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Abstract 

The use of composite materials has grown considerably during recent years, most 

prominently in the aerospace and automobile industries, as well as in the civil and naval 

industries. Composite materials display outstanding specific strength and stiffness properties, 

and a broad capacity for customization. Both qualities have contributed to their application in 

industries sensitive to the weight of materials such as steel or other alloys. However, 

composites’ behavior is more difficult to predict due to multiple failure modes.  

Therefore, complex models and powerful software are normally required to design 

components made of composite materials, both during the creation of the model and in the 

results post-processing, adding time to the design process. It would be helpful to automate 

part of this process in order to speed up the pre-design step. The aim of this project is the 

development of a tool that will ease the design of composite stiffened panels, reducing the 

time required to create the model while also allowing fast modifications of a given design in 

order to maximize the design efficiency. The tool will be able to generate the mesh and 

geometry from a set of predefined parameters that defines a given panel, and it will compute 

the critical buckling load of the first five modes, along with the visualization of the deformed 

panel to ensure quick post-processing. In order to render this tool accessible, it will be 

implemented in a web environment (CADEC) using advanced features such as object-oriented 

programming, user authentication and databases. 

After implementing such a tool in CADEC, it was used to predict the buckling load of 

several real cases of stiffened panels. Since the results obtained with CADEC generally 

coincided with the experimental results analyzed, the tool and its results can be safely 

validated. 

Keywords: Composites, Stiffened Panels, Critical Buckling Load, Stiffened Panels Design, 

CADEC.
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Chapter 1 

1. Introduction 

1.1. Motivation 

The use of composite materials has grown considerably during recent years, especially 

in the aerospace and automobile industries, as well as in the civil and naval industries [38, 54]. 

One of the most general applications of composites is in the form of plates or panels, such as 

those used in the body of a car or the fuselage and wings of an airplane, due to composites’ 

versatility and relative ease of manufacturing. Most of these panels include some stiffeners in 

order to increase out-of-plane structural stiffness [42, 49]. 

Composite materials are valued for their high specific strength or specific stiffness, 

their corrosion, magnetic and conductive resistances, their fatigue life, and the possibility of 

customization of the material. This last advantage refers to the wide range of parameters that 

can be modified during the design step in order to obtain a material with the precise 

mechanical properties desired. The properties of conventional materials such as steel or 

aluminum are quite standard. In order to increase stiffness in a structure using these materials, 

engineers typically modify non-material-dependent parameters such as geometry, layout and 

quantity of material employed. In contrast, composites provide a much higher level of 

customization: reinforcement material selection, matrix material selection, architecture (fiber 
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length and orientation, particles, fabrics, volume of reinforcement, stacking sequence, etc.) 

[41]. With all these variables available to designers, the optimization and efficiency of the 

design can reach levels impossible with conventional materials. Within the aerospace and 

automobile industries, there is a strong additional incentive to use lighter components and 

realize important savings in fuel consumption and emissions [44]. 

However, the analysis of composites’ behavior is complicated by their nonlinearity, 

anisotropy, and multiple modes of failure [41]. This difficulty usually requires specific software 

in order to carry out Finite Element Analysis (FEA) of the components, since there are few 

cases that could be solved manually [31]. The creation of such Finite Element (FE) models and 

the verification of the results require significant time due to their complexity. Indeed, in the 

design step, during which several important decisions concerning sizing or material selections 

are made, this increased time is very apparent.  

Though there already is a complete set of powerful software capable of running FE 

analysis on these kinds of structures, the process normally takes too long. Under these 

circumstances, it is necessary to expedite the stiffened panels design process through a new 

application [43]. 

The first attempt to provide such an application was the desktop application SPD (Stiffened 

Panel Design) [53]. It is capable of calculating the critical buckling load of flat and curved plates 

as well as stiffened panels under the following specifications: 

 It is capable of performing buckling analyses on plates and stiffened panels, whether 

flat or slightly curved.  

 

 There are six different profiles available as stringers. 

 

  Normal or shear loading configurations as well as four types of boundary conditions 

(simply supported, clamped, free or symmetry) can be applied to each edge of the 

panel. This allows modeling of most real life configurations. 

 

 Composites and isotropic materials can be used to model the panels.  

SPD accomplishes its function quickly and with outstanding accuracy. However, a few 

persistent weaknesses indicated space for a more complete, efficient and portable application. 

The disadvantages of SPD include: 

 As a Windows application, SPD has the advantage of offline use, but is operating 

system sensitive. 

 

 SPD relies upon the freeware gmsh [21] to generate the geometry and mesh of the 

panel’s Finite Element model, and to visualize the first buckling mode. This software is 

very powerful and achieves high-quality meshes, but requires the user to install it in 

the computer in order to use SPD. In addition, scripts of code in the form of text files 

are required to create the geometry of each type of profile. If these files are altered or 

eliminated by the user, the application’s integrity is compromised. 
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 SPD uses an executable version of BMI3 [6] to solve the Finite Element problem. Since 

communication between the SPD executable, BMI3, and gmsh is accomplished using 

files, it becomes tedious to store several analyses for future use, and the user is 

required to manage the files directly, outside the application environment. 

 

 Material properties are introduced by storing the ABDH matrices of each of the four 

possible materials in text files, an error-prone and tedious process. Additionally, SPD 

does not handle computation of such parameters. 

These issues prompted development of a new tool based on SPD to perform similar 

computations without the disadvantages. 

 

1.2. Objectives 

The aim of this project is to create an application that will assist preliminary design of 

composite stiffened panels, and address the needs outlined in the previous section. To 

accomplish this, the problem is simplified to a number of parameters describing geometry, 

materials, loads and boundary conditions. The application will solve the buckling problem and 

provide as a result the critical buckling load of the first five modes, as well as the deformed 

shape of the panel for the first mode. This application will be implemented in a web 

environment usable from almost any device, and independent of external software such as 

gmsh [21]. 

In order to achieve this main goal, some partial objectives are set: 

 A mesh generator is required. Though some extant freeware as gmsh [21] can perform 

this operation offline at a user’s computer, this program will be created from scratch, 

for embedding in a web environment. Unlike SPD, this program will control the mesh 

while independent of external software. Furthermore, the main application and the 

mesh generator will communicate programmatically, eliminating the need for files and 

accelerating the process. This tool should be able to generate the mesh for a generic 

stiffened panel based on some geometric parameters. This tool will automate the 

creation of the FE model to reduce time required to create such a panel to the 

minimum necessary for defining some main parameters. The tool should be able to 

create flat and curved panels, with or without stiffeners. There will be at least six 

different profiles for the stringers. 
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 Another tool is required to manage all problem input data, including the mesh 

generator tool management, and prepare it to be sent to the solver. Some of the main 

tasks include materials properties and assignment to the corresponding elements, 

translation of the BC and Loads per side to the actual values applied on the nodes in 

the mesh, and management of the results provided by the solver. This code will be 

placed in a new class so that it can be used from a desktop application or a web 

environment. 

 

 This tool will be implemented within an existing site: CADEC (Computer Aided Design 

Environment for Composites) [2]. This online composite materials analysis application 

has been developed by Professor E. J. Barbero and is hosted by the Department of 

Mechanical and Aerospace Engineering of West Virginia University. The project 

objective is therefore to add a new module in charge of creating stiffened panels and 

solving the corresponding buckling problem to this web application. CADEC provides 

three main advantages over a desktop application such as SPD. First, as a web 

environment, it is portable over different operating systems and devices, including 

smartphones and tablets. Second, the infrastructure of CADEC includes user 

authentication and relational database use, so that all the panels created can be safely 

stored for later use. Third, there are extant modules in CADEC in charge of defining 

fibers, matrices, laminas or laminates, with which the new module would interact in 

order to obtain the material properties required for the panel definition. This will 

simplify introduction of material properties for analyzing the panels and results in a 

more robust application. 

 

 A visualization tool will be added to show the deformed shape of the panel. This could 

be done by extant free software such as gmsh [21], which displays results at the user’s 

computer offline through SPD, or by developing a specific tool in order to visualize 

results online. The second option has been chosen as it provides accessibility and 

faster results. By seeing a graphic representation of the deformed shape of the 

buckling modes, the designer can identify the weakest areas of the panel and better 

mitigate the problem. 

 

 The tool will be validated using classic plate theory of several simple examples and 

some experimental data of stiffened panels. Since the solver used by SPD and CADEC 

will be virtually the same, accuracy of results should be similar to that of SPD. 
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1.3. Project content 

This project is divided into 10 chapters, this introduction being the first. Brief 

descriptions of each following chapter follow: 

The second chapter contains a summary of the literature related to stiffened panels. 

The characteristics of these structural elements are defined, as well as their different 

constituent parts. Moreover, a description of the stiffening elements is presented. 

The third chapter presents a general description of buckling phenomenon (structural 

instability) in structural elements. Then, its relevance in stiffened panel design is highlighted. 

Finally, the different types of instability affecting stiffened panels are reviewed and explained. 

The fourth chapter introduces the relevant web programming technologies, specifically 

covering object-oriented programming and web development using ASP.NET applications. 

Reasons for the use of these particular programming languages and technologies are included. 

The fifth chapter provides a detailed explanation of the design tool implemented in 

this project, describing its different components and their functioning. This chapter focuses on 

the different tools used to solve the design problem: mesh generation, load and BC 

application, or solver. 

The sixth chapter describes the web environment in which the application will be 

implemented, which is CADEC [2]. It also introduces some relevant features of data storage in 

a database, which are required to explain the actual implementation of the application. 

The seventh chapter describes the process of implementing the application in the web 

environment (CADEC). First, it analyzes how the web application will be structured for the final 

user. Then, it focuses of the programming challenges of the implementation, and its 

relationship to the structure of CADEC. CADEC is divided into different projects, each of which 

accomplishes a different mission. The content of each project is reviewed in this chapter. 

The eighth chapter focuses on WebGL [22], the technology deployed for visualizing 

results. After introducing the technology, a further explanation follows to illustrate how the 

image is rendered in the computer. Finally, the chapter describes the different variables 

involved in this process as well as a brief review of the JavaScript code defining the tool. 

The ninth chapter verifies that the results provided by CADEC are valid and accurate. In 

order to do so, plates with different boundary condition and load configurations are first 

analyzed and compared with theoretical expressions. Then, one case of a curved plate is 

compared with another finite element model in the literature. Finally, stiffened panels with 

different geometry and stringer profiles are analyzed using CADEC and the results are 

compared with experimental data available in the literature. 

The tenth chapter states the main conclusions drawn from the creation and validation 

of the application. It also suggests possible lines of future work. 
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Finally, the bibliography used for the development of the project is presented. 

Furthermore, the document includes some appendices providing further information on the 

structure of the different files (MSH, INP, DAT) that the application can generate, a deeper 

explanation of SQL language, and the structure of the stored procedures defined in this project 

to communicate with the database. 
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Chapter 2 

2. Stiffened Panels 

2.1. Introduction 

Designers in the aerospace, automobile, naval and civil engineering fields face a strong 

motivation to reduce the amount of material used in order to lighten the total weight of a 

structure. In aerospace and automobile engineering, this motivation is mainly driven by the 

reduction in vehicular fuel consumption, or efficiency improvement. 

Plates are one way of achieving this goal. Stiffened panels, and plates in general, 

belong to the wider group of slender or thin-walled components. These components can be 

manufactured with metals or composites. Metals are normally easier to analyze due to 

isotropy and homogeneity, but their weight limits their applicability. On the other hand, 

composites pose additional difficulties to analysis due to anisotropy, material joints, multiple 

failure modes, etc. However, they normally allow a higher level of customization and 

efficiency, resulting in the best specific properties. 

One of the problems with this type of structure is slenderness. Despite non-stiffened 

panels’ high capacity to withstand in-plane loading configurations, their capacity for out-of-

plane loading, such as bending, is very poor. The only way to increase their stability is by 
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increasing the plate thickness. For this reason plates (which in a stiffened panel are referred as 

skin) are normally accompanied by some beams (known as stiffeners or stringers) in one or 

several directions, so that inertia is increased without an important penalty in total weight, 

and the thickness of the plate can be kept as thin as possible). 

2.2. Stiffened panel configurations 

The panels may be initially flat or curved. Unidirectional stiffened panels have several 

applications in ship and airplane construction. In the latter, the cover of the fuselage and the 

wings are manufactured with this structural element [13, 38]. However, cross-stiffened panels 

represent the most common structural units used in ship construction and civil engineering 

[54]. These stiffened panels are composed of plate panels with primary and secondary 

stiffening structural members. The secondary stiffeners are supported by primary structural 

members spaced at ample distances from each other in order to ensure that the plate panels 

will have adequate strength and stiffness when loaded. The main function of the stringers 

(longitudinal stiffeners) is to withstand important axial loads (tension and compression), 

whereas the main goal of transversal structural profiles (ribs) is to add stiffness and in-plane 

resistance. For that reason, ribs are not usually modeled in the analysis since they are 

considered very rigid structural elements (bulkheads) delimiting the panel.  

 

Figure 2.1: Example of unidirectional stiffened panel [54]. 
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Figure 2.2: Various configurations of stiffened panels showing the primary and secondary stiffeners 
[54]. 

 

Apart from unidirectional and cross-stiffened panels, which set stiffeners in 

longitudinal and transversal directions, there are also grid-stiffened panels in which stiffeners 

can take more directions. However, their use is not as widespread as that of previously 

described types. 

 

 

Figure 2.3: Example of grid-stiffened panels [28].  

According to Niu [43], stiffened panels can be classified in two main types regarding 

the joint between stringers and skin: skin-stringer panels and integrally-stiffened panels. In the 

first case, skin and stringers are joined by lines of bolts, welds or similar joints [44], or by 

pasting or co-curing them [52]. In the second case, skin and stringers are manufactured at the 

same type, becoming a unique structure. The difference between types will be further 

explained in the next section. 
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2.3. Stiffeners 

There are multiple profiles of stringer types. Similar to beams, these profiles are 

characterized by a high inertia moment with small area in order to reduce the amount of 

material employed. In order to achieve this, they use bottom flanges which are joined to the 

skin, one or several webs, and in some cases top flanges. The main function of the webs is to 

absorb shear forces, and for that reason they should be as perpendicular to the plate as 

possible. On the other hand, flanges are mainly subject to normal stresses due to bending 

moments [40, 41]. By the use of a web and flanges the inertia of the plate increases 

considerably, improving the stiffness under out-of-plane loading conditions [7, 13]. 

 

Figure 2.4: Main parts of a stiffener profile.  

Sometimes the stringers and the skin are manufactured at the same time, forming a 

unique component with common materials and properties. Contrary to skin-stringer panels, 

these are called integrally-stiffened panels. The advantages of this type are weight reduction of 

the panel, as the bottom flange is actually the skin of the panel, and increased buckling 

resistance and homogeneity, since stringer-skin joints are suppressed [44]. 

Profiles can be opened or closed. When compared to closed profiles, opened profiles’ 

main disadvantage is their low torsional stiffness, which increases the chances of tripping 

(explained further in this chapter) [16]. However they are usually lighter in weight, and so 

should not be easily rejected. 

Despite the wide variety of possible profiles in the literature, there are six that account 

for most cases: “T”, “L”, “Z”, “C”, “I” and “hat” (“Omega”). According to the literature the most 

commonplace are “I” (also known as “double-T”) and “hat”. The use of a specific profile 

depends on the case under consideration, since all of them present unique advantages and 
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disadvantages. In order to model one of the cases in the literature to validate the tool, an 

additional “JC” type was added to the application. 

 

Figure 2.5: Different types of profiles accepted by CADEC. 
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Chapter 3 

3. Buckling 

3.1. Introduction to buckling phenomenon 

There are two major problems leading to the sudden failure of a mechanical 

component: material failure and structural instability (so-called buckling) [56]. Material failures 

are normally determined by the yield stress for ductile materials, or the ultimate stress for 

brittle materials. They are material properties, and therefore geometry is not specifically 

addressed when defining them. Predicting material failure may be accomplished then using 

finite element analysis, which is mainly solving a linear algebraic system for the unknown 

displacements: K · δ = F. The strains and corresponding stresses derived from the analysis are 

then compared to design stress (or strain) allowable everywhere within the component. If 

there are regions where these limits are exceeded, it is assumed that material failure has 

occurred [4, 5]. 

On the other hand, the load at which buckling occurs depends on the stiffness of a 

component, not upon the strength of its materials. Buckling refers to the loss of stability of a 

component due more to geometrical effects rather than material failure [55]. This loss of 

stability usually occurs within the elastic range of the material. These phenomena are 

governed by different differential equations [8]. Instead of relying on the usual finite element 
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analysis, buckling is modeled by a finite element eigenvalue-eigenvector solution, |K+ 

λm·KF|·δm = 0, where λm is the buckling load factor for the m-th mode, KF is the additional 

geometric stiffness due to stresses caused by the loading F, and δm is the associated buckling 

displacement shape for the m-th mode. The spatial distribution of the load is important, but its 

relative magnitude is not. The buckling calculation gives a multiplier that scales the magnitude 

of the load (upwards or downwards) to the value required to cause buckling. In other words, 

once the solution has been found it is possible to obtain the m-th buckling critical load by 

multiplying the m-th eigenvalue times the applied load F. 

In order to better understand this phenomenon, let us consider one of the most well-

known examples of buckling: “Euler buckling” [24, 56]. It takes place when compressive axial 

loads are applied to a slim beam. During the first stage of the loading process, the bar 

squeezes axially, reducing its total length and increasing the cross section due to Poisson 

effect. The deformation of the structure before buckling occurs is called primary path. The 

slightest imperfection will make the column buckle suddenly at a specific load (known as 

critical load), experiencing some bending (lateral displacement). What happens after the 

column reaches its critical load depends enormously on the support conditions. The behavior 

of the structure after buckling has occurred is called post-buckling. Some types of structures 

do not experience deformation in the shape of the buckling mode before buckling actually 

takes place. Euler buckling is an example. In this case, buckling occurs at a bifurcation point, 

which is the intersection of the primary path with the post-buckling path [5]. 

 

Figure 3.1: Primary and secondary paths representation. Source: Image 4.1 of [5]. 

 

To illustrate how geometry influences buckling instability, the critical load of the 

column increases inversely proportional to the square of its length. Boundary conditions also 

play an important role in buckling. In Euler’s example, buckling motion will vary by a factor of 

four depending on how both ends are restrained. 
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The column’s secondary path is quite stable, represented by a nearly horizontal curve, 

indicating that it can take almost no higher load after buckling. A slight increase in load will 

laterally deform the column so much that the material will fail and the system will collapse. 

However, plates which are simply supported experience significant stiffening on the secondary 

path, indicating that the secondary path still has some slope [9]. 

3.2. Motivation in studying buckling 

The application developed in this project will solve the buckling problem instead of 

running the usual FEA used to check material failure. Stiffened panels, and plates in general, 

belong to the wider group of slender or thin-walled components. In fact, most composite 

structures are thin-walled, for three main reasons [5]: 

- Composites are stronger than conventional materials, so they require lesser 

thicknesses to withstand a given load. 

- Composites are expensive in comparison to conventional materials, so a minimum 

volume of material is used, further reducing thickness as much as possible. 

- The higher the volume of matrix composites, the lower the stiffness of the final 

composite, since the stiffness of the fiber is normally superior to the matrices’. It is 

also desirable to increase the moment of inertia of beams and stiffeners without 

increasing cross-sectional area. This is accomplished by enlarging cross section 

dimensions and reducing thickness. 

The previous facts suggest that failure of composite stiffened panels is more likely 

governed by buckling. Even if our stiffened panel is made of conventional materials, the 

thickness of the plate is several orders of magnitude less than its width or length. The 

membrane stiffness for thin-walled structures is generally several orders of magnitude greater 

than the bending stiffness. A thin-walled structure can absorb a great deal of membrane strain 

energy without deforming to excess [3, 25]. It must deform much more in order to absorb an 

equivalent amount of bending strain energy. If the structure is loaded in such a way that most 

of its strain energy is in the form of membrane compression, and if there is a way that this 

stored-up membrane energy can be converted into bending energy, the shell may fail 

dramatically by buckling, as it exchanges its membrane energy for bending energy. Very large 

bending deflections are generally required to convert a given amount of membrane energy 

into bending energy [10]. 
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3.3. Main buckling modes causing 

stiffened panels failure 

There are two main buckling failure modes of a stiffened panel when it is subject to in-

plane normal or shear loading. These modes are local buckling and global buckling (also called 

“Euler” buckling) [30]. There is also a special, less common case known as tripping failure. In 

local buckling, half waves appear on the skin between stringers. This kind of buckling normally 

takes place when the stringers are very stiff in comparison to the skin, and therefore the skin is 

not able to absorb as much load as the stiffeners before buckling. Global buckling takes place 

when half waves bend both skin and stringers simultaneously. This is normally the case when 

the stringers are too small, and do not add enough stiffness to the plate. Finally, tripping is 

lateral torsional buckling of a stiffener. This failure mode is normally triggered when the panel 

is subject to bending moments that induce initial compressive stresses in the flange of the 

stringer. However, it is not that usual under in-plane normal or shear loading. According to 

Danielson and coworkers [16], tripping of a stiffener is dependent on the torsional stiffness of 

the stringer. The ratio between torsional stiffness of the stringer and the torsional stiffness of 

the plate in bending determines whether, under axial compression, the failure mode will take 

the form of plate buckling or stiffener tripping. 

The figures below show examples of each of the previously mentioned buckling failure modes.  

 

Figure 3.2: Example of local buckling -skin buckling-. Source: Figure 2 of [26]. 

 

 

Figure 3.3: Example of global buckling -skin and stringers buckling-. Source: Figure 2 of [26]. 
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Figure 3.4: Example of tripping –stiffener torsional buckling-. Source: Figure 2 of [26]. 

 

 

According to Mittelstedt [39, 57] a mass-optimal configuration can be found when 

both local and global buckling can occur at the same critical load, whereas in [32] it is stated 

that when critical local and global buckling loads lie within the same range, the two modes 

interact, reducing critical buckling load by a significant amount. However, as verified by 

Grondin [26] most of the cases suggest that a failure by Euler buckling is the most favorable 

mode of failure since it has a more stable post-buckling behavior. In contrast, failure by 

tripping of a stringer is the least desirable, since it is characterized by a sudden drop in load 

capacity just after the peak load is reached. 

In conclusion, buckling is a serious problem facing stiffened panels. Designers must 

understand which main modes by which a structure could fail due to loss of stability, and then 

find the corresponding critical loads. As mentioned earlier, the plate can experience buckling 

while the materials are still in the elastic range, and the severe deformations caused by 

buckling can lead the component to collapse. Thus, it is critical to reduce its impact during the 

design step, and obtain a critical load as high as possible to meet the requirements. Once the 

preliminary design has been set, an ordinary FEA run to the final geometry will determine 

whether the material will withstand the loads, and identify the regions that could suffer the 

most. At this point some small adjustments can be made to the model without causing large 

variations in the buckling load. Nevertheless, since buckling is so strongly influenced by 

geometry and since most sizing takes place in the design step, it is most relevant to study the 

buckling problem first. Consequently, the application will focus on solving the buckling 

problem. 
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Chapter 4 

4. Web programming 

4.1. Introduction to Object-Oriented 

Programming, C# and ASP.NET 

Before starting development of the application, the programming language and 

platform must be selected.  These critical decisions will determine the subsequent steps of the 

design and implementation processes, so it is necessary to evaluate some of the alternatives 

available in order to choose the most suitable tools. In this section, object-oriented 

programming and web development concepts and history are briefly presented to 

contextualize this decision. 
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4.2. Object-Oriented Programming (OOP) 

4.2.1. History of Object-Oriented Programming 

OOP began with Simulia 1 (1962) and Simulia 7 (1967) languages [46]. In the 1980s, the 

object-oriented language C++ was deployed from the C language. However, OOP did not truly 

thrive until the early 1990s thanks to the spread of C++. This language was a very powerful 

though complex tool. As a result, Java was released in 1991 in an attempt to overcome this 

complexity and simplify object-oriented programming. Java became very popular with the 

growth of the World Wide Web. In 2000, Microsoft developed C# from C/C++, as an OOP 

language considered by many to be a response to Java. Regardless of the reason, C# is a robust 

object-oriented language capable of accomplishing a general variety of programming tasks. 

4.2.2. Object-Oriented Programming concepts 

In order to understand the structure of our application and some of the decisions taken 

during its development, some main concepts of object-oriented programming must be 

outlined [35, 46]: 

 Objects and classes: A class is a template used to describe an object. Once a class is 

defined, any amount of objects can be created within that class. Therefore, a class is a 

simplification of an object that could exist in real world. A class consists of two main 

types of components: properties and methods. 

 Properties are data that define or describe an object. For example, a class named 

clsisotropicmaterial could be defined with the following properties: name, Young 

modulus E, Poisson coefficient nu, density, and strength. The state of an object is 

defined by the value of the object’s properties, and so the state changes anytime a 

property value changes. For that reason, normally different objects have different 

states.  

 Methods could be defined as actions that an object can perform, and are normally 

used to manage data contained within the object. For instance, a method of 

clsisotropicmaterial class could be ComputeG(), which could read the values of E and 

nu and compute the value of G using elasticity formulae for isotropic materials. 

Methods range from this simple type to much more complex actions. 

There are three steps to creating an object. In order to comprehend how it works, the 

creation process of new object “steel” of the class clsisotropicmaterial will be used as an 

example. First a class must be defined (clsIsotropicmaterial), which involves defining its 

properties and methods. Second, that class must be instantiated with the following 

instruction: (clsisotropicmaterial steel). This causes .NET to ask the operating system for 4 

bytes of memory where it can store a reference (memory address) of the new object. Third, a 

second instruction is executed: (steel = new clsisotropicmaterial () ), and .NET asks whether 

there is enough memory to create that object. If so, a clsisotropicmaterial object has been 
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instantiated correctly. The variable “steel” will contain the memory address where the object 

data will be stored. As a result, the final step would be to give values to the properties of the 

“steel” object to change its state. 

 Data Abstraction is related to the concept of encapsulation, which means that the data 

stored in an object cannot be directly accessed by the rest of the world. In order to 

access the data, some keywords (dot operator in C#) are required. Encasing data is an 

attempt to protect the data stored in an object from other parts of the program. In 

many cases, data inside an object can be managed by functions (methods) inside that 

object. 

 

 Inheritance refers to the fact that one class can inherit the properties and methods of 

another class, and do not need to be defined again. By sharing properties and methods 

between a base class and a derived class, less code is required, and so less testing, 

debugging and maintenance. OOP allows significant reuse of code, making 

programming more efficient. To accomplish this, classes should contain the minimum 

amount of properties and methods required for completing the task. Therefore 

whenever a more complex or detailed class is required, it may be derived from the 

base class, inheriting all the basic properties and methods. New features may be 

subsequently added. 

 

 Polymorphism is the ability to take more than one form or shape. An operation may 

exhibit different behaviors in different instances. The only requirement is that the 

signature of the method (the type and/or number of arguments it takes) must be 

different. For example, methods of a base class can be overloaded in a derived class, 

and perform a different task whether they are accessed from the derived class or the 

base class.  

4.2.3. Advantages and disadvantages of OOP 

From these main features of object-oriented programming, its main advantages and 

disadvantages may be summarized [46]. 

Advantages: 

1. Improved software-development productivity: OOP is modular, separating tasks in 

object-based program, easily extensible as new attributes and behaviors can easily be 

added to objects, and can be reused within across applications. 

2. Improved software maintainability: Due to modularity, a part of the system can be 

updated without requiring large-scale changes. 

3. Faster development: Code developed in a project can be reused in future projects, as 

new objects can be created with small differences to existing ones. OOP provides a 

good framework for code libraries where supplied software components can be easily 

adapted and modified by the programmer. 
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4. Lower cost of development: Code reuse reduces development costs, as it requires less 

code. However, a correct design and analysis of the objects within the project must be 

achieved. 

5. Higher quality: Faster and lower-cost development frees more resources and time for 

verification of the software. 

Disadvantages: 

1. Complexity: OOP takes time to master. Some programming techniques such as 

inheritance and polymorphism can be initially challenging to comprehend. 

2. Larger program size: These programs typically require more lines of code than 

procedural programs. 

3. Slower programs: As a consequence of program size, there are more instructions to be 

executed. 

4. Suitability issues: Some problems may be less efficient if developed with this approach. 

4.3. Web development 

4.3.1. History of web development 

The internet was invented in the late 1960s in an attempt to create a highly robust 

information network that could withstand the loss of several computers without preventing 

the others from communicating. The early version was solely available for educational and 

defense institutions. However, it soon became a powerful tool to share information among 

researchers around the world. In the early 1990s, modems capable of communicating via 

phone lines appeared and the internet began to open to commercial users. In 1993 the first 

HTML browser was created, ushering in a revolution. 

Early web development platforms did not always scale well, as popular websites would 

struggle when facing too many simultaneous users and provided only simple, low-level 

features. More advanced features such as reading a database required pages of original code, 

making the process tedious and error-prone. 

To solve these problems, Microsoft created higher-level development platforms, ASP 

and later ASP.NET [36], which allow programmers to pass over low-level implementation 

concerns by using a significant number of sophisticated tools. 

There are two main approaches making an interactive web page: server-side and 

client-side programming approaches. ASP.NET was designed principally as a server-side 

programming platform, which means that all code runs on the web server, and after all code 

finishes running, the web server sends the user the final result. In contrast, sites may use 
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pieces of JavaScript code or plug-ins such as Adobe Flash, which are downloaded to the client’s 

computer and executed from there. The main advantages of server-side programming are the 

isolation of client-side from access server side resources such as databases, security 

advantages for end users who can see client-side code and modify it, and a broader client base 

including web-enabled devices such as smartphones or tablets that do not support client-side 

programming platforms such as Flash.  

As a consequence, server-side platforms are more suited to sites that display and 

manage large amount of data such as e-commerce hub or business sites. Client-side platforms 

have advantages for developers interested in building a real-time browser-based game, or fast, 

responsive, dynamic pages. 

 

4.3.2. The “.NET” framework 

The “.NET” framework consists of several technologies [12, 35]: 

 The “.NET” languages: These include Visual Basic, C#, F# and C++. Since all these 

languages are compiled into another lower-level language (Common Intermediate 

Language, CIL) before being executed, there is no real preference as to which of the 

previous languages is used for programming. The DLL or EXE file that CLR will execute 

is precisely IL code, so the CLR makes no distinction between different languages, also 

called language integration. 

 

 The Common Language Runtime (CLR): This is the engine that executes all “.NET” 

programs and provides some automatic services such as memory management and 

optimization. CLR achieves deep language integration, fewer errors than lower-level 

languages such as C++, and side-by-side execution. However, it also has some 

drawbacks such as a reduction in performance for a few performance-critical high-

workload applications such as real-time games, and code transparency. The latter is 

not an issue for ASP.NET apps since they are not distributed but hosted on a secure 

web server. 

 

 The “.NET” Framework class library: Thousands of prebuilt features are collected and 

can be used in the applications. 

 

 ASP.NET: This engine hosts the web applications that are created with “.NET” and 

supports almost any feature from the “.NET” Framework class library. 

 

 Visual Studio: This optional development tool includes some features that make the 

creation process easier, faster and less error-prone. Visual Studio assists in page design 

and debugging, detecting errors automatically, and speeding up the development 

process of the application with IntelliSense. This feature recognizes objects and 

parameters so that the developer does not have to type the whole name. 
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4.4. Programming language selection 

The aim of this project is to create an engineering tool that expedites the design of 

stiffened panels made of composite material. That tool will be implemented in a web 

environment, and will require high-level features including databases and users 

authentication. Object-oriented programming will be used due to its aforementioned 

advantages, and will also allow for future expansion of this tool. According to the different 

alternatives that have been described during this section, the development application used to 

create this tool is Visual Studio 2010. Based on the needs of this design tool, a server-side 

programming platform is the best option and so ASP.NET will be used. Code-behind will be 

written in C# thanks to its higher-level character and its similarities to C syntax. 
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Chapter 5 

5. The Design tool 

During the design step of a stiffened panel a lot of variables come into play, which 

leads to a decision-making process for the designer that influences importantly the results. 

Normally some of the dimensions of the panel are fixed as it may be a part of a more complex 

set, but several times there is some freedom such as the number of stiffeners to use, their 

shape or some of their dimensions. Another critical point is deciding the material to use both 

for the skin and the stringers, which again provides uncountable possibilities. The expertise of 

the designer will considerably reduce the possible designs, but there will be still several 

options available. 

The purpose of this application is to help the designer during this process. And the 

main goal is to reduce time during the design step, allowing the user to change some features 

very easily as well as testing their impact and performance. It will neither be necessary to 

create a different model from zero each time the designer wants to change a dimension, nor 

to waste a lot of time assigning materials. This application will provide an intuitive and 

effective way of managing all these variables and it will provide both the buckling critical load 

and the first mode displacements of the panel, so that the user can compare among different 

solutions and choose the one that better fits the requirements. It should be noticed that 

during the design step we need to discard different alternatives so that a deeper study is just 

carried out to one or two designs. So in this step the accuracy both in the input and the output 

data is not that important as it will become in the analysis of the final design. 
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The application consists of several components, each of which plays an important role: 

 The mesh generation tool, which takes the geometry variables and creates panel 

geometry and mesh. 

 

 The Load and BC manager tool, which converts the information supplied by the user 

into a form that is managed by a Finite Element solver.  

 

 The problem builder tool, which gathers all the relevant information of the problem so 

it can be solved. This information includes the mesh, materials, boundary conditions 

and loads. This is the core of the program, and it will manage most of the process from 

the user’s input data until the final results are returned. 

 

 The solver, which takes the information provided by the previous component and 

solves the buckling problem. This solver already exists and was not developed in this 

project. However, certain improvements were required in order to achieve the best 

results possible.  

 

 The visualization tool, or at least the tool in charge of presenting the data to enable a 

third party program such as gmsh [21] or Abaqus® to visualize the results. 

In the following sections each of these components will be explained in further detail so 

that a better understanding of the application is possible. It is important to clarify that the 

different tools are not totally independent, but they are partially overlapped. 

5.1. Coordinate Systems (CSYS) utilized 

Before beginning with the explanation of each class, it is important to clarify the 

Coordinate System (CSYS) used within the application. Both the global CSYS and each element 

local CSYS gain relevance when it comes to the definition of material properties and the 

application of loads and BC. 
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5.1.1. Default CSYS of the mesh generator 

As far as the mesh generator tool and the BC and Load manager are concerned, the 

coordinate system used by default is the following: 

 

Figure 5.1: Default Coordinate System employed by our tools, different from the one deployed within 
CADEC environment. Created using Solid Edge®. 

 

The X axis is oriented parallel to sides 1 and 3, along the width of the panel. The Y axis 

is perpendicular to X and contained in the skin plane, and oriented so that Z axis is 

perpendicular to the plate pointing upwards. 

The problem behind this coordinate system is that the primary direction (X axis) is not 

parallel to the extrude direction. Normally, material properties are specified so that material 

direction 1 is parallel to the extrude directions, so that fibers oriented with 0° are parallel to 

the stiffeners. Nevertheless, this issue could be solved just by defining material properties 

accordingly, that is adding 90° degrees to the default orientation. The real problem of this CSYS 

is related to the solver. 

5.1.2. Calculation of local CSYS for each 

element by the solver 

How does the solver define the local CSYS for each element from the global CSYS? 

Another orthogonal CSYS is created for each element [47], which assumes that the element is 

flat. For this reason, panel curvature should not be excessive to ensure accurate results. 

The surface of the element is defined by the vector                   . The values of 

X, Y and Z are, respectively: 

X =      
 
    

Y =      
 
    

Z =      
 
    



CHAPTER 5: DESIGN TOOL 

 

26 
 

Where: 

- N is the number of nodes of that element, in our case N=9.  

-    stands for the shape functions of that element. 

The shape functions are dependent on two parameters ξ and η so that           . 

Since the solver assumes that elements are flat, the normal vector     is computed exclusively 

in one node per element. Then, the normal vector calculated in a specific point denoted with 

subscript zero is: 

      
   

  
 
 

   
   

  
 
 

 

Once the normal vector is defined, the in-plane axes are computed. The process 

followed by the solver to compute local     and      axes for each element follows. First, the 

solver tries to compute the secondary axis as               , where    is the unitary vector in 

direction of X global axis. Then, the primary axis is computed as                . Finally, all 

vectors are normalized so they have unitary module. The previous methodology is valid except 

when     is parallel to   . In the case of our panel, this situation occurs whenever an element is 

in the plane YZ (vertical web elements). Under such specific circumstances, the local in-plane 

axes are computed using an alternative procedure. First, the primary local axis of the element 

is computed as       , so that it is parallel to the global Y direction. Then, the local Y axis is 

computed by                 . After that, vectors are normalized as in the previous case. 

So the problem with the default CSYS is obvious once the previous methodology is 

understood. The following image shows schematically the local directions in several elements 

of a panel. The figure of the top represents how one would expect the local CSYS to be, and 

figure at the bottom illustrate how vertical elements are assigned an orientation which is 90 

degrees rotated with respect to the expected one due to the previous algorithm. 
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Figure 5.2: Coordinate System inconsistency when using default CSYS. 

 

This would cause the user important difficulties since material orientations for the 

vertical elements must be defined with additional rotation. Therefore, there is a strong 

motivation to achieve the desired local coordinate system for every element. 

5.1.3. Final CSYS used by CADEC 

Since the previous orientation could be valid in case the solver uses the Y axis parallel 

to extrude direction, modifying the whole code was not an interesting option. In fact, the most 

useful improvement would be to add some functionality to the code so that the axis coinciding 

with the extrude direction could be specified. For that purpose, the following modifications 

were performed: 

- SPmshBuilder.cs includes a new method that allows to rotate the panel a 

certain angle around the vector (  ,    ,   ) so that the method computes the 

- 
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new coordinates of the nodes. In particular, the panel will be rotated around 

the Z axis -90° to achieve the CSYS orientation shown in the next figure. 

- INPUTdata.cs requires an additional argument to specify the axis which is 

parallel to the extrude direction, which could be X or Y. It is important to 

impose the correct orientation when calculating loads and boundary 

conditions. 

 

Figure 5.3: Final CSYS used in CADEC. Created using Solid Edge®. 

 

CADEC [2], as it will be explained in another chapter, is the web environment in which 

our tool will be implemented. Therefore, when implementing the tool it is important to apply 

the rotation of the panel as well as specifying that change to the BC and load manager. For the 

final user, the previous CSYS is the one that will always be used in the final application. In this 

way, the problem with the default CSYS is solved. However, it is important for the 

programmer’s point of view to understand that it is possible to specify the orientation in case 

in the future this application communicates with a different solver that has a different 

algorithm for the definition of local CSYS. 

The following figure shows how, under the new CSYS, the local coordinate systems are 

computed: 

 

Figure 5.4: Local elements CSYS in CADEC. Created using Solid Edge®. 

- 
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5.2. The Mesh Generation tool 

 

The Mesh Generation tool acquires the geometric parameters introduced by the user 

and processes them to create the mesh of the panel. Meshing is the action of dividing the body 

into smaller entities called elements in order to solve the problem. Since gmsh is no longer 

utilized for this purpose, a complete new tool was developed from scratch. Therefore, the 

following classes are defined: FlatRecGeo.cs, CurvedRecGeo.cs, MeshParameters.cs and 

SPMshBuilder.cs. 

The meshing process is the following. First, the panel is divided into different subparts, 

each of which could be a flat or concave parallelogram. Then, each subpart is created from left 

side of the panel to right, and assembled with the previously created subparts until the whole 

panel has been created. 

The first two classes (FlatRecGeo.cs and CurvedRecGeo.cs) are those that actually mesh 

a parallelogram. In other words, these classes could be used for meshing different geometries, 

since they have not been conceived specifically for panels. Provided that the geometry 

intended to be meshed can be divided into parallelograms, it is possible to use these classes.   

The third class (MeshParameters.cs) is defined specifically for stiffened panel, since it 

computes the mesh refinement level based on the dimensions and on elements location 

within the panel. For instance, the element size will be different for a web than for a skin. 

Finally, the last class is actually the brain that creates the panel geometry and mesh, 

relying on the other three classes to achieve that.  

Next the content of these classes will be explained. A further explanation of the 

possible geometries that can be created by the tool can be found in the section 5.3: Problem 

Builder Tool in this chapter, as well as in Chapter 7: Implementation of the application. 

5.2.1. Mesher of flat surfaces: FlatRecGeo.cs 

class 

A. Aim and arguments 

The aim of this class is to create low level geometry. As previously explained, the final 

piece is created by the combination of smaller parallelograms, which can be flat or curved 

surfaces. Each object of this class will create the nodes and elements that define a geometric 

space limited by four straight edges, parallel two by two. In this case, the class meshes flat 

surfaces. 
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The following arguments are required to create an instance of this class: a name, three 

points defined by three coordinates in cartesian CSYS (corresponding to three vertices of the 

parallelogram), number of elements desired on two edges non-parallel edges, type of element 

(quad4 - first order quadrangular element-, quad9 - second order quadrangular element-, or 

tria3 - first order triangular element) and information about the ID of the last element and 

node that were created in the global geometry. 

Next image shows an example of one of these parallelograms meshed using the three 

different types of elements. Notice that the mesh containing triangular elements is not a 

proper mesh due to elements arrangement: such a structured mesh can lead to accuracy 

problems in results. However, this option was implemented both due to its ease of 

development from the previous meshes and to add more functionality to the mesh generator 

tool. Nevertheless, it is important to realize that the final application (CADEC) will use just the 

second order quadrangular element since it provides the best results. 

 

Figure 5.5: Flat parallelogram meshed with second order quadrangular elements using CADEC. Image 
visualized using gmsh [21]. 
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Figure 5.6: Flat parallelogram meshed with first order quadrangular elements using CADEC. Image 
visualized using gmsh [21]. 

 

 

 

Figure 5.7: Flat parallelogram meshed with first order triangular elements using CADEC. Image 
visualized using gmsh [21]. 
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B. Methods 

Helper Methods:  

The class contains several internal methods which support the main methods. These 

methods deal with coordinate conversion from a cartesian CSYS to a cylindrical CSYS, rotation 

of one or several points around a main axis or even a particular method to compute the 

coordinates of key points for the creation of the omega profile in a curved panel. Although this 

class just creates flat surfaces, previous methods are necessary to position a new sub-mesh in 

the geometry that has already been created. A deeper overview of such methods can be found 

in the program code in case new stringer profiles or a different geometry is required. However, 

for the purpose of this document, these methods are not considered relevant for the 

understanding of the mesh generation process. 

Main Methods: 

There are six main methods. The first three are responsible for node generation, whereas 

the remaining three are in charge of element creation: connectivity definition. Due to their 

relevance, they will be explained in greater detail. 

 AddNodesIndep method generates nodes independently, which means that none of 

the sides is connected to existing geometry when the subpart is created. Therefore, 

nodes can be added directly from last ID with no concern about previous nodes. The 

methodology followed in node generation is to divide the surface into small 

rectangular elements, whose size would be determined by the number of elements 

required. Depending on the type of element, its size and the seeds number are 

adjusted. Based on previous information, a grid is created, and by going through it 

nodes’ ID and coordinates are established. 

From another point of view, let us consider the image below. Let us forget 

about the elements since this method just creates the nodes, being it possible to use 

them to define any of the three types of elements that were explained before. In order 

to mesh this parallelogram, the coordinates of geometric vertices located at nodes 1, 5 

and 41 are passed as arguments when an object of this class is instantiated. From 

coordinates of vertices two and three, coordinates of vertex four are computed, which 

coincides with node 45. The position of these points within the parallelogram defines 

the dimensions of the parallelogram as well as the sides labeling: edge 1 is defined by 

points 1 and 5, edge 2 by points 5 and 45, etc. Then, the seeding process starts. Notice 

that edge 1 is seeded with equidistant nodes following the red arrow, and then they 

are extruded following edge 4 direction following the blue arrow, copying them at 

several intervals till the end is reached, which corresponds to nodes defining edge 3. 

The distance between these parallel rows of nodes depends on the seeding of edge 4. 
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Figure 5.8: Meshing sequence for a flat parallelogram -nodes generation-.  

 

This method requires no extra arguments, and it gives back the ID of the last node, 

which will be used for the creation of next surface mesh. 

 AddNodesdep4side method generates nodes dependently. In this case, the new mesh 

will be added to a previous one, resulting in some nodes shared. Then, the edge 4 of 

the new mesh will be connected to previous geometry. It may be obvious, but for this 

operation to succeed the number of nodes on the edge and their position must be the 

same for both surfaces, and they must have the same ID. As a result, the seeds 

number on that direction is given by the common edge. This method is then in charge 

of reusing the already created nodes and adding the new ones. In order to create the 

nodes, it requires as additional input a pointer to an array containing information of 

the common edge. When it finishes, the ID of the last node created is returned. 

 

The next image shows this process. The parallelogram contained within black 

dashed lines has been created with this method and added to the geometry on the 

left. Notice how the ID of nodes corresponding to edge two (highlighted with a red 

box) come from the previous geometry, and how new nodes are added continuing 

from last node ID (starting with node 46). 
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Figure 5.9: Joint representation of two subparts sharing a common edge.  

 

 AddNodesdep2_4sides method generates nodes dependently. In order to create some 

profiles, specially closed ones, some meshes must be added between two edges that 

already exist. This method provides this service, being the only requirement that both 

edges be parallel and contain same number of nodes. Therefore, both edges are 

required as input parameters, and once the method finishes, the ID of the last node 

created is returned. 

Considering the panel geometry with which our application is expected to deal, these 

three methods are sufficient. However, from the perspective of future development of the 

tool, it could be interesting to add new methods to improve connectivity between different 

sub-meshes. For example, enabling assembly of sub-meshes with two non-parallel common 

edges, or generating new mesh with more than two common edges. This could be achieved 

with little modification of the code of previous methods. Unfortunately, that is out of scope 

and it will not be studied in this report. 

At present, nodes of a sub-mesh have been already created by means of one of the 

previous methods. However, they are just points with ID and coordinates. In order to become 

elements, the connectivity must be defined. There are three types of elements, as they were 

discussed previously. Due to differences in shape, number of nodes, and nodes sequence order 

for each element, three different methods were necessary to accomplish that task: 

 AddQuad4Elem method creates the elements of the mesh. As its name suggests, it will 

mesh with first order quadrangular elements. This job is done by going over the grid 

and adding the ID of corresponding nodes in the correct order. They require no 

additional input data, as the grid of nodes was stored in an array as a property of the 
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object and, therefore, it is completely accessible. Once it is finished, it returns the ID of 

last element created. 

The next image shows this process. The elements are created following blue 

arrow first, and then moving on red arrow direction. The ID of each element is 

represented in green. 

 

 

Figure 5.10: Meshing sequence for a flat parallelogram –first order quadrangular elements  
generation-.  

 

 AddQuad9Elem method creates second order quadrangular elements for the mesh. 

The way it goes through the grid is quite similar to previous one, but since the nine 

nodes need to be assigned in a specific order it requires some adjustments. Again, no 

additional arguments are required, and it returns the ID of last element created. An 

example of mesh with these elements can be found in the image below. 

 

 

Figure 5.11: Meshing sequence for a flat parallelogram –second order quadrangular elements 
generation-.  
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 AddTria3Elem method creates first order rectangular elements for the mesh. The way 

it goes through the grid is quite similar to previous ones. Triangles are created by 

dividing quad4 elements in two tria3 elements. Better methodologies to mesh with 

triangular elements could have been considered, but according to our goal this is 

simple and effective. Besides, analyses carried out with CADEC will use exclusively 

second order quadrangular elements, since they provide best results with less 

computational cost: fewer elements are required to provide similar results for a given 

mesh of any of the other two types of elements. Again, no additional arguments are 

required, and it returns the ID of last element created. An example of mesh with these 

elements can be found in the image below. 

 

 

Figure 5.12: Meshing sequence for a flat parallelogram –first order triangular elements generation-.  

 

5.2.2. Mesher of concave surfaces: 

CurvedRecGeo.cs class 

A. Aim and arguments 

The aim of this class is to create low level geometry. Each object of this class will create 

the nodes and elements defining a geometric space limited by four edges, parallel two by two. 

In this case the parallelograms are, in fact, rectangular curved surfaces. The next image shows 

a mesh generated by this class using second order quadrangular elements. 
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Figure 5.13: Curved parallelogram meshed with our application. Image visualized using gmsh [21]. 

 

The arguments required to create an instance of this class are very similar to the ones 

of FlatRecgeo.cs: a name, two points defined by three coordinates in Cartesian CSYS (which 

correspond with two vertices defining the edge 4 of the parallelogram), radius of curvature, 

arc length (length of the curved edges 1 and 3), number of elements desired on two non-

parallel edges, type of element (quad4 - first order quadrangular element-, quad9 - second 

order quadrangular element-, or tria3 - first order triangular element) and information about 

the ID of the last element and node that were created in the global geometry. 

B. Methods 

Helper Methods: 

The class contains three internal methods supporting the main methods. First two 

methods deal with coordinate conversion from a cartesian CSYS to a cylindrical CSYS and vice-

versa, whereas the third method computes the coordinates of the third vertex, which are the 

coordinates of the point at the tip of the arc. 

Main Methods:  

There are six main methods. The first three are responsible for node generation, and 

the remaining three are in charge of element creation (connectivity definition). The only 

difference between FlatRecgeo.cs and CurvedRecgeo.cs is the shape of the surface, and so the 

way the nodes are placed in the space. For that reason, the last three methods, which are in 

charge of creating elements connectivity are exactly the same as in the previous class. No 

further explanation will be provided regarding these methods. However, how nodes are 

generated deserves additional comments. 
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AddNodesIndepArc, AddNodesdep4sideArc and AddNodesdep2_4sidesArc methods 

accomplish the same task as their counterparts in the previous class. The first adds the nodes 

independently, whereas the other two have one or two common edges with previous 

geometry. The way nodes are generated is in accordance with the approach followed by their 

counterparts: nodes are created following a curved edge (not straight as previously), and the 

distance between nodes depends on the seeding set. Afterwards, this row of nodes is extruded 

following the direction of edge 4 until edge 3 is reached. Arguments as well as returned values 

are the same as for their counterparts. 

5.2.3. Seeding of panel mesh: 

MeshParameters.cs class 

A. Aim and arguments 

This is clearly a dispensable class, but it provides an outstanding help to establish how 

the panel edges are going to be seeded. As a result, its aim is not other than automate the 

seeding of the panel based on the geometry and the proportion between some dimensions. 

Then, arguments required to create an instance of this class are: all geometric values 

of the final panel (width, length, type of stringer, top and bottom flange widths, web width, 

number of stringers and pitch) as well as two additional parameters named propmesh and 

propBmesh. The first parameter determines the number of elements in “A” direction desired 

for the widest skin part of the panel, which could be an intermediate skin or a lateral skin. The 

second parameter determines the maximum allowable aspect ratio of elements. For instance, 

a value of two means that the number of elements in “B” direction (along panel length) will be 

the minimum satisfying that the length of an element is less than two times its width. 

After carrying out some convergence analysis for several panels, and in order to find an 

equilibrium between the accuracy of the solution and time-consumption, these values will be 

set to propmesh=3 and propBmesh=2 by default. Regarding the stringers, flanges will contain 

just one element in “A” direction, and web requires two elements in order to absorb correctly 

shear loads. Finally, in case the panel has no stiffener, the number of divisions will be rounded 

to four in order to achieve better results. 

B. Methods 

No methods are required in this class. When calling the constructor to create an 

object, all the calculations and comparisons are performed. Propmesh variable and the 

previously explained ratio allow the constructor to compute all seeds in edges 1 or 3. 

Nevertheless, no data was required regarding seeds in the extrusion direction, which is parallel 

to sides 2 and 4 of the panel. This can be set in two ways: manually or automatically. The 

former would be modifying the property value to the number of elements desired in that 

direction just after creating the object. The latter would be calculated by the class when 

creating the object. In this way, the code compares the width of elements belonging to lateral 



CHAPTER 5: DESIGN TOOL 

 

39 
 

or intermediate skins to establish the seeding value, so that the maximum aspect ratio of 

elements of the skin is two. 

It should be noticed that size of stringer elements are not considered because normally 

their size is quite small in comparison to skin elements. Therefore, in order to have square 

elements in there, their size would be so reduced that it would lead to a very fine mesh, 

increasing computational time excessively, preventing it from being effective for a web 

application. However, as shown in chapter 9, this does not prevent the tool to obtain 

surprising accurate results.  

5.3. The Problem Builder tool 

The Problem Builder tool is the core of the application, being in charge of creating the 

whole panel by means of the rest of the tools, specially the mesh generator tool. Whereas the 

classes forming the mesh generator tool are basic to generate the mesh, they are not specific 

for the geometry of our panel, since they just mesh parallelograms. However, the following 

class contains all the necessary methods to generate each of the parts of the profile (skin, 

stringers,…) and their assembly. This tool actually computes the dimensions of each of the 

subparts based on the user input data and generates the panel part by part until the mesh of 

the model is completed. 

This task is accomplished by the following class: SPMshBuilder.cs. However, it depends 

on the other classes that are part of the mesh generator tool: FlatRecGeo.cs and 

CurvedRecGeo.cs. 

5.3.1. Panel mesh generator: SPmshBuilder.cs 

class 

A. Aim and arguments 

This is the main class of our mesh generator. SPmshBuilder.cs (Stiffened Panel mesh 

Builder) is responsible for creating the final mesh based on several inputs, most of them 

defined directly by the user. It manages the order in which each sub-mesh must be created 

and added to the previous partial mesh, and stores every node and element as well as the 

entity to which they belong, required for the application of boundary conditions and loads. It 

requires FlatRecgeo.cs and CurvedRecgeo.cs classes in order to create the sub-meshes. 
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Most arguments required are related to final geometry and mesh configuration: a 

name, total width and length of the panel, radius (zero value represents a flat panel), number 

of stringers and type, pitch, stringer dimensions and several meshing parameters such as 

element type or number of elements in “A” or “B” directions for the skin and the stringers. 

B. Methods 

Helper methods:  

Despite not creating nodes or elements, two methods are required to perform some initial 

calculations.  

 ComputeFx method obtains the width of lateral skins, which is the distance from edges 

2 or 4 to the first or last stringer respectively. It is necessary for internal computations, 

but it lacks relevance for final user. This dimension can be identified in the following 

image, as well as directions “A” and “B” of the panel. 

 

 

Figure 5.14: Definition of some basic parameters required to create a stiffened panel. Created using 
Solid Edge®. 

 

 

 InitializeData method is in charge of predicting the number of nodes and elements 

that are going to be created in the final panel in order to define the size of the 

different variables that will store the information.  

 

Both helper methods are called directly from the constructor, but it was decided to 

separate the code for simplicity and reading ease. 

There is a third helper method called PrintMSHData, which should be called after the final 

panel is already created. Its aim is to store in a string the information necessary to visualize the 

mesh with the freeware gmsh [21]. The structure of the .msh file can be found in Appendix A. 
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Main methods:  

There are nine important methods in charge of creating specific parts of the final panel, 

and an additional method which manages all of them to create the final mesh. In case a 

different profile is required, it would be necessary to create an additional method for creating 

the new geometry of that stringer, following the same structure as the others. Additionally, 

some code would be added to the main method too so the new geometry is assembled 

whenever a stringer of that type has to be placed. 

 CreateLeftPanel method: geometry is built from left (negative X direction) to right 

(positive X direction). Therefore, this is the first method that must be called. It creates 

the skin from edge 4 of the panel to the bottom flange of the first stringer, following 

the next procedure: 

1. Check whether the panel is going to be curved or not.  

2. Compute the coordinates of the three vertices if the panel is flat, or two vertices 

plus arc length in case it is curved. The main difference with curved panels is the 

way the coordinates of the points are computed.  

3. Create a FlatRecgeo or a CurvedRecgeo object based on the radius value. From 

now on it will be referred to as “LeftPanel”. 

4. Add nodes independently with the corresponding method of “LeftPanel”. 

5. Retrieve and store the nodes (ID and coordinates) that belong to edge 2 of that 

object, as it will be necessary to add a new sub-mesh later on. 

6. Create the elements with the corresponding method of “LeftPanel”. 

7. Store nodes and elements in global variables, where every node and element of 

the final panel will be kept. Information about the entity to which elements belong 

(skin) and about nodes which are part of a side of the final panel are stored as well 

to ease the application of boundary conditions or loads on them, and the 

assignment of material properties to elements once the mesh is completed. 

8. Return nodes belonging to edge 2 so they can be used to assemble next sub-

mesh. 

 

 CreateRightPanel method: since geometry is built from left to right, this is the last 

method that must be called. It creates the skin from last stringer to side 2 of the panel. 

The procedure is basically the same. The main differences lie in steps two and four: as 

this sub-mesh is going to be added to the rest of panel mesh, vertices coordinates are 

read from the edge 2 of last sub-mesh created, which can belong to last stringer, or to 

left skin if there are no stiffeners. Moreover, nodes are added with the corresponding 

“RightPanel” method that manages the fact of having the new edge 4 in common. 

Finally, steps five and eight are not necessary as this is the last sub-mesh that will be 

created. 

 

 CreateIntPanel method: in charge of creating intermediate skin sub-mesh, which is the 

piece of skin in between two consecutive stringers. This method is called just if the 

number of stringers is greater than two. The procedure is exactly the same as to create 

the “RightPanel” object. The only difference is the width of this skin mesh, and the fact 
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that ID and coordinates of the nodes belonging to edge 2 must be stored and returned 

for next geometry. 

The following seven methods are responsible for the mesh generation of each type of 

stringer profile. Each one follows a specific structure to build the geometry based on its profile 

shape. As a result, they have important differences due to geometry but the methodology is 

quite similar. “Z” profile will be explained in depth as an example. The structure is the 

following: 

1. The profile must be divided in smaller sub-meshes. This division depends 

completely on the geometry of the profile. It is important to take into 

consideration the order in which these sub-meshes will be joined afterwards, 

in order to store the minimum data possible. Since information of nodes in a 

common edge is required in order to add the next sub-mesh, this information 

must be completely used before storing another edge. This will be understood 

better in a moment. 

In this case, creation of the profile is carried out as follows. The profile 

is divided into three sub-meshes: bottom flange, web and top flange. These 

sub-meshes are implemented in that order: starting with the bottom flange 

which is joined to the previous skin sub-mesh, then the web and finally the top 

flange. 

2. Check whether it is a curved or a flat panel. This is crucial as it affects not only 

the bottom flange (which can be curved or flat) but also how coordinates and 

geometry is computed. In flat panels, the “Z” stringer web is vertical and both 

flanges horizontal, whereas in a curved panel bottom flange is curved 

following the arc of the skin, web is orthogonal to this curvature, and top 

flange is flat and orthogonal to the web. All these geometrical adjustments are 

carried out mainly by the aid of the rotation method and cylindrical CSYS 

explained in FlatRecgeo.cs and CurvedRecGeo.cs classes. 

3. Bottom flange object is created following the same procedure as in skin sub-

meshes: vertices are defined, the object is instantiated, nodes are created and 

joint to the previous sub-mesh through edge 4, elements are added, edge 2 

nodes are then stored for next sub-meshes, nodes and elements are added to 

global variables, and information about element entities or nodes located on 

the sides is collected for later use. 

4. Then Web object is created following the procedure just explained above. The 

only difference is that the new edge 2 (which is necessary to assemble top 

flange sub-mesh) cannot be stored in the same variable where the edge 2 of 

the bottom flange is stored, otherwise the next skin sub-mesh will not be able 

to be added to this stringer through the correct edge. Then, the second edge 

of the web is stored in another variable, and it is used to create the Top flange 

object in next step. 

5. Top flange object is created and joint to the geometry through Web’s second 

edge. It is not necessary to store Top flange’s edge 2 as no more sub-meshes 

will be assembled there. Now, the whole profile is created, and in order to 
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keep adding sub-meshes to the existent mesh, bottom flange edge 2 that was 

stored at the beginning must be returned for later use. 

 

This procedure allows creating the geometry of almost any profile. For profiles “I” and 

“Omega”, some of the sub-meshes are created within two common edges. Apart from that, 

the way of implementing the mesh is quite repetitive. The following image shows the 

sequence order in which each sub-mesh of a stringer is created: 

 

Figure 5.15: Schematic representation of the sequence followed to create the geometry and mesh of 
the main seven profiles of the application. 

 

 

 

 



CHAPTER 5: DESIGN TOOL 

 

44 
 

 CreateWholePanel method is the most important since it actually creates the complete 

panel mesh. It starts checking that the width of the lateral skins Fx has been computed 

correctly. If so, it creates the panel in the following order: 

1. First, the left lateral skin is created. 

2. Then, if the number of stringers is greater than zero, it creates the first 

stringer. Since the stringer profile was one of the arguments of this class, it 

already knows which profile needs to be created. 

3. After that, a loop starts for the rest of stringers, provided that there are at 

least two. This loop will create an intermediate skin and consecutively 

another stringer. This loop will be repeated till all the stringers have been 

created. 

4. Finally, the right lateral skin is added to the model, completing the mesh. 

If Fx was not computed correctly, none of the previous code is actually executed and the 

method does not create any panel, returning an error. 

 PrintMSHData method stores some text in a string to be later written in a .msh file, 

which can be opened with gmsh [21] to visualize the mesh of the stiffened panel. It has 

no arguments since all the information is already available. But in order to call this 

method, firstly the previous method must be called to create the panel. The structure 

of the text contained in the .msh file can be found in Appendix A.  

5.4.  The Load and Boundary Conditions 

manager tool 

The Load and Boundary Conditions (BC) manager tool receives the applied loads and 

BC values introduced by the user and adjusts them to be understood by the solver. Regarding 

the loads, this process is mainly the translation from the total load per unit length applied on 

each side of the panel to actually the individual load value applied to each node belonging to 

that side. This process depends on the type of element and the element width. Since the 

second order quadrangular element is the one that will be used within CADEC environment, 

that is the case that will be explained into depth. Basically the load distribution is such that 

nodes on the corners of the element receive one sixth of the total load applied on that 

element, whereas the central node of the edge receives four sixths (see figure 5.19). 

In regards of the Boundary Conditions, the tool needs to translate conceptual language 

(simply supported, clamped, free or symmetry) into the actual Degrees Of Freedom (DOF) 

restrained for each node. Additionally, depending on the input loads, some extra DOFs may be 

constrained to avoid panel oscillation within its plane and ensure solution convergence. 

The above mentioned tasks are accomplished by the following class: INPUTdata.cs. 
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5.4.1. Handling loads and boundary conditions: 

INPUTdata.cs class 

A. Aim and arguments 

Aim and arguments: 

The following class manages all the necessary information regarding boundary 

conditions and applied loads of our panel. This class in combination with all the panel mesh 

data already created allows the subsequent creation of an INPUT file. This file can be 

submitted to analysis by other software such as Abaqus•, or more importantly, the later call to 

BMI3 solver to directly obtain the first buckling modes of the structure. 

It must be called after a mesh has been created, as it requires elements information to 

assign material properties, and nodes information in order to apply boundary conditions and 

loads correctly. 

Then, arguments required to create an instance of this class are: a pointer to the 

SPmshBuilder object representing the panel mesh, type of BC applied to each side of the panel 

and application mode (which can be just to the skin or both to skin and stringers), and values 

of shear and/or normal lineal loading applied on each side. 

In order to understand the following methods it is relevant to define the different 

Degrees Of Freedom (DOFs) that the solver BMI3 will use. As any rigid body in the space, each 

node has six DOFs, three of them defining translation and the other three to rotation. Hence, 

DOFs 1, 2 and 3 correspond to translations along X, Y and Z axes, respectively. The rotational 

DOFs are not so intuitive. They are defined in accordance with the classical theory of plates, so 

that DOFs 4, 5 and 6 are respectively    ,    and   . It must be noticed that    does not 

coincide with rotation about first DOF (   according to the next figure) and neither does    

with   . On the other hand,    defines the rotation in XZ plane whereas    does it in YZ 

plane. 

.  

Figure 5.16: Definition of the rotational degrees of freedom used by the tool. Source: Figure 5.2 of [6]. 
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B. Methods 

There are three methods in charge of presenting the information of the problem in a 

way that BMI3 or Abaqus® can solve it. The first two store in a string the text content of the 

.inp file, so such file can be created later on. The third computes some data required by the 

former methods. 

However, it is when creating an instance of that object, that all the important 

calculations and assignments are performed. The process followed is: 

1. Assign the value of the arguments to the local variables of the class, as 

properties. Depending on the type of BC applied, the number of DOFs that 

must be constrained varies. Therefore, at this point the size of the variables 

containing BC information is set. Furthermore, depending on which axis is 

parallel to the extrude direction of the panel, the corresponding DOF are 

updated. If the panel has been rotated so that the X axis is parallel to extrude 

direction, DOF 1 and 2 are switched, in addition to other adjustments to 

ensure the proper functionality of the program under the new CSYS. 

 

2. Boundary Condition application: It will go through all four sides of the panel, 

and for each side it will perform the following operations: 

 

 

2.1 First, the ID of the node that is located in the middle of that side 

must be retrieved. This is necessary in order to apply additional 

boundary conditions to the panel in case normal loads and no 

symmetry are applied. Even though applying two compressive 

loads in parallel sides of the same value leads to a mechanic 

equilibrium state, from the solver point of view the panel is still 

capable of vibrating on its plane: XY plane. Then, an additional DOF 

must be restrained on the two nodes in the middle of the other 

two sides, creating a symmetry effect with respect to the mid fiber 

of the panel, and then enabling the solver to converge to the 

solution (see figure 5.17). 

 

2.2 Second, it browses all the nodes that belong to that side of the 

panel, and based on the BC applied, the corresponding DOFs are 

constrained. Should BC be applied on the stringers as well, they are 

added at this point for sides 1 or 3. The following table summarizes 

DOF that are restrained for each type of BC. Please notice that they 

are referred to the old CSYS shown in Figure 5.1, which does not 

correspond to the global CSYS of CADEC. Therefore, in Figure 5.16, 

positive    is defined on side 1, and positive    on side 4. 
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BC Sides 
DEGREES OF FREEDOM CONSTRAINED 

1 (  ) 2 (  ) 3 (  ) 4 (  ) 5 (  ) 6 (  ) 

SS 
Sides 1 and 3 - - 0 0 - - 

Sides 2 and 4 - - 0 - 0 - 

CC For every side - - 0 0 0 - 

SYM 
Sides 1 and 3 - 0 - - 0 - 

Sides 2 and 4 0 - - 0 - - 

FREE For every side - - - - - - 

Table 5.1: Degrees of freedom restrained for each boundary condition type depending on the side. 

 

2.3 Finally, it is checked whether additional BC must be applied. This 

depends on the combination of loads and BC applied. The different 

cases are summarized in the following table. 

 

Load Condition Constrained DOFs BC application 

Normal Loading 

Sides 1 and 3 do not 

have symmetry BC 
2 (  ) = 0 

Nodes in middle of sides 2 

and 4 

Sides 2 and 4 do not 

have symmetry BC 
1 (  ) = 0 

Nodes in middle of sides 1 

and 3 

Shear Loading 

Loads Ns > 0 
1 (  ) = 0 

2 (  ) = 0 

Node corner sides 1 and 2 

Node corner sides 3 and 4 

Loads Ns < 0 
1 (  ) = 0 

2 (  ) = 0 

Node corner sides 1 and 4 

Node corner sides 2 and 3 

Table 5.2: Additional degrees of freedom restrained depending on the type of applied load to ensure 
that the panel has no rigid body motion. 

In case the panel is subject to compressive loads and 

some of the sides are not symmetric, it is necessary to 

constrain the possible oscillations of the panel on the XY plane. 

If none of the sides 1 and 3 are symmetric, despite being in 

mechanical equilibrium due to the loads applied, the panel 

could move in DOF 2: “Y” direction. Therefore, this DOF must 

be constrained, and the nodes selected to apply such 

additional boundary condition are located at the middle of 

sides 2 and 4 (on a symmetric axis) so that results are not 

affected since this two nodes should not move on that 

direction. Same reasoning applies for the second case. 
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Figure 5.17: Schematic representation of additional constraints required to ensure problem solution 
of panels subject to in-plane compression. 

 

On the other hand, if the panel is subject to shear loads 

it is necessary to constrain the possible rotation of the panel 

about “Z” axis: DOF 6. This occurs since under shear loading, 

despite being the module of the loads the same so that forces 

were in equilibrium, moment Mz will never be cancelled. In this 

situation it is necessary to constrain that DOF for the panel. 

There are several possibilities, but the most commonly used is 

to constrain the motion of two of the corners so that the panel 

cannot rotate. These nodes will have constrained DOFs 1 and 2 

as shown in the figure. Ideally, it is not necessary to constrain 

both 1 and 2 DOFs in one of the nodes, but it was decided to 

apply both for convergence requirements of our solver. 

 

 

Figure 5.18: Schematic representation of additional constraints required to ensure problem solution 
of panels subject to in-plane shear loading. 
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Finally, in the specific case of non-stiffened plates, the drilling rotation 

(DOF 6) is constrained for all nodes. This kinematics is similar (but not the 

same) as that of element S9R5 in Abaqus®.  

 

The information stored concerning BC is the following: node ID, DOF 

that is going to be set, and the value of that displacement or rotation. As 

displacements or rotations are restrained, the value is set always to zero. But it 

could be possible to impose a specific displacement in order to obtain the 

required load value that causes it. 

 

3. Load application: the values introduced by the user are lineal forces, so the 

values result from the ratio between the total forces applied and the panel 

width of the side where they are applied. However, our solver needs to know 

the equivalent force absorbed by each node. Depending on the type of 

element, the load share value (relative load applied on a specific node) varies. 

For triangular elements and first order quadrangular elements, the total force 

absorbed by that element is split equally into the two nodes on the corners. 

However, for second order quadrangular elements, the load share is different: 

one sixth for each of the nodes on that corner, and two thirds for the node in 

the middle. Then, at this step it goes though all elements in the panel 

performing the following operations: 

3.1 First, check whether that element contains some nodes on any of 

the sides of the panel, and then potentially subject to the 

application of forces.  

3.2 Second, the length of the element is computed in order to know 

which fraction of the total force is absorbed by that element. The 

calculation is different for curved and flat elements. 

3.3 Third, the distribution of the load into each node is computed. This 

value is dependent on the side, due to the fact that a node on a 

corner of the panel could have a different load share as it belongs 

to side “A” from the load share as it belongs to side “B”. That is 

independent on the applied load value, but simply the element 

width on one direction could be different from its width in the 

other. The value results from multiplying the specific ratio that 

depends on the element (one half, one sixth or two thirds) times 

the element length. The distribution factor dependent on the 

element type is shown in next figure. 
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Figure 5.19: Load share for each type of element.  

 

Once the load share has been computed, it is time to obtain the actual 

value of nodal forces. The parameters that must be stored again are: node ID, 

DOF in which load is applied, and the nodal force value in that DOF. 

To size the array containing all load information it is necessary to check 

the applied loads and whether they are applied on the skin or both skin and 

stringers. 

Finally, the last parameter (nodal force) is computed by multiplying the 

load share of each node times the lineal force applied on that side. As the load 

share has length dimensions, and the input load is lineal force, result has force 

units. 

 

 PrintINPData method stores in a string all the information necessary to create an input 

file. The format depends strongly on the targeted software that will use it. This 

method generates the .inp data required by BMI3. It is important to notice that in 

order to run the problem material information is also required. However, BMI3 (the 

executable version of our solver) reads that information from a .dat file, which is 

generated independently in the final application based on the material information 

stored in the database. A description of both files can be found in Appendices B and C. 

 

 PrintAbaqusINPData method stores in a string the information required to create an 

input file. In this case, it is generated following Abaqus® script procedure. Abaqus® 

requires material information included in the .inp file, so the matrices A, B, D and H are 

sent as arguments to the method as well as the number of materials. For that reason, 
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as opposed to BMI3, Abaqus® just requires one file to solve the problem. A description 

of the file can be found in Appendix D. 

 

 GetOrientationsForAbaqus method calculates the components of material directions 1 

and 2 in order to assign material directions to a curved panel of composite or omega 

profile in flat panels, necessary for .INP file for Abaqus®.  

 

5.5. The solver: BMI3 

The solver is BMI3 [6]. It uses a 9-node isoparametric, fully integrated element with 

relaxation of the Kirchoff condition [33, 34]. Relaxation is necessary in order to avoid locking, 

since fully integrated elements result in excessively stiffened elements. Full integration is used 

to avoid zero-energy modes, which appear if using reduced integration [5, 27].  

After the implementation of full integration, it is possible to analyze plates with high aspect 

ratios (thickness to in-plane dimensions ratio) without any revelation of zero-energy modes. 

An example follows of a plate with aspect ratio of 5 in order to illustrate the robustness of the 

fully integrated elements. 
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Figure 5.20: CADEC results for 9-node fully integrated/relaxed element, with no zero-energy mode. 

 

Apart from that modification in the solver code, the only novelty is the addition of a 

new class in order to enable communication between the rest of the application (built in C#) 

and the solver (written in Fortran). 

Despite the fact that all the code necessary to solve panels subject to shear loads was 

implemented, the current solver is not capable of solving this type of problems. The reason 

behind that behavior follows. 
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In structural buckling, all eigenvalues are real values. For axial loading, all the eigenvalues are 

also positive. The eigenvalue of most interest is the smallest since it gives the lowest load at 

which the structure will buckle. The solver used by CADEC [2] is optimized for speed by 

computing only a few of the smallest eigenvalues, assuming they are all positive. 

However, for shear loading the eigenvalues come in positive/negative pairs because the 

response of an orthotropic material, plate or stiffened panel is indifferent to the sign of shear. 

Thus, the solver tries to find the smallest, which in this case is the largest negative value and it 

crashes. All the remaining solvers available in the public domain that can compute the smallest 

positive value for this problem are more than 100% slower than the optimized BMI3 [6], which 

prevents their use in a web application as CADEC [2]. Since performing an important 

modification on the code of the solver is out of the scope of this project, it is not currently 

possible to solve this type of problems, but it should in a future version. 

 

5.6. The visualization tool 

The visualization will be carried out in the Web, and will be further discussed into 

detail in another chapter. However, the application itself contains an extra class in charge of 

creating a POS file so that the deformed shape of the panel can, in addition, be shown by gmsh 

[21]. 

This task is accomplished by the following class: POSdata.cs. 

Furthermore, it is also possible to show the mesh itself before actually running the 

problem. In order to visualize the mesh of the stiffened panel with gmsh, it is necessary to 

download a file with the text provided by the method PrintMSHData, which can be found in 

the class SPMshBuilder.cs. 

5.6.1. Results post-processing using gmsh: 

POSdata.cs class 

A. Aim and arguments 

This class stores in a string all the information in order to visualize the deformed shape 

of the panel in the free software gmsh [21]. The text of this string can be written in a file and 

the user should be able to download it in order to visualize the results offline. Current version 

just supports second order quadrangular element type for the mesh.  
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The only arguments required to create an instance of this class are a pointer to the 

SPmshBuilder object (the panel mesh) and the array containing the displacements from the 

solver. 

B. Methods 

PrintPOSData is the only method, and as its name suggests it prints the node initial 

coordinates and the new displacements in a string. If the text contained in this string is written 

in a .pos file and opened with gmsh, the deformed shape of the panel will be shown. It also 

defines some default properties for gmsh viewport such as the displacements scaling factor. 

Since the final web application will contain its own visualization tool, this method is not 

currently available for the user. 
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Chapter 6 

6. Web Environment 

6.1. CADEC 

At this point a set of tools for the analysis of composite stiffened panels has been 

developed. However, the application lacks a user interface. In other words, tools are available 

but there are no gloves to handle them. There are several possible approaches to this problem. 

One is to implement the tool in a Windows Form, in which the user introduces data in 

textboxes and submits information using buttons. Another option would be compilation of an 

executable, which would read the information from a file, process it, and return another file 

with the solution requested. Both solutions are feasible but dependent on the operating 

system of the user’s computer, limiting distribution. The second option has an even worse 

drawback; it may be very tedious, error-prone and time-consuming to require the user to 

introduce the data from a text file. A combination of both alternatives is the application SPD. 

Therefore, as explained in the introduction of this project, this set of tools will be implemented 

as a web application. Furthermore, in order to make this tool even more powerful, the tool will 

be combined with an existing website providing further features to the user. The interface will 

be created by the implementation of the tools within CADEC’s environment. CADEC (Computer 

Aided Design Environment for Composites) [2] is a web application developed by Professor E.J. 

Barbero and hosted by the Department of Mechanical and Aerospace Engineering of West 
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Virginia University. CADEC performs composite materials analysis, and shares a strong 

relationship with the purpose of our application.  

Implementing the tool inside an existing website has benefits: 

- The website already has a structure, eliminating planning regarding page layout, 

style or organization. A database in the server and master page already exist. Code 

can be reused in general. 

- Existing functionality adds value to the tool. For instance, several pages of CADEC 

already help the user to create matrices, fibers, and laminates. Instead of 

duplicating those functionalities, the tool can simply handle the communication 

between these objects. In addition, CADEC also provides user authentication.   

On the other hand, this approach involves additional difficulties including: 

- Freedom is limited within an existing structure already exists, and new pages must 

share the appearance of other pages. This may conflict with some predefined 

expectations for the web application. 

- Most of the high-level features encountered in CADEC improve the overall 

functionality of the page but require additional code and complexity. Most of 

these issues will be highlighted during the explanation of the implementation 

process. 

- Additional time is required to format the structure of the page to existing 

procedures, despite the robustness of the existing website. This factor is 

interrelated with the complexity concern. 

Overall, the possible benefits of the tool provided by CADEC’s environment clearly 

outweigh the additional difficulty that may arise.   

Before moving on to the implementation process, it is important to understand 

CADEC’s structure and functionality. There are two possible views of the application: the user’s 

view and the programmer’s view. The former provides enough background to understand how 

to use this powerful tool, including the new module for analyzing stiffened panels. The latter is 

relevant for discussion specific to this project, and a brief overview will accompany the later 

explanation of the implementation process. 
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6.2. Databases and stored procedures 

Though CADEC already contains a database (DB) [31] to store all objects the user 

creates, some modifications are required to allow the storage of stiffened panel objects. A 

database is simply a structured collection of data. The language used to communicate with this 

DB is SQL (Structured Query Language). Specific examples of SQL as used to create tables or to 

edit records can be found in Appendix E. 

First a new table must be created in order to store the stiffened panel objects. A table 

consists of rows and columns: each row represents a different object, and the columns define 

the properties of each object. A table contains different records or rows, and each record is 

defined by a set of fields, each being a single piece of information, structured in columns. 

Then, in order to create a table it is necessary to state the minimum amount of fields required 

to completely define a stiffened panel object. Each of the columns representing a property 

requires a name and a data type. To quickly create the same table in different DBs, a SQL script 

is used. 

After creating the table, it is possible to access the data using SQL commands. However, in 

order to keep code as simple and clean as possible, the SQL code necessary to manage the DB 

will be stored in files called stored procedures. A stored procedure is a subroutine available to 

applications that access a relational database system. They consolidate and centralize logic 

that was originally implemented in applications. In our case six different stored procedures will 

be defined, each of them dealing with one of the following actions: 

 Creation of a new record (insert a new panel in the DB). 

 Deletion of an existent record (remove an existent panel from the DB). 

 Edition of some fields of a record (update some properties of the panel in the DB). 

 Retrieval of a single field of a record from the DB. 

 Retrieval of a list of all the records (list all the panels that are in the DB). 

 Retrieval of a complete record of the DB, including all the different fields for that 

record. 

To centralize the code and avoid code-repetition these subroutines are stored within the 

DB, making the application very robust. 
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Chapter 7 

7. Implementation 

7.1. User’s view 

First of all, CADEC can be accessed following the URL found in [2]. The main page is 

shown in the following image. Let us explain what can be found in this page. 

 

Figure 7.1: Main page of the web application CADEC. 
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 In the upper-left corner of the page, three elements allow to change the language of the 

website. Current languages available are English, Spanish and Persian. Just below them, also in 

the left side of the screen, the main navigator tree can be found. There are four main sections: 

Chapters, My Documents, Account and Help. Let us proceed to a brief review of each of them: 

 Chapters’ section: It is relevant to notice that CADEC is structured following an analogy 

to the textbook [7]. Thus, it is possible to find different kind of composite materials 

analyses such as damage, micromechanics, macromechanics, etc. within this section. 

These tools are organized in chapters as they appear in the previously mentioned 

book. In other words, chapters’ section contains different pages that are in charge of 

carrying out computations. Every page that performs any analysis based on given input 

data can be found here.  

 My Documents’ section. It contains all the pages where the user provides input data to 

create objects, objects that may be used later in Chapters for calculation. Examples of 

objects could be fibers, matrices, laminates or stiffened panels. These objects created 

in My Documents are stored in a database in such a way that can be accessible from 

Chapters and also they will remain in the server for future sessions. In contrast, the 

results provided in Chapters’ section are deleted once the user leaves the current 

page.  

 Account’s section. As it can be inferred this is the place where the user can manage its 

account properties such as username, password, email address, etc. It should be 

noticed that an account is not mandatory to access CADEC. However, it is necessary to 

be able to actually create objects in My Documents or carry out the analysis in 

Chapters. As guest, the user would be capable of reading information about what each 

page does but will not be able to access directly the pages inside My Documents and 

My Chapters. Nevertheless, registration is free as long as the email provided is related 

to educational institutions (universities, schools, etc).  

 Finally, there is another section named Help, which includes a complete user’s manual, 

forum and FAQs regarding CADEC. This section can be fully accessed as a guest. 

Among the previous sections, our application will have an impact just in the two first. 

Chapters will include the pages where the buckling analysis of the stiffened panel is 

performed. My Documents, on the other hand, will be contain the pages where the user can 

see the panels already stored in the database (DB), edit them or create new panels. So far, it is 

quite clear that CADEC’s use is very intuitive.  

Finally, the actual content of each page can be found on the right of the navigator tree, so 

that the navigation tree and the language selection are always available in the screen. 
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7.2. Programmer’s view 

This section will provide an overview of CADEC’s code organization. As it is shown in 

the following diagram, CADEC is formed by six main projects. Each of the projects contains 

specific type of information, so the organization of the website is maintained.  

 

Figure 7.2: Scheme of the different projects forming CADEC. 

  

In regards of our application, four of the projects will need to be modified: Kernel 

project, KernelFortran project, Web project and WebReusables project. By explaining how our 

application will be implemented in each of the projects, the main purpose of each project will 

be revealed.  

7.2.1. Kernel Project: definition of CADEC’s 

objects 

KERNEL is a C# project formed by several classes that contain the code necessary to 

define objects, to communicate with the database and to call the solver. It is divided into 

different folders, each of which contains the code for each kind of object. Therefore, main 

object types that can be found here include: environments, fibers, matrices, laminas, loads, 

materials, panels, sections, strains, etc. It contains a folder named Utilities, and here is where 

the class that enables communication between the solver (in Fortran code) and the rest of C# 

CADEC 

CRON project 
Enable the communication of external computers to a web 

service to help solving some problems in queue. 

KERNEL project 
Contains the classes necessary to create the objects of My 
Documents, as well as the code to  communicate with the 

Database or the Solver. 

KERNEL 

FORTRAN project 

Contains the code necessary to perfom the calculations. It 
is the solver for all the analyses carried out in CADEC. 

WEB project 
Main project of the Website. It contains all the pages, as it 

is the real ASP.NET project. 

WEBREUSABLES 
project 

All the code that can be reused is place here. For 
example, resources, images, Table rows, buttons, etc. For 
instance, a table row containing the label "Name" and a 
textbox is stored here, so it can be used in several pages 

without repeating code. 

CRON 
DEPLOYMENT 

project 

Enable the communication of external computers to a 
web service to help solving some problems in queue. 



CHAPTER 7: IMPLEMENTATION 

 

61 
 

code will be placed. It plays the role of translator between the two different languages, and 

without that class it would not be possible to access Fortran functions located in KernelFortran. 

What is our contribution to this project? For starters, this is the place all the previous 

tools must be placed. As it is shown in the following image, the new folder named 

StiffenedPanels will contain the mesh generator tool (stored in SPmesher folder) and also the 

tools managing Load, BC and post-processing, which will be stored in a separate folder named 

SPDtool. All these six classes have been discussed exhaustively in previous chapters, and their 

code has not been modified. However, there is a new class that must be created. This class is 

called StiffenedPanel.cs. 

 

Figure 7.3: Files added to Kernel Project for the web implementation of our application in CADEC. 

The StiffenedPanel.cs class creates stiffened panel objects. What does this class look 

like? Firstly, it contains the definition of its main properties. Its properties include:  

- Geometric properties: panel width, panel length, panel radius of curvature, panel 

pitch, offset of the stringers (positive value coincides with positive Y axis direction), 

number of stringers, type of stringers, stringer height, stringer total width, top 

flange width and bottom flange width. 

- Material properties: skin’s material ID, Bottom flange’s material ID, Web’s material 

ID and top flange’s material ID. 

- Load and BC properties: load and BC application type (skin or skin and stringers), 

and values for each side. 

- Extra properties: These extra properties are not stored in the database, but are 

needed for some of the pages. Such properties are Curved panel (value of true if it 

is curved and false if it is not), stiffened property (true if it contains stringers and 

false if it is just a plate) and buckling load type property, which determines 

whether the buckling analysis will be carried out under normal loading or shear 

loading. 

- Global variables for BMI3: Here are defined the variables required by our solver in 

order to solve the buckling problem. Such variables include information about the 

mesh (number of nodes and their coordinates, number of elements and their 

connectivity), about the loading and BC (similar to the properties already defined 

regarding these issues, but in a specific arrangement for BMI3), about the 

materials (in this case BMI3 needs the ABDH matrix components for each type of 

material involved in the problem, as well as the information of the material 
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applied on each element), internal parameters for the solver (such as number of 

roots (eigenvalues) required or the subspace dimension, and finally the output 

variables which are the eigenvalues and displacements of the first mode. All these 

variables are not stored either on the database. In fact, they are initialized just 

before calling the solver for calculations. 

After all the properties have been defined, some constructor methods are defined in 

order to instantiate a new stiffened panel’s object. The three constructors are: 

- StiffenedPanel(Id): This constructor just requires the ID of the stiffened panel in 

the database (Id variable) in order to create a new object. The code inside this 

method basically uses the stiffened panel ID and the user’s ID to communicate 

with the Database and retrieve all the properties stored there. It is used within the 

method All(owner) that will be explained later, that is the reason why the method 

does not require explicitly the user’s ID (owner variable). 

- StiffenedPanel(Id, owner): It requires both the ID of the stiffened panel in the 

database and the user’s ID  in order to create a new object. The code inside this 

method basically uses the stiffened panel ID and the user’s ID to communicate 

with the Database and retrieve all the properties stored there. In order not to 

include all the code required to communicate with the database, it uses a stored 

procedure, which means that the missing code is stored in the database itself and 

is executed from there. 

- StiffenedPanel(): This constructor is used to create an instance of a stiffened panel 

that has some default values for the properties. This will be used to provide the 

default values of properties in My Documents when a new panel wants to be 

created. 

Afterwards, other methods are defined still to perform actions with the database. 

These methods allow to create a new panel in the database, modify some of the values of a 

panel that already exists in the database, delete panels from it, etc. It should be explained that 

all these methods use stored procedures in order to perform the previous actions. The main 

methods are described next: 

- All(Owner): As it was previously advanced, this method uses one of the 

constructors in order to return a list with all the panels that the user has stored in 

the database, along with all the properties of each panel. This method is used in 

MyDocuments/StiffenedPanels/Default page, where a table shows all the panels of 

the given user with summarized properties so that the user can decide whether 

any of the panel needs to be deleted or edited. It uses the procedure 

"CADEC_StiffenedPanels_All" in order to retrieve the data. 

- AllStripped(Owner): Similar to the previous method, this one returns a dictionary 

containing the ID of each panel and its name. This is used for all the drop-down 

Lists that are used in the pages. For example, when deciding which panel is going 

to be submitted to analysis, there is a list that includes the names of the panels the 

user has in the database. It is not necessary to know all the properties of all of 

them, just the name. Then, after a panel selection has been made, the properties 
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of that specific panel are retrieved. It uses the stored procedure 

"CADEC_StiffenedPanels_All_Stripped". 

- Delete(Id,Owner, DeleteDependencies): This method is in charge of deleting a 

panel from the database. In order to achieve that, the method requires the panel’s 

ID and the user’s ID of the targeted panel, as well as additional information 

regarding whether dependent objects must be deleted as well. Since Stiffened 

Panel is an upper level object, that will not be the case since there is no object in a 

superior hierarchy that needs to be deleted. However, there may be in the future, 

so the option is available. In order to understand this issue let’s consider a 

laminate. The user may have used that laminate as the skin’s material of a 

stiffened panel. Then, if at some point the user decides to eliminate that laminate, 

the stiffened panel will still have the ID of that material as the one used for the 

skin. This could lead to errors with that stiffed panel in the future, since it is 

pointing to a non-existent object. For that reason, in that case it may be necessary 

to delete the stiffened panel as well. That is the purpose of that last variable: 

decide whether dependent entities must be deleted as well or not. It uses the 

stored procedure "CADEC_StiffenedPanels_Delete". 

- Insert(…): As its name implies, this method inserts (creates) a new panel object in 

the database. All the arguments have been removed for simplicity, but basically it 

requires the values of all the properties that will be stored in the database and 

that define a specific panel. These properties were explained at the beginning of 

this section, properties include geometry, materials, load and BC conditions. They 

also include the user’s ID but since the panel does not exist yet, no panel ID is 

required. Instead,  it generates a new ID for the panel when adding the records to 

the table. It uses the stored procedure "CADEC_StiffenedPanels_Insert". 

- Update(…): Very similar to the previous method. Instead of creating a new panel, it 

updates any modification of the parameters of the panel. Then, it accesses the 

record of the panel with the ID given and overwrites the values. It uses the stored 

procedure "CADEC_StiffenedPanels_Update". 

Finally, there are three more methods contained in this class. At this moment all the 

methods regarding object instantiation and database communication have been explained. 

However, it is time to actually define methods that use our tools to generate meshes or 

prepare the data necessary to run the buckling analysis. These methods are the following: 

- SolveBucklingProblem(Owner, SP, out criticalLoads, out bucklingMode): This is the 

main method. It is in charge of preparing the data, call the solver and return the 

results to the user. The structure of the method is the following: 

1. MeshParameter.cs class is called to return the values that define the 

panel mesh based on the geometric properties of that panel. 

2. SPmshBuildr.cs class is used then to create the mesh using the 

previous paramenters. First a new mesh object is created, and then 

the mesh is generated using the CreateWholePanel method explained 

in previous chapters. 

3. It is time to define loads and BC. First the values introduced by the 

user and stored in SP object are copied into new arrays. Then, in order 
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to translate these values into meaningful data for the solver, the class 

INPUTdata.cs is used. 

4. Once the data is ready, the properties required by the solver to 

compute the solution are initialized and the values prepared in the 

previous steps are assigned. However, there is an extra transformation 

process that must be done at this step. Our SP object contains the 

material IDs used by the different entities in the stiffened panel, but it 

is necessary to use this ID to actually generate the ABDH matrix for the 

solver. In order to do so, four different laminates are created using 

that ID: SkinLaminate, WebLaminate, BottomFlangeLaminate and 

TopFlangeLaminate. However, it is very important to realize that the 

elements representing the bottom flange of the stringer actually 

represents the addition of the skin at the bottom and the bottom 

flange on the top. For that reason, it is necessary to create a fifth 

laminate that takes into consideration this issue. This fifth laminate is 

created by adding all the laminas from bottom to top: first the laminas 

contained in the skin are added to the new laminate, and then the 

laminas of the bottom flange are added consecutively. 

Once the laminates have been defined, the matrices A (in-

plane stiffness matrix), B (bending extension coupling matrix), D 

(bending stiffness matrix) and H (transverse shear stiffness matrix) are 

computed and their values are stored accordingly inside the ABDH 

array required by BMI3. It is also necessary to define the drilling factor, 

which does not influence much on the results but the solver needs it. 

It must have a value at about 100 times smaller than the diagonal 

terms in H matrix. 

5. The solver is called through the intermediate class that was mentioned 

previously, which allows the comprehension between this C# code and 

solver’s functions written in Fortran to find the primary bifurcation 

and return the corresponding eigenvalues and displacements. 

6. Last step is to return the results so they can be used by the page and 

shown to the user. 

The remaining methods are related to the visualization process: 

- DuplicateNodes(SP, …): there are two different methods with the same name, one 

of them requires the displacements of the first buckling mode (and therefore is 

used to print the deformed shape) whereas the other does not require this 

displacements since it is used to draw the initial mesh. As it will be explained into 

detail in the visualization section, it is not possible to have one same node shared 

by different elements. It is necessary that each element contains 9 unique nodes. 

Since that is not what we have in our mesh, it is necessary to create the additional 

nodes required for the drawing. This means that in some points we will need to 

create several nodes with the same coordinates but different ID as they belong to 

different elements. The process followed by both methods is very similar: 
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1. Mesh is created following steps 1 and 2 of the previous 

method in order to get the panel’s mesh. Namely,  creation of 

a meshparameters object, creation of a SPmshBuilder object 

and mesh generation. 

2. Initialization of the variables that will be returned from this 

method. These variables contain the new node’s ID, new 

coordinate array, new displacement array and new element 

connectivity. 

3. We actually start the process of generating the new variables. 

The procedure is the following: a loop is used to go through 

each element in the mesh. For each element, another loop will 

go through each of the nine nodes in that element. Then, for 

each node, a new ID is assigned starting from value 1, the 

coordinates of the nodes in the mesh are copied in the new 

array and, if the displacements are given, they are copied as 

well in a new array. In the new element connectivity array, the 

ID of this new node is added. 

Basically this process allows nodes multiplication in the 

places where there was only one shared node. Let us imagine 

a node in the corner of an element. Due to the position of this 

element and to the fact that there are adjacent elements, this 

node in the FE mesh will be unique and shared by four 

adjacent elements in order to guarantee connectivity. In this 

step, nodes are created at that exact position, sharing the 

same coordinates and displacements, but they do have 

different ID. Hence, each of the nodes will belong to a 

different element. 

4. Values of the new variables are returned. 

- CreateGeometryToDraw(…): This method is used to prepare the variables required 

to print the mesh on the visualization page. The main arguments required are: the 

new node coordinates and displacements, and the new element connectivity that 

has been returned from the previous method, and the element entity array in 

order to identify the entity to which each element belongs to. This last variable is 

used in the visualization of the mesh in order to assign a different color to each 

entity, clarifying the identification of the different entities in the model. The rest of 

the arguments are, in fact, the variables returned by the method, which are: The 

coordinates of the nodes before deforming, the displacements of the nodes, the 

element connectivity of the triangles used to draw the model (different from the 

second order quadrangular element’s connectivity obtained before), the vertices 

texture indices, the color array and the value of the factor that has been used to 

transform the coordinates into a 0 to 0.8 base in order to draw them in the canvas. 

Next the structure of the method will be presented and further information will be 

provided. It is important to understand that, even though part of the information 

has already been computed such as the nodes coordinates or displacements, they 

have to be presented in a specific format in order to be used by our visualization 
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tool (WebGL [58]). In case further details are demanded, consult the 

corresponding chapter where all this specifications are explained. 

1. The variables are initialized. 

2. The viewport just shows nodes and entities which have coordinates 

ranging from 0 to 1. For this reason, we need to re-scale the whole mesh 

so that it fits in the canvas’ view. In order to do so, coordinates of the first 

node in the mesh (which is the node at the corner formed by sides 1 and 4) 

are checked to identify the component with the largest absolute value. 

Then, this value is divided by a factor of 0.8. The result is the actual re-

scaling factor. By dividing every coordinate and displacement by this value, 

the model is re-scaled. The maximum coordinate component of the model 

will be 0.8 (we left some margins to the viewport limits). 

3. The connectivity of the triangles that form the mesh is computed from the 

connectivity of the mesh elements. This process is further explained in the 

Visualization chapter. 

4. The texture array is computed assigning the corresponding pair of values  

for each node. There is further explanation in visualization chapter. This 

array is mainly used to draw the lines that identify the borders of the 

elements in the mesh. 

5. The color array which specifies the color for each node is computed. If the 

mesh is shown from My Documents, it just assigns a different color to each 

entity. On the other hand, if deformed shape of the panel is shown, it 

assigns a different color based on the magnitude of the total displacement 

of that node. More details are provided at Visualization chapter. 

6. The resulting variables are returned. 

- GetFiles(…): this method stores in a variable all the content of some files that can 

be downloaded by the user, in particular an input file for Abaqus®, and two files 

(DAT and INP) for BMI3. The process is the following: 

1. Steps 1-4 mentioned in SolveBucklingProblem method are followed in 

order to generate all the variables required by any solver. 

2. Three variables are defined, each of which will contain the information of 

each file as a string. The content for both input files (for Abaqus® and 

BMI3) is computed directly by calling the methods corresponding methods 

of the INPData.cs class, and storing the information in the variables. In 

order to generate the DAT file required by BMI3, some code is added by 

which the information of the ABDH matrices is gathered and stored in the 

new variable accordingly to the format required by BMI3 to understand 

them (consult appendices B, C and D for further details). Finally the three 

variables are returned. 

This is all the content of the new class StiffenedPanel.cs. In addition, all the code 

required to be added to Kernel project has already been explained. 
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7.2.2. KernelFortran Project: CADEC’s solver 

KERNELFORTRAN is a Fortran project which contains all the functions necessary to 

carry out different analyses: buckling, damage, etc. It is the solver for all computations in 

CADEC regarding composites. For that reason, it was necessary to add all the source code of 

BMI3 in charge of computing the primary bifurcation and providing the buckling critical load 

and the first mode displacements. It is important to notice that, due to the difference in 

language, it is necessary to compile all this source code into a DLL (Dynamic library). Then, by 

means of the intermediate class, the DLL is imported and its functions can be accessed. 

7.2.3. Web Project: CADEC’s pages definition 

WEB is a ASP.NET application project which contains all the web pages of the site. 

There are different folders inside this project, but only two of them contain the main pages 

that the user will see: MyDocuments and Chapters. The rest of the folders contain the pages 

for managing CADEC’s account, administrator’s pages, help pages, etc; pages that will not be 

affected by our application.  

Before explaining the different pages that have been created, it is important to 

summarize how a web page is created with ASP.NET. Each page is composed by two different 

files that share a common name but have different extensions: the .aspx file and the .aspx.cs 

one. The former contains the information about the page and its layout, and can be written 

using ASP.NET elements, HTML elements, JavaScript code, etc. The latter is written in C# and is 

known as code-behind. This file contains the code that performs operations in the server, and 

actuates on the elements created in .aspx file.  

Let us consider a simple example. Imagine that we want to create a simple website 

including a button and three textboxes. The intention of the page is to compute the sum of 

two numbers. The user would write two numbers in the first two textboxes, then he would 

press the button to calculate the result, and finally this result would be printed in the third 

textbox. In this case we would insert web elements (textboxes and button) in the .aspx file 

using HTML elements or ASP.NET ones. In this file, it is possible to decide the style of the 

elements (such as dimensions, borders, colors, …), the layout of the page (their position in the 

page), etc. However, some code is required to read the values of the textboxes, performing the 

sum operation, and then show the new value in the third textbox. All this code would be 

written in the code-behind, inside a method that will be executed as a response to an event: it 

is triggered by clicking on the button. After clicking on the button, the page calls back to the 

server, executes the code inside the event, and then loads the page again. 
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A. My Documents 

The following image shows the different pages that were created inside My 

Documents folder. These pages are: Default page, Edit page and Visualization page. 

 

Figure 7.4: Files required for the pages in My Documents –CADEC-. 

A.1. Default page 

This page is accessed in the navigation tree by clicking on My Stiffened Panels. The 

layout of the page is shown in the image below: 

 

Figure 7.5: My Documents/Stiffened Panels/Default page of CADEC. 
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As it can be seen, this page shows all the panels that the user has in the database. The 

table includes the name of each stiffened panel, its two main dimensions (length and width), 

curvature information and stringer’s profile used. In this case it is possible to identify each 

panel not only by name but thanks to the main properties described. On the left side of each 

name there are two symbols. The first one allows the user to edit that panel. In this case, the 

user will be redirected to the Edit page with the ID of the panel selected, so that all the 

properties of that panel are loaded correctly in the new page. The second symbol is a trash bin 

in all rows except the first one. By clicking on this element it is possible to delete a panel from 

the database. Finally, the second symbol in the first row performs the same operation as 

clicking on New Stiffened Panel in the navigation tree: the user is redirected to Edit page, but in 

this case without a panel ID since a new panel will be created. 

A.2. Edit page 

This page can be accessed in two ways, as it was explained before. One approach is by 

clicking on New Stiffened Panel in the navigation tree or in the second symbol in first row of 

Default page table. In this case the page will load some default values and the user will be able 

to create a new stiffened panel. The second approach is by clicking on the first symbol of any 

row in Default page, which allows the user to edit an existent panel. In this case, the properties 

of such panel are loaded in the page, and any modifications will be updated in that panel in the 

database. The Edit page layout is shown in the following image. 
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Figure 7.6: My Documents/Stiffened Panels/Edit page of CADEC. 

 

The page has been rendered in order to create a new stiffened panel, so these are the 

default values. As it can be seen, the structure is very intuitive: introduce a name for the panel, 

then define the main dimensions, thirdly choose the materials for each entity in the panel and 

finally provide load and BC information. After all the input there are two additional rows. The 

first one contains a button that redirects the user to the visualization page in order to visualize 

the mesh. In order to avoid the problem of losing any changes made to the current panel, if 

the user clicks this button the information of the panel will be saved before redirecting the 

user to the visualization page. Otherwise the modifications would be lost and after coming to 

the page again it would only remember which panel was being edited, but it would load the 

old properties from the database. Finally, there the last row contains a save button which 

precisely allows the user to save the panel in the database. Being it a new panel, it is created 
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and saved. If the panel already exists, it updates the properties on the database. Just after all 

this table there is an additional row that allows the user to download a MSH file in order to 

visualize the mesh using gmsh [21]. This may be important in case the user’s browser does not 

support the visualization technology WebGL [58]. 

The whole table is placed inside an update panel, which allows to have asynchronous 

post backs so that only the content of page defined in this panel is updated after any event, 

which improves the response of the page. Furthermore, the page is dynamic, meaning that 

some of the elements are updated as a response to a decision made. For example, by clicking 

on the checkbox “Add curvature to panel”, a new row is added allowing the user to introduce 

the radius. Furthermore, the panel images are replaced by their counterparts: 

 

Figure 7.7: Layout of flat and curved stiffened panels containing the main dimensions. Created using 
Solid Edge®. 

 

 

Figure 7.8: Flat and curved stiffened panel images. Created using Solid Edge®. 

In addition, when the user changes the stringer’s profile, the sketch of the profile is 

replaced by the corresponding image as well as the new rows necessary to introduce the 

required parameters for stiffened panels. Moreover, were Omega profile to be selected, two 

additional rows would appear since this profile requires four dimensions instead of two in 

order to be completely defined. The different profile layouts were shown in figure 2.5. 

 

The next figure shows the additional information that the user needs to introduce 

when the panel is stiffened. 
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Figure 7.9: Stringer properties definition in CADEC, showing the “Omega” profile example.  

 

The offset property allows the user to move all the stiffeners with respect to the 

central position. If the offset is zero, the program computes the dimensions so that both 

lateral skins have the same width, which is equal to fx value mentioned in Chapter 5. However, 

if we introduce a positive offset, the stringers will be moved towards the side 2 of the panel 

(towards positive Y direction), resulting in a wider skin on the left side and a narrower skin on 

the right side. The following image illustrates this behavior: 

 

Figure 7.10: Different offset configurations. Left figure shows a stiffened panel with offset zero 
whereas right figure shows a positive offset. Created using CADEC output. 
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Finally it is important to notice that the current application is not capable of creating 

panels without lateral skins (lateral width equal to zero) or without intermediate skins 

(whenever the number of stringers is higher than two). In those cases the user should define 

dimensions in order to keep those parts as small as possible, but ensuring that the elements 

are not extremely deformed (high aspect ratios should be avoided, otherwise the accuracy of 

the solution could be strongly affected). 

Finally, it is important to mention how the page has been created. In aspx file, each 

row has been created independently in WebReusables as it will be explained later. Therefore, 

it is just necessary to add a single line of code to insert each of these elements as rows in the 

table. This way of proceeding provides several advantages. For example, the validation of the 

values introduced by the user is carried out here in this page, using an element named 

ValidateRows. The code of this element is also contained in WebReusables. This element goes 

through all the elements (currently visible) inside the table and checks whether the values 

introduced are valid according to some properties that have been already defined for each 

row. This will be illustrated later on, but it is relevant to highlight that by considering each row 

as a different element to insert in the aspx file, it is possible to define there the range of values 

that the variable can take for example, among other properties. Then, special validation code 

is required in the code-behind, which makes the program code much better structured and 

clean. There may be some special cases in which logic validation is required (for example, it is 

not possible to apply Symmetry BC to a side and apply a load to that side). Such special 

situations do require explicit code in the code-behind. 

Regarding the code behind of this page, it is quite straight forward. First, when the 

page loads some code is executed. This code is just executed the first time that the page is 

rendered (not a postback). Basically the code initializes the values of the textboxes or lists 

depending on whether a new panel is being created or a panel is being edited. Second, the 

definition of different event handlers can be found, which are methods that react to a specific 

event, and they perform the following actions: 

- Save_Click: This event handler is triggered when the user clicks on the Save image 

at the end of the table. The code inside is quite simple. First it checks whether all 

the values introduced by the user are valid (in type and range). If they are not 

valid, it does not perform any operation. If they are valid, then it executes some 

code. This code checks whether the user is creating a new panel or a panel is being 

edited. Depending on that, it calls the Update or the Insert methods that were 

previously explained in StiffenedPanel.cs class. Finally it checks whether these 

operations were carried out successfully in the DB. 

- Visualize_Click: This method is executed when the user clicks on the Visualization 

button. As in the previous example, it validates the fields in the table before 

actually running the remaining code. If the input data is valid, it creates a new 

stiffened panel object, updating all the geometric properties with the values in the 

fields (material, load and BC properties are not necessary for visualization). After 

that, the variables that will be sent to the visualization page such as node 

coordinates array, colors array, texture, etc. are declared. Then, the 

DuplicateNodes method is called, followed by a call to the CreateGeometryToDraw 
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method (both are stiffened panel class methods). These methods have been 

already explained previously in this chapter. Finally, since the response is going to 

be redirected to another page for visualization, it is important to store the values 

of these variables somewhere. Otherwise, visualization page would not be able to 

access the data. In order to do so, the variables are saved in current “Session”. The 

variables that need to be stored are: panel’s ID, its name, coordinates array, 

displacements array (which in this case are zero), texture vertices array, triangles 

connectivity array, colors array and the resize factor. Finally, once the variables 

have been stored in “Session”, the response is redirected so that the 

visualization.aspx page is loaded. 

- ShowCurvatureData: it is in charge of showing the radius row in case the checkbox 

for curvature addition is checked. Moreover, it changes the images shown to the 

user from flat panels to curved ones. 

- RadiusChanged: it computes the value of the angle form by the arc described by 

the stiffened panel, and finally it validates all the fields. The reason is that, without 

this limitation, it would be possible for the user to introduce a combination of 

panel dimensions and radius such that the resulting geometry could be almost a 

complete cylinder, or even more than 2π radians which would be impossible. 

Then, the length of the resulting arc must be restrained. The limitation imposed is 

that the angle covered by the arc could be, at the most, π radians (half of a 

cylinder). This code is executed whenever the content of the Update Panel is 

actually updated. 

- StringerTypeChanged: this code is executed whenever the user changes the 

stringer’s profile for the model. The code basically identifies which is the new 

profile selected, and updates the image to the corresponding sketch. Furthermore, 

in case Omega profile is chosen, it also adds the two extra rows for introducing top 

and bottom flanges’ widths. 

This is all for the Edit page. Now it is time to explain the Visualization page. 

A.3. Visualization page 

There will be two different visualization pages: one that will draw the mesh of the 

panel and a second one that will draw the deformed panel. The former page will be accessed 

from My Documents, from the previously explained Edit page. The latter will be accessed from 

My Chapters, after the solution of the problem has been computed.  

Hence, in this case the page will be accessed by clicking the Visualization button in the 

Edit page. Since the Edit page does not solve the buckling problem, the purpose of this 

visualization page is to draw the mesh based on the geometric parameters introduced by the 

user. Displacements were thus set to zero. A different color will be applied on the elements 

belonging to each entity: skin, bottom flange, web and top flange. 

 

  



CHAPTER 7: IMPLEMENTATION 

 

75 
 

The layout of the page can be seen in the following figure: 

 

Figure 7.11: My Documents/Stiffened Panels/Visualization page of CADEC. 

 

First, the name of the panel is displayed. Just after that, the canvas element is placed. 

As it is explained in the Visualization chapter, this canvas is the viewport where the scene will 

be drawn. In our case, the mesh of a panel will appear. There is a textbox under the canvas 

where the user can apply a different re-scaling factor by just typing the value and clicking on 

the button next to it. Since the displacements are zero in the first page, the purpose of this 
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element is not re-scaling but just refreshing the viewport in case a problem takes place. After 

that, a description about how to control and manage the object in the viewport can be found. 

Finally, there is a button in order to return to Edit page. The advantage of using this button 

instead of the navigation tree is that it will reload the panel in which the user was working on. 

Regarding the code of the pages, it differs considerably when compared with previous 

pages, specially the .aspx file. The reason is that this page contains a lot of client-side code for 

the visualization, code written in JavaScript. Further details of this code can be found in the 

Visualization chapter. The purpose here is just to describe the overall code structure of the 

page. Basically the first lines are used to import two JavaScript libraries used by WebGL [58] for 

drawing the mesh. Then WebGL code comes inside a script tag. Finally, the real HTML and 

ASP.NET code can be found, which are responsible for the layout of the page. 

The code-behind of the page is very simple. When the page loads, it retrieves the 

variables from “Session” and assigns these values to global variables. It is important to 

highlight that these global variables must be public so that JavaScript code can actually access 

them in order to draw the scene. Then, it fires the JavaScript function webGLStart(), which 

actually draws the scene inside the canvas element. Furthermore, it retrieves the text from 

resources and stores it in additional global variables so that the HTML elements can access it in 

order to print it. 

B. Chapters 

The following image shows the different pages that were created inside Chapter’s 

folder. These pages are: Default page, Buckling page and Visualization page. 

 

Figure 7.12: Files required for the pages in Chapters -CADEC-.  
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B.1. Default page 

The Default page just contains an explanation of stiffened panels and buckling analysis, 

as it can be seen in the following image. This structure is followed in the rest of chapters inside 

CADEC, where a default page provides the theoretical base to understand the computations 

behind the code, and then other pages actually perform the calculations. 

 

B.2. Buckling page 

Buckling page shares the layout employed in Edit page. This is a good example of code 

reuse, since most of the controls in the table were already created for the Edit page of 

MyDocuments. The following image shows the page appearance. 
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Figure 7.13: Chapters/Stiffened Panels/Buckling page of CADEC. 
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As it can be seen in the previous picture, the first element of the table is a dropdown 

list where the user can choose the panel that is going to submit for analysis. Then, the rest of 

the fields in the page are updated with the values of the panel properties. As in Edit page, the 

page is dynamic so images change depending on the curvature of the panel or the profile 

chosen. However, there are some modifications in the loading properties area. The application 

is not capable of solving problems with normal and shear loading at a time due to how the BC 

have been defined. Therefore, it is possible to run one loading mode at a time. If selecting 

normal loading (compression), the fields containing the shear values adopt a grey color, and 

the application will assume that their values are zero in order to guarantee that only normal 

forces are applied. If we choose shear loading, normal loading fields are disabled. 

Furthermore, if Symmetry is applied as BC in any side, automatically both loading fields are 

disabled since it is not possible to apply load under that kind of BC. All this is managed from 

the code behind, in an attempt to reduce the possible errors in the introduction of data by the 

user. 

At the end of that first table there is a button called “Calculate”, which submits the 

problem to analysis. At this point, in order to inform the user that the calculation process is 

still running, a message is displayed just below the button as shown in the next figure. The 

orange loading bar is animated so that the user can see that the server is still working. This was 

necessary since some of the problems take more than a minute to be solved, and otherwise it 

is difficult for the user to identify whether the page went frozen or it is still waiting for the 

response of the server. After the problem is being solved, the user is redirected to the 

visualization page where results are presented. 

 

Figure 7.14: Loading bar appears while the problem is being solved on the server. 

Additionally to the previous main table, there is a smaller table on the right side, which 

contains three buttons. They allow to download the corresponding files in case the user 

prefers to run the problem in another software such as BMI3 (for which it is necessary to 

download the .inp and the .dat files) or Abaqus® (.inp file). 
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Then, the .aspx file contains all the elements in the tables as in Edit.aspx file. 

Additional code is necessary to manage possible exceptions when trying to solve the problem, 

and also some code managing the loading bar that appears while waiting the response from 

the server. 

Regarding the code behind of this page, it is quite straight forward. First, when the 

page loads some code is executed. This code is just executed the first time that the page is 

rendered, not after a postback. Basically the code initializes the values of the textboxes with 

the properties of the panel chosen by default in the dropdown list. Second, the definition of 

different event handlers can be found, which are methods that react to a specific event, and 

they perform the following actions: 

- CurrentPanel_PanelChanged: This method is called when loading the page the first 

time, or every time the user changes the selected panel of the dropdown list. It 

checks in session whether the user comes from visualization page, and in that case 

it chooses by default the same panel the user was working with before submitting 

the problem to be solved. Otherwise, it chooses the first panel of the list. Then all 

the properties are updated, and in some validation is performed such as disabling 

load fields of a side that has Symmetric BC.  

- Bc_Changed: this code is executed whenever the user modifies a BC, applying the 

corresponding restrictions to the loads depending on the type chosen. 

- StringerTypeChanged: this code is executed whenever the user changes the 

stringer’s profile for the model. The code basically identifies which is the new 

profile selected, and updates the image to the corresponding sketch. Furthermore, 

in case Omega profile is chosen, it also adds the two extra rows for introducing top 

and bottom flanges’ widths. 

- RadiusChanged: as in Edit page, it computes the value of the angle form by the arc 

described by the stiffened panel, and finally it validates all the fields. The limitation 

imposed is that the angle covered by the arc could be, at the most, π radians (half 

of a cylinder). This code is executed whenever the content of the Update Panel is 

actually updated. 

- Calculate: This event is triggered when the user presses the Calculate button at the 

end of the table, and it contains most of the code of this page. After verifying that 

the input data introduced by the user is valid, it creates a new StiffenedPanel 

object that will define the problem. There is some code to manage this 

assignment. For instance, if the user’s intention is to perform a buckling analysis 

under normal loading, the fields with the shear loading values are not read. Once 

the panel object has been updated, new variables are defined to store the results 

of the problem. At this point three methods of the class StiffenedPanel.cs are 

called. First, SolveBucklingProblem method is called to find the solution of the 

problem. Once it finishes, the output is retrieved. The eigenvalues are copied 

directly into the new variables, but the displacements need some preparation in 

order to be displayed later on in the visualization page. Therefore, DuplicateNodes 

method is called as well, followed by the method CreateGeometryToDraw. Finally 

all the data is ready to be used in the Visualization page, so the variables are saved 

in “Session” and then the user is redirected to the visualization page. 
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- ClearResults: it cleans the Session objects that were created to pass the results to 

the Visualization page. It is called once just after the Buckling page loads, once all 

the information contained was already used to identify the panel that the user was 

studying before going to the Visualization page. 

- DownloadAbaqusINPFile, DownloadBMI3INPFile and DownloadBMI3DATFile share 

the same structure, and are in charge of writing on a file all the information 

required by the corresponding software to solve the problem. First they check 

whether the data introduced by the user is correct or not. Then, it creates a panel 

and updates it with the data of the user, but similarly to the Calculate event, there 

is some code to manage the exact data that is updated from the fields and the one 

that is not taken for that analysis. Then, the method GetFiles from 

StiffenedPanel.cs is called, which returns the content of each file in a variable. 

Then, depending on which file is required, the specific variable is written in a file so 

that the user can download it. 

This is all for the Buckling page. Now it is time to explain the Visualization page. 

B.3. Visualization page 

In this case the page will be accessed by clicking the Calculate button in the Buckling 

page, just after the solution of the problem has been computed. The layout of the page can be 

seen in the following figure. 
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Figure 7.15: Chapters/Stiffened Panels/Visualization page of CADEC. 

 

First, the name of the panel is displayed. Just after that, the values of the eigenvalues 

corresponding to the first five buckling modes are presented. By multiplying these eigenvalues 

times the load applied, the critical load can be obtained. Then, there is a legend containing the 

relative values of the displacements that correspond to each color in the viewport. Below that, 
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we can find the canvas element. As it is explained in chapter 8, this canvas is the viewport 

where the scene will be drawn. In our case, deformed panel corresponding to the first buckling 

mode is displayed. There is a textbox under the canvas where the user can apply a different re-

scaling factor by just typing the value and clicking on the button next to it. In that way it is 

possible to exaggerate the displacements or attenuate them in order to clarify the view. After 

that, a description about how to control and manage the object in the viewport can be found. 

Finally, there is a button in order to return to Buckling page. The advantage of using this 

button instead of the navigation tree is that it will reload the panel in which the user was 

working on. 

Regarding the code of the pages, it is almost the same as in the Visualization page 

accessed from MyDocuments. The .aspx file just contains some additional lines in order to 

define the tables above the canvas, but all the JavaScript code is the same. 

 The code-behind of the page is the same as well, except that in this case the colors are 

computed when the page loads by calling the method SetColorArray, instead of using the 

colors from Session (which would be the colors corresponding to different entities and not 

based on the deformed shape). This method does the following: 

1. Since the displacements provided by the solver are given by components (u, v w), it is 

necessary to compute the module of the total displacement vector resulting of the 

addition of the previous components: 

                       
    

    
  

2. Go through each node in the mesh to find the maximum and the minimum total 

displacement. Then the range (which is the difference between the previous two 

values) is computed. 

3. With the help of a loop it goes through all the nodes of the mesh. For each node, a 

percentage value is computed by the following formulae: 

 

               
                                        

     
 

 

4. Then, depending on the value, a color is assign as follows: 

- [0 , 25] %: Dark to Light Blue, from RGB(0,0,1) to RGB(0,1,1). 

Therefore, increasing linearly in this interval the component of 

green color. 

- (25 , 50] %: Light Blue to Green, from RGB(0,1,1) to RGB(0,1,0). 

Thus, decreasing linearly in this interval the component of blue 

color. 

- (50 , 75] %: Green to Yellow, from RGB(0,1,0) to RGB(1,1,0). 

Therefore, increasing linearly in this interval the component of red 

color. 

- (75 , 100] %: Yellow to Red, from RGB(1,1,0) to RGB(1,0,0). Thus, 

decreasing linearly in this interval the component of green color.  
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5. The values of the displacements of the legend are computed, at the percentages of 

0%, 25%, 50%, 75% and 100% using the maximum and minimum displacements as well 

as the range. 

6. The values are returned.  

This is all the important code contained within the Visualization page. 

7.2.4. WebReusables Project: code reuse 

across pages 

WEBREUSABLES is a C# project which contains all the web elements created in order to 

be used in several pages, driving code-reuse. This is with no doubt where most of new code 

was created in order to assemble the application inside CADEC’s environment. 

The project consists of different folders. Most of them correspond to a specific object 

type such as lamina, fiber or panel. Inside the folder, all the web objects that represent a 

property of that object are stored. For example, the next image shows the different classes 

that were created in order to describe a stiffened panel. 
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Figure 7.16: Files enabling code-reuse among the different pages related to Stiffened Panels in CADEC. 

 

It can be seen that there are different subfolders inside Stiffened Panel’s folder: 

- CADEC_SP: It contains the code necessary to create a row in a table that will 

represent a property of an object. It is composed by different controls: one label 

(which include the name of the property), a textbox where the user introduces the 

value, and a third column that contains information about the units of that 

property. CADECproperty_SP.cs contains all these elements and specifies the 

layout, so that all the rows have a similar appearance. The other two classes are 

derived from this one, and add some code to explain that the property is going to 

be a double precision number, or an integer. They contain more code adding the 

properties that will define this type of Stiffened panel properties, which are 

basically: 

 Property name:  text that will appear in the label. 
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 Property units:  text that will appear in the units column 

 Error message: text shown if the introduced value is not valid.  

 Tip message: text shown when the mouse arrow is on the property 

label. 

 Range error: text explaining a value-out-of-range error. 

 Maximum value: maximum allowable value for the property. 

 Minimum value: minimum allowable value for the property. 

Then, after creating these general-purpose classes, it is easier to create new 

property classes. For example, the class defining the panel’s width property can be 

created by the inheritance of the DoubleProperty.cs class (since the dimensions 

can represented by a double precision number). Then, it is just necessary to assign 

the proper values to the previous properties, in this example: 

 Property name:  “Panel Width (A)”. 

 Property units:  “mm”. 

 Error message: “The Panel’s width value is not a valid number”.  

 Tip message: “panel’s width dimension”. 

 Range error: “The panel’s width should be a positive value”. 

 Maximum value: 10.000. 

 Minimum value: 0. 

 

Of course, all these values are not directly defined in this code. They are read 

from resources, so that it is easier to modify them or to translate them into 

different languages. This is the kind of way of proceeding that enhances the 

development and growth of the website, but which requires extra code. 

- GeometricProperties, LoadingProperties, or MaterialProperties: contain different 

classes describing the main properties of the stiffened panel. Most of them inherit 

the previous Double or Integer properties’ classes. The classes in charge of 

managing material selection replace the textbox by a drop-down list element. 

Therefore, this kind of classes contains different properties. One of the most 

complex classes is StiffenedPanelLoad.cs since it contains all the controls to create 

the following table layout: 

 

 

Figure 7.17: Part of a page in CADEC generated by a single file, illustrating the power of code reuse. 
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This class requires additional methods in order to access the individual controls 

inside. For instance, there are methods that retrieve the values of the normal and 

shear loads, as well as the BC applied; there are other methods to assign values to 

them, and there are additional methods to enable/disable some of the rows. This 

is necessary in order to restrain the user to introduce load values if “symmetry” BC 

is applied on that side, which would not be possible. Another example is that it is 

not possible to run a case with normal and shear loads at a time, so depending on 

the intended analysis just one kind of loading is allowed at a time. Moreover, it 

also contains a method to change the image displayed in case the user is working 

with a curved panel. 

- Output and OutputFile: they contain the definition of the rows that display the 

eigenvalues, or the class that manages to download an INPUT file describing our 

problem that can be run in Abaqus®. 

- The rest of the classes describe additional elements such as buttons, the loading 

bar that is shown while the problem is being solved, etc.  

Apart from the previous classes, there are other classes in the folder Images in charge 

of managing the pictures display: 

 

Figure 7.18: Files that manage the integration of images in a table row, used in the different pages 
related to stiffened panels in CADEC. 

 

The code behind the classes is quite straight-forward. First a new class is created to set 

up the layout of the row. Then, in the actual class the actual name of the image as well as its 

location is added. 

As it can be seen there is a lot of code in those classes, but it is not the aim of this 

project to explain every single line of code. Most of them use ASP.NET advanced programming. 

In case further details are desired, it is recommendable to consult the books referenced in the 

bibliography. 

In addition, WebReusables project contains the resource files. It was necessary to store 

all the text appearing in the web (direct or indirectly) in resources so that it can be modified in 

the future or translated into different languages. Apart from the text, they also include the 

values defining the valid range for some of the properties. A resource file usually contains two 
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columns: the first column contains the name of the “variable”, and the second column 

contains its value or content. In that way, the variable is used throughout the code, and then 

its value is assign to other property it takes the value contained in the second column. In that 

way, it is much simpler to update a value or modify the content of a property. 



CHAPTER 8: VISUALIZATION   

 

89 
 

Chapter 8 

8. Visualization 

8.1. The need of a visualization tool 

At this point, the web application could be considered finished. It runs in a web 

environment, allowing the user to create a stiffened panel and subject it to some loads and 

boundary conditions, obtaining as a result the first five eigenvalues (and by multiplying it by 

the load, the buckling load can be easily computed). However, the buckling load is not 

completely representative by its own, especially in the design step. It indicates the load value 

at which the primary bifurcation takes place, when the instability occurs. Nevertheless, 

additional information regarding the panel deformation of at least the first mode could be very 

representative, providing very useful information. Indeed, based on that deformed shape it is 

possible to identify the weakest areas of the panel so that the designer could try to add some 

stiffness to them. This can be achieved sometimes by modifying the pitch so that skin areas are 

not excessively wide, or by modifying the dimensions or type of the stringers to increase the 

panel stiffness. 

The displacements of the first buckling mode are already computed by the solver. One 

approach could be passing these values to the client in a text or excel file, so they can be 

visualized in the client’s computer using a freeware such as gmsh [21] (alternative used by 
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SPD) or a commercial software such as Abaqus® or ANSYS®. However, this process would 

consume a lot of time for the user. A better, much more challenging approach would be to 

embed a visualization tool directly inside the application, in the web environment. In that case 

the user does not require any additional software installed in the computer. 

Therefore, in order to improve the application usefulness a visualization tool will be 

added. The first decision to be made is selecting a visualization technology suitable for our 

needs. After looking for existing visualization tools to be used on the web, none of them were 

good enough for our purpose: the visualization tool must be created almost from scratch. 

8.2. WebGL technology 

One of the most useful and universal technologies used today is WebGL [22]. It is a 

new web technology that brings hardware-accelerated 3D graphics to the browser without 

installing additional software. It is the JavaScript version of the 3D library OpenGL® ES 2.0, 

targeted as low-level 3D API for phones and other mobile devices. The language used is GSLS 

(OpenGL Shading Language) for shaders as well as JavaScript. 

WebGL is based on specific hardware architecture. The architecture assumes that a 

machine's graphics hardware is separated from its CPU. The graphics hardware likely has 

separate memory from the CPU. The graphics processing unit (GPU) specializes in running 

multiple copies of a single program at the same time. Unlike a normal CPU, these programs 

must be small and simple, but a GPU can run many, many copies of these programs 

simultaneously, making it faster than a normal CPU for graphics tasks. With this sort of 

hardware architecture, one of the biggest bottlenecks for fast 3D programs is the 

communication between the CPU and GPU.  

The general design philosophy of WebGL is based on the idea that this communication 

between CPU and GPU should be minimized. Instead of repeatedly sending instructions and 

graphics resources from the CPU to the GPU, all of this data should be copied over only once 

and kept on the GPU. This minimizes the communication that needs to happen between the 

CPU and GPU. The communication that occurs is batched together into clumps so that the GPU 

can work independently from the CPU.  

This is important in order to have a quick response in our application. Though such a 

tool does not require to run on the client side, it is strongly recommended to guarantee good 

performance. Thus, if our server can send all the necessary information to the GPU in one step, 

afterwards the data communication with our server can be minimum and all the visualization 

can take place at the client side. Let us illustrate this great advantage with a simple example. If 

the user wants to move the panel to one side of the viewport, this will requires a process of re-

drawing the panel continuously while moving the nodes, so the pixels are printed in the new 
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position. If the communication with the server is slow, this process will make the image blurry 

and intermittent. On the other hand, let us consider that all the information is sent to the GPU 

(nodes position, connectivity, shaders information, etc.) including programs that manages this 

movement. In this case, the program could run independently from the server at the client’s 

browser, and the process of re-drawing the panel after a translation or rotation could be much 

faster. Thus, it is only necessary to pass all the information once, and then all the process takes 

place at the client side. 

Now that the technology has been explained in terms of architecture, it is necessary to 

explain how WebGL works and what information requires to draw the panel. First of all, it is 

relevant to highlight that WebGL operates as a low-level language. This means that most of the 

functionalities must be implemented from zero. For instance, all the functions managing the 

rotation or translation of the view must be defined. The following paragraphs provide basic 

information about how WebGL draws and what main functions must be defined. 

8.2.1. Renderer pipeline of WebGL 

The process starts with the creation of the vertex arrays (nodes). These are arrays that 

contain vertex attributes like the location of the vertex in the 3D space and information about 

the vertex' texture, color or how it will be affected by lighting (vertex normal). These arrays 

and the information they contain are created in JavaScript in one or more of these ways: 

processing files that describe a 3D model (for example .obj files), procedurally creating the 

data from scratch, or using a library that provides vertex arrays for geometrical shapes. In our 

case, since nodes coordinates are known from the mesh, these values will be passed from the 

server to the JavaScript code. Basically, to define a vertex just three coordinates are required. 

Therefore, the coordinates of all the nodes will be passed (following a specific order) from the 

server. 

Then the data in the vertex arrays is sent to the GPU by feeding it into a set of one or 

more vertex buffers. When a rendering job is submitted, we also have to supply an additional 

array of indices that point to the vertex array elements. WebGL has three main entity types: 

points and lines for 2D and triangles for 3D. Most of the 3D objects that are drawn are actually 

a composition of small triangles. In our case, the connectivity of these triangles will be 

computed programmatically at the server and the passed to JavaScript code. However, there 

are no lines between triangles so a uniform surface is obtained. In order to add some clarity to 

the panel and information about the mesh, dark lines defining the border of each quadrangle 

of the mesh will be added. Each quadrangle will be composed of eight triangles. The reason 

why 2D lines are not used is because just one type of entity can be defined at a time in a 

shader, and using several shader programs considerably increases the difficulty of the 

visualization tool. Then, in order to keep things as simple as possible, a texture will be used for 

that purpose.  

The GPU begins by reading each selected vertex out of the vertex buffer and running it 

through the vertex shader. The vertex shader is a program that takes a set of vertex attributes 

as inputs and outputs a new set of attributes. At a minimum, the vertex shader calculates the 
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projected position of the vertex in screen space. But it can also generate other attributes such 

as color or texture coordinates for each vertex. For our panels, both color and texture will be 

defined. Color will be computed in the server or when the page loads, depending on the page. 

If the code is run from MyDocuments in order to see the mesh, a different color for each entity 

in the panel (skin, bottom flanges, webs and top flanges) will be used for clarity. On the other 

hand, if page is ran from MyChapters, the intention is to visualize the deformed panel. Thus, 

the colors will be computed using a range of colors from dark blue to red, corresponding from 

displacement zero to the maximum value. As it was mentioned in the previous paragraph, a 

texture will be used to define mesh elements borders. This texture is a white square with a 

black frame at the borders. How all this works will be explained later on. All the data regarding 

the colors and textures will be passed to the JavaScript code. 

The GPU then connects the projected vertices to form triangles. It does this by taking 

the vertices in the order specified by the indices array and grouping them into sets of three. 

The indices array, which contains the connectivity, is passed from the server as well. 

The rasterizer takes each triangle, clips it, discards parts that are outside of the screen, 

and breaks the remaining visible parts into pixel-sized fragments. The vertex shader's outputs 

for other vertex attributes are also interpolated across the rasterized surface of each triangle, 

assigning a smooth gradient of values to each fragment. For example, if the vertex shader 

assigns a color value to each vertex, the rasterizer will blend those colors into an appropriate 

color gradient across the pixelated surface. This means that, at least, the color interpolation 

between nodes is handled by WebGL and luckily we do not need to manage it. 

The generated pixel-sized fragments then pass through another program called the 

fragment shader. The fragment shader outputs color and depth values for each pixel, which 

then get drawn into the framebuffer. Common fragment shader operations include texture 

mapping and lighting (in our case lightning will not be added). Since the fragment shader runs 

independently for every pixel drawn, it can perform the most sophisticated special effects; 

however, it is also the most performance-sensitive part of the graphics pipeline. As with the 

vertex shader, you can code your own fragment shader or use one provided by a WebGL 

library. 

The framebuffer is the final destination for the rendering job's output. A framebuffer is 

more than a single 2D image: in addition to one or more color buffers, a framebuffer can have 

a depth buffer and/or stencil buffer, both of which optionally filter fragments before they are 

drawn to the framebuffer. Depth testing discards fragments from objects that are behind the 

ones already drawn, and stencil testing uses shapes drawn into the stencil buffer to constrain 

the drawable part of the framebuffer, "stencilling" the rendering job. Fragments that survive 

these two filters have their color value alpha blended with the color value they're overwriting. 

Final color, depth, and stencil values are drawn into the corresponding buffers. The buffers' 

outputs can also be used as texture inputs to other rendering jobs.  

The next image shows all the previous process and how does WebGL and the graphic 

processor create the final scene. 
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Figure 8.1: Two schemes representing the renderer pipeline of WebGL. Sources: [1] and [22]. 
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8.2.2. Definition of the different variables used 

by WebGL 

Then, there are some variables that must be computed at the server side and then passed 

to the JavaScript code so they are added to the rest of WebGL code. These variables basically 

are: 

 VertexPositionBuffer: one dimensional array which contains the coordinates of each 

of the N nodes that define the panel. Data is arranged following the next sequence: 

[X1, Y1, Z1, X2, Y2, Z2,... ,Xn, Yn, Zn]. It is important to mention that more nodes are 

required to draw the panel than those contained in the mesh. The reason is that, in 

order to apply the texture, it is not possible to have one single node shared by more 

than one quadrangle element. This occurs because in order to apply the texture, each 

vertex must have some information regarding how the texture is applied. Since the 

texture is applied separately to each element, one shared node would have to contain 

multiple information as it belongs to several elements, which is not possible. 

Therefore, the amount of nodes required will be the number of elements times nine 

nodes per element.  

It is important to notice that the final coordinates are computed 

programmatically in JavaScript code, in order enable re-sizing of the deformed shape 

without requiring a postback. Then, two arrays are actually passed to JavaScript code: 

one for the initial coordinates, and a second one for the displacements. Both arrays 

are managed in the server so they are sent with the structure previously discussed. 

Then, in the client side code, the final coordinates are computed as: 

 

[ X, Y, Z] =  [ X0 , Y0, Z0] + RSfactor · [ u , v, w] 

 

Where the subindex zero stands for initial values, RSfactor determines how 

displacements are rescaled, and u,v,w are the displacements in x,y,z respectively. 

 

 IndicesBuffer: one dimensional array which contains the connectivity for the triangles 

to be drawn. This connectivity is defined by setting the connectivity inside an element, 

and then going through all the elements contained in the mesh. For instance, the 

connectivity for this element would be: [1, 5, 9, 1, 9, 8, 2, 6, 9,…, 4, 9, 7]. 
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Figure 8.2: Scheme of a nine-node mesh element division into triangles for visualization. 

 

 ColorsBuffer: one dimensional array which contains the color information for each 

vertex. Colors are defined in WebGL using the RGBA color space, which means that 

four parameters must be defined for each vertex. The first three parameters are the 

corresponding amount of Red, Green and Blue that generates our color. These 

parameters range from 0 to 1. The final parameter, which also ranges from 0 to 1 is 

alpha, which is a measure of the opacity of the color. Alpha equal to 1 means fully 

opaque, whereas alpha equal to 0 would be transparent. As color is defined by vertex, 

the color array would have the following structure: [R1, G1, B1, A1, R2, G2, B2, A2,…, 

Rn, Gn, Bn, An]. 

 

 TextureBuffer: one dimensional array which contains the information about how the 

texture is applied to the elements. In our case, this texture is a white square with black 

frame. Then, in order to apply it to each element, it is necessary to tell WebGL how to 

match the pixels of the texture with the pixels in the elements. In this case we will 

define nine pairs of values per quadrangular element (one pair per vertex). What these 

texture coordinates specify is where, in cartesian x, y coordinates, the vertex lies in the 

texture. For the purposes of these coordinates, we treat the texture as being 2.0 wide 

by 2.0 high, so (-1, -1) is at the bottom left, (1, 1) the top right. The conversion from 

this to the real resolution of the texture image is handled for us by WebGL. The image 

below shows the texture coordinates that must be specified for each quadrangular 

element. All these coordinates are defined in order, from vertex 1 to vertex N, 

following the structure: [X1, Y1, X2, Y2 ,…, Xn, Yn]. 
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Figure 8.3: Texture coordinates for each node in a nine-node element. 

 

The interesting thing about using this texture is that color black in RGB form is the 

absence of color (0, 0, 0), whereas white is the opposite (1, 1, 1). Then, if we define the final 

color for each pixel in the fragment shader as follows: 

[ R, G, B]final =  [ R, G, B]color  ·  [ R, G, B]texture 

We are then able to draw dark lines in the border of the quadrangular element. When 

a pixel lays in the frame of the texture, the result of the previous operation is (0, 0, 0) –black 

color-, no matter which color we had previously. In addition, when a pixel lays on the white 

zone of the pixel, the resulting operation is the exact same color (multiplying by one does not 

alter the values). Hence, this work around allows us to draw black lines at the element borders 

without the need of defining multiple shader programs. The only minor drawback of this 

approach is that if the elements are too slim, the lines of the small edges are wider than those 

in the large edges. However, it is just a matter of aesthetics, which does not affect the main 

objective of our tool. 

8.2.3. Description of the JavaScript code 

Finally, it is time to actually describe our tool. Instead of talking about the code itself, a 

review of the structure of the code will be presented: 

 

i. The very first step is just including two separate JavaScript files (.js) in the page, so 

some of the functions defined there can be used. One of the files includes some utils 

for WebGL that will reduce the code to initialize it. The second file includes the 

definition of several operations with matrices such as rotation, translation, 

determinant, normalization,… These functions were separated into a different file as 

libraries in order to encourage code-reuse as well as reducing the code inside the 

visualization page. 
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ii. Second, define the vertex and fragment shaders, along with their attributes. The code 

for each shader will be placed into a different script block. 

iii. Then, some code is required in order to initialize WebGL context. At this point we try 

to initialize WebGL inside the canvas. 

iv. After that, shades are loaded into WebGL program object, getting the shaders and 

initializing them. 

v. Define the model-view matrix and the projection matrix, along with a specific function 

that push them over the JavaScript/WebGL divide so that the shaders can be seen. The 

model-view matrix basically records all the transformations that we perform on the 

object, such as zoom, rotation or translation. The projection matrix is in charge of 

adding perspective to the object (elements further of the user view are smaller than 

those closer to the view), which provides realism to the object. 

vi. Next, some extra functions are defined in order to provide our application with 

interesting features that enhance the visualization of the object. These functions 

include all the code to answer to keyboard and mouse events. Thanks to this 

functionality, mouse wheel can be used to zoom in or out, left click and mouse 

movement allow the user to rotate the panel and, finally, by pressing some keys it is 

possible to move the panel as well. All together they form an excellent tool for 

postprocessing results. 

vii. Load up buffers containing information about the objects in the scene. At this point is 

when all the data from the server has already been embedded here, so that it is 

available for the GPU later on. The buffers include the previous variables that were 

mentioned before, such as vertex positions, connectivity and colors. 

viii. Next step is defining a function which actually draws the scene. This function defines 

the viewport dimensions and characteristics, applies the matrices over the object, and 

actually draws the triangles, vertices etc. 

ix. Define a function that will set everything up at the first moment (initialization). 

After the set up, it calls a loop that is drawing the scene repeatedly, and this loop will 

never stop. This is the reason why while rotating the object, the panel is being printed 

all along the process, in opposition to printing just the final position.  

x. Provide HTML code required to display it. The main HTML control that is going to be 

used is the canvas. The canvas element is somehow the viewport where the whole 

scene will be displayed. 
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Chapter 9 

9. Tool validation 

This chapter will test the accuracy of the results provided by our tool. First, using 

Classic Plate Theory some of the simplest cases whose approximate solution is known will be 

subject to analysis. Second, results obtained after analyzing a curved plate will be compared to 

those provided by commercial Finite Element software found in literature. Finally, in order to 

validate the application successfully, laboratory tests of stiffened panels subject to 

compression will be simulated with CADEC so results can be compared to experimental data 

found in the literature. 
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9.1. Validation with theoretical expressions 

of Classical Laminated Plate Theory 

(CLPT) 

9.1.1. Flat Plates subject to compressive loads 

A plate is a flat structural element having two dimensions much larger than the 

thickness. For most shell problems, the in-plane stress resultants Nx, Ny and Nxy can be 

obtained using only equilibrium equations. However, this is not the case for plates, in which 

moments Mx, My and Mxy cannot be found from the applied loads without specifying the 

material and the thickness. For this reason, in preliminary design some approximate methods 

which are valid only for particular cases are used. Normally this preliminary design is followed 

by a refined Finite Element Analysis. Since the aim of our tool is to help in the preliminary 

design, it should obtain similar results than those derived from the theoretical approximated 

expressions. 

The first objective is to verify our tool’s performance for analyzing flat plates under 

compressive loading. Different plate dimensions as well as BC and loading layouts will be 

considered, and the results will be compared to those computed with Classic Plates Theory. 

The analytical expressions have been obtained from the literature [7]. Since there are no 

stringers, BC and loads will be applied just on the skin.  

The solutions predicted by the expressions found in the literature [7] are based on the 

assumption that the laminates are symmetric and specially orthotropic with [B] = [0] and     = 

    = 0. For balanced symmetric laminates with non zero values for     and    , the 

equations may predict erroneous results.  

The same laminate will be used for all these cases. It will be formed by glass/epoxy 

laminas with the following properties: 

Lamina properties 

   (GPa) 97.30 

   (GPa) 6.99 

    0.28 

    (GPa) 2.964 

Table 9.1: Lamina properties for all flat plates cases. 
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The properties of the laminate are summarized in the following table: 

Laminate properties 

Stacking sequence [90/0]s 

Lamina thickness (mm) 0.1 

Table 9.2: Laminate properties used in all flat plates cases. 

The following theoretical expressions use the components of the [D] matrix -bending 

stiffness matrix-, which for the previous laminate are summarized in the next table. 

Bending stiffness matrix components (Mpa mm3) 

                        

98.040 10.504 461.328 0 0 15.808 

Table 9.3: Summary of the resulting coefficients of the bending stiffness matrix [D], which are 
necessary to compute the theoretical critical buckling load. 

In order to ensure units coherency, dimensions will be introduced in millimeters, and loads in 

N/mm. 

A. Flat plate with simply supported boundary 

The buckling load per unit length of a flat plate simply supported around the boundary 

and subject to one direction loading can be computed with the following expression 

(expression 11.4 in [7]): 

     
      
  

     
   
   

 
 

 
 
 

    
         

   
  

 

  
  
 

 
 
 

  

Where m is the number of waves of the buckled shape along the loading direction. This 

number can be computed as the nearest integer to the real number   : 
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The input data considered for this case is the following: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature None Side 1 SS 0 0 

StringersNum 0 Side 2 SS 1 0 

Width (A) 100 Side 3 SS 0 0 

Length (B) 100 Side 4 SS 1 0 

Table 9.4: Loads, BC and geometry input for plate A in CADEC. 

Which result in a   = 1.47, so that m=1 (first mode). The solution predicted by the theoretical 

expressions is: 

          

 

And the results obtained with CADEC are: 

          

Producing the following deformation plot of the plate. 
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Figure 9.1: Buckling results for a flat plate with simply supported boundary subject to uniaxial 
compression using CADEC. 

The solution predicted by our application for this case is almost the same as the one 

predicted theoretically, with a difference of 0.12%. 
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However, were the size of the plate such that a>>b, then the buckling load could be 

obtained by using the following equation (equation 11.6 in [7]): 

    
    

  
                        

If a=500 and b= 100, the solution predicted by the theoretical expressions is: 

          

And the results obtained with CADEC are: 

          

Leading to the deformation plot of the plate shown in next page. 
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Figure 9.2: Buckling results for a slender flat plate with simply supported boundary subject to uniaxial 
compression using CADEC. 

 

The difference in results for this case is 3.99%. 
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B. Flat plate with clamped boundary 

The buckling load per unit length of a flat plate clamped around the boundary (but in-

plane displacements enabled) and subject to one direction loading can be computed with the 

following expression (expression 11.11 in [7]) as long as the dimensions satisfy that     > 4 : 

     
  

  
                                     

 

The input data considered for this case is the following: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature None Side 1 CC 0 0 

StringersNum 0 Side 2 CC 1 0 

Width (A) 500 Side 3 CC 0 0 

Length (B) 100 Side 4 CC 1 0 

Table 9.5: Loads, BC and geometry input for plate B in CADEC. 

Which result in a theoretical critical buckling load of: 

           

And the results obtained with CADEC are: 

          

Being the deformation plot of the plate shown in next page. 
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Figure 9.3: Buckling results for a flat plate with clamped boundary subject to uniaxial compression 
using CADEC. 

It leads to a difference of 13.07%. Later on this case will be run analyzing just one 

fourth of the panel and applying symmetric BC. In that case, since the refinement of the mesh 

increases, the solution obtained converges to the theoretical value. 
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C. Resolution of previous cases applying symmetric 

BC 

It is possible to apply symmetry BC to any side of the panel. This allows the user to 

analyze a smaller portion of mesh in order to obtain the same results. Given that the tool is 

conceived to be used in preliminary design, the mesh is quite coarse so the time saved by 

analyzing half a model or one quarter could not be so important. However, in finer meshes this 

methodology could provide almost the same results saving hours or even days in terms of 

time-consumption. Moreover, it is possible to spend the same amount of time for solving the 

problem but still get a more accurate result, since the same mesh represents one fourth of the 

model instead of its whole set.  

C.1. Case A: flat plate with simply supported boundary 

The input data considered for this case is the following: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature None Side 1 SS 0 0 

StringersNum 0 Side 2 SYM 0 0 

Width (A) 50 Side 3 SYM 0 0 

Length (B) 50 Side 4 SS 1 0 

Table 9.6: Loads, BC and geometry input for plate D.1 in CADEC. 

For this model, the buckling load predicted by CADEC is: 

          

Which can be compared to the results previously predicted by the theoretical expressions: 

          

Generating the following deformation plot of the plate. 
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Figure 9.4: Deformed shape of a flat plate with simply supported boundary applying symmetric 
boundary conditions using CADEC. 

 

The results in this case are just 0.03% different. 

C.2. Case B: flat plate with clamped boundary 

The input data considered for this case is the following: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature None Side 1 CC 0 0 

StringersNum 0 Side 2 SYM 0 0 

Width (A) 250 Side 3 SYM 0 0 

Length (B) 50 Side 4 CC 1 0 

Table 9.7: Loads, BC and geometry input for plate D.2 in CADEC. 
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For this model, the buckling load predicted by CADEC is: 

          

Which can be compared to the results previously predicted by the theoretical expressions: 

           

Generating the following deformation plot of the plate: 

 

Figure 9.5: Deformed shape of a flat plate with clamped boundary applying symmetric boundary 
conditions using CADEC. 

 

As we can see, since mesh has been refined, the difference has drop down from 

13.07% when analyzing the whole panel to just 4.71% when focusing on one fourth of it, and 

applying symmetric BC. It is possible to see how the deformed shape of the panel is consistent 

with the one without symmetry: the buckling mode of the total panel was in the form of five 

half-waves in the largest direction, whereas in this case the model represents only two and a 

half half-waves in that direction (since only a quarter of the panel is being analyzed). 
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D. Flat plate subject to biaxial loading 

In this case a flat plate with its boundary simply supported subject to compressive 

loading in directions x and y will be considered. The buckling load can be predicted by the next 

formulae (expression 11.15 in [7]): 

     
  

  
 
    

                   
 

         
 

Where, 

       

             

  
  

  
 
  
  

  
    

The parameters m and n represent the number of half-waves in “x” (panel’s width 

direction) and “y” (panel’s length direction). The critical buckling load is obtained for the pair 

of values for m and n such that the previous expression’s result is minimum. 

The input data considered for this case is the following: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature None Side 1 SS 1 0 

StringersNum 0 Side 2 SS 1 0 

Width (A) 100 Side 3 SS 1 0 

Length (B) 100 Side 4 SS 1 0 

Table 9.8: Loads, BC and geometry input for plate E in CADEC. 

Which result in a theoretical critical buckling load of: 

           

And the results obtained with CADEC are: 

          

Leading to the deformation plot of the plate shown in next page. 
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Figure 9.6: Deformed shape of a flat plate with simply supported boundary under biaxial compression 
using CADEC. 

 

The difference in this case is just 0.12%. 
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9.2. Validation of a curved panel subject to 

compression analyzed with ANSYS 

The application allows the user to create plates or stiffened panels with a certain 

curvature. These structural elements are used commonly in the airspace industry, where the 

aircraft wings and its fuselage are not made exclusively of flat elements. There are special 

analyses for flat and cylindrical elements in the literature, but it is not that easy to find 

methodologies capable of predicting the buckling load of smoothly curved panels. However, as 

it was explained in Chapter 5, the solver employed by CADEC assumes that the mesh elements 

are flat, so in order to obtain reasonable results, it is important to highlight that the curvature 

should be low (moreover considering the coarse mesh used in the application). 

In order to validate the results provided by our application, a curved plate made of 

steel and subject to uniaxial compression will be studied. Results will be compared to those 

obtained by the commercial finite element analysis program ANSYS®, provided by Le Tran in 

[31]. 

9.2.1. Curved panel analyzed with ANSYS 

The plate under analysis is shown in the following figure: 

 

Figure 9.7: Layout of the curved panel analyzed with ANSYS®. Source: Figure 3 of [30]. 

 

The plate has dimensions of 1500 x 1500 mm, with a radius of curvature of 4500 mm 

and thickness of 20 mm. The plate is loaded with a uniformly distributed load along the curved 

edges. The plate is simply supported on unloaded edges (sides CD and AB), and it is clamped 

on the loaded edges (sides AC and BD). 
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The material properties of the steel used in the simulation are E = 210 GPa and   = 0.3. 

Since steel is an isotropic material, the way of creating this type of material within CADEC will 

be explained in the next section. 

The mesh employed in this simulation is 40 first order quadrangular elements. In order 

to achieve a similar result with CADEC, it is important to try to get a mesh as similar as possible 

to the one used by ANSYS®. 

The solution obtained when running the previous case with ANSYS® was provided by 

Le Tran [31] in terms of the stress resulting from loading the plate with the critical buckling 

load: 

              

In the next section it will be explained how to model this case with CADEC. 

9.2.2. Curved panel analyzed with CADEC 

First of all it is necessary to define the material properties of the steel. In order to 

create isotropic materials within CADEC, it is just necessary to remember its definition (in 

isotropic materials, material properties are not dependent on the direction). Therefore,     = 

  ,     =     and     
  

        
  . The values are summarized in the next table: 

Lamina mechanical properties 

   (GPa) 210 

   (GPa) 210 

    0.3 

    0.3 

    (MPa) 80770 

Thickness (mm) 20 

Table 9.9: Mechanical properties of the lamina used in CADEC for the curved panel case. 

Once the lamina and the laminate have been defined (the laminate just contains one 

steel lamina of 20 mm thickness), we are ready to define the plate. At this point it is important 

to plan how it is more convenient to model the plate so that the mesh is as similar as possible 

to the one of ANSYS®. By default, for square plates CADEC employs 4x4 second order 

quadrangular elements. Thus, 16 elements will be used. Since they are second order elements, 

the accuracy of the solution should be similar to the one provided by a mesh of 8x8 first order 

elements. Even though this solution should be similar to the one provided by ANSYS®, a 

quarter of the plate will be studied in order to refine even more the mesh and try to converge 

to the real solution. Thus, by analyzing a quarter of the plate using 4x4 second order elements, 

the accuracy of the results should be similar to the ones obtained simulating the whole plate 

with a mesh of 8x8 second order elements (about 16x16 first order elements). 
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 The geometric values, BC and load configurations are summarized in the next table: 

Geometric Parameters  BC 
LOADS 

Nr Ns 

Curvature 4500 Side 1 CC 1 0 

StringersNum 0 Side 2 SS 0 0 

Width (A) 750 Side 3 SYM 0 0 

Length (B) 750 Side 4 SYM 0 0 

Table 9.10: Loads, BC and geometry input for the curved plate in CADEC. 

After running the problem with CADEC, the first eigenvalue obtained is: 

           

And from this value it is possible to calculate the critical buckling load per unit length 

as follows (critical linear pressure): 

                   

                                     

In order to compare the previous result with the literature it is necessary to compute 

the critical stress: 

     
          

         
 

     
          

     
             

On the other hand, the buckling load per unit length obtained with ANSYS® in [31] was: 

              

 

Which results in a difference of: 
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Which confirms the accuracy of the application. The outcome provided by CADEC is 

shown in next figure, including the deformation plot of the panel: 

 

Figure 9.8: Buckling results using CADEC of the curved panel subject to axial compression described in 
[31], using symmetry. 
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And the deformation plot of the whole panel would be corresponding to the first 

buckling mode would be: 

 

Figure 9.9: Deformed shape of the curved panel subject to axial compression described in [31] (whole 
model) using CADEC. 
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9.3. Validation of flat stiffened panels 

using experimental data 

9.3.1. Flat stiffened panel with hat stringers 

In order to validate our application with stiffened panels, the first case under 

consideration is the one presented by Faruk Elaldi in [17, 18]. In this project, buckling and post-

buckling behavior of a hat stiffened composite panel is analyzed both using FE models and 

experimental data. The panel is subject to uniaxial compression in the direction of the 

stiffeners.  

The panel subject to study has the following layout: 

 

Figure 9.10: Layout of the stiffened panel with three hat stringers. Source: Figure 2 of [17]. 

 

 

Figure 9.11: Hat stringers profile layout. Source: Figure 1 of [18]. 
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The geometric properties of the panel and stringers are summarized in the next table. 

Note that some of the values have been rounded for simplicity .In the FE model shell elements 

are being used, and therefore the distances should be from the mid-surface of each laminate. 

Then, since thicknesses are not taken into account in the distances, dimensions do not have to 

be exact (we are already neglecting the thicknesses of the laminates): 

Panel dimensions Stringer geometry 

Curvature None Profile Omega (Hat) 

Length(B) 560 Stringer Height 39 

Width (A) 554 Stringer Total Width 102 

Stringers Number 3 Top Flange Width 41 

Pitch 203 Bottom Flange Width 25 

Table 9.11: Geometry of the Hat-stiffened panel introduced in CADEC. 

Notice that panel total width has been set so that the sub-skins on the free edges have 

a width of 23 instead of 23.5 mm. Despite the fact that the Length of the panel shown in figure 

9.13 is 630 mm, when loading the panel both sides 1 and 3 are clamped, so the effective length 

after adding the clamping devices is just 560 mm.  

The stiffened panel has been manufactured with Hercules unidirectional IM7 carbon 

fiber pre-impregnated with Cytec’s Rigidite 5250-4 resin (graphite/epoxy). The mechanical 

properties of such material are shown in the next table: 

Lamina material properties 

Lamina mechanical properties Lamina strength values 

E1T (GPa) 179.5 F1T (GPa) 3.068 

E1C (GPa) 138.4 F1C (GPa) 1.684 

E2T (GPa) 10.6 F2T (GPa) 0.0482 

E2C (GPa) 13.3 F2C (GPa) 0.2576 

G12 (GPa) 5.0 F6 (GPa) 0.1382 

ν12 0.3   

Table 9.12: Mechanical properties of the lamina for the Hat-stiffened panel. 

And the laminates properties can be obtained considering the following stacking sequences: 

Skin SS 

(12 plies) 

Bottom Flange SS 

(5 plies) 

Top Flange SS 

(26 plies) 

Web SS 

(12 plies) 

[±45/0/±45/90]S [±45/90/±45] [±45/04/90/03/±45/0]S [±45/90/0/±45]S 

Table 9.13: Stacking sequence (SS) of the different laminates forming the Hat-stiffened panel, and 
their area of application. 
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The thickness of each ply can be extracted from the figure 9.14 using the thickness of 

the skin (or the thickness of skin plus bottom flange laminate), resulting in 0.125 mm. 

Finally, it is necessary to represent accurately the loading and BC so that they are as 

similar as possible to the laboratory test conditions. The author explains that the panel was 

subject to an increasing linearly distributed compressive load in sides 1 and 3 until the ultimate 

failure of the panel occurred. Then, a unitary value for the load is going to be applied. As 

explained before, edges 2 and 4 (parallel to stringer’s longitudinal direction) are free, and sides 

1 and 3 are clamped. It is not clearly specified whether the load is applied just on the skin or 

both on skin and stringers. However, from the image of the test it seems reasonable to assume 

that it is loaded just on the skin. These conditions are summarized in the following table: 

 BC 
LOADS 

Nr Ns 

Side 1 CC 1 0 

Side 2 FREE 0 0 

Side 3 CC 1 0 

Side 4 FREE 0 0 

Table 9.14: Load and BC applied on each side of the Hat-stiffened panel. 

After running the problem with CADEC, the first eigenvalue obtained is: 

          

And from this value it is possible to calculate the critical buckling load as follows: 

                          

Where: 

    first eigenvalue. 

  : load per unit length applied to the panel. 

              : total length where    is applied. (in this case is the length of sides 1 or 3) 

 

Substituting in the previous expression, the critical buckling load results: 

                                  

 On the other hand, the buckling load obtained from the experimental test in [17] was: 
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Which results in a difference of: 

         

Proving the accuracy of the application. Moreover, the author mentions in [17] that, 

when subject to that load, the skin bay (intermediate skins) buckled into five half-wave 

lengths, which is the exact buckling mode predicted by our application. The outcome provided 

by CADEC is shown in next figure, including the deformation plot of the panel. 

 

Figure 9.12: Buckling results of the stiffened panel with three hat stringers using CADEC. 
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9.3.2. Flat stiffened panel with JC stringers 

The second case that will be studied is also presented by Faruk Elaldi in [18]. In this 

project, buckling and post-buckling behavior of a Z stiffened composite panel is analyzed both 

using FE models and experimental data. The panel is subject to uniaxial compression in the 

direction of the stiffeners.  

The panel subject to study has the following layout: 

 

 

Figure 9.13: Layout of the stiffened panel with three JC stringers. Source: Figure 2 of [18]. 

 

 

 

Figure 9.14: JC stringers profile layout. Source: Figure 1 of [18]. 
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The geometric properties of the panel and stringers are summarized in the next table. 

Note that some of the values have been rounded for simplicity as in the previous case: 

Panel dimensions Stringer geometry 

Curvature None Profile JC 

Length(B) 480 Stringer Height 30 

Width (A) 450 Stringer Total Width 50 

Stringers Number 3 Top Flange Width - 

Pitch 160 Bottom Flange Width - 

Table 9.15: Geometry of the JC-stiffened panel introduced in CADEC. 

Notice that panel’s total width has been set so that the sub-skins on the free edges 

have a width of 40 mm. Despite the fact that the Length of the panel shown in figure 9.16 is 

550mm, when loading the panel both sides 1 and 3 are clamped, so the effective length after 

adding the clamping devices is just 480 mm. Furthermore, our application contains a definition 

of “JC” profile in which top flange width is computed to have the same width as each of the 

bottom flanges, so in this case it would be 25 mm wide instead of the 20.4 mm shown in the 

figure. However, results should not be affected importantly by this small correction. 

The stiffened panel has been manufactured with Hercules unidirectional IM7 carbon 

fiber pre-impregnated with Cytec’s Rigidite 5250-4 resin (graphite/epoxy). The mechanical 

properties of such material are shown in the next table: 

Lamina material properties 

Lamina mechanical properties Lamina strength values 

E1T (GPa) 179.5 F1T (GPa) 3.068 

E1C (GPa) 138.4 F1C (GPa) 1.684 

E2T (GPa) 10.6 F2T (GPa) 0.0482 

E2C (GPa) 13.3 F2C (GPa) 0.2576 

G12 (GPa) 5.0 F6 (GPa) 0.1382 

ν12 0.3  

Table 9.16: Mechanical properties of the lamina for the JC-stiffened panel. 

And the laminate properties can be obtained considering the following stacking sequence: 

Skin SS 

(12 plies) 

Bottom Flange SS 

(5 plies) 

Top Flange SS 

(26 plies) 

Web SS 

(12 plies) 

[±45/0/±45/90]S [±45/90/±45] [±45/04/90/03/±45/0]S [±45/90/0/±45]S 

Table 9.17: Stacking sequence (SS) of the different laminates forming the JC-stiffened panel, and their 
area of application. 
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The thickness of each ply can be extracted from the figure 9.17 using the thickness of 

the skin (or the thickness of skin plus bottom flange laminate), resulting in 0.125 mm. 

Finally, it is necessary to represent accurately the loading and BC so that they are as 

similar as possible to the laboratory test conditions. The author explains that the panel was 

subject to an increasing linearly distributed compressive load in sides 1 and 3 until the ultimate 

failure of the panel occurred. Then, a unitary value for the load is going to be applied. As 

explained before, edges 2 and 4 (parallel to stringer’s longitudinal direction) are free, and sides 

1 and 3 are clamped. These conditions are summarized in the following table: 

 BC 
LOADS 

Nr Ns 

Side 1 CC 1 0 

Side 2 FREE 0 0 

Side 3 CC 1 0 

Side 4 FREE 0 0 

Table 9.18: Load and BC applied on each side of the JC-stiffened panel. 

After running the problem with CADEC, the first eigenvalue obtained is: 

          

And from this value it is possible to calculate the critical buckling load as follows: 

                          

                                   

 

 On the other hand, the buckling load obtained from the experimental test in [18] was: 

             

Which results in a difference of: 

         

Again, the application was capable of predicting the buckling load with great accuracy. 

The outcome provided by CADEC is shown in next figure, including the deformation plot of the 

panel. 
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Figure 9.15: Buckling results of the stiffened panel with three JC stringers using CADEC. 
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9.3.3. Flat stiffened panels with J stringers 

The last case that will be studied is presented in [11]. In this project five stiffened 

panels with three different geometries are tested in compression beyond initial buckling to 

collapse. Due to the incapability of reproducing the exact geometry of the experiment with 

CADEC, larger errors are expected than in the previous cases. However, the approximated 

models will be similar enough to expect reasonable results.  

 

A. Experimental results 

The panels subject to study have the following profiles: 

 

Figure 9.16: Layout of the three different configurations of stiffened panel using J stringers. Source: 
Figure 2 in [11]. 

 

The previous image shows the layout of the three different configurations. First panel 

has 3 stringers, and the other two have four. As it can be seen in the figure, the different 

between the last two is mainly the orientation of the J stiffeners. The symmetric panel can just 

be simulated by CADEC using symmetry boundary condition and studying half model. 

 

The geometric properties of the experimental specimens are summarized in the 

following table, which are slightly different from the ones introduced in CADEC, as it will be 

explained later. 
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Geometric properties (Real dimensions) 

Case 1: 3J Case 2: 4J-Asym Case 3: 4J-Sym 

Width A (mm) 300 260 256 

Length B (mm) 500 400 410 

Num of stringers 3 4 4 

    (mm) 35 25 23 

    (mm) 122.25 62 72 

   (mm) 18.5 18.5 10 

Pitch (mm) 140.75 80.5 82 

Table 9.19: Geometry of the three  experimental different J-stiffened panels. 

The material used both for the skin and the stringers is Aluminum, and the thickness is 

of 1.45 mm both for stringers and skin. They were manufactured separately with a tolerance in 

all dimensions but thickness of ±1 mm, and then they were joined using Loctite Multi-bond 329 

adhesive and 7386 Activator, with rivets to position and secure the stiffener during curing. 

Material properties are summarized in the following table: 

Aluminum stress-strain curve 

  (MPa)   (strain)   (GPa) 

0 0 75 

70 1000 70 

137 2000 64 

200 3000 62 

207 3250 52 

227 3500 47 

248 4000 30 

Table 9.20: Mechanical properties of Aluminum used in the three J-stiffened panels. 

Since it is not possible to represent the non linearity of the material within CADEC, a 

value of      GPa will be considered, and a Poisson ratio of ν = 0.3. 

Finally, the compression of the panel is carried out by the use of a pair of steel mounts 

of semi-circular cross-section, placed at either end of the panel to represent the simply-

supported end condition. The centre of rotation of these mounts was aligned to coincide with 

the neutral axis of each panel using a number of positioning bolts. The other two edges are 

free. 
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The results provided by [11] after carrying out the compression tests are summarized 

in the next table: 

Buckling Critical Loads 

Case 1: 3J Case 2: 4J-Asym Case 3: 4J-Sym 

Local Buckling (kN) 29 64 58 

Collapse (kN) 55 76 76 

Failure Mode Skin/Overall Adhesive Failure Skin/Overall 

Table 9.21: Experimental values for the critical buckling load obtained by [11]. 

Now it is time to model the previous panels using CADEC. 

B. Results of CADEC simulation 

One of the main problems when attempting to create the previous geometries with 

CADEC is that the current application does not allow to have no lateral skins. Therefore, lateral 

skin must be added, and it should be small enough to alter the results as less as possible. In 

order to prevent the formation of elements with excessive aspect ratio, a lateral panel width of 

8 mm for case 1 and of 4 mm for cases 2 and 3 will be used. Furthermore, case three has 

variable pitch and different orientation of the stringers, so in order to provide similar results 

symmetry conditions must be applied, and therefore just half of the model will be studied. 

Furthermore an offset must be applied to move the stringers to the left and achieve a distance 

from the second stringer to side 2 equal to half the central pitch (half of     value). The final 

geometric properties introduced to our application are gathered in the following table. 

Geometric properties 

Case 1: 3J Case 2: 4J-Asym Case 3: 4J-Sym (half model) 

Width A (mm) 316 268 132 

Length B (mm) 500 400 410 

Radius (mm) - - - 

Num of stringers 3 4 2 

Pitch (mm) 140.75 80.5 82 

Offset (mm) 0 0 -16 

Stringer height (mm) 35 25 23 

Stringer width (mm) 18.5 18.5 10 

Table 9.22: Geometry of the three JC-stiffened panels introduced in CADEC. 
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Given that Aluminum is an isotropic material, the following assumptions apply     =   ,     = 

    and     
  

        
  . The values introduced to CADEC are summarized in the next table: 

Lamina mechanical properties 

   (GPa) 75 

   (GPa) 75 

    0.3 

    0.3 

    (MPa) 28846 

Thickness (mm) 1.45 

Table 9.23: Mechanical properties of the lamina for the JC-stiffened panels modeled with CADEC. 

 

Finally, it is necessary to represent accurately the loading and BC so that they are as 

similar as possible to the laboratory test conditions. The author explains that the panel was 

subject to an increasing linearly distributed compressive load in sides 1 and 3 until the ultimate 

failure of the panel occurred. Then, a unitary value for the load is going to be applied. As 

explained before, edges 2 and 4 (parallel to stringer’s longitudinal direction) are free, and sides 

1 and 3 are simply supported. These conditions are summarized in the following table: 

 

Case 1: 3J Case 2: 4J-Asym Case 3: 4J-Sym (half model) 

BC 
LOADS 

BC 
LOADS 

BC 
LOADS 

Nr Ns Nr Ns Nr Ns 

Side 1 SS 1 0 SS 1 0 SS 1 0 

Side 2 FREE 0 0 FREE 0 0 SYM 0 0 

Side 3 SS 1 0 SS 1 0 SS 1 0 

Side 4 FREE 0 0 FREE 0 0 FREE 0 0 

Table 9.24: Load and BC applied on each side of the three different J-stiffened panels. 

 

After running the problem with CADEC, the first eigenvalue is obtained for each panel. 

Then, the critical load is computed as in the previous cases by multiplying the eigenvalue times 

the applied load and the length of the loaded edges. In the third case, the length must be the 

one of the total panel, not the loaded length of the half model. All these values and the 

difference in results are summarized in the next table. 

 

 



CHAPTER 9: TOOL VALIDATION 

 

129 
  

Buckling Critical Loads 

Case 1: 3J Case 2: 4J-Asym Case 3: 4J-Sym 

   78.1 284.4 231.3 

              (mm) 316 268 132 x 2 = 264 

                         (kN) [2] 24.7 76.2 61 

                     (kN) [11] 28 64 58 

               11.8 % 19.1% 5.2 % 

Table 9.25: Comparisson between the experimental buckling loads [11] and the results provided by 
CADEC for the three different panels. 

The outcome provided by CADEC for the three panels is shown in next figures, 

including the deformation plots of the panel. 
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Figure 9.17: Buckling results of case 1: stiffened panel with three J stringers using CADEC. 
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Figure 9.18: Buckling results of case 2: asymmetric stiffened panel with four J stringers using CADEC. 
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Figure 9.19: Buckling results of case 3: symmetric stiffened panel with three J stringers (half model) 
using CADEC. 

The differences between the results provided by CADEC and the experimental data can 

be justified by several reasons. First, the geometry used to model the specimens was not exact 

but an approximation. Additionally, it is being assumed that the material buckles in the elastic 

linear range (where the E modulus remains constant), but could not be the real situation. 

Besides, since only one specimen was tested for cases 2 and 3 in the literature, there could be 

some externalities affecting the experimental results (friction on the loaded edges, 

eccentricity, humidity, temperature, etc). It would be more accurate to have several specimens 

tested for each case in order to reduce the uncertainty of the experimental results. 
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Finally, it is important to understand that the application studies the case of a perfect 

panel, free of any defect or imperfection. This is not true with real panels, which can contain 

material imperfections as well as geometric defects to which stability analyses are very 

sensitive. For example, in the case 2 the load predicted by CADEC was relatively higher than 

the initial buckling load observed in the test, becoming actually almost equal to the load 

causing collapse. The reason of that behavior could be explained by the next figure. CADEC will 

provide the buckling load at the primary bifurcation, which would be the local buckling load of 

the panel in case it was defect free and ideal. However, the real panel is likely to have some 

manufacturing defects that will lead it to follow the imperfect path. Due to those 

imperfections, the actual load at which first evidence of buckling are revealed is lower. Then 

the panel will absorb some more load along the secondary imperfect path until failure. In the 

figure, the red dot represents CADEC critical buckling load, whereas the orange dot stands for 

the real buckling load of the specimen. 

 

Figure 9.20: Buckling critical load for ideal and imperfect paths. Source: Edition of Image 4.1 in [5]. 

 

 

No matter the exact reasons behind the differences in results, it is relevant to highlight 

that the application provides a good approximation of the real buckling loads. Since its main 

use will be at the pre-design step, differences below 20% are accepted, even more when in the 

rest of the cases analyzed such differences were much lower than 10%. 
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9.4. Validation of curved stiffened panel 

analyzed with Abaqus 

9.4.1. Curved T-stiffened panel analyzed with 

Abaqus 

It would have been interesting to validate the results provided by CADEC for a curved 

stiffened panel by means of experimental data, but it has not been possible to find trustful 

resources for such data. Most of the cases found in the literature did not include all the 

parameters necessary to define the problem. Therefore, a FE model will be defined with 

Abaqus® to validate this type of problems. 

The panel subject to study will be a curved integrally-stiffened panel containing four “T” 

stringers. The geometric properties are summarized in the next table: 

Panel dimensions Stringer geometry 

Curvature 3000 Profile T 

Length(B) 800 Stringer Height 40 

Width (A) 600 Stringer Total Width 40 

Stringers Number 4 Top Flange Width - 

Pitch 150 Bottom Flange Width - 

Table 9.26: Geometry of the curved T-stiffened panel defined in Abaqus®. 

The stiffened panel will be made of aluminum, with properties defined in table 9.20, 

and thickness 1.45 mm. Material properties are applied by creating a general stiffness shell 

section and introducing the ABDH matrices of that laminate. 

The panel is meshed applying an approximate element size of 20 mm, which results in 

1600 elements. Curved edges are loaded applying a normal shell load of 1 N/mm, whereas the 

straight edges are free. Loaded sides are considered clamped, and therefore the following 

DOFs are restrained in those edges (CSYS where Y axis is normal to the skin): 

     

     

     

In order to avoid rigid solid movements, the DOF    is restrained in two corner nodes 

so that lateral vibration is prevented.  
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After running the model with Abaqus®, the first eigenvalue obtained is: 

         

And from this value it is possible to calculate the critical buckling load as follows: 

                          

                                  

The deformation plot of the panel is shown in next figure: 

 

Figure 9.21: Buckling results of a curved stiffened panel with four T stringers using Abaqus®. 
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9.4.1.   Curved T-stiffened panel analyzed with 

CADEC 

The same geometry modeled with Abaqus® is created in CADEC by introducing the values 

summarized in the next table: 

Panel dimensions Stringer geometry 

Curvature 3000 Profile T 

Length(B) 800 Stringer Height 40 

Width (A) 600 Stringer Total Width 40 

Stringers Number 4 Top Flange Width - 

Pitch 150 Bottom Flange Width - 

Table 9.27: Geometry of the curved T-stiffened panel introduced in CADEC. 

The stiffened panel will be made of aluminum, with properties defined in table 9.20, 

and thickness 1.45 mm. Since the panel is integrally-stiffened and it is not possible to introduce 

zero thickness for a laminate, bottom flange laminates will have negligible thickness: 0.001 

mm. 

The panel is meshed automatically by CADEC, resulting in 435 elements. BC and load 

are applied as detailed in next table to achieve same conditions as simulated with Abaqus®: 

 BC 
LOADS 

Nr Ns 

Side 1 CC 1 0 

Side 2 FREE 0 0 

Side 3 CC 1 0 

Side 4 FREE 0 0 

Table 9.28: Load and BC applied on each side of the curved T-stiffened panel. 

After running the problem with CADEC, the first eigenvalue obtained is: 

         

Being possible to compute the critical buckling load as follows: 
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 On the other hand, the buckling load obtained with Abaqus® was: 

              

Which results in a difference of: 

         

Despite using a mesh four times coarser, the application was capable of predicting the 

buckling load with great accuracy. The deformation plot provided with Abaqus® and CADEC are 

the same, as shown in next figure: 

 

Figure 9.22: Buckling results of a curved stiffened panel with four T stringers using CADEC.
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Chapter 10 

10. Conclusions and future work 

10.1. Conclusions 

In this project, a new application serving the design of composite stiffened panels was 

designed and implemented in a web environment. The application is capable of generating the 

geometry and mesh for multiple configurations of stiffened panels from a few input 

parameters, and by performing Finite Element Analysis provides the user with the buckling 

load and the deformed shape of such panel. Important improvements in comparison to SPD 

have been achieved. The application has accelerated and simplified the overall design process, 

revealing the following observations: 

 Since stiffened panels are thin-walled structures, the main analysis carried out during 

the design step is a buckling analysis. Buckling emerges when the structure is subject 

to in-plane compression or shear loading. CADEC is now capable of performing such 

analysis in an intuitive way, obtaining the buckling load of the first five modes as well 

as a representation of the deformed structure once that critical load is reached. CADEC 

resolution of shear loaded panels is prepared to be available in a near future version, 

as soon as the solver is updated. 

 



CHAPTER 10: CONCLUSIONS AND FUTURE WORK 

 

139 
  

 The application allows a wide range of possible panel configurations. Users may 

analyze plates, skin-stringer panels, and integrally-stiffened panels. Flat or slightly 

curved panels may be chosen, though cylindrical profiles are not allowed. 

 

 One of the main problems regarding FEA is the influence of mesh density. Finer mesh 

provides more accurate results, but increases time required to solve the problem. 

Since CADEC is a web application whose server must solve several analyses 

simultaneously and rapidly, time consumption took on high importance. After running 

hundreds of different cases, the mesh generator tool was configured to ensure 

accurate results as rapidly as possible. The current version of CADEC has limited the 

resolution time to two minutes. Depending on the geometry of the panel, the tool is 

capable of increasing or decreasing mesh density to stay beneath that boundary. 

However, there are a limited number of stringers that a panel can contain given that 

time limit. 

 

 To speed up the design process, some of the parameters are simplified. For example, 

pitch is assumed to be constant, and in some profiles bottom and top flanges must 

have the same width. This simplification does not prevent the user from obtaining 

good results using a simplified model. In the design stage it is very common to perform 

these kinds of assumptions for simplicity, while real geometry is analyzed more 

accurately after a satisfactory preliminary design of the panel. However, due to offset 

and the symmetric boundary condition, it is possible to represent some of these cases 

with CADEC, as in some of the cases analyzed in the chapter on validation. 

 

 Though the application was conceived to solve panels made of composites due to their 

widespread use in industry and the special challenge to their analysis using traditional 

formulations, it can also analyze isotropic materials such as steel or aluminum. 

 

 Multiple comparisons to experimental or analytical results were carried out, covering 

most possible cases such as flat or curved plates, several loading and support 

conditions, and stiffened panels with different stringer profiles. In most cases 

satisfactory results of design discrepancies under 20 % are allowed were achieved. 

 

 Since the problem is reduced to a few input parameters, it is possible to perform 

modifications quickly without developing a new FE model for each modification. This is 

especially valuable in the preliminary design stage when most of the geometrical 

changes take place. This feature represents a real advantage over general purpose FE 

commercial software. 

 

 The implementation of the application in a web environment allows the user to work 

on the design from any location or web-enabled device, and the database stores all 

data for a later use. This flexibility increases the application’s accessibility. 
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 The visualization tool implemented in the website provides extensive information. The 

tool can zoom in or out, rotate, or move the panel to analyze every detail of the 

deformed structure. The color range used highlights the areas where larger 

displacements take place. These visual representations implanted within the web 

application present information more rapidly than any external program. 

10.2. Possible future work 

Based on the results achieved in this project, several lines of future work to improve the 

application follow: 

 Despite the fact that most of these structures are subject to in-plane loads, it may be 

interesting to analyze cases in which out-of-plane loads are applied.  

 

 Some cases could be run under shear loading and compared with experimental data 

for further validation, as soon as the solver is updated.  

 

 Code could be improved so that Symmetric BC cannot be applied on the panel if shear 

loads are applied, and a new asymmetric BC defined for these cases. 

 

 As BMI3 computes the eigenvectors for the modes 2 to 5 (displacements of the 

deformed panel nodes), it could be interesting to represent the displacements of these 

modes in the visualization page. 

 

 BMI3 is capable of computing additional information about the secondary path, 

including whether it is stable or unstable, and the approximate slope. It would be 

interesting to provide the user with this information about whether the panel 

collapses once the critical load is reached or whether it can deal with more load. 

 

 Verification could confirm whether the composite material fails before reaching the 

critical buckling load. At present, buckling load is obtained based on material 

properties, panel geometry, and applied load and boundary conditions, but no 

material failure criterion is used. 
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Appendices 

Appendix A: MSH file 

This kind of files is used by the freeware gmsh [21]. The extension is .msh. They 

contain the information required by the software to define a mesh. In order to illustrate how 

the information has to be presented in the file, the 100x100 plate analyzed in Section 9.1.1.A 

will be considered. The file has the following structure: 

$MeshFormat 
2.2 0 8 
$EndMeshFormat 
$Nodes 
81 
1 50 -50 0  
2 50 -37.5 0  
3 50 -25 0  
… 
80 -50 37.5 0  
81 -50 50 0  
$EndNodes 
$Elements 
16 
1 10 1 100 1 3 13 11 2 8 12 6
 7  
2 10 1 100 11 13 23 21 12 18 22 16
 17  
…  
16 10 1 100 71 73 81 79 72 77 80 75
 76  
$EndElements 



 

 
 

 

Note that some of the lines have been removed since they juts followed the same 

structure as the previous lines. The file starts by defining some information required by gmsh 

[21] such as version number, file type or data size. We used the default values. Then, the 

command $Nodes informs the program that the nodes of which the mesh consists are going to 

be presented. The immediate line after $Nodes contains the total number of nodes that will be 

defined. Then, the following sequence is repeated for each of those nodes: 

node-number x-coord  y-coord  z-coord 

The first value is an integer going from number 1 to the total number of nodes (81 in 

this example). This is the ID of each node. Then, three coordinates defining the position of that 

node are defined based on global X, Y and Z coordinates. 

After the nodes have been defined, the directive $Elements appears, followed by the 

total number of elements. Then, a sequence of lines defining each of the elements follows. The 

structure of each line is the following: 

elm-number elm-type number-of-tags < tag > ... node-number-list 

 elm-number: ID of each element, going from 1 to the total number of elements in the 

mesh. 

 elm-type: an integer number defining the type of element that is being defined. In the 

case of our mesh generator, the relevant numbers are: number 2 stands for first order 

triangular elements, number 3 for first order quadrangular elements and number 10 

for second order quadrangular elements. 

 number-of-tags: it defines the number of tags that will be used. Tags are used in order 

to inform gmsh [21] whether an element belongs to a certain physical or geometrical 

entity. However, we are just going to use one tag so therefore our number is equal to 

1. Then all the tags number would follow. In our case, just an additional number 

comes. The tags that will be defined in our application are the following: 

 100: the element belongs to the skin. 

 200: the element belongs to the bottom flange. 

 300: the element belongs to the web. 

 400: the element belongs to the top flange. 

 node-number-list: the remaining numbers account for the ID of each node defining the 

element. The order in which each node ID appears is very important, and this order is 

totally dependent on the type of element. In this example the plate was meshed using 

second order quadrangular elements consisting of 9 nodes. The node sequence for the 

three element types used by the application were previously explained in depth. 

 

 

 

 

 

 

 



 

 
 

 

Appendix B: BMI3 INP file 

The extension of this file is .inp. The file under consideration contains all the 

information required to solve the buckling problem with BMI3, except for the material 

properties (ABDH matrices), which are obtained by means of the DAT file. The structure of the 

file is very intuitive: first the mesh is defined, then boundary conditions and loads are 

specified. In order to illustrate this with an example let us consider the same 100x100 plate 

analyzed in Section 9.1.1.A. A summary of the content of the file follows: 

*HEADING 

SPD Program 

*NODE 

1,50,-50,0 

2,50,-37.5,0 

3,50,-25,0 

… 

81,-50,50,0 

*ELEMENT, TYPE 

1,1,3,13,11,2,8,12,6,7 

2,11,13,23,21,12,18,22,16,17 

… 

16,71,73,81,79,72,77,80,75,76 

*BOUNDARY 

1,3,,0 

1,5,,0 

2,3,,0 

2,5,,0 

… 

5,2,,0 

45,2,,0 

*CLOAD 

49,2,4.16666666666667 

53,2,16.6666666666667 

57,2,8.33333333333333 

… 

41,2,-4.16666666666667 

 

 

 



 

 
 

 

 

After the Heading tag, a description of the file comes. It does not affect the resolution 

of the program. Then, the mesh is defined. Nodes are described in the same way as in the msh 

file: the node ID is followed by its three coordinates with respect to the global CSYS. Then, 

elements are defined without tags: the element ID is directly followed by the nine nodes ID of 

which it consists. Notice that the element type is not specified since BMI3 just accepts the 

second order quadrangular element of 9 nodes at this moment. After the mesh description is 

finished, boundary conditions are specified. The structure is as follows: 

Node ID, Degree Of Freedom,, value 

First the ID of the node to which the BC is applied is defined, followed by the degree of 

freedom that will be constrained, and finally a value. Since in our cases the user will not be 

allowed to impose a predefined displacement, the last value will be always zero. However, it 

would be possible to impose displacements instead of just applying forces to the panel, but 

current version of CADEC is not prepared to offer this possibility to the user. 

Similarly to the previous structure, loads are defined. Three values are required: node 

ID, DOF and finally the value of the load in that DOF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Appendix C: BMI3 DAT file 

The DAT file contains the material information of the model. The structure is the following: 

1 

1 1 1 1 1 1 1 1 1 1 1 1 1  

1 1 1  

 

11989.8489975298 1417.99190509761 0 0 0 0 0 0 0  

1417.99190509761 11989.8489975298 0 0 0 0 0 0 0  

0 0 1822.08167747448 0 0 2.8421709430404E-14 0 0 0  

0 0 0 330.611053353789 75.6262349385389 0 0 0 0  

0 0 0 75.6262349385389 948.306173049393 0 0 0 0  

0 0 2.8421709430404E-14 0 0 97.1776894653057 0 0 0  

0 0 0 0 0 0 1244.12634293302 0 0  

0 0 0 0 0 0 0 1393.73091836705 0  

0 0 0 0 0 0 0 0 13.9373091836705  

0 0 0 

 

The first line contains the number of materials present in the model. Since we are 

analyzing a plate, it is just one, but it could be up to four in stiffened panels. Then, a sequence 

of numbers follows. There are as many numbers as elements in the model. Each of those 

numbers represents the material type (defined with an integer from 1 to 4) that must be 

applied to that element. Each of the materials is applied to the following areas: 

 

 Material 1: applied to the elements forming the skin of the stiffened panel. 

 Material 2: applied to the elements forming the bottom flange of the stringers. 

 Material 3: applied to the elements forming the web of the stringers. 

 Material 4: applied to the elements forming the top flange of the stringers. 

 

Of course, it is not mandatory to define all the previous areas in the file, since some of 

them are not present in some models (such as materials 2 to 4 in the case of a plate). 

 

Finally, after the blank line, the ABDH matrices are defined. The last line consists of three 

zeros, and they inform BMI3 where the ending of the file is. 

 

 

 

 

 

 

 

 



 

 
 

Each of the ABDH matrices has the following structure: 

 
Figure C.1: combined stiffness matrices of a material (ABDH matrix). 

 

Once the laminates have been defined, the matrices A (in-plane stiffness matrix), B 

(bending extension coupling matrix), D (bending stiffness matrix) and H (transverse shear 

stiffness matrix) are computed and their values are stored accordingly inside the ABDH array 

required by BMI3. It is also necessary to define the drilling factor, which does not influence 

much on the results but the solver needs it. 

 In-plane stiffness matrix [A]: matrix (3x3) that relates directly plane stresses to 

membrane strains. 

 Bending extension coupling matrix [B]: matrix (3x3) coupling plane stresses and 

bending strains. For symmetric laminates this matrix is null. 

 Bending stiffness matrix [D]: matrix (3x3) that relates bending moments to bending 

strains. 

 Transverse shear stiffness matrix [H]: matrix (2x2) connecting transverse shear with 

vertical loads. 

 Drilling Stiffness (DS): it does not influence much on the results but the solver needs it. 

It is assigned a value 100 times smaller of the largest diagonal term of H matrix. 

 

 

 

 

 

 

 

 

 



 

 
 

 

Appendix D: Abaqus INP file 

This file contains all the information regarding the FE model in order to solve the 

buckling problem. Contrary to the BMI3 INP file, the information regarding material properties 

is also contained in the INP file, so that Abaqus® just requires one file. Again, the case of the 

100x100 plate analyzed in Section 9.1.1.A will be used to illustrate the file’s structure: 

 

*Heading 

** 

** CADEC Stiffened Panel Design Application 

** 

** User's Stiffened Panel will be analyzed when subjected to Buckling conditions 

** SI(mm) units (tonne, mm, s, N, MPa) 

** 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=StiffenedPanel 

*End Part 

** 

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

** 

*Instance, name=StiffenedPanel-1, part=StiffenedPanel  

** 

*Node 

1,50,-50,0 

2,50,-37.5,0 

3,50,-25,0 

… 

81,-50,50,0 

*Element, type =S9R5 

1,1,3,13,11,2,8,12,6,7 

2,11,13,23,21,12,18,22,16,17 

3,21,23,33,31,22,28,32,26,27 

… 

16,71,73,81,79,72,77,80,75,76 

*Elset, elset=Skin 

1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 

*Elset,  elset=BottomFlange 



 

 
 

*Elset,  elset=Web 

*Elset,  elset=TopFlange 

*Nset, nset=Edge1 

1 ,2 ,3 ,4 ,5 ,46 ,47 ,48 ,49 

*Nset, nset=Edge2 

49 ,53 ,57 ,61 ,65 ,69 ,73 ,77 ,81 

*Nset, nset=Edge3 

41 ,42 ,43 ,44 ,45 ,78 ,79 ,80 ,81 

*Nset, nset=Edge4 

1 ,6 ,11 ,16 ,21 ,26 ,31 ,36 ,41 

** 

*Orientation, name=Ori-Skin 

1., 0., 0., 0., 1., 0. 

3, 0. 

*Orientation, name=Ori-BottomFlange 

1., 0., 0., 0., 1., 0. 

3, 0. 

*Orientation, name=Ori-TopFlange 

1., 0., 0., 0., 1., 0. 

3, 0. 

*Orientation, name=Ori-Web 

1., 0., 0., 0., 0., 1. 

3, 0. 

** Section:Skin 

*Shell General Section, elset=Skin, orientation=Ori-Skin 

11989.8489975298 ,1417.99190509761 ,11989.8489975298 ,0 ,0 ,1822.08167747448 ,0 ,0 

0 ,330.611053353789 ,0 ,0 ,0 ,75.6262349385389 ,948.306173049393 ,0 

0 ,2.8421709430404E-14 ,0 ,0 ,97.1776894653057 

*Transverse Shear 

1244.12634293302, 1393.73091836705, 0 

** 

*End Instance 

** 

*End Assembly 

** 

** ---------------------------------------------------------------------------------------------  

** 

** STEP: Step-1 

** 

*Step, name=Step-1, perturbation 

*Buckle 

5, , 5, 2000 

** 

**BOUNDARY CONDITIONS 

** 

** Name: BC-1 Type: Displacement/Rotation 

** 

*Boundary, op=NEW, load case=1 

Assembly.StiffenedPanel-1.StiffenedPanel.1,3,,0 

Assembly.StiffenedPanel-1.StiffenedPanel.1,5,,0 



 

 
 

Assembly.StiffenedPanel-1.StiffenedPanel.2,3,,0 

Assembly.StiffenedPanel-1.StiffenedPanel.2,5,,0 

… 

Assembly.StiffenedPanel-1.StiffenedPanel.45,2,,0 

** 

** LOADS 

** 

*CLOAD 

Assembly.StiffenedPanel-1.StiffenedPanel.49,2,4.16666666666667 

Assembly.StiffenedPanel-1.StiffenedPanel.53,2,16.6666666666667 

Assembly.StiffenedPanel-1.StiffenedPanel.57,2,8.33333333333333 

… 

Assembly.StiffenedPanel-1.StiffenedPanel.41,2,-4.16666666666667 

** 

** OUTPUT REQUESTS 

** 

*Restart, write, frequency=0 

** 

** FIELD OUTPUT: F-Output-1 

** 

*Output, field, variable=PRESELECT 

*End Step 

 

For Abaqus®, relevant commands are preceded by an asterisk (*) instead of the dollar 

symbol ($). Moreover, comments (lines that Abaqus® does not read) are preceded by two 

asterisks. Then, the file starts with a Heading tag, including some information about the 

analysis and some default configuration. Then, a part is created, and added to the assembly 

module, where it will be meshed. The definition of the mesh (nodes and elements) follows the 

exact same format used in BMI3 input file, with the only difference that it is necessary to 

specify the element type (S9R5). Then some node and element sets are defined. Next, some 

orientations are defined. In the case of a flat plate it is not relevant, but for curved panels or 

stiffened panels with inclined faces such as in Omega profile it is important to define the 

normal direction to each element face. It is possible to rely on Abaqus® so that it computes it 

automatically, but it was decided to provide Abaqus® the Orientations computed by CADEC in 

order to avoid misunderstandings. Last information that must be provided inside the assembly 

module is the material properties definition. The values correspond to the upper diagonal 

terms of the ABD matrix, as follows: 



 

 
 

 
Figure D.1: Terms to be introduced in Abaqus® to define laminate material properties. 

 

The numbers next to the orange arrows determine the order in which values must be 

introduced (that is, values from top to bottom and columns from left to right). Therefore, the 

numbers contained in the file follow the sequence    ,    ,    ,     ,… ,    . 

 

After the geometry, mesh and material properties are defined, it is time to move to 

the analysis type. In the step, we define that a Buckling analysis will be performed, asking for 

the first 5 modes, and allowing a maximum number of iterations of 2000. 

 

Next, boundary conditions and loads are defined using the same format as in the BMI3 

input file. Finally some more information regarding the output is provided, and then Abaqus® 

has all the required information to start solving the eigenvalues problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Appendix E: Stored procedures and SQL 

language 

In order for CADEC to communicate with the database, it is necessary to used SQL 

language (Structured Query Language). By means of a few instructions in SQL it is possible to 

insert new records inside a table, to read the table or to delete information. It is possible to 

implement this code directly inside the code-behind (along with C# code) of the application. 

Since this would lead to more code and less centralization, the SQL code necessary to manage 

the DB will be contained in files called stored procedures, and they will be stored inside the 

database itself. A stored procedure is a subroutine available to applications that access a 

relational database system. They consolidate and centralize logic. As it was previously 

explained, six stored procedures will be defined for managing Stiffened Panels database. The 

extension of these files is .sql. In order to illustrate the structure of these files, the stored 

procedure in charge of creating a new panel in the database will be analyzed. 

First of all, it is necessary to specify the database that will be updated or modified, 

which is called CADEC_DB in this case. Then, the following lines set some default values before 

an IF statement comes. The purpose of this conditional is to create a new procedure in case it 

does not exist, or to update the existing procedure. This portion of code is always placed 

before the actual definition of the procedure. The main purpose is to allow an easy update of a 

procedure. Imagine that we decide to add a new property to the stiffened panel. Then, this 

procedure must be updated as well in order to store the new property in the DB as well once 

we create a new stiffened panel. With the previous code, it is just necessary to make the 

corresponding changes in the definition of the procedure and then run this SQL code so that 

the procedure is updated. If we were to add this store procedure to a new database (with no 

stored procedures regarding stiffened panels), the same code would be able to create a new 

procedure instead of updating a new one. 

Then the actual definition of the procedure starts. After the ALTER PROCEDURE 

statement, the different properties of the panel are defined, specifying the variable type of 

each record. Then, since a new stiffened panel is being added to the table in the DB, a unique 

ID is necessary to represent that panel. This can be achieved with the instruction SELECT @Id = 

NEWID(). Finally, the value of each property (values coming from the page) is assigned to the 

corresponding column (each record in the DB). 

 

This was an example about how to add a new row in the database (new panel). The structure of this 

file is very similar to the one of the remaining procedures. The main differences are regarding the 

instruction used: 

 Creation of a new record (INSERT instruction). 

 Deletion of an existent record (DELETE instruction). 

 Edition of some fields of a record (UPDATE and SET instructions). 



 

 
 

 Retrieval of a single field of a record from the DB (SELECT instruction). 

 Retrieval of a list of all the records (SELECT and WHERE instructions). 

 Retrieval of a complete record of the DB, including all the different fields for that 

record (SELECT and WHERE instructions). 
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