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1 Introduction

Students of different levels of preparation (or prior knowledge) have different learning

needs. Given the hierarchical nature of a learning process, students need to comprehend,

apply, and synthesize the basic materials before they can effectively learn more advanced

ones. In other words, their human capital output from an earlier stage of learning becomes

the input and determines the learning effectiveness at a subsequent stage. As a result, well-

prepared students – i.e., those with good prior knowledge or, equivalently, high human

capital output from previous learning – can learn new topics more quickly, while less-

prepared students – i.e., those with poor prior knowledge – need remedial work on the

old materials before they can embark on the new ones, so they learn the new topics

more slowly. In this sense, when the pace of learning is ideally matched to a student’s

preparation, her learning effectiveness will improve, leading to better learning outcomes.

To capture this concept of an ideal match between the pace of learning and the pre-

paration of a student, we propose a theoretical model of the education curriculum. More

specifically, an education curriculum is characterized by two parameters: a progress ra-

te, and a corresponding minimum threshold on student preparation. A more challenging

curriculum is one with a fast progress rate and a high threshold, while a less challen-

ging curriculum is one with a slow progress rate and a low threshold. Given different

curriculum options, well-prepared students enjoy better learning outcomes under a more

challenging curriculum, while the opposite is true for less-prepared students. Thus, diffe-

rent curricula represent “horizontal differentiation” in the education technology, and the

“ideal” curriculum – namely, the one that maximizes a student’s learning effectiveness –

differs across students depending on their preparation levels.

The horizontal feature of the education curriculum stands in sharp contrast to other

important factors of the education technology, which have been extensively studied in

the literature. Many of those factors represent “vertical differentiation” in the education

technology, so students share similar preferences when given different options. For exam-

ple, school resources, class size, teacher quality (or teacher experience), and peer effects

are all vertical features of the education technology. Since more resources, smaller clas-
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ses, better teachers, and better peers all contribute to better learning outcomes, when

given a choice, all students will prefer to have higher quality (along these dimensions)

to lower quality, everything else the same. Unlike these vertical quality dimensions, not

all students prefer to have a more (or less) challenging curriculum. Instead, they prefer

different curricula depending on their preparation levels.

An immediate implication of the horizontal feature of the education curriculum is

its distributional impact across students. When a number of students are subject to the

same education curriculum, for example, because they live in the same state, attend the

same school, or share the same class, the curriculum adopted in that state, school, or

class applies to all of them despite their different preparation levels. Except for a lucky

few where the match happens to be ideal, mismatches are likely to happen to many of the

students. In particular, an over-match arises when the curriculum is too fast-paced (and

accordingly imposes too high a threshold) for a student, and an under-match arises when

the curriculum is too slow-paced for a student. Both types of mismatches are detrimental

to the learning effectiveness of the students, and the more severe the mismatch, the

more harm on their potential learning outcomes. The most extreme mismatches can be

mitigated when a student repeats a grade (extreme over-match) or skips a grade (extreme

under-match). However, moderate mismatches are likely to persist given that it is all but

infeasible to individually customize the education curriculum to ideally suit each student’s

learning needs.

As a consequence, when there is a change in the education curriculum, there is similar

distributional impact across students. For example, when the new curriculum is more

challenging than the old one, it gets closer to the ideal curriculum for the well-prepared

students, but farther away from that for the less-prepared students. As a result, well-

prepared students benefit from the change and enjoy better learning outcomes, while the

opposite is true for less-prepared students. In this sense, a curriculum change generates

heterogeneous effects on student learning outcomes, and the relationship is monotonic in

student preparation levels. More specifically, the relationship is monotonically increasing

when the new curriculum is more challenging, and monotonically decreasing when the
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new curriculum is less challenging.

We empirically test this model. More specifically, we are interested in finding out whe-

ther a curriculum change has heterogeneous effects on student learning outcomes, and

whether the pattern of the heterogeneous effects is consistent with the theory. There are

two major challenges in our empirical analysis. The first is that education curriculum, as

characterized by the two parameters, is not directly measurable in the data. While most

teachers intuitively adjust their pace of teaching to better serve their students (e.g., slo-

wing down and doing a few extra practice questions when students seem to struggle with

a topic), it is difficult to assign a numerical value to reflect such curriculum adjustment in

practice. As a first step, we circumvent this problem by focusing on the ordinal rather than

the cardinal comparison between two curricula: Namely, determining which curriculum

is more challenging without deciding by how much. The second challenge is that educa-

tion curriculum, as actually adopted by educators, is necessarily an endogenous choice.

This choice naturally depends on both the distribution of student preparation and the

objective function of the educator, both of which may be unobserved in the data. In this

sense, cross-sectional variation of observed curricular differences can be confounded by

important unobserved factors, making it unsuitable for identification purposes. We deal

with this problem by relying on a quasi-natural experiment of the curriculum change.

For our empirical analysis, we take advantage of the G8 reform in Germany. This

reform – implemented from 2001 to 2008 in most German states – compressed high school

for the academic-track (Gymnasium) students from nine to eight years, while keeping the

academic content required for graduation fixed. Namely, the reform requires the same

amount of content being covered in a shorter time period, implying a faster progress rate

and, accordingly, a higher preparation threshold. Thus, compared to the control (G9)

states, the treated (G8) states have a more challenging curriculum. Furthermore, the G8

reform can be viewed as a quasi-natural experiment. It was implemented by states based

mainly on considerations of the labor market conditions and demographic changes, with

little focus on student learning outcomes directly. In this sense, the G8 reform can be

viewed as an exogenous curriculum change, which allows us to identify the distributional
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effects on student learning outcomes.

To measure student learning outcomes, we use five waves of PISA data containing their

reading, mathematics, and science test scores at the end of the ninth grade. Since the

pooled PISA data are repeated cross-sections rather than panel data, we have very limi-

ted information on student preparation when they entered high school. Two approaches

are used in the empirical analysis. The first is the conventional difference-in-difference

(DiD) approach, where time- and state-variation in the G8 reform implementation allow

us to identify the average effect of the curriculum change. More importantly, we use some

crude measure of student preparation to interact with the reform variable, and estima-

te the heterogeneous effects of the curriculum change as distinct average effects for two

subgroups of students, the well-prepared and the less-prepared. The second is a quantile

treatment effect approach, where we rely on distributional assumptions of the unobser-

ved preparation variable. In particular, we use both the conventional quantile regression

method (conditional quantile regression) and the recentered influence function method

(unconditional quantile regression) in a nonlinear DiD setting. The results can be inter-

preted as the treatment effects at different quantiles of either the conditional distribution

or the unconditional distribution of test scores respectively. The empirical evidence is

broadly consistent with our theoretical predictions. While the G8 reform improves stu-

dent test scores on average, the benefits are more pronounced for well-prepared students.

In contrast, there is little evidence that less-prepared students benefit from the reform at

all.

The rest of the paper is structured as follows. Section 2 reviews the related literature.

Section 3 introduces the theoretical model of education curriculum and derives the model

predictions. Section 4 presents the regression models that empirically test the theoretical

predictions. Section 5 illustrates the natural experiment and the data exploited for the

empirical analysis. Results are presented in Section 6. Section 7 offers concluding remarks.
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2 Related literature

This paper is linked to several strands of the existing literature. On the theoretical side,

there is a growing literature that focuses on the hierarchical nature of the education pro-

cess, namely the human capital output from an earlier stage is an input for human capital

accumulation and improves the learning effectiveness at a subsequent stage of education

(see, for example, Ben-Porath, 1967; Lucas, 1988; Driskill and Horowitz, 2002; Su, 2004,

2006; Blankenau, 2005; Blankenau et al., 2007; Cunha and Heckman, 2007; Gilpin and

Kaganovich, 2012). More specifically, a few of these studies (Su, 2004, 2006; Gilpin and

Kaganovich, 2012; Kaganovich and Su, 2015) focus on the role of a curricular threshold

as an important determinant in the education technology, and derive the implications of

such a threshold on the aggregate efficiency and distributional equality.1

The paper is also related to the literature on how peer effects affect students’ school

choices and learning outcomes (see, among others, Rothschild and White, 1995; Winston,

1999; Epple and Romano, 1998, 2008; Epple et al., 2002, 2004, 2006). The peer effects

literature captures a vertical feature of the education technology, namely the higher is

the average quality of one’s peers, the better off is a student in terms of her learning out-

comes. Such a peer effect captures the “direct” externality that peers exert on a student’s

learning. In contrast, our paper focuses on the “indirect” peer effect: that is, one education

curriculum is adopted to serve both the student and her peers. So even if the student

does not directly benefit from having high-quality peers, he is nonetheless affected by the

adopted education curriculum, which may be chosen to better serve her peers rather than

himself. The two kinds of peer effects have drastically different implications. While the

direct peer effect suggests that all students would prefer to have as high quality peers as

possible, the indirect peer effect suggests that this is not necessarily optimal. For example,

if a low ability (or less prepared) student were to attend a school with predominantly high

ability (or well prepared) students, he would find its curriculum (which is geared toward

the high ability students) overly challenging and hence experience a negative impact on
1For models of academic standards as a requirement on the education outcome, see Costrell (1994,

1997); Betts (2008); Eisenkopf and Wohlschlegel (2012).
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her learning outcomes.

On the empirical side, there is a large existing literature estimating the impact of

various vertical measures of the education technology, such as school quality and school

resources (Card and Krueger, 1992; Currie and Dee, 1995, 2000; Hanushek, 1997, 2006;

Jacob and Lefgren, 2004), class size (Angrist and Lavy, 1999; Hoxby, 2000; Krueger,

2003; Ding and Lehrer, 2010; Chetty et al., 2011), teacher quality (Angrist and Lavy,

2001; Rivkin et al., 2005; Clotfelter et al., 2006; Aaronson et al., 2007; Rothstein, 2010;

Carrell and West, 2010; Mueller, 2013), and peer effects (Evans et al., 1992; Sacerdote,

2001; Zimmerman, 2003; Angrist and Lang, 2004; Arcidiacono and Nicholson, 2005; Lyle,

2007; Carrell et al., 2008, 2009). This literature tends to focus on the average treatment

effect associated with the change in one of these vertical measures, since economic theory

provides an unambiguous prediction as to the qualitative impact (the direction) of such

a change on student learning outcomes. On the other hand, the focus is typically not

on the distributional effect, since economic theory tends to be ambivalent as to how the

quantitative impact of such a vertical change would vary across students.

There is also a small but fast growing empirical literature that focuses on the distri-

butional effect of matches between students and schools. For example, Light and Strayer

(2000) examine whether the match between student ability and college quality affects

the student’s college graduation rate. They find that while high-ability students are on

average more likely to graduate from college than low-ability students, as expected, stu-

dents of all ability levels are more likely to graduate if they attend colleges with quality

level matching their ability level. In other words, high-ability students are more likely to

graduate when attending high-quality rather than low-quality colleges, while the opposite

is true for low-ability students. More recently, Arcidiacono et al. (2011) examine whether

affirmative action leads to mismatch between lower-ability students and highly selective

schools. They find evidence that, compared to the school, students are worse at predicting

their post-enrollment achievement based on initial preparation. Thus, affirmative action

can result in mismatches: had students known that they would perform worse than ex-

pected, they could have chosen a different (less selective) school. Similarly, Arcidiacono
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et al. (2016) examine the difference in the graduation rates for minority science students

across University of California campuses under affirmative action policies. They find that

less-prepared minority students at higher-ranked campuses had lower persistence rates in

science and took longer to graduate. Again, affirmative action can result in mismatches:

had these minority students attended lower-ranked campuses and hence had they been

better matched to universities according to their initial preparation, they would have

reached higher graduation rates in STEM fields. This line of evidence – that lower-ability

students enjoy better learning outcomes in less selective schools – hints at the existence

of important factors that “horizontally” differentiate less selective schools from more se-

lective schools. Our paper provides a theoretical explanation of the education curriculum

as one possible horizontal factor.

The paper that is most closely related to our paper is Duflo et al. (2011). In this

study, they examine whether academic tracking helps or hurts low-ability students. Using

randomized experimental data from Kenya, they find that tracking students by prior-

achievement raises scores for all students, even those assigned to lower achieving peers.

To interpret these results, they argue that tracking allows teachers to better tailor their

instruction level, and lower-achieving pupils are particularly likely to benefit from tracking

when teachers have incentives to teach to the top of the distribution. Similar to our

paper, their model allows both a “direct” peer effect (student-to-student spillovers) and

an “indirect” peer effect, where the indirect effect arises when the composition of the class

affects teacher effort as well as the target level of teacher instruction. Unlike our paper,

their model does not allow the trade-off between the target level and the pace of learning,

the two related parameters of the education curriculum in our model. Instead, they model

the pace of learning as a result of teacher effort, which can be changed independently of

the target level of instruction. In a sense, our paper can be viewed as moving along a given

efficiency frontier of the education technology consisting of different curricula, while their

paper can be viewed as improving the efficiency frontier when changes in the teaching

environment (tracking) and stronger incentives (contract teachers) induce higher levels of

teacher effort, which again is a vertical measure of the education technology. Alternatively
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speaking, in our model, high-ability students have an absolute advantage over low-ability

students in their learning effectiveness (value-added human capital) regardless of the

curriculum, even though their comparative advantage is in more challenging curricula. In

their model, high-ability students have no absolute advantage over low-ability students

per se, and their learning effectiveness will be the same as long as the target level of

teacher instruction is at the same distance away from their initial preparation.

3 A model of education curriculum

Consider an economy with heterogeneous students. Students differ by their initial prepa-

ration qi ∈ [q, q]. We will discuss the distribution of student preparation later. Depending

on whether the focus of the analysis is at the micro level (class or school) or macro level

(state or country), it is more convenient to treat the student distribution alternatively

as discrete or continuous, but the main results remain robust regardless of the particular

distribution under consideration.

3.1 Education curriculum

An education curriculum is defined by two parameters: A progress rate A which captures

the pace of learning, and a corresponding curricular standard c(A) that puts the minimum

requirement on student initial preparation. Thus, when a student with initial preparation

q (we omit the subscript of qi when there is no risk of confusion) studies under the

curriculum (A, c(A)), her human capital output h from a period of study is

h =

 (1− λ)q if q ≤ c(A),

(1− λ)q +A(q − c(A)) if q > c(A).
(1)

Namely, a student’s preparation (or existing human capital) q depreciates at the rate

λ ≥ 0, so only the undepreciated part (1−λ)q is kept after the study period. Furthermore,

when the preparation level fails to meet the threshold c(A), the student does not benefit

from the learning process and accumulates zero from the study period. On the other
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hand, when the preparation level surpasses the threshold, the value-added human capital

from the learning process is A(q − c(A)).

It is immediately clear that if there was a curriculum (A, c(A)) with a very large value

for A and a very small value for c(A), it would give large benefit to students of almost any

level of preparation. In a world of trade-offs, such a technology is unlikely to be feasible.

At the efficiency frontier, curriculum choices involve a tradeoff. That is, larger values for

A (faster pace of learning) requires larger values for c(A) (higher requirement on initial

preparation).

Assumption 1 Let the curricular threshold c(A) be a differentiable function with c′(A) >

0.

We maintain Assumption 1 hereinafter. A direct implication of the specification of

the education curriculum is that well-prepared students have an absolute advantage over

less-prepared students in a given curriculum, a distinguishing feature of our model from

Duflo et al. (2011).

Proposition 1 For any given curriculum, well-prepared students have an absolute advan-

tage over less-prepared students. Namely, when q′ > q > c(A), A(q′−c(A)) > A(q−c(A)).

The proof follows directly from (1). Note that well-prepared students not only enjoy

an absolute advantage over less-prepared students, they also enjoy increasing marginal

returns to their preparation: Comparing two students with preparation q′ > q > c(A),

we have not only A(q′ − c(A)) > A(q − c(A)) > 0, but also A(q′−c(A))
A(q−c(A)) >

q′

q
> 1.

3.2 Ideal curriculum for a student

If an educator were able to customize the education curriculum to serve the individual

learning needs of a given student with preparation q, the educator would have chosen a

curriculum that maximizes the student’s human capital output h according to (1). This

optimal choice would be the ideal curriculum for this given student. For example, if we

make the assumption that c = CAr with r > 0, the ideal curriculum for a student with
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preparation q is A∗(q) = argmaxA(q − CAr) = ( q
C(r+1)

)1/r, which is strictly increasing

in q. More generally, without a specific functional form for c(A), we may not explicitly

solve for the ideal curriculum A∗(q). Nonetheless, it is implicitly defined as the solution

to the first-order equation:

q − c(A)− Ac′(A) = 0 (2)

assuming that the second-order sufficient condition is also satisfied, namely −2c′(A) −

Ac′′(A) < 0. Applying the Implicit Function Theorem to (2), and then invoking the

second-order sufficient condition, we have the following result:

Proposition 2 The ideal curriculum for a student is strictly increasing in her initial

preparation q.

In other words, regardless of the particular function form that links the threshold c(A)

to the progress rate A, well-prepared students always benefit more and hence enjoy a

comparative advantage in faster-paced (more challenging) curricula, while less-prepared

students always benefit more and hence enjoy a comparative advantage in slower-paced

(less challenging) curricula. This is the core feature of the “horizontal” aspect of the

education curriculum, that different students would prepare to have different curricula to

best suite their learning needs.

3.3 Implemented curriculum

In practice, it is typically infeasible for an educator to customize the education curriculum

to serve the individual learning needs of a given student. Instead, a number of students

may enroll in the same school or attend the same class, and hence be exposed to a common

education curriculum despite their different preparation levels. When this is the case, the

implemented curriculum may not be ideal for all but a few students. Instead, it can be

too fast-paced for some students, and too slow-paced for others.

In this paper, we do not explicitly model how a curriculum gets chosen. In principle,

the optimal curriculum choice can be derived as the optimal solution from maximizing the

objective function of a teacher, a school, or a society. For example, consider a collection

10



of N students with different preparation levels qi, where q1 ≤ q2 ≤ ... ≤ qN . Assuming

that the objective function is linear in each student’s human capital outcome from the

chosen curriculum, the optimal curriculum can be expressed as

A∗com = argmax ΣN
i=1γihi s.t.(1), ΣN

i=1γi = 1, (3)

where γi is the relative weight the educator assigns to student i. So, similar to the inter-

pretation of a social welfare function, when γi = γ for all i, the educator is “utilitarian”

and treats all students with equal concern; when γ1 ≥ γ2 ≥ ... ≥ γN , the educator

is more concerned about the less-prepared students (“no child left behind”); and when

γ1 ≤ γ2 ≤ ... ≤ γN , the educator is more concerned about the more-prepared students.

As is obvious from the set up, the optimal curriculum chosen by the educator for this

collection of students depends critically on two factors: the distribution of the student

preparation, and the relative weights assigned to different students. Here we can only

characterize the comparative statics of the optimal curriculum in a few special cases. For

instance, holding the set of relative weights fixed, the optimal curriculum becomes more

challenging when the distribution of student preparation shifts to the right, i.e., when the

new distribution is first-order stochastically dominant over the old distribution. Similar-

ly, holding the distribution of student preparation fixed, the optimal curriculum becomes

more challenging when there is a shift of the relative weights from less-prepared students

to more-prepared students, i.e., from γi to γj when i < j. On the other hand, when there

are more complex changes in either the distribution of student preparation or the set of

relative weights, the optimal curriculum will depend critically on the quantitative com-

parison of the changes, and we cannot qualitatively characterize the comparative statics.

An immediate implication is that, to empirically identify and estimate the impact of the

education curriculum on student achievement, cross-sectional variation of the education

curriculum in an observational dataset is of limited value. Unless we have perfection infor-

mation on the distribution of student preparation as well as the implemented curriculum,

self-selection bias poses a major challenge. As will become clear in our empirical section,

we overcome this hurdle by relying on a quasi-natural experiment arising from a poli-
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cy change in the education curriculum, where we argue that the distribution of student

preparation remains stable before and after the curriculum change.

At the same time, it is reasonable to assume that regardless of the specific objective

function, an implemented curriculum has to fall within the two extreme curricula: the

ideal curriculum for the least-prepared student (qi = q) and that for the most-prepared

student (qi = q). Otherwise, any curriculum with A < A∗(q) is strictly Pareto dominated

by A∗(q), and any curriculum with A > A∗(q) is strictly Pareto dominated by A∗(q). So

an implemented curriculum has to fall in the interval A ∈ [A∗(q), A∗(q)]. Comparing two

different curricula in this interval, we have the following stratification result:

Proposition 3 Consider two curricula (A, c) and (A′, c′) with A∗(q) < A < A′ < A∗(q).

There exists a cutoff level q̂ ≡ A′c′−Ac
A′−A ∈ (q, q) such that students with qi = q̂ accumu-

late the same level of human capital under the two curricula; students with q < qi < q̂

accumulate higher levels of human capital under the old curriculum (A, c) than the new;

and students with q̂ < qi < q accumulate higher levels of human capital under the new

curriculum (A′, c′) than the old.

3.4 Grade repetition

The basic curriculum model can be easily extended to understand the role of grade re-

petition. More specifically, each grade has its own curriculum, namely the grade-specific

progress rate Ag and the grade-specific threshold level c(Ag), where the subscript g indi-

cates the particular grade under consideration. When students finish grade g and move

up to grade g + 1, their human capital output from grade g, namely hg, becomes the

input for their learning process at grade g + 1, namely qg+1. In other words, the entire

learning process can be modeled as a series of hierarchical curricula:

hg+1 =

 (1− λ)hg if hg ≤ c(Ag+1),

(1− λ)hg +Ag+1(h
g − c(Ag+1)) if hg > c(Ag+1).

(4)

with the initial level h0 being the student innate ability.
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Now consider the situation of a student who, due to various reasons, finishes grade g

with a low level of hg. The educator (or the student himself) faces the following decision:

which is more beneficial to the student, moving on to the next grade or repeating the

current grade. From (4), it is straight-forward to see that if hg ≤ c(Ag+1), the student

will not be able to benefit from the next grade, so her only option is to repeat the current

grade g. On the other hand, even if c(Ag+1) < hg < Ag+1c(Ag+1)−Agc(Ag)

Ag+1−Ag
, the student still

benefits more from repeating the current grade than moving on to the next grade, i.e.,

accumulating more human capital from attending grade g instead of g+1. For this reason,

as will become clear in the next Section, we use grade repetition as a crude indicator for

students who are less-prepared.

4 Regression models

Of course, many other factors beyond the education curriculum – e.g., class size, teacher

quality, parental engagement, tutoring, just to name a few – affect a student human

capital outcome within a learning period. Our main focus in this paper is on the role of

the curriculum, so all the other factors are used as control variables to the extent we have

data. In particular, we are interested in a regression model as follows:

hist = αqist + Ast(qist − c(Ast)) + δXist + γs + ηt + εist

= αqist + qist ∗ Ast − f(A)st + δXist + γs + ηt + εist,
(5)

where f(A)st = Ast ∗ c(Ast) is a general function of the progress rate Ast. The dependent

variable hist is the test score for student i in state s and year t. On the right hand side,

the first term represents the undepreciated human capital level. The next term is the

value-added human capital output from the learning process under the given curriculum

Ast and c(A)st, which can be expressed as an interaction term between the curriculum

and the student preparation, and a term involving only the curriculum. The vector Xist

is a set of other control variables that may affect learning outcomes, including student

characteristics, family background, and school characteristics. We also allow for state
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fixed effects γs and year fixed effects ηt. Finally, εist is the error term.

Note that our focal interest is on the two variables qist and Ast, neither of which is

directly measured. As will be discussed in the next section, the quasi-natural experiment

of the G8 reform directly translates into an increase in Ast. Even if we do not have

a quantitative measurement of the increase in the curriculum threshold, we can argue

qualitatively that the G8 reform corresponds to an increase in the curriculum from one

level (for all states under the old G9 regime) to another, higher, level (under the new

G8 regime). In this sense, even though in theory the curriculum can take any value

in the relevant range, for our empirical analysis we are only considering the difference

between two particular curricula implemented in the G9 and G8 regimes. From here

onward, we denote the curriculum associated with the old G9 regime as Ao and co, and

the curriculum under the G8 reform as An and cn, where Ao < An and co < cn. On the

other hand, when there is only limited information on student preparation qi, we use two

different econometric approaches as described in detail below.

4.1 Difference-in-differences

Suppose student initial preparations are not perfectly observed. As long as the distribu-

tion of qi remains stable before and after the curriculum change, we can treat it as an

unobserved variable and integrate it out to estimate an average impact of the curriculum

change. More specifically, consider two states s and r in two years t and w, such that

Ast = Art = Arw = Ao while Asw = An, namely state s started with the original G9

regime in year t but implemented the G8 reform in year w, while state r maintained the

G9 regime in both years. Inserting these particular values of the applicable curricula into

(5) and then taking the difference-in-differences, we have

(hisw−hjst)− (hkrw−hlrt) = α((qi−qj)− (qk−ql))+((Aswqi−Astqj)− (Arwqk−Artql))

− (f(An)− f(Ao)) + δ((Xisw −Xjst)− (Xkrw −Xlrt)) + (εisw − εjst)− (εkrw − εlrt) (6)
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Even if we do not observe individual q directly, as long as the distribution of student

preparation in a given state stays the same over time, we can integrate them out to get

the expected value or the average level for the student population.

Assumption 2 Let φst(·) be the distribution density function of student initial prepara-

tions for state s in year t, such that φst(·) = φs(·) with mean µs.

Then, conditional on the observed variables X, the average reform effect can be ex-

pressed as follows:

DiD(h) = µs(An − Ao)− (f(An)− f(Ao)). (7)

Namely, after controlling for the impact of the observed variables on the test score, our

DiD approach allows us to estimate the average reform impact on student test scores even

when we do not observe student initial preparations. The validity of the DiD approach

relies on the assumption of a stable distribution for a given state over the years.

Similarly, we can break the overall average effect in (7) into two average effects,

depending on whether a student’s preparation is above or below a given cutoff level,

a crude binary measure of student preparation. If the cutoff level happens to be q̂ (as

defined in Proposition 3), we have:

DiD(h+) =

∫
q>q̂

φs(q)dq × (An − Ao)− (f(An)− f(Ao)) > 0,

and

DiD(h−) =

∫
q≤q̂

φs(q)dq × (An − Ao)− (f(An)− f(Ao)) < 0.

Alternatively, for any given cutoff level q, even though the signs ofDiD(h+) andDiD(h−)

are not guaranteed to be positive and negative, we still expect the relationshipDiD(h+) >

DiD(h−), or equivalently, DiD(h+)−DiD(h−) > 0.
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Based on this, our DiD model is estimated by the following equations. For the overall

average effect, we have:

hist = β0 + β1G8st + δXist + γs + ηt + εist, (8)

where hist is the (standardized) PISA reading, mathematics, or science score measured in

year t for an academic-track student i in state s. G8st is the G8 reform indicator which

equals one if a student observed in year t and in state s belongs to the cohort treated by

the G8 reform in that state, and zero otherwise.

For the average effects within two subgroups of students, we have:

hist = β0 + β2G8st × I(qist > q̂) + β3G8st × I(qist ≤ q̂) + δXist + γs + ηt + εist. (9)

Our main interest is the relationship between β2 and β3. Our theory predicts that β2 > β3,

which will be tested in the data. In contrast, β1 is a weighted average of β2 and β3, and

is equivalent to the average reform effect across all students.

4.2 Quantile Regressions

An alternative approach to deal with the unobserved q problem is quantile regression,

which allows us to examine potentially heterogeneous effects the reform has at different

locations of the outcome distribution. More specifically, the conventional quantile regres-

sion approach relies on the common distribution assumption, that is, not only should the

distribution of the unobserved variable q remains stable overtime, the distribution has to

be the same across the treated and the control states. When this is the case, students

at the τ -th quantile would have exactly the same preparation qτ , regardless of whether

they are in a treated or control state, before or after the treatment. Thus, holding all

other observed variables constant, test score difference at a given quantile τ between the

treated and the control state before and after the treatment can be attributed to the treat-

ment itself, namely the G8 reform effect. We call this the quantile difference-in-difference
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method (QDiD). To implement QDiD, we estimate the following quantile model:

hτ,st = βτ,0 + βτ,1G8st + δτXist + γτ,s + ητ,t, (10)

where hτ,st is the test score at a given quantile τ in state s and year t. Note also that

all the parameters are quantile-specific. In particular, the quantile-specific βτ,1 represents

the treatment effect of the G8 reform at the particular quantile τ .

However, the common distribution assumption is a well-known limitation of the quan-

tile regression approach, which cannot be expected to hold in general. Without this ass-

umption, the distribution of q can be different in a treated state from that in a control

state, and the test score difference at a given quantile may be attributed to either the

preparation difference or the G8 reform itself, making the control state not a valid coun-

terfactual for the treated state. To address this concern, we also use the Recentered

Influence Function (RIF) method recently developed by Firpo et al. (2009), which expli-

citly relaxes the common distribution assumption.2 More specifically, when the observed

outcomes (in this case, test scores) vary monotonically with the unobserved variable (in

this case, student preparation), RIF for the τth quantile as:

RIF (Y ; qτ ) = qτ +
τ − 1{Y ≤ qτ}

fY (qτ )
, (11)

where 1{Y ≤ τ} is an indicator variable that takes the value of 1 if Y ≤ qτ and 0

otherwise, and fY (qτ ) is the marginal distribution of Y around the value of qτ . It has

been shown that a RIF regression – defined for the τ -th quantile as E[RIF (Y ; qτ )|X] =

mτ (X) ≈ X ′βτ – leads to a consistent estimate of the unconditional quantile treatment

effect.3

For our analysis, instead of examining students at the same quantile across states

and years (as in the QDiD case), the RIF method compares students with the same test

score and hence located at potentially different quantiles of the distributions across states
2Given its flexibility, the RIF method has recently been applied to analyze a range of issues such as

cigarette taxes (Maclean et al., 2014) and child care (Havnes and Mogstad, 2015).
3See Firpo et al. (2009); Borah and Basu (2013).
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and years. More specifically, consider a year before the reform, let us call it year t. For

a given test score h, we can determine the corresponding quantiles τst in state s and

τrt in state r. Next, moving on to a subsequent year w where state s has implemented

the reform but not state r. Again, for the same test score h, we can determine the

corresponding quantiles τsw and τrw respectively. The impact of the G8 reform, measured

as the change in the population shares that remain below the given test score h, is then

given by −((τsw − τst) − (τrw − τrt)). This probability difference is then divided by a

kernel estimate of the joint density of test scores at the level h to arrive at the associated

treatment effect. We call this the RIF-DiD method.4 For the RIF-DiD method to work,

the distribution of the unobserved variable (student preparation) can be different across

treated and control states, as long as it remains stable over time within each state. This

is much less restrictive compared to the common distribution assumption required for the

QDiD method.

Besides the difference in the underlying distribution, there is also a difference in terms

of interpretation of the estimation results. More specifically, the QDiD estimates can be

viewed as the conditional quantile treatment effect, where heterogeneity in the observed

variables implies potentially many different distributions. This matches closely with our

theoretical model interpretation of the treatment effect due to a curriculum change, hol-

ding everything else constant. However, the conditional quantile treatment effect can be

quite sensitive to the variables that it conditions on (Borah and Basu, 2013; Maclean

et al., 2014). On the other hand, the RIF-DiD estimates can be viewed as the uncondi-

tional quantile treatment effect, where the many different conditional distributions are

aggregated into one common unconditional distribution, given the realized values of the

observed variables in the data. As a result, the unconditional quantile treatment effect is

easily interpreted as that applicable to the entire student distribution. However, its link

to our theoretical prediction of the curriculum effect is less direct. For example, suppose

in the data, well-prepared students in treated states concentrate more heavily in middle
4We implement the RIF-DiD estimation procedure using the STATA ado file rifreg – downloa-

ded from http://faculty.arts.ubc.ca/nfortin/datahead.html (last accessed December, 2015). The RIF is
computed using a Gaussian kernel with an optimal bandwidth.
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quantiles instead of top quantiles of the unconditional test score distribution, possibly due

to individual heterogeneity in observed variables such as family background. In this case,

the QDiD method can still accurately estimate the effect of a curriculum change, control-

ling for the differences in observed variables. On the other hand, the RIF-DiD method

will conclude that the reform has a stronger effect in middle quantiles than top quanti-

les, because it reflects both within-group difference (that is, groups of the same family

background) and between-group difference (groups of different family background).

A further limitation of both the QDiD and the RIF-DiD method is that, despite the

importance of clustering standard errors at the treatment (state) level to avoid overstating

precision (Bertrand et al., 2004) is widely recognized, a statistically valid method to

cluster standard errors has not been developed yet. This is further complicated by the

sampling weights associated with the observations in the complex survey design. As a

result, we can only report the standard error for QDiD assuming i.i.d. residues, while

that for RIF-DiD is bootstrapped using 200 repetitions.

5 Data

5.1 The policy variable - G8 reform

Educational policy in the Federal Republic of Germany is under the responsibility of the

sixteen federal states. Children typically enroll in primary school at the age of six, and

continue on to secondary school after four years. At the beginning of grade 5, students are

tracked into three types of school: The basic-track school (Hauptschule) and the middle-

track school (Realschule) provide vocational oriented schooling through grade 9 or 10;

the academic-track high school (Gymnasium) leads to university entrance qualification

called “Abitur ”.

Beginning in 2001, most German states introduced the so called G8 reform. The

length of the academic-track curriculum was shortened by one year (from 9 to 8), but the

total amount of curricular content to be covered as a graduation requirement was held

fixed. As a consequence, the G8 curriculum has a faster progress rate – and, implicitly,

19



a higher curricular threshold – than the G9 curriculum. Using the terminology of our

theoretical model, the G8 regime adopted a more challenging curriculum. Figure 1 offers

a visual summary of the G8 reform implementation over time and across states. We refer

to Andrietti (2015, 2016) for a detailed discussion of the G8 reform implementation and

for a definition of the G8 policy variable.

For our analysis, the G8 reform can be viewed as a quasi-natural experiment: namely

it was mostly driven by considerations of the labor market conditions and demographic

changes. For example, in earlier policy discussions, then-federal secretary of education

Jürgen Mölleman called on stakeholders to engage in deliberations on the subject “Twel-

ve years (including primary school) to the Abitur.” In his opinion, Gymnasium grades

should be reduced from 9 to 8 years for the following reasons: “[German] graduates are

two to three years older than their peers against whom they compete for jobs in the

European labor market. ... German pension systems and demographics (characterized by

a significant fraction of senior, retired citizens) cannot support such a late start of em-

ployment by young adults. ... Students reach the age of majority at 18 and should have

completed post-secondary schooling by then, especially since the motivation for studying

decreases with age. At age 25, they should have completed college, including military

or civil service, and should have reached full social and economic independence. ... In

addition, many schools do not fully utilize the 13th school year. Therefore, a decrease

in education quality [associated with reform] can be avoided through more intensive in-

struction in smaller classes and, possibly, all-day instruction programs. (Translation by

author)” (Wiater, 1996). Similarly, when the reform was actually implemented, its was

implemented for similar reasons: “Following a change of government, Saarland was the

first West German state to reduce the number of grades taken to reach Abitur from

13 to 12, effective academic year 2001/02. Driving this change was the supposed disad-

vantage of Saarland’s graduates when entering the labor market caused by Germany’s

comparatively long schooling duration. ... As mentioned earlier, reducing the number of

years of education is one of several measures aimed at lowering the age at which aca-

demically qualified workers enter the labor force, which is regarded as too high when
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compared internationally and, in light of the rising demand for highly educated workers

in a globalizing world, is expected to result in a competitive disadvantage for German

university graduates, and hence for Germany itself. ... In order to protect social insurance

systems, the palpable aging of the population, coupled with the simultaneous decline in

births and population, necessitates an earlier entry of young adults into a longer phase of

gainful employment. (Translation by author)” See Kühn et al. (2013) for more detailed

discussions.

From a student perspective, the curriculum change is exogenous, and DiD is a suitable

method to estimate the average treatment effects among subgroups of students. In a

sense, the G8 reform is a policy-induced instrument for the actual curricula implemented

at different schools across different years. Furthermore, since the G8 reform happened at

the state level, the stability of their underlying preparation distribution is more likely

to hold than that at more disaggregate levels, as there is very limited student mobility

across state borders. Finally, Andrietti (2015) provides further support to the quasi-

experimental nature of the G8 reform, documenting that high school enrollment patterns

did not change in response to the introduction of its more challenging curriculum.

5.2 PISA data

The empirical analysis is based on a dataset that pools the first five waves of PISA

assessment (2000, 2003, 2006, 2009, and 2012) for Germany.5 While PISA is conducted by

the OECD in a number of countries sampling 15-year-old students, independent of grade,

national grade- and/or age-based extensions of the study were conducted in Germany for

all PISA cycles, with the purpose of providing a sample large enough to allow comparisons

between the different federal states. Given that the age-based PISA 2009 sample has not

been released with state identifiers, our empirical analysis is based on grade-9 samples. In

particular, our samples include all ninth-graders enrolled in academic-track high schools,

with a valid test score assessment and with non-missing values on grade repetition.6

5Baumert et al. (2009); Prenzel et al. (2007, 2010); Klieme et al. (2013); Prenzel et al. (2015)
6Rather than dropping a small number of observations where information is missing on other back-

ground variables, we recode missing values to zero, and define missing values indicators for the variables
included in a specification. In results available upon request, we find, however, that our main results are
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It is worth pointing out that a sample of ninth-graders, like the one we use, includes

high school grade repeaters. The latter spend one extra year in high school, compared

to everyone else. The grade repetition essentially slows down the progress rate for these

students, i.e., they learn the same amount of academic content with extra time and more

slowly than dictated by the G8 reform. The extra year of schooling or remedial work adds

up to what they would otherwise have achieved in the same amount of time as everyone

else. Thus, grade repetition leads to potential upward bias in the reform effect for the

grade repeaters. Despite the potential upward bias, if we still find evidence that grade

repeaters benefit less from the G8 reform compared to the non-repeaters, we will know

that the performance gap between the two subgroups of students will be even bigger

when the upward bias is properly accounted for. In other words, our estimate offers a

lower bound of the true effect.

PISA tests cover three different subjects (reading, mathematics, and science), asses-

sing a range of relevant skills and competencies. Each subject is tested using a broad

sample of tasks with differing levels of difficulty to represent a coherent and comprehensi-

ve indicator of the continuum of students’ abilities.7 An issue related to the pooled nature

of our data is the comparability of subject-specific student assessments across PISA cy-

cles. While reading assessments are comparable across all cycles, mathematics and science

assessments underwent major revisions in 2003 and 2006 respectively, the first time they

were considered the main subject. As a robustness check, we use both the full sample (all

five waves) and the truncated sample (excluding 2000 for mathematics, excluding 2000

and 2003 for science) for estimation.

5.3 Control variables

Two groups of variables, defined at the student- and school-level, are employed as controls

in the empirical analysis. Descriptive statistics on these variables are reported in Table

robust to the exclusions of missing values observations.
7Using item response theory, PISA maps student performance in each subject on a scale with an

international mean of 500 and a standard deviation of 100 across the OECD countries included in the
study. The scores are averages of plausible values, which are drawn from a distribution of values that a
student with the given amount of correct answers could achieve as a test score (OECD, 2012).
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1.

Student controls include a set of demographic and socio-economic characteristics, as

well as a grade retention dummy that controls for different schooling experiences. The

demographic characteristics include a dummy indicating female students and a quadra-

tic age term (in months) that controls for potential age/maturation effects. The socio-

economic characteristics include an indicator for the number of books at home, two indi-

cators for parents’ highest educational level (ISCED), as well as the Highest International

Socio-Economic Index (HISEI), which uses the higher of the two parents’ ISEI scores or

the only available parent’s ISEI score. There are also variables indicating a student’s mi-

gration background, namely whether the student was born in a foreign country, whether

a foreign language is spoken at home, and whether at least one of the parents was born

in a foreign country.

School controls include the total number of enrolled students, the percentage of girls

enrolled, the student-teacher ratio, as well as dummy variables indicating urban schools

and privately run schools. Moreover, although PISA does not provide objective measures

of the school financial situation, school resources are proxied by the school principals’

subjective assessments of whether a lack of instructional material or a lack of computers

hindered instruction at their school.

6 Results

6.1 DiD results

The results obtained estimating different specifications of equations (8) and (9) on diffe-

rent samples are reported in Tables 2 to 4. Within each table, the results are organized in

panels, where the dependent variables are standardized test scores in reading, mathema-

tics, and science, respectively.8 Standard errors are clustered on the state level to account
8Estimation is performed according to the procedure recommended in OECD (2012). For each do-

main, OLS regressions are run separately on each of the five plausible values, and the results aggregated
to obtain the final estimated coefficients and their respective standard errors. Plausible values are stan-
dardized to have mean zero and variance one in the population of ninth graders from each PISA cycle.
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for serial error correlation within states over time.9 In all instances, final sample weights

are used to take into account the complex survey nature of PISA data (OECD, 2012).

Within each panel, the results for two types of specification are presented. The ba-

seline specifications (columns 1-3) include only state and time fixed effects, besides the

policy variables of interest. The main specifications (columns 4-6) add student and school

controls to the corresponding baseline specifications.

In Table 2, for example, column 1 of panel A shows that on average the more chal-

lenging curriculum associated with the G8 reform increases reading test score by 0.073

standard deviations. In column 2 of the same panel, we use a student’s high school grade

repetition status as a crude measure of her initial preparation, and divide the students

into two subgroups: those that repeated a grade in high school, and those that did not.

Here, the more challenging G8 curriculum benefits the well-prepared students and increa-

ses their test scores by 0.098 standard deviations, but it hurts the less-prepared students,

decreasing their test score by 0.256 standard deviations. Column 3 of panel A then reports

the net difference between the two subgroups. Compared to the well-prepared students

(i.e., those that did not repeat a high school grade), the less-prepared students suffer a

loss in their test scores of 0.354 standard deviations. All these estimates are significant

at the 5% level. However, given individual heterogeneity, the adjusted R-square of the

baseline models is rather small and ranges between 0.028 − 0.034, indicating significant

variations at the individual level not captured by state or year fixed effects, or by the G8

reform dummy, which also varies at the state level.

Moving to the main specifications (columns 4-6) reported in panel A of Table 2, we

first note that adding student and school controls does not have a qualitative impact

on the estimated reform effects, which are our main focus. More specifically, the average

effect of the more challenging curriculum under G8 is 0.072 (column 4), the effect on well-

prepared students is an increase of 0.083, and that on less-prepared students is a decrease

of 0.078 standard deviations (column 5). So, compared to the well-prepared students,
9Although this approach may lead to over-rejection of the null hypotheses when the number of clusters

(n) is small (Cameron and Miller, 2015), this does not appear to be an issue in our setting (where n = 16
states): The p-values obtained from the wild cluster bootstrap procedure (Cameron et al., 2008) provide
similar inferential results, available upon request.
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the less-prepared students suffer a loss in their test scores of 0.161 standard deviations

(column 6). Again, all these estimates are significant at least at the 10% level. What’s

more, adding the additional control variables improves the adjusted R-square of the main

models to 0.104 − 0.105, a sizable increase from the baseline models. From here on, we

focus on the main specification models.

In panels B and C, the patterns for mathematics and science scores are similar. That

is, the average effect of the more challenging G8 curriculum is an increase in standardized

scores, but this average effect consists of two opposite effects. While the reform benefits

the well-prepared students and increases their test scores, it has the opposite effect on

less-prepared students, decreasing their standardized scores. Consistent with of our mo-

del predictions, the performance gap between the two subgroups of students becomes

significantly larger after the reform.

As a sensitivity test, we repeat the same DiD analysis using different sample periods.

Recall the main subject tested was reading in 2000 (first PISA cycle), mathematics in

2003, and science in 2006. In each case, the test for the main subject was significantly

redesigned in the associated years. As a consequence, while reading tests are comparable

across all PISA cycles, test comparability across cycles is ensured for math and science

only since 2003 and 2006, respectively. Accordingly, we assess the robustness of our results

to the exclusion of PISA 2000 from the math sample, and of PISA 2000 and 2003 from

the science sample. The results are reported in Table 3. It is reassuring to see that the

estimation results remain both qualitatively and quantitatively similar to those obtained

using the full sample. This suggests that potential changes in the test design are not

the main driver behind the seen reform effects. Hereinafter we use the full sample for

estimation to achieve better efficiency.

It is also worth pointing out that, in the DiD analysis, we only rely on high school

grade retention to divide students into two subgroups and separately estimate a reform

effect for each subgroup. High school grade retention itself is not used as a control variable.

We make this decision for the following reasons. First, as discussed before, high school

grade retention is likely to lead to an upward bias in student test score, because retained
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students have one more year of schooling compared to their non-retained counterparts.

Our approach better insulates the potential upward bias for the subgroup of retained

students, with little risk of it spilling over to the subgroup of non-retained students.

Second, to the extent that test scores for a given student at different grades are correlated,

adding high school grade retention on the right-hand side may lead to reverse causation.

That is, instead of grade retention having an impact on the current test score, it is a

student’s past performance (which is correlated with his current test score) having an

impact on grade retention. Again, our approach minimize the reverse causation problem

by not using high school grade retention as a right-hand side control.

Nevertheless, as a further robustness check, we repeat the same DiD analysis including

high school grade retention as an explicit control variable. The results are reported in

Table 4. As expected, the coefficient on high school grade retention is negative, even

though the interpretation can be ambiguous given the reverse causation concern. On the

other hand, we still find a similar average effect of a significant increase in test scores

ranging from 0.060 to 0.079 standard deviations, depending on the subjects (column 4).

The impact on well-prepared students is a more pronounced increase ranging from 0.068 to

0.090 standard deviations, while that on less-prepared students is an insignificant decrease

(column 5). However, compared to the well-prepared students, the less-prepared students

still suffer a loss in their test scores ranging from 0.103 to 0.153 standard deviations,

significant at the 5% level.

6.2 Quantile regression results

Next, we turn to the quantile analysis to estimate the potentially heterogeneous effects

of the more challenging curriculum under G8 at different quantiles of the student stan-

dardized test score distribution.

Table 5 reports the QDiD results at all deciles of the distribution using the main

specification, namely with student and school controls. Panel A reports the reform effects

on reading test scores. Recall from Table 2 (column 4) that the average reform effect is

0.072, but this effect is not uniform across students. Instead, there are important distri-
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butional differences. Conditioning on the observed variables, we find that the G8 reform

is insignificant at the first two deciles, becomes significant at the 10% level at the third

decile, and is significant at the 5% level from the fourth decile upward. Furthermore, the

magnitude of the reform effect, when significant, also increases from 0.055 (3rd decile)

to 0.101 (9th decile). Since these quantile regressions can only be estimated separately

instead of jointly, we cannot obtain the covariance matrix across the quantiles to for-

mally test whether these estimates are significantly different from one another. However,

the pattern does appear consistent with our theoretical prediction that better-prepared

students benefit more from a more challenging curriculum, in that the reform effect is

increasing as we move up the deciles of the distribution. Again, since less-prepared stu-

dents are more likely to experience grade repetition and at the same time more likely to

locate on the lowest deciles of the distribution, the true reform effect at the lowest deciles

may be confounded by the upward bias associated with grade repetition.

Similar patterns also show up in mathematics (panel B) and science (panel C) test

scores. In mathematics, the reform effect is statistically insignificant at the first three

deciles, and becomes significant from the fourth decile upward. When significant, the

reform effect increases from 0.052 (4th decile) to 0.082 (9th decile). Similarly, in science,

the reform effect is insignificant at the first decile, and becomes significant from the second

decile upward. In term of magnitude, when significant, the reform effect increases from

0.064 (2nd decile) to 0.103 (9th decile). Overall, despite some minor local fluctuations,

the overall pattern appears increasing as we move from left to right over the deciles.

Table 6 reports the RIF-DiD results at selected quantiles, relaxing the common dis-

tribution assumption. Again panel A uses reading test scores as the outcome variable.

Interestingly, the RIF-DiD estimates exhibit a pattern qualitatively similar to that in

the QDiD estimates. It is insignificant at the first decile and becomes significant from

the second decile upward. When significant, the reform effect increases from 0.071 (2nd

decile) to 0.101 (9th decile).

However, when mathematics test scores are considered (panel B), the pattern changes.

The RIF-DiD estimates are statistically insignificant at the lowest two and the highest two
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deciles, but significant in the middle of the distribution. Furthermore, the reform effect

appears increasing from the left tail to the median, and then decreasing from the median

to the right tail. As discussed before, RIF-DiD gives us the unconditional treatment

effect, and it captures both the within-group difference and between-group difference,

where groups are defined by their heterogeneity in the observed control variables. Thus,

similar to Firpo et al. (2009), what we find is that while the conditional treatment effect

(given by QDiD estimates) in mathematics is broadly monotonic as we move up the

deciles, the unconditional treatment effect (given by RIF-DiD estimates) exhibit a non-

monotonic relationship. In our case, the more challenging curriculum associated with the

G8 reform widens the performance gap across students depending on their preparation

levels, holding everything else constant. At the same time, it also reduces the performance

gap for students with different observed heterogeneity, for example, allowing well-prepared

students with disadvantaged family background in treated states to catch up with well-

prepared students with advantaged family background in control states.

In panel C, the RIF-DiD result using science test scores is insignificant at the first two

deciles, and becomes significant from the third decile onward. When significant, the reform

effect is essentially flat and fluctuates between 0.093 (3rd decile) to 0.097 (9th decile).

This seems to suggest that, while within-group difference due to the curriculum change

under the G8 reform leads to similar increases in the performance gap across the deciles

in all subjects, between-group difference plays a more important role in mathematics, and

to a lesser extent in science, while its impact in reading is rather minimal.

Last, for easy visual comparison, we also graph the QDiD and the RIF-DiD results

at percentiles of the distribution using reading (Figure 2), mathematics (Figure 3), and

science (Figure 4) test scores. The solid line represents the point estimates at all per-

centiles, and the dashed lines represent the 95% confidence interval associated with the

estimates. Since the standard error cannot be as precisely estimated at the tails of the

distribution as that in the middle, it is not surprising that the confidence interval gets

wider at the tails, leading to statistical insignificance of the results. Nonetheless, it can be

seen that the overall pattern in the QDiD results is increasing, while that in the RIF-DiD
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results is relatively flat across the three subjects.

7 Conclusion

The horizontal feature of the education curriculum is an important component of the

education technology, yet so far it has been largely overlooked in the literature. This

paper is our first step toward understanding the role of education curriculum in influencing

student academic outcomes. We propose a theory of education curriculum and empirically

test its predictions, using the quasi-natural experiment of the G8 reform for identification.

The evidence we find, namely heterogeneous reform effects depending on student initial

preparation, is broadly consistent with our theory. While the average effect of the G8

reform is an increase in student test scores, such a benefit is much more pronounced for

well-prepared students. In contrast, less-prepared students (i.e., those at the left tail of

the distribution) do not seem to benefit from the G8 reform at all, and they may even

suffer lower test scores as a result.

In future research, we envision to extend the current paper in a couple of directions.

First, our current analysis assumes that the education curriculum and other measures of

school quality such as class size and teacher quality are additively separable, while the

interaction between the horizontal and the vertical features of the education technology

can play an important role in determining student outcomes. One possible extension is

to explicitly model such interaction between the horizontal and vertical treats of the edu-

cation technology. With such a model, the distributional effect of a curriculum change

can depend not only on student preparation, but also on the vertical measures of school

quality. Second, our analysis assumes a constant level of student effort, which again can

change depending on a student’s objective. For example, when a well-prepared student

faces a more challenging curriculum, he may increase her study effort because the effec-

tiveness of her learning has improved with the better-matched curriculum. Alternatively,

he may also decrease her study effort if all he cares about is meeting a target test score

for high school graduation or college admission, which requires less effort now that the
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effectiveness of her learning has improved. Such endogenous adjustment of student effort

may strengthen or weaken the distributional effect of a curriculum change, depending

on whether students view their effort and the education curriculum as complements or

substitutes. Extensions in these directions will help us better understand education cur-

riculum as a critical component of the education technology, and its impact on student

achievement.
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Fig. 1. Timing of the G8 reform implementation

Legenda
BW: Baden-Württemberg
BY: Bavaria
BE: Berlin
BB: Brandenburg
HB: Bremen
HH: Hamburg
HE: Hessen
MV: Mecklenburg-Vorpommern
NI: Lower Saxony
NW: North Rehin-Westfalia
RP: Rheinland-Palatinate
SL: Saarland
SN: Saxony
ST: Saxony-Anhalt
SH: Schleswig-Holstein
TH: Thuringia
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Table 1. Summary statistics

Variable Mean SD

PISA scores
Reading 573.19 55.17
Mathematics 579.66 58.14
Science 588.08 60.89

Student controls:
Female 0.54 0.50
Age (in months) 185.19 5.47
High school grade repeated 0.08 0.26
Parents’ ISCED 3-4 0.29 0.46
Parents’ ISCED 5-6 0.63 0.48
Parents’ ISEI 58.63 16.54
Books in house: >100 0.60 0.49
Only child 0.31 0.46
Kid born in foreign country 0.04 0.20
Parents born in foreign country 0.13 0.34
No German spoken at home 0.04 0.20

School controls:
School enrollment 799.08 350.33
% of girls enrolled 49.57 14.89
Student-teacher ratio 14.66 5.88
Lack of computers 0.34 0.47
Lack of textbooks 0.23 0.42
Urban school 0.26 0.44
Private school 0.07 0.26

Policy variables:
G8 reform 0.41 0.49

Observations 31, 383

Notes: The sample includes academic-track ninth-graders from PISA

2000-2012 pooled data with a valid assessment in reading and non-

missing values on grade retention.

37



Table 2. DiD regressions: main samples

Baseline Main

(1) (2) (3) (4) (5) (6)

Panel A: Reading

G8 0.073** 0.098** 0.072** 0.083**
(0.021) (0.018) (0.022) (0.020)

G8 × high school grade not repeated 0.098** 0.083**
(0.018) (0.020)

G8 × high school grade repeated -0.256** -0.354** -0.078* -0.161**
(0.037) (0.033) (0.041) (0.035)

Adjusted R2 0.028 0.034 0.034 0.104 0.105 0.105

Observations 31,383

Panel B: Math

G8 0.069* 0.091** 0.061* 0.072**
(0.040) (0.038) (0.033) (0.032)

G8 × high school grade not repeated 0.091** 0.072**
(0.038) (0.032)

G8 × high school grade repeated -0.217** -0.307** -0.079* -0.150**
(0.045) (0.029) (0.041) (0.030)

Adjusted R2 0.031 0.036 0.036 0.138 0.139 0.139

Observations 27,381

Panel C: Science

G8 0.085** 0.109** 0.080** 0.093**
(0.022) (0.022) (0.019) (0.019)

G8 × high school grade not repeated 0.109** 0.093**
(0.022) (0.019)

G8 × high school grade repeated -0.225** -0.334** -0.098** -0.190**
(0.039) (0.038) (0.036) (0.032)

Adjusted R2 0.028 0.033 0.033 0.114 0.116 0.116

Observations 27,661

State fixed effects X X X X X X

Cohort fixed effects X X X X X X

Student controls X X X

School controls X X X

Notes: Specifications (1)-(3) are baseline specifications. Specifications (4)-(6) are main specifications, including

student and school controls. The main specifications do not include high school grade retention among the

controls. Final student weights are used in all regressions. Standard errors clustered on state are reported in

parentheses. ∗∗ and ∗ indicate significance at 5 and 10 percent levels, respectively. The samples in panel A, B,

and C include academic-track ninth-graders from the pooled PISA 2000-2012 dataset with a valid assessment

in either reading, math, or science, respectively, and with non-missing values on grade retention.
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Table 3. DiD regressions: truncated samples

Baseline Main

(1) (2) (3) (4) (5) (6)

Panel B: Math

G8 0.081** 0.103** 0.077** 0.087**
(0.040) (0.039) (0.033) (0.033)

G8 × high school grade not repeated 0.103** 0.087**
(0.039) (0.033)

G8 × high school grade repeated -0.204** -0.306** -0.059 -0.145**
(0.044) (0.029) (0.041) (0.031)

Adjusted R2 0.033 0.038 0.038 0.140 0.141 0.141

Observations 23,036

Panel C: Science

G8 0.095** 0.119** 0.103** 0.116**
(0.025) (0.028) (0.031) (0.033)

G8 × high school grade not repeated 0.119** 0.116**
(0.028) (0.033)

G8 × high school grade repeated -0.215** -0.334** -0.064 -0.179**
(0.040) (0.040) (0.045) (0.041)

Adjusted R2 0.028 0.036 0.036 0.130 0.131 0.131

Observations 15,736

State fixed effects X X X X X X

Cohort fixed effects X X X X X X

Student controls X X X

School controls X X X

Notes: Specifications (1)-(3) are baseline specifications. Specifications (4)-(6) are main specifications, including student and school

controls. The main specifications do not include high school grade retention among the controls. Final student weights are used in

all regressions. Standard errors clustered on state are reported in parentheses. ∗∗ and ∗ indicate significance at 5 and 10 percent

levels, respectively. The sample in panel B (C) includes academic-track ninth-graders from PISA 2003-2012 (2006-2012) with a

valid assessment in math (science) and non-missing values on grade retention.

39



Table 4. DiD regressions: main samples

Baseline Main

(1) (2) (3) (4) (5) (6)

Panel A: Reading

G8 0.072** 0.084** 0.071** 0.081**
(0.020) (0.020) (0.022) (0.020)

High school grade repeated -0.245** -0.183** -0.183** -0.087** -0.037 -0.037
(0.030) (0.064) (0.064) (0.040) (0.059) (0.059)

G8 × high school grade not repeated 0.084** 0.081**
(0.020) (0.020)

G8 × high school grade repeated -0.088 -0.172** -0.052 -0.134**
(0.078) (0.083) (0.065) (0.059)

Adjusted R2 0.036 0.037 0.037 0.104 0.105 0.105

Observations 31,383

Panel B: Math

G8 0.067* 0.075** 0.060* 0.068**
(0.038) (0.037) (0.032) (0.031)

High school grade repeated -0.236** -0.195** -0.195** -0.103** -0.065* -0.065*
(0.019) (0.035) (0.035) (0.032) (0.040) (0.040)

G8 × high school grade not repeated 0.075** 0.068**
(0.037) (0.031)

G8 × high school grade repeated -0.038 -0.113** -0.035 -0.103**
(0.064) (0.050) (0.051) (0.036)

Adjusted R2 0.039 0.039 0.039 0.139 0.139 0.139

Observations 27,381

Panel C: Science

G8 0.083** 0.095** 0.079** 0.090**
(0.021) (0.022) (0.019) (0.019)

High school grade repeated -0.230** -0.173** -0.173** -0.108** -0.052 -0.052
(0.021) (0.030) (0.030) (0.030) (0.036) (0.036)

G8 × high school grade not repeated 0.095** 0.090**
(0.022) (0.019)

G8 × high school grade repeated -0.067 -0.162** -0.063 -0.153**
(0.044) (0.046) (0.038) (0.036)

Adjusted R2 0.035 0.036 0.036 0.115 0.116 0.116

Observations 27,661

State fixed effects X X X X X X

Cohort fixed effects X X X X X X

Student controls X X X

School controls X X X

Notes: Specifications (1)-(3) are baseline specifications. Specifications (4)-(6) are main specifica-

tions, including student and school controls. The main specifications include high school grade

retention among the controls. Final student weights are used in all regressions. Standard errors

clustered on state are reported in parentheses. ∗∗ and ∗ indicate significance at 5 and 10 percent

levels, respectively.The samples in panel A, B, and C include academic-track ninth-graders from

the pooled PISA 2000-2012 dataset with a valid assessment in either reading, math, or science,

respectively, and with non-missing values on grade retention.
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Table 5. G8 policy effects: QDiD

Quantiles

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Panel A: Reading

G8 0.026 0.047 0.055* 0.074** 0.086** 0.091** 0.100** 0.107** 0.101**
(0.040) (0.029) (0.031) (0.031) (0.028) (0.024) (0.029) (0.033) (0.043)

Observations 31, 383

Panel B: Math

G8 0.016 0.019 0.027 0.052* 0.070** 0.092** 0.090** 0.092** 0.082*
(0.047) (0.042) (0.032) (0.029) (0.027) (0.030) (0.028) (0.031) (0.045)

Observations 27, 381

Panel C: Science

G8 0.049 0.064* 0.055** 0.071** 0.084** 0.093** 0.104** 0.105** 0.103**
(0.053) (0.034) (0.027) (0.029) (0.027) (0.027) (0.024) (0.034) (0.049)

Observations 27, 661

Notes: Final student weights are used in all regressions. Conventional standard errors are reported in parentheses. ∗∗

and ∗ indicate significance at 5 and 10 percent levels, respectively. The samples in panel A, B, and C include academic-

track ninth-graders from the pooled PISA 2000-2012 dataset with a valid assessment in either reading, math, or science,

respectively, and with non-missing values on grade retention.
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Table 6. G8 policy effects: RIF-DiD

Quantiles

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Panel A: Reading

G8 0.068 0.071* 0.071** 0.076** 0.074** 0.075** 0.094** 0.091** 0.101**
(0.066) (0.037) (0.033) (0.030) (0.029) (0.028) (0.034) (0.031) (0.039)

Observations 31, 383

Panel B: Math

G8 0.030 0.037 0.067** 0.082** 0.091** 0.088** 0.076** 0.061 0.045
(0.045) (0.039) (0.034) (0.030) (0.032) (0.034) (0.031) (0.043) (0.045)

Observations 27, 381

Panel C: Science

G8 0.067 0.075 0.093** 0.083** 0.093** 0.090** 0.092** 0.093** 0.097*
(0.066) (0.048) (0.034) (0.036) (0.032) (0.033) (0.032) (0.035) (0.051)

Observations 27, 661

Notes: Final student weights are used in all regressions. Standard errors – reported in parentheses – are based on 200

bootstrap replications. (** and ∗ indicate significance at 5 and 10 percent levels, respectively. The samples in panel A,

B, and C include academic-track ninth-graders from the pooled PISA 2000-2012 dataset with a valid assessment in either

reading, math, or science, respectively, and with non-missing values on grade retention.
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Fig. 2. G8 policy distributional effects: Reading
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Source: Our elaborations on PISA 2000-2012 data. Rif-DiD and QDiD estimates and 95% CI
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Fig. 3. G8 policy distributional effects: Mathematics
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Source: Our elaborations on PISA 2000-2012 data. Rif-DiD and QDiD estimates and 95% CI
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Fig. 4. G8 policy distributional effects: Science
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