
Proceedings of the First PhD Symposium on Sustainable Ultrascale

Computing Systems (NESUS PhD 2016)

Timisoara, Romania

Jesus Carretero, Javier Garcia Blas
Dana Petcu

(Editors)

February 8-11, 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44310778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

A generic I/O architecture for data-intensive
applications based on in-memory

distributed cache
Francisco Rodrigo Duro, Javier Garcia Blas, Jesus Carretero

University Carlos III, Spain
frodrigo@arcos.inf.uc3m.es, fjblas@arcos.inf.uc3m.es, jesus.carretero@uc3m.es

Abstract

The evolution in scientific computing towards data-intensive applications and the increase of heterogeneity in
the computing resources, are exposing new challenges in the I/O layer requirements. We propose a generic I/O
architecture for data-intensive applications based on in-memory distributed caching. This solution leverages
the evolution of network capacities and the price drop in memory to improve I/O performance for I/O-bounded
applications adaptable to existing high-performance scenarios. We have showed the potential improvements of our
proposed solution applied on three scenarios: clusters, cloud, and mobile cloud computing environments.

Keywords Ultrascale systems, NESUS, generic I/O architecture, distributed I/O, data-intensive applications,
workflow, cloud computing, in-memory storage

I. Introduction

In the last decade, the scientific computing scenario is
greatly evolving in two main areas. First, the focus in
scientific computation is changing from CPU-intensive
jobs like large scale simulations or complex mathemat-
ical applications towards a data-intensive approach.
This new paradigm greatly affects the underlying ar-
chitecture requirements, slowly vanishing the classical
CPU bottleneck and exposing bottlenecks in current
I/O systems.

Second, the evolution in computing technologies
and science funding restrictions are changing the com-
puting resources available in the scientific community.
Cloud computing offers a virtually limit-less pool of
computing resources in a pay-per-use approach, but
most of the research institutions still have access to clus-
ters or supercomputing resources. This heterogeneity
in the nature of the available resources leads to new
demands in the flexibility of the I/O layer, requiring a
more generic approach.

Current trends in bandwidth and latency improve-
ments in high-speed networks in conjunction with the

RAM price drop and the near advent of non-volatile
memory, present a bright opportunity for improving
I/O performance through the use of in-memory I/O
solutions. The possibility of using spare memory in
compute nodes, and the performance offered by state-
of-the-art network technologies, can lead to distributed
in-memory solutions where the number of I/O nodes
deployed can be flexibly adjusted depending on the
performance required by each application, or even by
each different experiment. This flexibility in the num-
ber of I/O nodes can tackle the I/O bottleneck present
in current parallel file systems using fixed configura-
tions.

We propose a new generic I/O architecture for data
intensive applications based on in-memory distributed
cache targeting both the I/O bottlenecks and the het-
erogeneity of computing resources. The architecture
design is guided by four main objective: flexibility, scal-
ability, performance, and ease of deployment. In an
effort to demonstrate the flexibility and capabilities of
our solution, we present three different successful sce-
narios where our proposed solution has been applied:
a workflow engine running on a cluster infrastructure,

Francisco Rodrigo Duro, Javier Garcia Blas,Jesus Carretero 73



a data mining framework running on a cloud infras-
tructure, and a mobile cloud computing scenario.

II. Thesis idea

The main goal of this thesis is to propose a novel
generic I/O architecture design for an in-memory stor-
age system based on distributed caching [2]. As shown
in Figure 1, the front-end of the architecture is a user-
level library and the back-end consists of Memcached
servers enhanced with persistence and other perfor-
mance tweaks. The memory distributed among the
server nodes is offered to the user as a unified storage
space that can be accessed through the use of easy-to-
use APIs: POSIX-like, MPI-IO, and put/get.

Figure 1: Current version of our proposed generic I/O archi-
tecture, namely Hercules [3]

Internally, the I/O nodes behave as stateless servers
composing a distributed key-value store where data
and metadata are completely distributed. The unified
memory space is used as a virtual device. In every
key-value pair stored, the key acts as the block ID, and
the value represents the block contents. Thanks to this
approach, every block ID can be calculated instead
of being stored, simplifying the algorithms for data
placement and retrieval.

The architecture design targets four objectives: scal-

ability, flexibility, easy deployment, and performance.
Scalability is achieved by fully distributing data and
metadata among all the available I/O nodes, avoiding
any possible bottleneck derived from centralized ser-
vices. Data placement is fully calculated client-side by
a hashing algorithm, minimizing storage and commu-
nications for data retrieval.

Flexibility is tackled in both client and server sides.
On the front-end, the APIs offered to the user are
widely used in existing applications, facilitating the
use of existing applications with minimum changes.
The layered design simplifies the addition of new APIs
and persistence plugins. On the back-end, the servers
are completely state-less, permitting the deployment
of any number of I/O nodes depending on the charac-
teristics of the infrastructure, even on different levels
of the I/O hierarchy if necessary. The only information
needed by the clients are the IP addresses of the I/O
nodes. The servers, on the other end, do not need any
information about other servers running on the same
hierarchy level.

Ease of deployment is especially important in or-
der to design an architecture as generic as possible.
Both the user-level library and the I/O nodes can be
deployed on any Linux system in user mode, without
requiring any special privileges.

Performance-wise, our solution supports parallel
I/O accesses to enhance applications throughput. Each
I/O node available can be accessed independently, mul-
tiplying the maximum throughput peak performance.
Furthermore, the multi-threading implementation in-
creases the level of parallelism for serving requests.

Scalability, flexibility, and easy deployment work
together to adjust the system for the best possible per-
formance required by each situation. The user can
deploy as many I/O nodes as necessary depending on
the throughput requirements of each application, or
even for different runs of the same application.

III. Application scenarios

This work presents an I/O architecture design aiming
to be generic. In order to demonstrate the capabilities
of our I/O solution for adapting to different infrastruc-
tures, we present three different scenarios where our
proposed architecture has been successfully applied.

74 A generic I/O architecture for data-intensive applications based on in-memory distributed cache



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

III.1 Workflow engine over cluster infras-
tructure

The first scenario consists of deploying our in-memory
architecture as an I/O accelerator for the Swift/T work-
flow engine [3] in collaboration with Argonne National
Laboratory (USA), developer of the Swift/T workflow
engine and runtime.

This scenario is motivated by the I/O contention suf-
fered by classic parallel file systems available in HPC
infrastructures, in applications with a high number
of worker nodes accessing concurrently to the shared
file system. Classic parallel file systems are deployed
in a static configuration, thus number of I/O nodes
available for the applications can not be dynamically
configured. The aggregated bandwidth of the I/O
nodes is shared among all the workers accessing con-
currently, which is translated in high I/O contention
during peak I/O loads.

As shown in Figure 2 our solution (labeled as Her-
cules) is deployed as an alternative storage space for
temporary files in the workflow life-cycle. Most of
the files generated by each task of the workflow are
consumed by other task. Deploying one Hercules I/O
node sharing resources with each worker node, we
target two main objectives.

First, the number of I/O nodes scales with the num-
ber of worker nodes available. This is translated into
a better scalability in the maximum available band-
width available for I/O operations, especially when
compared with the default shared file system.

Second, the possibility of exposing and exploiting
data locality. Our storage space is allocated using spare
memory of the worker nodes. Offering information
about data placement to the scheduler can expose data
locality. Co-locating tasks and data in the same node,
data locality can be exploited. Additionally, the data
placement policy is also optimized for data locality
purposes. Another advantage offered by this approach
is the isolation from the shared file system noise ob-
tained through the deployment of I/O nodes dedicated
to one specific application.

Evaluated against GPFS, our solution scales better
when the number of available worker nodes is in-
creased. In the most extreme cases, our proposed
solution was able of converting an I/O bounded prob-

input_files
docking match merge

final_file

SFS / HERCULES

Figure 2: Example of workflow. Temporary files can be stored
in the default shared file system or in Hercules for improving
maximum throughput and data locality [3]

lem (where the total execution time increased when
scaling the worker nodes as a result of I/O contention)
into a CPU-bounded application (where the execution
time always decreased while increasing the number of
worker nodes available).

III.2 Data mining framework over cloud
infrastructure

The objective targeted by this second scenario is shared
with the previous one, aiming to accelerate the I/O
accesses over temporary files in a data mining work-
flow through the use of in-memory storage. The main
difference is the infrastructure where the workers are
deployed, using cloud resources instead of a cluster.
The idea behind this scenario is a collaboration with the
DIMES group at University of Calabria (Italy), develop-
ers of the Data Mining Cloud Framework (DMCF) [5].

This collaboration shows the potential performance
of our proposed solution deployed over the Microsoft
Azure infrastructure and evaluated against the Azure
Storage, the default storage provided by Microsoft. The
collaboration has followed with the full integration of
DMCF and Hercules, and it is still active for exposing
and exploiting data locality.

In order to show the flexibility of our solution, ad-
ditionally, it has been deployed over another cloud
provider, Amazon AWS in this case. Hercules was
deployed on Amazon EC2 instances and evaluated
against S3 using S3FS and I/O performance was evalu-
ated through specifically designed micro-benchmarks,
with successful results [4].

Francisco Rodrigo Duro, Javier Garcia Blas,Jesus Carretero 75



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

III.3 Mobile cloud computing scenario

In 2013 we developed CoSMiC, a version of our pro-
posed architecture especially adapted for the emerging
Mobile Cloud Computing field. Leveraging the ease
of deployment and flexibility of our architecture, the
objective of this work was improving the storage capa-
bilities of mobile devices, especially on public places
and limited connectivity scenarios.

Mobile
Devices

WWAN
Antenna

Storage
Cloud

Wi-Fi AP

WAN

Cloudlet
Level 1

Cloudlet
Level 2

Storage
Cloud

Wi-Fi

Storage Cloud 
Infrastructures

C
la

s
s
ic

a
l

C
o

S
M

iC

Figure 3: Application of our generic architecture into a
Mobile Cloud Computing scenario, based on the cloudlet
concept [1]

As shown in Figure 3 our solution presents an alter-
native data path for mobile device users based on the
cloudlet concept. The advantage of this approach is a
result of the proximity of the storage in contrast with
the classic cloud approach. Due to this proximity, mo-
bile device storage is expanded, latency is significantly
reduced, and energy-efficiency is improved through
the use of Wi-Fi instead of 3G/HSDPA/4G. MNOs are
also benefited, relieving the pressure in their WAN
infrastructures by caching popular contents in public
places, especially on highly crowded scenarios, leading
to a win-win situation for every participant.

IV. Conclusions and future work

This Thesis presents a new generic I/O architecture
for data intensive applications based on in-memory
distributed cache. Our solution tackles the I/O sys-
tem bottlenecks exposed by new trends of scientific
computing while tends to be generic in order to be us-
able in legacy HPC infrastructures and other resources

gaining popularity such as public clouds.
The flexibility and performance capabilities of our

proposed solution are presented as four heterogeneous
scenarios where our solution has been successfully
applied, supported by publications on prestigious in-
ternational journals, conferences, and workshops.

Acknowledgment

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ul-
trascale Computing (NESUS). This work is partially
supported by the grant TIN2013-41350-P, Scalable Data
Management Techniques for High-End Computing Systems
from the Spanish Ministry of Economy and Competi-
tiveness.

References

[1] Francisco Rodrigo Duro, Francisco Javier García
Blas, Daniel Higuero, Oscar Pérez, and Jesús Car-
retero. CoSMiC: A hierarchical cloudlet-based stor-
age architecture for mobile clouds. Simulation Mod-
elling Practice and Theory, 50:3–19, 2015.

[2] Francisco Rodrigo Duro, Javier Garcia Blas, and
Jesus Carretero. A Hierarchical parallel storage
system based on distributed memory for large scale
systems. EuroMPI ’13, pages 139–140, New York,
NY, USA, 2013. ACM.

[3] Francisco Rodrigo Duro, Javier Garcia Blas, Florin
Isaila, Justin Wozniak, Jesus Carretero, and Rob
Ross. Exploiting data locality in Swift/T workflows
using Hercules. NESUS 2014, pages 71–76, Porto,
Portugal, 2014. UC3M.

[4] Francisco Rodrigo Duro, Javier Garcia-Blas, Florin
Isaila, and Jesus Carretero. Experimental evalua-
tion of a flexible I/O architecture for accelerating
Workflow engines in cloud environments. DISCS
’15, pages 6:1–6:8, New York, NY, USA, 2015. ACM.

[5] Francisco Rodrigo Duro, Fabrizio Marozzo,
Javier Garcia Blas, Jesus Carretero, Domenico Talia,
and Paolo Trunfio. Evaluating data caching tech-
niques in DMCF workflows using Hercules. NE-
SUS 2015, pages 95–106, Krakow, Poland, 2015.

76 A generic I/O architecture for data-intensive applications based on in-memory distributed cache




