY (f)y) for every y ∈ Y and every f ∈ K,
so the robust expected return may be given by IEK (y) = Min { IE (yf) ; f ∈ ϕY (K)} for every
priced one y ∈ Y , and therefore ϕY (K) may play the role of K. Finally, according to (12)
and Remark 1, if (�, ϕY (K), ϕY (�)) is strongly compatible then there exists (f, z, β) ∈ K ×
� × [0, 1) such that βϕY (z) + (1− β)ϕY (f) = y�. Hence, (20) and (25) imply that � (y) =

IE (y�y) = βIE(ϕY (z) y)+ (1− β) IE(ϕY (f) y) = βIE(zy)+ (1− β) IE(fy). If

IP (z ≥ 0) = 1 and IP (f > 0) = 1 (31)

then the implication

IP (y ≥ 0) = 1, IP (y > 0) > 0 =⇒ � (y) > 0

becomes obvious because 1−β > 0. In other words, the absence of arbitrage is guaranteed under

(31) and strong compatibility. Furthermore, this argument also applies for Example 1, which is

a particular case of Example 2. Condition (31) holds for every coherent risk measure (Artzner et

al., 1999) and many ambiguity sets such as K = {1} (uncertainty free case) or, more generally,
K given by (26) with IP (S1 > 0) = 1. �

13



3. Recovering strong compatibility

According to Proposition 1 above, if Case 3 or Case 4 hold then a modificatio of ρwill be insuffi

cient to recover strong compatibility. The only way to prevent this caveat will be the modificatio

of y�, and therefore the modificatio of �. This is the focus of this section. We will modify �

so as to recover strong compatibility, though the price of every strategy in the stable subspace U

will remain the same. If M(�,ϕU (K),ϕU (�)) = ∞ and we do not modify the restriction of � to U

then the MPR on U will still equal infinit , and Remark 3 will show that Case 3 or Case 4 will

still hold on Y . Thus, we will impose;

Assumption 1 M(�,ϕU (K),ϕU (�)) <∞, i.e., (�, ϕU(K), ϕU(�)) is strongly compatible. �

Proposition 2 If U = L{u0} thenM(�,ϕU (K),ϕU (�)) = 0, and therefore Assumption 1 holds and

M(�,ϕU (K),ϕU( ~�)) = 0.

Proof. Expression (1) gives 〈u0, y�〉 = 1, and (20) leads to 〈u0, ϕU(y�)〉 = 1. Since ϕU(y�) =

αu0 for some real number α, α = 〈u0, αu0〉 = 〈u0, ϕU(y�)〉 = 1, and therefore ϕU(y�) = u0.

Since u0 ∈ K, we have that u0 = ϕU(u0) ∈ ϕU(K), i.e., ϕU(y�) ∈ ϕU(K). Thus, the rest of the

proof trivially follows from Remarks 1, 3 and 4. �

For every 0 ≤ β ≤ 1 we will consider the (obviously continuous) function

Y × Y 3 (f, z) 7−→ �β (f, z) := βz + (1− β) f ∈ Y, (32)

and the sets 

�(β := �β (K ×�) = {�β (f, z) ; f ∈ K, z ∈ �} ⊂ Y,

C(β := �(β
⋂(

y� + U?
)
⊂ y� + U?,

~�(β := �β

(
K × ~�

)
=
{

�β (f, z) ; f ∈ K, z ∈ ~�
}
⊂ Y,

~C(β := ~�(β
⋂(

y� + U?
)
⊂ y� + U?.

(33)

Proposition 3 a) If 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 then �α (f,�β (f, z)) = �αβ (f, z) for every

(f, z) ∈ Y × Y .

b) �(β is convex and weakly compact for every 0 ≤ β ≤ 1. Furthermore,�(0 = K and�(1 = �.

14



c K ⊂ β ⊂ ≤ β ≤ �z, u � ≤ β ≤

z ∈ β

d
�

β
�

β
i.e. β ⊂ β ≤ β ≤ β ≤

a

b β × K

β × K β

K

c K ⊂ f ∈ K ⊂ f β f, f ∈ β K ×K ⊂

β K ×
β

β f, z ∈ β z ∈ f ∈ K ⊂ β f, z

β f, z ∈

�z, u � ≤ β ≤ z ∈ β

β ⊂

d β β

< β α
β

β
z β f, z ∈ β f ∈ K

z ∈ a α ⊂

z β f, α f, z ∈ β K × α ⊂ β K × β .

≤ β ≤ M
U ,ϕU ,ϕU ≤

β

− β
≤ ∞ C β � ∅

U L{u } β ⊂ ⊂ y U C β β

V U

βU , fU , zU ∈ , ×K×

βU ,ϕU fU ,ϕU zU

M ,ϕU ,ϕU

βU
− βU

.



βU ≤ β M ,ϕU ,ϕU ≤
β

− β
d

βU ⊂ β ⇒ C βU ⊂ C β C βU � ∅

ϕU βUzU − βU fU ϕU y

βUzU − βU fU − ϕU y ∈ U .

y − ϕU y ∈ U

βUzU − βU fU − y βUzU − βU fU − ϕU y ϕU y − y ∈ U ,

βUzU − βU fU ∈ y U βUzU − βU fU ∈
βU

U L{u } ⊂ y U z ∈

�u , z − y � z − y ∈ U z ∈ y U

C β

⎧⎨
⎩ y β ϕC β y ,

y β ϕC β y

≤ β ≤ M ,ϕU ,ϕU ≤
β

− β
≤ ∞

y y

|�y − y , y�| ≤ �y� �y − y �

y ∈ Y �y − y �

�y − y �

β ∈ , M ,ϕU ,ϕU ≤
β

− β
β y

�
y, y β

�
y ∈ Y



a
�

β,K,
�

M β , , ≤
β

− β

b β u u u ∈ U M ,ϕU ,ϕU
β

c y ∈ Y Y � y → y �y, y � ∈

u u u ∈ U M , , ≤
β

− β

		y − y β
		 ≤

�y − y �
		y − y β

		 �y − y � y y β

y β y

Min γ,

⎧⎨
⎩ γz − γ f y β

f ∈ K z ∈ ≤ γ ≤

γ, f, z ∈ × Y × Y

a y β ∈ C β ⊂ β f, z ∈ K × y β βz − β f

β, f, z − γ

γ ≤ β

M β , ,

γ

− γ
≤

β

− β
.

b y β ∈ Cβ ⊂ y U
�
u, y β − y

�
u ∈ U

c y ∈ Y γ ∈ , M , ,

γ

− γ
≤

β

− β
γ, f, z ∈ ×K× y y y γz − γ f

y ∈ γ ⊂ β d u u

u ∈ U �y, y − y � u ∈ U y ∈ y U

y ∈ C β
		y − y β

		 ≤ �y − y �
		y − y β

		 �y − y �

y y β

M β , , ≤

β

− β
a

c

M , , ≤
β

− β
⇒M , , ≤M β , ,



{ω ,ω ,ω } ωi / i , ,

y , , , u U L{u } K {u }

Co { / / , } Co

y /∈ M , , ∞

β ∈ ,

C β β Co { β/ β/ , − β − β, − β, β } .

y β ϕC β y u M β , , <
β

− β
y −

β/ − β/ β ∈ C β M , , ≤
β

− β
M , , > M β , ,

y /∈ K { }

M β , , ≤

β

− β

β >
β

− β
< M , , K {u } y ∈

C ⊂ Y ϕC Y → C

y ∈ Y y /∈ C ≤ w ≤ wy − w ϕC y ∈ C w

�y − ϕC y , wy − w ϕC y � ≤ �y − ϕC y ,ϕC y � ,

w �y − ϕC y , y� ≤ w �y − ϕC y ,ϕC y � w >

�y − ϕC y � ≤

y ϕC y ∈ C

K {u } < β < β ≤ y /∈ β yβ ∈
β ≤ w ≤

wy − w u ∈ β w

α β /β a α u , β u , z β u , z



z ∈ Y yβ ∈
β z ∈

y β
β u , z α u , β u , z α u , z ,

z β u , z ∈ β

y β αz − α u ,

z
α
y β −

− α

α
u .

≤ w ≤ wy − w u ∈ β β ≤ w ≤

β � w z − w wy − w u

w

�
α
y β −

− α

α
u

�
− w wy − w u

w
α
y β − w wy

�
− w − w − w

− α

α



u .

w
− w

− w
− α

α

≤ w < − w − w − w
− α

α

w
α
y β − w wy ∈ β.

y β ϕC β y ∈ y U y ∈ y U

w
α
≥ − w w ≥ w

α
− w w y U

w
α
y β − w wy ∈ C β,

− w w w w <

β ∈ , M ,ϕU ,ϕU ≤
β

− β
< M , , ≤ ∞

β y
�
y, y β

�
y ∈ Y K {u } y ∈ M β , ,

β

− β



β

− β
< M , ,

y /∈ β.

M β , ,

β

− β

≤ β < β y ∈

β y − β u ∈ β ⊂ β

d β z ∈

β z − β u y β

yβ ∈
β .

β > β

β b y β u

ϕC β y u .

βy − β u ∈ C β.

βy − β u ∈ y U u ∈ C β ⊂

y U y ∈ y U βy − β u ∈ y U

y U

�y − u � ≤ �y − βy − β u � − β �y − u �

�y − u � > ≤ − β β ≤

y u y ∈ K < M , ,

β y
�
y, y β

�
y ∈ Y β ∈ , K

{u } M ,ϕU ,ϕU
≤

β

− β
< M , , ≤ ∞ M β , ,

β

− β



Proof. Expression (16) shows that y� ∈ ~�. Hence, the result follows from Theorem 8. �

Remark 5 Suppose that M(�,K,�) = ∞. Theorems 5 and 8 and Corollary 9 show that prices

in the stable sub-space may be respected and the strong compatibility may be recovered if �

is replaced by �(β , where β may be estimated so as to obtain an upper bound
β

1− β of the

MPR. Moreover, ifK = {u0} (non ambiguous case, in the framework of Examples 1 and 2) then
β

1− β becomes the exact MPR if y� ∈ � or the risk measure ρ is replaced by its compatible

modificatio ~ρ. �

4. The two steps approach

Suppose that Y represents “pay-offs at T ” and we modify the pricing rule � so as to recov-

er strong compatibility. For maturities T 0 longer than T we could face “pathological properties

again”, and the pricing rule connecting 0 and T 0 could again reflec the lack of strong compati-

bility. This section will be devoted to analyzing this problem.

First of all, let us present an instrumental lemma. Since this result is abstract and only involves

Hilbert spaces, i.e., it does not contain any idea related to Financial Mathematics, the proof will

be omitted.

Lemma 10 Suppose that F is a Hilbert space, E ⊂ F is a closed subspace and L : F → IR is

a linear and continuous function such that L (x0) = 1 for some x0 ∈ E. Denote by Ker (L) the

kernel of L. Then;

a) L (x)x0 ∈ (x+Ker (L)) ∩ E and therefore (x+Ker (L)) ∩ E 6= ∅ for every x ∈ F .

b) Defin L
(�
E,F : F → E by means of

L
(�
E,F (x) := ϕ(x+Ker(L))\E (x) (45)

for every x ∈ F . Then, L(�
E,F (x) = x for every x ∈ E and L

(
L

(�
E,F (x)

)
= L (x) for every

x ∈ F .

c) If x, y ∈ F then L(�
E,F (x) = y if and only if y ∈ E, x − y ∈ Ker (L) and x − y ∈

(Ker (L) ∩ E)?.
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d) L
(�
E,F is linear and continuous.

e) If there exists xL ∈ E such that L (x) = 〈x, xL〉 for every x ∈ F , then L(�
E,F = ϕE .

f) Suppose that D ⊂ E ⊂ F is a closed subspace such that L (x1) 6= 0 for some x1 ∈ D. With
the obvious notations, L(�

D,F = L
(�
D,E ◦ L

(�
E,F . �

Example 4 In general, under the notations of Lemma 10, there are many linear and continuous

functions LE,F : F → E satisfying LE,F (x) = x for every x ∈ E and L (LE,F (x)) = L (x) for

every x ∈ F . Moreover, the example L(�
E,F given in (45) is not necessarily the usual one in asset

pricing. Indeed, consider the (toy) binomial two periods (three dates) pricing model

↗ 16

↗ 8

4 ↘ 4

↘ 2 ↗
↘ 1

(46)

Under the notations of this paper, the space Y is L2 (F), F being the discrete σ−algebra of the
set of states of nature 
 = {(u, u) , (u, d) , (d, u) , (d, d)}, where “u means up in (46)” and “d
means down” (see Example 1). Obviously, Y may be identifie with IR4 endowed with

〈
(yj)

4
j=1 , (zj)

4
j=1

〉
= y1z1p

2 + y2z2p (1− p) + y3z3p (1− p) + y4z4 (1− p)2 ,

p ∈ (0, 1) being the (physical) probability of “up” in (46). The pricing rule � : Y → IR is

� (y) =
y1

9
+

2y2

9
+

2y3

9
+

4y4

9
. (47)

Consider the subspace E ⊂ Y indicating “information after one period”, i.e.,

E = {y ∈ Y ; y2 = y1 and y4 = y3} .

Obviously, E may be identifie with IR2. If p = 1/3 (i.e., if p equals the risk-neutral probability)
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E,Y Y → E E,Y, / e

E,Y, / y

�
y y y y



,

p / c

E,Y, / y

�
y y − y y − y y y y



.

< p < E,Y,p E,Y,p y y y ∈ E

E,Y,p y

�
y y ∈ Y

Y X ⊃ Y

X → x ∈ X x

�x, x � x ∈ X y ϕY x

KX ⊂ X ⊂ X K ϕY KX ϕY X

Y X

Y β M β , ,

β X

M α, X , X

M β , , ≤M α, X , X

Y,X X → Y Y,X y y

y ∈ Y Y,X x x x ∈ X β ∈ , M ,ϕU ,ϕU ≤
β

− β
< M , , ≤ ∞ y ∈ Y β y

�
y, y β

�
β β X → β x β

Y,X x x ∈ X

x β ∈ X β x
�
x, x β

�
x ∈ X α ∈ β,

W ⊂ X Y W Y,X W U M β ,ϕY W X ,ϕY W X
≤

α

− α
<∞ C

α
X

α
X

�

x β Y W

�

a C
α
X x α ϕ

C
α

X

�
x β
�

b α x
�
x, x α

�
x ∈ X M α, X , X

≤
α

− α
<∞

�
α,KX , X

�
c α x β x x ∈ Y W α w β w w



w ∈ W w ∈ U

d KX {u } x β ∈ X x ∈ X M β , ,

β

− β
≤

α

− α
M α, X , X

<

∞

a
α
X

�

x Y W

�
b M β ,ϕY W X ,ϕY W X

≤
α

− α

b a

c b α x β x x ∈ Y W w ∈ W

α w β w β
Y,X w Y,X w Y,X w ∈ U

β w Y,X w w u ∈ U α u β u

u ∈ Y β u u b

d x ∈ Z y ϕY x ∈ ϕY X

X {wz − w x z ∈ X , ≤ w ≤ } ⊃ X ,

X � x → ρX x Max {ρ x ,− x } ∈

ρ C
α
X

α
X

�

x β Y W

�
x α ϕ

C
α

X

�
x β
�

α x
�
x, x α

�
x ∈ X KX {u } x β ∈ X M β , ,

β

− β
≤

α

− α
M α, X , X

<∞

X,x β

�
wz − w x β z ∈ X , ≤ w ≤

�
⊃ X ,

X � x → ρX,x β x Max
�
ρ x ,− β x

�
∈

ρ C
α

X,x β

α

X,x β

�

x β Y W

�
x α ϕ

C
α

X,x β

�
x β
�

α x
�
x, x α

�
x ∈ X KX {u } M β , ,

β

− β
≤

α

− α
M α, X , X,x β

<∞



W

Y W M β ,ϕY W X ,ϕY W X
≤

α

− α
Y,X W U W U

W ⊂ Y Y W Y M β ,ϕY W X ,ϕY W X
≤

β

− β
≤

α

− α
Y W W

V F V

F V V

T T > T

x β ∈ X

p /

X Y ⊂ X

K { } ρ CV aR p, ,

{ z z z z , ≤ z , z ≤ , } ⊂ Y .

z z

, , , , y y y

Y

y

�
/

p

/

− p



/ / ,

W
W



y /∈ ,K,

z z / / , ,

M β , ,

β / β / / − β / /

y β / /

β y
y y

.

Y,X

X → Y

Y,X x

�
x x x x



,

β

β x

�
x x

� �
x x

�
x x x x

.

,

x β

� 

,

x

� 

.

x β /∈ X

X

�
z z z z

�
zi , ≤ zi ≤ ,

�
⊂ X .

x β ∈ X z, γ ≤ γ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γz − γ

γz − γ

γz − γ

γz − γ

z z z z



With the change of variable γi = γzi, γ0 = 1− γ we have the equivalent linear system

5
9

= 4
9
γ0 + γ1

10
9

= 8
9
γ0 + γ2

7
9

= 8
9
γ0 + γ3

14
9

= 16
9
γ0 + γ4

4 = z1 + z2 + z3 + z4

which has no solution. Thus, x(β /∈ ~�X . �

5. CVaR-consistent pricing

Many risk measurement linked papers present examples constructed with the CV aR of Rock-

afellar and Uryasev (2000). This coherent (Artzner et al., 1999) and expectation bounded (Rock-

afellar et al., 2006) risk measure may be easily optimized and interpreted in terms of potential

capital losses (Rockafellar and Uryasev, 2000), outperforms the standard deviation with respect

to the second order stochastic dominance (Ogryczak and Ruszczynski, 1999 and 2002), its com-

patible modificatio is quite tractable (Balbás and Balbás, 2009) and has natural extensions to

ambiguous frameworks (Zhu and Fukushima, 2009), among many other good properties. Let us

end this paper with some CV aR linked properties and examples illustrating and interpreting the

main theorems above. First of all let us see that the modifie SDF has a bounded logarithm under

the CV aR.

Proposition 15 Consider Example 1 in a non-ambiguous setting (K = {1}). Suppose that β ∈
(0, 1) andM(�,ϕU (K),ϕU (�)) ≤

β

1− β . Take 0 < µ < 1 and ρ = CV aR(fIPg,µ). Then,

IP

(
1− β ≤ y(β ≤ 1− β +

β

1− µ

)
= 1. (49)

Proof. (33) and (35) imply that y(β ∈ �(β , and therefore (29) and (32) lead to the existence of

z ∈ L2 (F) such that y(β = βz + (1− β) and 0 ≤ z ≤ 1
1�µ . Hence, (49) becomes trivial. �
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Proposition 15 above may be “a little bit improved” under an additional assumption about duality

gaps in linear programming (Anderson and Nash, 1987). Actually, the new SDF may become a

call spread under the CV aR.

Proposition 16 Consider Example 1 in a non-ambiguous setting (K = {1}). Suppose that β ∈
(0, 1) andM(�,ϕU (K),ϕU (�)) ≤

β

1− β . Take 0 < µ < 1 and ρ = CV aR(fIPg,µ). Then;

a) y(β is the unique solution of the following linear optimization problem

Min IE
((
y(β − y�

)
y
)  ϕU (y − y�) = 0

1− β ≤ y ≤ β

1− µ + (1− β)
(50)

y ∈ L2 (F) being the decision variable.

b) If (50) and its dual do not present any duality gap then there exists u(β ∈ U such that y(β is

the call-spread

y(β =


1− β, y� + u(β < 1− β

y� + u(β, 1− β ≤ y� + u(β ≤ β

1− µ + (1− β)

β

1− µ + (1− β) ,
β

1− µ + (1− β) < y� + u(β

(51)

where u(β is characterized by u(β ∈ U (or, equivalently, ϕU
(
u(β
)

= u(β) and ϕU
(
y(β − y�

)
= 0.

c) If (50) and its dual do not present any duality gap then y(β is characterized by the existence of

(λm, λM) ∈ L2 (F)× L2 (F) such that


y(β = y� + ϕU (λM − λm) + λm − λM

λm
(
y(β − (1− β)

)
= λM

(
β

1− µ + (1− β)− y(β

)
= 0

λm ≥ 0, λM ≥ 0, 1− β ≤ y(β ≤ β

1− µ + 1− β

(52)

Proof. (29) and (33) easily imply that

�(β =

{
y ∈ L2 (F) ; IE (y) = 1, 1− β ≤ y ≤ β

1− µ + (1− β)

}
. (53)
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Expressions (18) and (35) show that y(β ∈ C(β is characterized by the inequality

IE
((
y(β − y�

)
y(β
)
≤ IE

((
y(β − y�

)
y
)

for every y ∈ C(β . Therefore, a) will become obvious if we show that y ∈ C(β if and only if y

satisfie the constraints of (50), which trivially follows from (33) and (53).

Let us prove b) and c). Since U coincides with its dual space, under the absence of duality gap

the solution y(β of (50) must be feasible and is characterized by the existence of u(β ∈ U and

(λm, λM) ∈ L2 (F)× L2 (F) such that


y(β − y� − u(β − λm + λM = 0

λm
(
y(β − (1− β)

)
= λM

(
β

1− µ + (1− β)− y(β

)
= 0

λm ≥ 0, λM ≥ 0

(Anderson and Nash, 1987). Hence, the proof of b) becomes trivial because the random variable

y(β given by (51) satisfie these conditions if one takes

λm =

 1− β −
(
y� + u(β

)
, y� + u(β < 1− β

0, otherwise

and

λM =

 y� + u(β −
(

β

1− µ + (1− β)

)
,

β

1− µ + (1− β) < y� + u(β

0, otherwise

Moreover, ϕU
(
y(β − y�

)
= 0 (or, equivalently, ϕU (λM − λm) = u(β) is an obvious conse-

quence of y(β ∈ y� + U?. Therefore, to prove c), notice that (51) is equivalent to

y(β = y� + u(β + λm − λM
ϕU
(
u(β
)

= u(β

ϕU (λM − λm) = u(β

λm
(
y(β − (1− β)

)
= λM

(
β

1− µ + (1− β)− y(β

)
= 0

λm ≥ 0, λM ≥ 0, 1− β ≤ y(β ≤ β

1− µ + 1− β

which equivalent to (52) because ϕU ◦ ϕU = ϕU (see (22)). �
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Remark 8 (Interpretation of Propositions 15 and 16). Actually, bearing in mind Proposition 3d,

with a similar proof as that of Proposition 15 one can show that M(�,K=f1g,�) ≤ β
1�β would

require an initial SDF y� > 0 such that

IP

(
1− β ≤ y� ≤ 1− β +

β

1− µ

)
= 1. (54)

Brownian motion linked pricing models will rarely satisfy (54). For instance, (54) will fail if y�

has the log-normal distribution (Black and Scholes) or a heavier tailed one (most of the stochastic

volatility models). Since Brownian motion linked pricing models do not satisfy (54) and they are

not strongly compatible with the CV aR and other coherent risk measures, a suitable interpreta-

tion of (54) might be as follows; “Brownian motion linked pricing models incorporate practical

pricing errors on tails, which provoke the absence of strong compatibility”. This statement seems

to be consistent with the usual theoretical justificatio for Brownian motions, which is closely re-

lated to the central limit theorem, and the converge of the central limit theorem is very inefficien

on tails. Moreover, Balbás et al. (2016a) have dealt with the CV aR and have constructed portfo-

lios of derivatives whose theoretical marked price of risk should be enormous. They showed that

these portfolios should concentrate their highest and lowest pay-offs on states of nature closely

related to the tails of the underlying asset. In other words, the major discrepancies between y�

and y(β must be concentrated on tails, as indicated in (51).8

Ideas above about the practical pricing errors of Brownian motions on tails may be is also con-

sistent with the empirical evidence. It is famous the OTM−put price puzzle, provoked because
OTM−puts are often “too expensive”. Bondarenko (2014) also shows that it is not easy to ex-
plain the real market price of many OTM−puts with the classical option pricing models. In
general, the tail of the SDF will have a critical influenc on the price of OTM−options. Er-
rors on the SDF−tail will imply significan pricing errors for OTM−options. In this sense,
the modificatio of the SDF proposed in (51) may be useful, since, as said above, the major

discrepancies between y� and y(β will affect their tails. �

Remark 9 (Computing y(β). Both (51) and (52) permit us to develop algorithms generating

y(β . For instance, according to Proposition 15b), y = y(β minimizes the quadratic expression

‖ϕU (y − y�)‖2 if (u, y) ∈ L2 (F) × L2 (F) is the decision variable and it is restricted by
8Proposition 16b implies that u(β in (51) will be a constant if the stable subspace U is only composed of riskless

assets. Consequently, the out of tails close relationship between yΠ and y(β becomes even clearer.
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ϕU (u) = u and (51). �

Proposition 15 also makes it easy to recover arbitrage free stochastic price processes given by

martingales.9 We can consider the (new risk-neutral) probability measure Q(β given by

dQ(β =y(βdIP. (55)

We can also consider the Hilbert space L2
(
Q(β,F

)
composed of those random variables whose

square is Q(β−integrable. Then, L2 (F) and L2
(
Q(β,F

)
contain the same random variables and

have the same topology, i.e., the norms of L2 (F) and L2
(
Q(β,F

)
are equivalent, and the only

difference between both spaces is given by the inner product (Rudin, 1987). Indeed, we have;

Proposition 17 Under the assumptions and notations of Proposition 15, consider the σ−additive
measure Q(β given by (55).

a) Q(β is a probability measure equivalent to IP.

b) If y is a F−measurable random variable, then y ∈ L2
(
Q(β,F

)
if and only if y ∈ L2 (F). In

other words, L2
(
Q(β,F

)
= L2 (F).

c) The natural topologies of L2 (F) and L2
(
Q(β,F

)
coincide.

Proof. a) In order to prove thatQ(β is a probability measure we only have to prove that IE
(
y(β
)

=

1, which trivially follows from (1), u0 = 1 ∈ U (see Example 1) and �(β (u) = � (u) for every

u ∈ U (Theorem 5c). Furthermore, (55) obviously implies the IP−continuity of Q(β . Finally,

Proposition 15 leads to y(β ≥1− β > 0, and therefore

dIP =
1

y(β
dQ(β (56)

implies the Q(β−continuity of IP.

b) Proposition 15, (55) and (56) lead to∫



y2Q(β (dω) ≤
∫




y2

(
β

1− µ + (1− β)

)
IP (dω)

9Recall that the existence of strong compatibility prevents the existence of arbitrage (Example 2).
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Remark 11 (The ambiguous framework) The non-ambiguous setting (K = {1}) of this section
may be relaxed and every result will remain true (under minor and obvious modification and

with the same proof) except Proposition 16 and Remark 9. In fact, one only have to replace the

assumption K = {1} with the weaker one IP (� ≥ f ≥ γ) = 1 for some � ≥ γ > 0 and every

f ∈ K. If so, then 1− β must be replaced by γ(1− β) > 0 and 1− β + β
1�µ must be replaced by

�
(

1− β + β
1�µ

)
in several expressions. �

Remark 12 (Incomplete markets) Similarly, if adequate assumptions are imposed, the (maybe

ambiguous) incomplete market framework of Example 2 also satisfie the results of this section

except Proposition 16 and Remark 9. For instance, an appropriate assumption is as follows; “

IP (� ≥ ϕY (f) ≥ γ) = 1 for some � ≥ γ > 0 and every f ∈ K”. �

Example 6 (Binomial model) Let us present a toy example illustrating Propositions 15, 16 and

17 above. Consider the binomial model of Example 4 and (46), and suppose that the physical

probability of “up” is p = 0,9. Expression (25) easily leads to the SDF

y� = (0,137174211 2,469135802 2,469135802 44,44444444) . (58)

Let us draw on the (non ambiguous)CV aR risk measure with the confidenc level 90 %. Bearing

in mind Problem (12), Expression (29) and Remark 1, it is easy to see that we are facing lack of

compatibility and a market price of riskM =∞.

Let us deal with three potential stable subspaces. If U1 = L{(1; 1; 1; 1)} is the linear manifold
generated by the riskless security, then Problem (24) leads to a market price of risk M1 = 0 on

U1, while for

U2 = L{(1; 1; 1; 1) , (8; 8; 2; 2)}

and

U3 = L{(1; 1; 1; 1) , (8; 8; 2; 2) , (16; 4; 4; 1)}

the same optimization problem givesM2 = 1,7 on U2 andM3 = 32,3 on U3. The main results of

Section 3 imply that for the three subspaces we can recover strong compatibility if y� is modified

If we select U1 then every desired newMPR may be reached. Suppose that we chooseM 0
1 = 1.
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Then, Proposition 16, Remark 9 and (55) lead to

y(β = (0,530562775 2,8624741 2,8624741 5,499881447)

Q(β = (0,429755847 0,257622669 0,257622669 0,054998814)
(59)

and the proportion between (58) and (59) equals

(0,258544734 0,862587998 0,862587998 8,080982267) (60)

Similarly, for U2, M 0
2 = 5, (due to Theorem 5, M 0

2 must be higher than M2 = 1,7), U3 and

M 0
3 = 100 (higher thanM3 = 32,3) we have

y(β = (0,166792688 2,200798628 6,464019728 8,506427078)

Q(β = (0,135102077 0,198071877 0,581761776 0,085064271)
(61)

and
y(β = (0,010112615 3,470330287 6,425019751 10,12272782)

Q(β = (0,008191218 0,312329726 0,578251778 0,101227278)
(62)

respectively, and the proportions between (58) and (61) and (62) become

(0,822423411 1,121927182 0,381981477 5,224807553) (63)

and

(13,5646624 0,711498791 0,384300111 4,390560057) (64)

respectively. (60), (63) and (64) confir the interpretation given in Remark 8, since their com-

ponents become far from one for the states of nature {(u, u) , (d, d)}, associated with the tails of
the binomial model.
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With regard to the martingale property of Remark 10, bearing in mind (57), (59), (61) and (62),

it may be easily seen that the price process (46) will be modifie according to

↗ 16

↗ 11,50251869

8,992073726 ↘ 4

↘ 3,472216555 ↗
↘ 1

↗ 7,117379366

↗ 5,116736826

4 ↘ 1,779344842

↘ 1,544567654 ↗
↘ 0, 44483621

(65)

if U1 is the stable subspace. On the left we conserve the fina pay-off (16; 4; 4; 1) and create the

price process. On the right we normalize the process so as to get a proportional one with current

value equaling 4 (the current price in (46)). Similarly, (46) becomes

↗ 16

↗ 8,866001402

5,366032113 ↘ 4

↘ 3,617302273 ↗
↘ 1

↗ 11,92687607

↗ 6,608981247

4 ↘ 2,981719017

↘ 2,696444745 ↗
↘ 0,745429754

(66)

if U2 is the stable subspace, and

↗ 16

↗ 4,306671441

4 ↘ 4

↘ 3,553066674 ↗
↘ 1

(67)

if the stable subspace is U3. If we compare (46) with the right hand side of (65) then we will see

that the volatility of the modifie price process is much lower and, once again, the tail behavior

is more stable. The same effect is reflecte in (66) and (67), though it is more moderated because

both U2 and U3 contain the price in one period (8; 8; 2; 2), which provokes that the risk neutral

probabilities of “up” and “down” in (46) remain 1/3 and 2/3 between dates 0 and 1. If we

compare (66) and (67), the volatility variation in (67) is more noticeable between dates 1 and

2. This is because U3 contains the fina pay-off (16; 4; 4; 1), and therefore one should not expect

significan variations in its price-process.
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Overall, (65), (66) and (67) are examples of DS free (and arbitrage free) pricing processes and

they reflec the major finding of this paper. The lack of compatibility is a caveat that can be

overcome once one fixe the stable subspace and the desired MPR. These two ingredients will

be respected, and then the price modificatio will be “as small as possible”. Both ingredients

have a clear influenc on the fina price process modification and their selection is an important

decision, which could be maid by calibration to market. The modifie process will reflec lower

volatilities and will moderate the tail behavior of the SDF . �

Example 7 (Black and Scholes model) Let us end this section with a toy example involving

the Black and Scholes model. Thus, consider Example 1 and a non-ambiguous complete model

such that every square-integrable random payoff at T = 1/4 (three months) may by replicated

by a self-financin portfolio composed of a riskless asset and a risky one satisfying the usual

stochastic differential equation
dS

S
= 0,04dt+ 0,08dz, (68)

where dz is a Standard Brownian Motion. The risk measure will be theCV aR with the confidenc

level 70 %. Bearing in mind (29), it is clear that every element in � will be essentially bounded.

Since the SDF of this model has a log-normal distribution, and consequently it is not essentially

bounded,10 Problem (12) is not feasible and Case 4 in Remark 1 applies, i.e., there are DS (see

also Remark 4 and (54)). We have selected a market price of risk equal to 0,1 and have applied

Proposition 16 in order to obtain y(β . Once again, the major differences between y(β and y� are

in the tails of y(β , as illustrated in Table 1 below, where some values at T = 1/4 of both y(β and

y� have been simulated. Similarly, Monte Carlo simulation has been used in order to generate

realized paths of the underlying asset under both (68) and the price modification implied by y(β .
10Recall that the relationship between the SDF at T (yΠ) and the underlying asset at T (ST ) is given by

Log(yΠ) = − r

σ2
Log(ST /S0) +

Tr
(
r − σ2

2

)
2σ2

,

S0 denoting initial price, r denoting drift and σ denoting volatility (r = 0,04 and σ = 0,08 in (68)).
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Table 2 contains a simulated path for 12 quarters (three years).

Table_1

Initial_SDF Modified_SDF

0,505303277 0,909090909

0,603291783 0,909090909

0,720282238 0,909090909

0,859959505 0,909090909

1,026723012 0,965723012

1,225825331 1,164825331

1,463537608 1,212121212

1,747347095 1,212121212

2,08619297 1,212121212

Table_2

Initial_S Modified_S

1 1

1,058199144 1,022511198

1,014242609 1,04552915

1,028688069 1,069065263

1,058199144 1,058199144

1,088556834 1,086567375

1,84955982 1,111027309

1,119785428 1,104356022

1,121832846 1,129216399

1, 104060723 1,091133384

1,12190991 1,115696103

1,128950081 1,048003855

1,123631111 1,071595677

As in Example 6, one can observe that the underlying asset moderates its tail behavior when the

existence of DS is overcome. �

6. Conclusion

The existence of DS with unbounded GSR or MPR is a major caveat affecting the available

arbitrage-free Brownian-motion-linked models for pricing and hedging derivatives. This short-

coming is provoked by the pricing models themselves, since modification of the risk measure

does not prevent the DS existence. Moreover, the risk measure may be replaced by some devia-

tions and the drawback is not overcome.

The DS existence is neither consistent with the intuition nor consistent with the financia equi-

librium. The DS existence should provoke additional trading modifying the pricing model itself

and leading to “more correct prices”.

The empirical evidence reveals that the real GSR of a DS never equals infinit , though it is fre-
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quently high. The natural question is how to modify the Brownian-motion-linked pricing model

so as to reach a finit but large enough (consistent with the empirical evidence) GSR, and this

has been the focus of this paper. It has been shown that every model can be modifie in such a

manner that the new SDF satisfie the two requirements above, i.e., absence of DS and suitable

optimal GSR. This is important for several reasons; If the existent models predict an unrealistic

price evolution for DS, then they may also make mistakes when pricing and hedging some deriv-

atives, provoking errors that may affect practitioners, supervisors and researchers. Secondly, the

lack of DS is much more coherent from a theoretical viewpoint and, compatible with equilibri-

um. Finally, the major discrepancies between the initial model and the modifie one will affect

the tails of their SDF , which seems to be also consistent with many previous empirical finding

in asset pricing. It is important to point out that the purposes of this paper were theoretical. The

modifie pricing model depended on the desired MPR and the proposed stable subspace. In

practice, these ingredients, and the resulting price processes, should be calibrated to market.
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