-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Universidad Carlos Il de Madrid e-Archivo

-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the First PhD Symposium on Sustainable Ultrascale
Computing Systems (NESUS PhD 2016)
Timisoara, Romania

Jesus Carretero, Javier Garcia Blas
Dana Petcu
(Editors)

February 8-11, 2016

[@0SIe)

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License

https://core.ac.uk/display/44310788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nuria Losada,Maria J. Martin,Patricia Gonzdlez

29

Resilience of Parallel Applications

Nuria Losapa, MARTA J. MARTIN, PATRICTA GONZALEZ

Universidade da Corufa, Spain

{nuria.losada, mariam, pglez}@udc.es

Abstract

Future exascale systems are predicted to be formed by millions of cores. This is a great opportunity for HPC
applications, however, it is also a hazard for the completion of their execution. Even if one computation node
presents a failure every one century, a machine with 100.000 nodes will encounter a failure every 9 hours. Thus,
HPC applications need to make use of fault tolerance techniques to ensure they successfully finish their execution.
This PhD thesis is focused on fault tolerance solutions for generic parallel applications, more specifically in check-
pointing solutions. We have extended CPPC, an MPI application-level portable checkpointing tool developed in
our research group, to work with OpenMP applications, and hybrid MPI-OpenMP applications. Currently, we
are working on transparently obtaining resilient MPI applications, that is, applications that are able to recover

themselves from failures without stopping their execution.

Keywords Fault Tolerance, Checkpointing, Resilience, MPI, OpenMP

I. MoTIivATION

Current petascale systems are formed by hundreds
of thousands of cores. Schroeder and Gibson [16]
have analysed failure data collected at two large high-
performance computing sites, showing failure rates
from 20 to more than 1,000 failures per year, depend-
ing mostly on system size. That can be translated
in a failure every 8.7 hours. Future exascale sys-
tems will be formed by several millions of cores, and
they will be hit by error/faults much more frequently
than petascale systems due to their scale and complex-
ity [5]. Therefore, long-running HPC applications in
these systems will need to use fault tolerance tech-
niques to ensure the successful execution completion.

The MPI (Message Passing Interface) standard is the
most popular parallel programming model in petas-
cale systems. Moreover, current HPC systems are clus-
ters of multicore nodes that can benefit from the use of
a hybrid programming model, in which MPI is used
for the inter-node communications while a shared
memory programming model, such as OpenMP, is
used intra-node [20, 8]. However, these programming
models lack fault tolerance support. In this scenario,

checkpointing is a widely used fault tolerance tech-
nique, in which the computation state is saved period-
ically to disk into checkpoint files, allowing the recov-
ery of the application when a failure occurs.

This PhD. thesis is focused on the study of efficient
fault tolerance solutions for those parallel program-
ming models that will likely be the most used in the
exascale era. For this purpose, new strategies and
protocols will be implemented in CPPC (ComPiler for
Portable Checkpointing) [14], a portable and transpar-
ent checkpointing infrastructure for MPI parallel ap-
plications, to adequate it for the exascale era.

II. CPPC OVERVIEW

CPPC is an open-source checkpointing tool for MPI
applications available at http://cppc.des.udc.es un-
der GNU general public license (GPL). CPPC is made
up of a compiler tool and a runtime library, and its
main characteristics are:

o It constitutes a transparent solution for the final
user, since at compile time the CPPC source-to-
source compiler automatically transforms a paral-

30

;”éPF‘C library: manages applicatior'i“;

CPPC compiler: inserts fault 1 i 2 B
| state, saving and recovering it |

tolerance and flow control code when necessary

Parallel Application FT Parallel {CPPC Stable
Application | library Storage

Figure 1: CPPC global flow

lel code into an equivalent fault-tolerant version
instrumented with calls to the CPPC library, as
exemplified in Figure 1.

e It applies a spatially coordinaded checkpointing.
The CPPC compiler identifies safe points, that is,
code locations in which it is guaranteed that no
inconsistencies due to messages may occur. The
usage of safe points guarantees data consistency
and no inter-process communications or runtime
synchronization are necessary when checkpoint-
ing. Thus, reducing the checkpointing protocol
overhead.

o It uses an application-level checkpointing, includ-
ing in the checkpoint files only those application
variables indispensable for the successful recov-
ery. The CPPC compiler automatically performs a
liveness analysis to identify the relevant variables,
minimizing the checkpoint file size and, thus, re-
ducing the checkpointing overhead.

e It results in a portable solution, thanks to the
use of portable storage formats and the exclusion
of architecture-dependent state from checkpoint
files, allowing the recovery on machines with
different architectures and/or operating systems
than those in which the checkpoint files were gen-
erated.

III. TaEsis WoRK

In the literature, there exists some works focused on
fault tolerance for shared memory systems, in which
OpenMP is the de-facto standard for parallel program-
ming on this systems. Some of these proposals are
based on redundancy [7, 18], however, they can not
tolerate multiple failures. On the other hand, the
available checkpointing proposals for shared mem-
ory applications lack portability, whether code porta-

Resilience of Parallel Applications

bility [13, 17] (allowing its use on different architec-
tures) or checkpoint files portability [2, 4] (allowing to
restart on different machines). In this context, we have
extended CPPC to cope with OpenMP applications
using a coordinated checkpointing protocol for data
consistency [12], and applied different optimization
techniques to minimize the overhead introduced dur-
ing its operation [11]. Afterwards, we have extended
that solution to cope with hybrid MPI-OpenMP ap-
plications using a hybrid protocol: coordinated check-
pointing across OpenMP threads and uncoordinated
across MPI processes (thanks to the use of safe points).
We have evaluated the performance of this hybrid
MPI-OpenMP solution on applications from the ASC
Sequoia Benchmark Codes and the NERSC-8/Trinity
benchmarks on over 6144 cores, obtaining overheads
below 1.1% when checkpointing 50 GB of data. Ad-
ditionally, the choice of an application-level approach
and the portability of the checkpoint files allow build-
ing adaptable applications, that is, applications that
are able to be restarted in a different resource archi-
tecture and/or number of cores, varying the number
of OpenMP threads used by the application. This fea-
ture will be specially useful on heterogeneous clusters,
allowing the adaptation of the application to the avail-
able resources.

Whether using the MPI or the hybrid MPI-OpenMP
model, upon a single process/thread failure the entire
application is aborted. This is the default behaviour
because the state of MPI is undefined upon failure
and, thus, there are no guarantees that the program
can successfully continue its execution. Therefore, tra-
ditional fault tolerant solutions for these applications
rely on stop&restart checkpointing: the application
state is periodically saved into checkpoint files, so that,
upon failure, a new job can be relaunched for restart-
ing the application using the state files. However, a
complete restart is unnecessary since, after a failure,
most of the computation nodes used by a job will
still be alive. Moreover, a complete restart introduces
overheads both for re-queuing the job and for mov-
ing the checkpointed data across the cluster to the
new granted resources. Thus, in the last years, new
methods have emerged to provide fault tolerance sup-
port to MPI applications, such as failure avoidance ap-
proaches [6, 21] that preemptively migrate processes

Nuria Losada,Maria J. Martin,Patricia Gonzdlez

from processors that are about to fail. Unfortunately,
these solutions are not able to cope with already hap-
pened failures.

Recently, the Fault Tolerance Working Group within
the MPI forum proposed the ULFM (User Level Fail-
ure Mitigation) interface [3] to integrate resilience ca-
pabilities in the future MPI 4.0. It includes new se-
mantics for process failure detection, and communi-
cator revocation and reconfiguration. Thus, it en-
ables the implementation of resilient MPI and hybrid
MPI-OpenMP applications, that is, applications that
are able to recover themselves from failures. Nev-
ertheless, incorporating the ULFM capabilities in al-
ready existing codes is not a simple task. Different
approaches for resilience using the new ULFM func-
tionalities have emerged. Some of these solutions are
Algorithm-Based Fault Tolerance (ABFT) techniques,
which means that they are specific to one or a set of ap-
plications and they can not be generally applied [9, 1].
Other proposals, such as [15, 19] present a more gen-
eral scope, however they rely on the developers to
instrument their MPI applications in order to obtain
fault tolerance support, which is, in general, a com-
plex and time-consuming task.

In this scenario, we have exploit the ULFM new
functionalities using CPPC to transparently obtain re-
silient MPI applications from generic MPI SPMD (Sin-
gle Program Multiple Data) programs [10]. By means
of the CPPC instrumentation of the original applica-
tion code, failures in one or several MPI processes are
tolerated using a non-shrinking backwards recovery
based on checkpointing. In this solution, after a fail-
ure, the failed processes are re-spawned and all the
processes rolled back to the last checkpoint available,
so that the application can continue its execution with
the same number of MPI processes.

IV. FuTture WoORK

Our MPI resilience proposal combining CPPC and
ULEFM avois the overheads both for requeuing the job
and for moving all the checkpointed data across the
cluster. However, upon a failure, all the MPI processes
roll back to a previous saved state to recover the appli-
cation. In this situation, not only some computation
done by the failed processes is lost, but also some com-

31

putation performed by the survivor processes, as all
of them roll back to the last checkpoint available and
continue the execution from that point. Therefore, to
adequate this proposal to the exascale era, we plan
on designing and implementing a local recovery strat-
egy, so that, only the failed processes have to roll back
to a previous state, while the survivors can continue
their computation. Apart from improving the scala-
bility of the proposal, this strategy can reduced the
energy consumption, as survivor processes do not re-
peat any part of their computation.

Acknowledgment

This research was supported by the Ministry of Econ-
omy and Competitiveness of Spain and FEDER funds
of the EU (Project TIN2013-42148-P, and the predoc-
toral grant of Nuria Losada ref. BES-2014-068066) and
by EU under the COST Program Action IC1305: Net-
work for Sustainable Ultrascale Computing (NESUS).

REFERENCES

[1] M. M. Alj, J. Southern, P. Strazdins, and B. Hard-
ing. Application Level Fault Recovery: Using
Fault-Tolerant Open MPI in a PDE Solver. In
IEEE International Parallel Distributed Processing
Symposium Workshops, pages 11691178, 2014.

[2] J. Ansel, K. Arya, and G. Cooperman. DMTCP:
Transparent Checkpointing for Cluster Computa-
tions and the Desktop. In Proceedings of the 23rd
IEEE International Parallel and Distributed Process-
ing Symposium. IEEE, 2009.

[3] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation
of User-Level Failure Mitigation support in MPI.
Computing, 95(12):1171-1184, 2013.

[4] G. Bronevetsky, K. Pingali, and P. Stodghill. Ex-
perimental evaluation of application-level check-
pointing for OpenMP programs. In Proceedings of
the 20th Annual International Conference on Super-
computing, pages 2-13, 2006.

[5] E Cappello. Fault tolerance in petascale/exascale
systems: Current knowledge, challenges and re-

32

[10]

(11]

[12]

[13]

search opportunities. International Journal of High
Performance Computing Applications, 23(3):212-226,
2009.

I. Cores, G. Rodriguez, P. Gonzdlez, and M. J.
Martin. Failure avoidance in MPI applications us-
ing an application-level approach. The Computer
Journal, 57(1):100-114, 2014.

H. Fu and Y. Ding. Using Redundant Threads for
Fault Tolerance of OpenMP Programs. In Proceed-
ings of the 2010 International Conference on Informa-
tion Science and Applications, pages 1-8, 2010.

H. Jin, D. Jespersen, P. Mehrotra, R. Biswas,
L. Huang, and B. Chapman. High Perfor-
mance Computing using MPI and OpenMP on
Multi-core Parallel Systems. Parallel Computing,
37(9):562 — 575, 2011.

I. Laguna, D.E. Richards, T. Gamblin, M. Schulz,
and B.R. de Supinski. Evaluating User-Level
Fault Tolerance for MPI Applications. In European
MPI Users” Group Meeting, pages 57-62, 2014.

N. Losada, I. Cores, M.]J. Martin, and P. Gonzélez.
Resilient MPI applications using an application-
level checkpointing framework and ULFM. In
Journal of Supercomputing. [In Press], 2016.

N. Losada, M. J. Martin, G. Rodriguez, and
P. Gonzélez. I/O Optimization in the Checkpoint-
ing of OpenMP Parallel Applications. In Proceed-
ings of the 23rd Euromicro International Conference
on Parallel, Distributed and Network-Based Process-
ing, pages 222-229, 2015.

N. Losada, M.J. Martin, G. Rodriguez, and
P. Gonzalez. Extending an Application-Level
Checkpointing Tool to Provide Fault Tolerance
Support to OpenMP Applications. Journal of Uni-
versal Computer Science, 20(9):1352-1372, 2014.

M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:
cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. In
Proceedings of the 29th Annual International Sym-
posium of Computer Architecture, pages 111-122,
2002.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Resilience of Parallel Applications

G. Rodriguez, M.J. Martin, P. Gonzilez,
J. Tourifio, and R. Doallo. CPPC: a compiler-
assisted tool for portable checkpointing of
message-passing applications. Concurrency and
Computation: Practice and Experience, 22(6):749—
766, 2010.

K. Sato, A. Moody, K. Mohror, T. Gamblin,
B.R. De Supinski, N. Maruyama, and S. Mat-
suoka. FMI: Fault Tolerant Messaging Interface
for Fast and Transparent Recovery. In IEEE Inter-
national Parallel and Distributed Processing Sympo-
sium, pages 1225-1234, 2014.

B. Schroeder and G. A. Gibson. A large-scale
study of failures in high-performance computing
systems. IEEE Transactions on Dependable and Se-
cure Computing, 7(4):337-350, 2010.

D.J. Sorin, M.M.K. Martin, M.D. Hill, and D.A.
Wood. SafetyNet: improving the availability
of shared memory multiprocessors with global
checkpoint/recovery. In Proceedings of the 29th
Annual International Symposium on Computer Archi-
tecture, pages 123-134, 2002.

O. Tahan and M. Shawky. Using dynamic task
level redundancy for OpenMP fault tolerance. In
Proceedings of the 25th International Conference on
Architecture of Computing Systems, pages 25-36,
2012.

K. Teranishi and M.A. Heroux. Toward Local
Failure Local Recovery Resilience Model Using
MPI-ULFM. In European MPI Users” Group Meet-
ing, pages 51-56, 2014.

R. Thakur, P. Balaji, D. Buntinas, D. Goodell,
W. Gropp, T. Hoefler, S. Kumar, E. Lusk, and J. L.
Traff. MPI at Exascale. Proceedings of Scientific
Discovery through Advanced Computing, 2, 2010.

C. Wang, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive process-level live migration in
HPC environments. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 43,
2008.

