
Proceedings of the First PhD Symposium on Sustainable Ultrascale

Computing Systems (NESUS PhD 2016)

Timisoara, Romania

Jesus Carretero, Javier Garcia Blas
Dana Petcu

(Editors)

February 8-11, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44310787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

Processor Model for the Instruction
Mapping Tool

Roman Mego

Brno University of Technology, Czech Republic
roman.mego@phd.feec.vutbr.cz

Abstract

This paper describes the model designed for the instruction mapping tool, which can be used for generating the low
level assembly code for the digital signal processing algorithms. The model is based on the Very Long Instruction
Word architecture. The Texas Instrument TMS320C6678 was the pattern and finally was described with the created
model. The paper is showing the parameters of the hardware resources and also the instruction set.

Keywords Processor model, Instruction mapping, VLIW

I. Introduction

Several years ago, in applications for digital signal pro-
cessing applications, the critical code was not written
using high level languages, but it was hand optimized
in the assembly language. This approach was chosen
because of the non-effective results generated by the
compilers. This procedure resulted in the long devel-
opment time and high cost. The other complication
is that the final code cannot be used on the different
processor architecture. In the case of the migration on
the different processor, the code must be rewritten into
the different form.

Nowadays, the modern compilers are capable of gen-
erating effective code. This statement applies mainly
for the scalar processor architectures. It is given by the
wide use of the scalar processors in different sectors,
from the industrial and medical equipment, to the cus-
tomer electronics, which leaded to the development
of the effective compilers. There are also frameworks,
where the architecture can be defined for various ar-
chitectures such as [1] or [2].

But there are also different architectures, not widely
used, where the use of high level languages leads to the
ineffective code. These processors are usually the ones
that use instruction level parallelism, such as super-
scalar or Very Long Instruction Word (VLIW). To avoid
the problems related with the software creating using

assembly language, the new tool for DSP algorithm
mapping under development [3].

This paper is dealing with the processor model used
in the tool. The next chapters will show the model
structure based on the VLIW architecture.

II. Model Description

To cover the majority of possible cases of the processor
internal structure, the more complex processor was
chosen as the reference. It was the TMS320C6678 [4]
which is 8-core digital signal processor based on the
C66x CorePac [5] made by Texas Instruments.

Single C66x DSP core contains 8 functional units and
64 general purpose registers. Its simplified structure
is shown in figure 1. At first sight, it may seem that
the core has quite large amount of the resources for
parallel operation, but it has its limitation.

The first is that the functional units are not equal.
They are not capable to execute the same instructions.
Functional units are marked .L1, .L2, .S1, .S2, .D1, .D2
and .M1, .M2. The .D units are primary used for the
loading and storing data into the memory. The .L and
.S units are designed for the general arithmetic, logic
and branch operations as well. The last, .M units, are
able to perform multiply operations with single and
double precision floating point values. All of the units

Roman Mego 41



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

are also able to execute other types of instructions, but
not with all data types.

C66x CorePac

Register le A Register le B

.L1 .S1

.M1 .D1

.L2 .S2

.M2 .D2

L1P Cache L1D Cache

L2 Cache

Figure 1: Simplified structure of the TMS320C6678.

The second limitation is caused by the division of
the previously mentioned hardware resources into 2
identical data paths. These data paths are marked as
Data Path A and Data Path B. Because of this it is not
possible to directly access registers from Data Path A
with functional unit from Data Path B. It can be done
only through the Register File Cross Paths marked 1x
and 2x. The single cross path in the C66x is capable to
transfer 64-bit operand in the instruction. In addition,
this operand can be used in multiple instructions in
the same execute packed, which was not allowed in
the older C64x core.

The model itself is aimed only on the description of
the processor core, not the processor as the entire unit.
The main parts of the model are:

• hardware resources of the core;

• instruction set.

II.1 Hardware Resources

The topology of the model is based on the VLIW archi-
tecture with the multiple data path.

II.1.1 Data Paths

From the outside view, the data path is the top level
element, which contains all basic hardware resources.
For this reason, the part of the model with the hard-
ware resources is set of structures describing the data
path.

The selected TMS320C6678 has 2 practically identical
data paths, so the model in this case can contain only
the template of one data path and information about
the number of the data paths in the given architecture.
But in general, the processor may consist of several
different data paths, so every element in the model has
its own definition.

Each data path contains the physical and virtual (or
logical) resources, what will be explained later in the
paper.

II.1.2 Cross Paths

As it was mentioned in the TMS320C6678 description,
the data paths work as the separated units. The data
cannot be directly moved between the register files and
the functional units cannot read the register value. For
this purpose, the model is able to define cross paths.

Each cross path is defined by the following parame-
ters:

• source data path with register file;

• maximum width of the transferred data;

• maximum number of operands where the value
can be used.

The meaning of the source data path is clean. The
target data path is not defined at this point, because the
functional units in the TMS32C6678 are not handling
the operands in the same way. The .D, .M and .S units
can read only the second operand through the cross
path and the .L units can access to the different register
file for both operands (figure 2). For this reason, the
destination of the cross paths is defined individually
on the functional units.

The maximum width of transferred data is given by
the bus width, which is 64-bit in the selected processor
despite the fact, that the register size is 32-bit. There
is no need to define this parameter to different value
than the multiply of register width, so the model keeps
only the number of possible transferred registers.

The requirement of parameter which can tell if it is
possible to use the operand transferred by the cross
path in the multiple operations is given by the differ-
ence between the C66x and C64x cores. In the C64x,
it is possible to use the data from the cross path only

42 Processor Model for the Instruction Mapping Tool



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

source1

source2
destination

source1

source2

destination

.L1

.S1

Register
File A

Register
File B

1X

Figure 2: Example of the cross path connection to the func-
tional units [5].

in the one functional unit at once in compare with the
C66x where this limitation does not exists.

II.1.3 Functional Units

Each data path includes the set of functional units.
The only one parameter, except the name, of the func-
tional unit is the identification of the operand input
connection to the cross path. The referenced C66x and
also the older C64x are composed of the 2 data paths,
so in this case the parameter could be only with the
meaning connected or disconnected. But in general,
the processor could have more than 2 data paths and
therefore it is needed to identify which cross path is
connected into the functional unit input.

II.1.4 Registers

The last physical hardware resources in the presented
model are the general purpose register files. Each data
path has one register file defined by the set of the reg-
isters. The registers are identified only by their names.
Even the width of the registers is not mentioned in the
model. To determine how many and which registers to
represent data type, virtual resources are used. They
will be described in the next chapter parts.

II.1.5 Register Groups and Data Types

Register groups are only logical definitions for the tool,
to determine which registers can be used together as
the single value (figure 3). As it was mentioned, the
model is not working with the physical width with the
registers. Also the registers can handle different num-
ber of bits on different architectures, so the decision

which group to use as given data type cannot be made.
For this reason, the data types supported by the tool
are assigned to the created register groups.

A0 A1
A1:A0

A2 A3
A3:A2

A3:A2:A1:A0

A4 A5
A5:A4

A6 A7
A7:A4

A7:A6:A5:A4

A8 A9
A9:A8

A10 A11
A11:A10

A11:A10:A9:A8

A12 A13
A13:A12

A14 A15
A15:A14

A15:A14:A13:A12

Figure 3: Creating register groups from the physical regis-
ters.

III. Instruction Set

The instruction set is next big part in the model de-
scribing the processor. It is not divided into other
segments as the hardware resources. It is only the
list of the instructions that can fit into the operation
abstraction of the tool. It includes the arithmetical and
logical operations and the data loading and storing
instructions.

Each instruction is represented by the following at-
tributes:

• name of the instruction;

• instruction format;

• instruction operation;

• data type of the operands;

• functional units capable to execute instruction;

• number of cycles needed to read the instruction
and operands;

• number of cycles needed to write result to regis-
ters;

• total number of cycles needed to execute the in-
struction.

The meaning of the instruction name is clear. Its
purpose is only the identification by the user.

The instruction format gives the position of the pa-
rameters in the final notation of the generated code.

Roman Mego 43



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

Some of the instructions are able to process data
with different number representation. For example the
ABS instruction in the C66x is able to process 32-bit
integers and 64-bit integers as well. That is why this
parameter is list of the data types.

Functional units are another list acting as the instruc-
tion parameter. This list contains the functional units
from all data paths. They are not divided into smaller
groups.

The last group of parameters defines the timing of
the instruction. The full instruction cycle was reduced
into 3 stages. During the read stage, the functional
unit is fetching instruction and the input value must
be prepared in the registers. After this stage, the func-
tional unit can be used for other purpose and the input
register can be overwritten. The write stage moves the
result of the operation into the destination registers. At
this stage, the register must be prepared to receive new
data to prevent overwrite the valid values for other
operations. The instruction is executed between these
stages and the resources can be freely used without
limitations. Figure 4 shows the timing of the MPYDP
instruction as the example.

src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

dst_l dst_h

.M.M.M.M

1 2 3 4 5 6 7 8 9 10Pipeline
stage

Read

Write
Unit
in use

Figure 4: MPYDP instruction pipelining.

IV. Implementation

The processor model is implemented as part of the
instruction mapping tool. This tool is written in the
C++ language and the model is not specified directly.
It is in form of classes and the tool is reading user
specified JSON file [6], which contains the structure of
the specific architecture.

The simple command line tool to editing the archi-
tecture was also created. This editor is helpful during
the defining the new architecture, because it keeps the
valid format of the files, which could be corrupted by
the mistype and also watches over the right connection
between the parameters.

V. Conclusion

This paper presented the processor model designed
for the instruction mapping tool, which was primary
intended for VLIW architectures. The model was im-
plemented as the part of the instruction mapping tool.
Its functionality was verified with the mentioned tool
on the TMS320C6678 processor. The model is primary
aimed on the VLIW architectures, but it should be able
to define other architectures such as the scalar or su-
perscalar processors. This was not verified and it will
be the part of the future work.

Acknowledgment

Publication of this paper was supported by the COST
action IC1305, Network for Sustainable Ultrascale Com-
puting (NESUS).

References

[1] I. Povazan et al., "A Retargetable C Compiler for
Embedded Systems," in Engineering of Computer
Based Systems (ECBS-EERC) 2013 3rd Eastern Euro-
pean Regional Conference, August 2013.

[2] S. Rajagopalan et al., A retargetable VLIW compiler
framework for DSPs with instruction-level paral-
lelism, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, issue 11.

[3] R. Mego and T. Fryza, "Tool for algorithms map-
ping with help of signal-flow graph approach", in
Radioelektronika 2014 24th International Conference,
April 2014.

[4] Texas Instruments, Multicore fixed and floating-
point digital signal processor [online], Available:
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf.

[5] Texas Instruments, TMS320C66x
CorePac user guide [online], Available:
http://www.ti.com/lit/ug/sprugw0c/sprugw0c.pdf.

[6] ECMA International, ECMA-404 The
JSON Data Interchange Format, 1st Edi-
tion, Available: http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-404.pdf.

44 Processor Model for the Instruction Mapping Tool




