-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the First PhD Symposium on Sustainable Ultrascale
Computing Systems (NESUS PhD 2016)
Timisoara, Romania

Jesus Carretero, Javier Garcia Blas
Dana Petcu
(Editors)

February 8-11, 2016

[@lolsle]

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License

Samuel Cremer, Michel Bagein, Said Mahmoudi, Pierre Manneback

13

CuDB: a Relational Database Engine
Boosted by Graphics Processing Units

SAMUEL CREMER, MICHEL BAGEIN, SATD MAHMOUDI, PIERRE MANNEBACK

University of Mons, Belgium

samuel.cremer@heh.be,michel bagein@umons.ac.be,

said. mahmoudi@umons.ac.be,pierre. manneback@umons.ac.be

Abstract

GPUs benefit from much more computation power with the same order of energy consumption than CPUs. Thanks
to their massive data parallel architecture, GPUs can outperform CPUs, especially on Single Program Multiple
Data (SPMD) programming paradigm on a large amount of data. Database engines are now everywhere, from
different sizes and complexities, for multiple usages, embedded or distributed; in 2012, 500 million of SQLite
active instances were estimated over the world. Our goal is to exploit the computation power of GPUs to improve
performance of SQLite, which is a key software component of many applications and systems. In this paper, we
introduce CuDB, a GPU-boosted in-memory database engine (IMDB) based on SQLite. The SQLite API remains
unchanged, allowing developers to easily upgrade database engine from SQlite to CuDB even on already existing
applications. Preliminary results show significant speedups of 70x with join queries on datasets of 1 million records.
We also demonstrate the “memory bounded” character of GPU-databases and show the energy efficiency of our

approach.

Keywords Relational Database, In-Memory, SQLite, GPU

I. INSTRUCTION

One of the most common components in many appli-
cations is related to database management. Compared
to explicit data management (like C/C++ container),
the main advantage of a relational database engine is
its flexibility in data storage and manipulation. Rela-
tional databases are used in enterprise systems (ERP,
CRM), in e-business applications (Apache, MySQL,
PHP), in many personal applications (FireFox, Skype,
GoogleGears, etc.), in embedded systems (iPhone and
low cost cellular phones), and also as a native compo-
nent in OS (e.g. Android and Symbian). With currently
more than a billion copies of implementation, SQLite
is probably currently the most widely deployed SQL
database engine.

In 2004, a first attempt was made to process some
database operations with a GPU [1]. At that time,
the GPU architectures were not sufficient mature for

general-purpose processing. GPGPU frameworks ap-
peared much later. Since the first releases in 2007 of the
CUDA framework and in 2009 for the OpenCL frame-
work, it has become common to use GPUs in HPC
environments for boosting scientific simulations. Nev-
ertheless, GPUs are not commonly used for boosting
database engines. Our goal is to show that a GPU-
boosted relational database engine can provide drastic
speedups while improving energy efficiency. In this pa-
per we briefly introduce CuDB, a GPU boosted version
of SQLite.

II. RELATED WORKS

In 2007 appeared GPUQP [2], one of the first exper-
imental relational query processing engine working
on a Graphics Processing Unit. With GPUQP, each
operator of generated query plans could be processed
either on CPU or GPU. The source code did not offi-

14 CuDB: a Relational Database Engine Boosted by Graphics Processing Units

cially evolve since 2009 but it contributes to provide
a reference database engine for many other contribu-
tions. In 2010, two researchers proposed Sphyraena
[3], a GPU boosted version of SQLite. Unlike other so-
lutions, Sphyraena does not split the query plans into
sequences of parallel primitives which require multiple
kernel calls. With Sphyraena, the whole query plan
is processed on GPU with a single kernel call. Those
previous researches have motivated us to start our own
GPU-sided relational database engine. We described
some specificities of our GPU-sided database, named
CuDB, in a previous paper [4].

Meanwhile other teams started different types of re-
searches, with GPU-database engines as central the-
matic. Sphyraena was used as base for Virginian [5],
with as aim the development of a GPU-adapted table-
structure. A group of researchers decide to study
the impact of transaction mechanisms within GPU-
databases and published the experimental GPUTx en-
gine [6]. The main drawback of GPUTx is that it
executes only pre-compiled procedures. Another ex-
perimental project is GPUDB [7] which was mainly
build to run the Star Schema Benchmark. GPUDB has
contributed to prove potential performances of GPU-
databases with a reference benchmark.

Another group of researchers wanted to create a
database engine which is able to run on different hard-
ware architectures. They used GPUQP as reference
engine, and developed the OmniDB [8] engine. The ex-
perimental CoGaDB [9] database engine allow the gen-
eration of query-plans which are dynamically adapted
to the target hardware. Unlike most of previous cited
solutions, the online available source code is currently
still updated.Note also that two commercial solutions
of GPU-sided database engines currently exist [10, 11]
and a third database engine just started beta phases
[12]. Those commercial solutions are more designed
for Geographic Information Systems and the Big Data
market. They do not encounter all the issues of a full
relational DBMS.

1. THESIS IDEA

Before explaining the internel architecture of CuDB, it
is necessary to understand how our reference engine,
SQLite, works. SQLite is subdivided into 4 modules:

(1) the interface which receive SQL queries, (2) SQL
Command Processor which parses the queries and
generates query plans, (3) Virtual Database Engine
which executes the query plans, and (4) the database.
Current version of CuDB engine preserves SQLite API
and Command Processor. With CuDB, the Virtual
Database Engine and the Database are replaced by our
GPU versions. The CPU unit is in charge of parsing
queries and translating it into query plans in the first
two modules. A query plan is formed by a sequence
of opcodes to be processed by a Virtual Machine. Our
Virtual Machine is natively designed for GPU paral-
lel architecture as well as our In-Memory Database
Engine. This hybrid design was motived by several
points: parsing and processing could not expect high
speedup although process and storage operation on
data can largely benefit of SIMD GPU architectures
(several hundreds of synchronized cores). Figure 1
shows the internal architecture of CuDB.

Client App.

CubDB

Opcodes cuDB

SQLite
sat | |

sQL Command | | -

Virtual
Interface Processor

Machine

Database

CPU GPU

Figure 1: Internal architecture of CuDB.

CuDB engine preserves the original SQLite API, en-
abling fast, easy and efficient update of existing appli-
cations with minor source code updates.To take benefit
of the high computation power of GPUs, with GPU-
sided virtual machine, each GPU-thread processes the
same query plan on its own records, allowing signifi-
cant speedups with large datasets.

In 2013, a paper specific to the implementation of
SELECT WHERE and SELECT JOIN queries with a
GPU-database engine was published [13]. The chosen
approach, for the implementation of join operations,
was a trivial Cartesian product of tables, which pro-
cures a quadratic time complexity. With our engine, we
preferred to use a temporary indexation structure for
the processing of join-queries, which procure a quasi-
linear time complexity. We made performance tests
with JOIN queries on two non-indexed tables that are

Samuel Cremer, Michel Bagein, Said Mahmoudi, Pierre Manneback

composed by multiple numerical columns. The selec-
tivity of the queries starts at 10% for small datasets and
decreases to 0.1% for the one million row tables. Tables
count both the same amount of records. We compared
the execution time of CuDB, with a standard SQLite
CPU implementation in which tables are stored in
RAM memory. The specificities of the hardware we
used for this performance evaluation are shown on
table 1. Figure 2 shows the average execution time of
the multiple join queries.

CPU GPU1 GPU2
Reference Corei7 2600K GT740 GTX770
Units 4 + HT 384 1536
Frequency 3.8GHz ~1GHz ~1GHz
Bandwidth 21GB/s 80GB/s 224GB/s
Table 1: Hardware specificities
10000 3762 ms
1000 /
/ 132 ms
100 A

execution time (ms)

53 ms CcPU
10 1 GTX770
.4 : ‘ ‘ ‘ —A—GT740
5 +/

1,E402 1,E403 1,E404 1,E405 1,E406

records per table

Figure 2: Average execution times with JOIN queries.

Our GPU database becomes as fast as the CPU version
when the tables count a minimum of 800 records with
GPU1 and 600 records with GPU2. We obtain relevant
speedups on large datasets, and even modest GPUs
like our GPU1 are able to procure substantial speedups.
Our measures also show that performances of our sys-
tem are clearly memory bounded and depending of
query types, the processing time can be more impacted
by the memory bandwidth than by the computation
power of GPUs.

These results are encouraging but they are produced
on non-indexed tables. When the record number of
one table increases, performance of a indexed search in
O(log(n)), running on a single thread CPU, overtakes

15

a trivial parallel brute-force implementation O(n/p),
where p is the number of cores. Therefore, we are
also currently working on indexation mechanisms for
CuDB with better complexity.

During the performance evaluations, we also measured
the total power consumption of our platforms. From
the measured values we subtracted the idle power con-
sumption to only show the part of energy consumption
involved by the computation of the database system.
Figure 3 shows the resulting total consumed energy.

1000

=

= 100 ~*

02

2

Q

£ 10

2 / ——CPU

H

S 1 ‘ ‘ GTX770
& »

z —&—GT740
f =

Q

0,01 1
1,E+02 1,E+03 1,E+04 1,E+05 1,E+06
records per table

Figure 3: Average energy consumption with JOIN queries.

With our energy consumption tests, we show that the
small GPU1 (manufactured in 28 nm) is more efficient
than GPU2 (also 28 nm) because of its better "mem-
ory bandwidth" over "number of computation units"
ratio, what confirms that our GPU database is memory
bounded. With CuDB, we are currently working on
different types of storage engines with different lev-
els of data compactness and data types. We are also
working with SoC architectures to provide a CuDB(m)
version which will be dedicated to mobile and embed-
ded applications. Instead of large systems, where the
major manufacturers challenge was mainly focused on
the processing speed over energy efficiency, small sys-
tems dedicated to embedded applications have major
energy constraints, particularly due to the portable na-
ture of devices (smartphone, auricular devices). In this
field, SoC now offer higher energy efficiency than large
systems, mainly due to better integration between com-
ponents on the same chip (shared memory between
CPU and GPU units). So, these small systems using
less energy and boosted by environmental constraints,
could offer a valuable alternative to existing HPC facil-
ities.

16 CuDB: a Relational Database Engine Boosted by Graphics Processing Units

IV. ConcrusioN AND FUTURE WORKS

In this paper, we have introduced CuDB, a GPU
boosted relational database engine. CuDB is based
on SQLite and preserves its user interface. We mea-
sured relevant speedups while the energy efficiency
was increased up to 54 times with large datasets. With
join queries, our GPU database always outperforms
SQLite when tables counted more than one thousand
records. Some significant SQL clauses like ORDER BY
are still not being supported by our engine. The SQL
support of CuDB needs to be improved, as aiming to
run full database benchmarks. We need to deal with
the GPU memory limitations and we plan to make a
hybrid version of our engine where the CPU cores will
process queries on small datasets, while the GPU still
manages the greediest processing. We also showed that
a GPU-boosted database engine is a memory bounded
application. The future GPU architectures with stacked
memory will drastically improve the available memory
bandwidths. NVidia speaks about 1 TB/s with its next
Pascal GPU architecture which will still increase the
performances of GPU-database engines.

Acknowledgment

The authors would like to acknowledge the contribu-
tion of the Nesus COST Action IC1305.

REFERENCES

[1] N.K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manochad, "Fast computation of database op-
erations using graphics processors,” in Proceedings
of the 2004 ACM SIGMOD international conference
on Management of data, Paris, France, June 2004,
pp. 215-216.

[2] R. Fang, B. He, M. Lu, K. Yang, N.K. Govin-
daraju, Q. Luo, and P.V. Sander, "GPUQP: query
co-processing using graphics processors,” in Pro-
ceedings of the 2007 ACM SIGMOD international
conference on Management of data, Beijing, China,
June 2007, pp. 1061-1063.

[3] P. Bakkum and K. Skadronr, "Accelerating SQL
database operations on a GPU with CUDA," in

Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing, Pittsburgh,
Pennsylvania, March 2010, pp. 94-103.

[4] N. Dechamps, M. Bagein, M. Benjelloun, and S.
Mahmoudi, "Boosting Open-Source Database En-
gines with Graphics Processors," in Proceedings
of the 2012 Seventh International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, Victo-
ria, Canada, November 2012, pp. 262-266.

[5] P. Bakkum and S. Chakradhar, "Efficient Data
Management for GPU Databases," 2012.
http : / / pbbakkum.com /virginian/ paper.pdf
Accessed : 2015-08-11.

[6] B. He, and J. Xu Yu, "High-throughput transac-
tion executions on graphics processors,” VLDB
Endowment, vol. 4, no. 5, pp. 314-325, 2011.

[7] S. Zhang,]. He, B. He, and M. Lu, "OmniDB: to-
wards portable and efficient query processing on
parallel CPU/GPU architectures," VLDB Endow-
ment, vol. 6, no. 12, pp. 1374-1377, 2013.

[8] Y. Yuan, R. Lee, and X. Zhang, "The Yin and Yang
of processing data warehousing queries on GPU
devices," VLDB Endowment, vol. 6, no. 10, pp. 817-
828, 2013.

[9] S.Bref, N. Siegmund, L. Bellatreche, and G. Saake,
"An operator-stream-based scheduling engine for
effective GPU coprocessing," Advances in Databases
and Information Systems, vol. 8133, pp. 288-301,
2013.

[10] Parstream, “Parstream - turning data into knowl-
edge,” White Paper, November 2010.

[11] GPUdb, www.gpudb.com, Accessed : 2015-07-23.

[12] T. Mostak, "An overview of MapD (massively par-
allel database),” White Paper, Massachusetts Insti-
tute of Technology, 2013.

[13] M. Pietron, P. Russek, and K. Wiatr, "Accelerating
select where and select join queries on a GPU,"
Computer Science (AGH), vol. 14, no. 2, pp. 243-252,
2013.

