
Proceedings of the First PhD Symposium on Sustainable Ultrascale

Computing Systems (NESUS PhD 2016)

Timisoara, Romania

Jesus Carretero, Javier Garcia Blas
Dana Petcu

(Editors)

February 8-11, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44310766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

Dynamic Management of Resource
Allocation for OmpSs Jobs

Sergio Iserte

⇤ Antonio J. Peña

† Rafael Mayo

⇤ Enrique S. Quintana-Ortí

⇤

Vicenç Beltran

†

⇤Universitat Jaume I (UJI), Spain
†Barcelona Supercomputing Center (BSC-CNS), Spain

Abstract

The main purpose of this thesis is to research in the relation between task-based programming models and resource
management systems in order to provide a smart autonomous load-balancing and fault-tolerant system. Thus,
taking advantage of MPI malleable applications and execution models such as SMPD and MPMD we will dig
in the principle of the dynamical reconfiguration. Apart from providing an overview of the thesis idea, this paper
explains our initial motivation and reviews briefly the most remarkable work done in this field.

Keywords Exascale, heterogeneous systems, dynamic reconfiguration, OmpSs, resource management

I. Introduction and motivation

It is consensually believed that Exascale performance
will only be achieved by adopting specialized hard-
ware, what inevitably will turn systems into heteroge-
neous facilities. Dealing with heterogeneous hardware
not only involves a tougher management of the cluster,
but also a rise in the complexity of the applications
which wanted to use all the resources available.

The vast majority of scientific applications have
been developed using the Message Passing Interface
(MPI) [7], in order to distribute the work among the
nodes of a cluster. Two execution flows can be followed
in this programming model:

• Single Program Multiple Data (SPMD) is the tra-
ditional and most extended approach. In this
mode, all the processes will execute the same code
working on different parts of the data.

• Multiple Program Multiple Data (MPMD). This
more recent mode does not restrict all processes to
execute the same code. Usually, MPI applications

are composed of several computational stages. If
these stages can be executed independently and
can be accelerated in specific hardware, we could
refer to that as an offloading of the code in a
device. This model fits better in heterogeneous
environments.

The vast majority of MPI applications are moldable;
they can be launched with different numbers of re-
sources, which remain constant during all the appli-
cation execution time. On the contrary, malleable ap-
plications can vary the amount of resources used in
their execution, what means that applications are able
to adapt themselves to changes in the environment.

Dynamic reconfiguration of MPI applications has
been an important issue for many years. Its importance
resides in the necessity of maximizing the utilization
rate of the resources in an HPC cluster. Furthermore,
it can reduce waiting times in queues by sizing jobs
to the available resources or distributing sets of nodes
among jobs. Hence, considerable effort made in the
field of reconfiguration has been focused on the ability
of malleability. This reconfiguration can be triggered by

Sergio Iserte,Antonio J. Peña,Rafael Mayo Gual,Enrique S. Quintana-Orti,Vicenç Beltran 55



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

the application itself or by the Resource Management
System (RMS)—in the literature we can find defined
this last set as evolving applications.

Nevertheless, dynamic reconfiguration is still a hot
topic due to the blooming of new programming mod-
els which try to exploit heterogeneous HPC systems.
One of the most extended modes is OmpSs [8] (de-
veloped by The Barcelona Supercomputing Center)
which extends OpenMP with new directives to support
asynchronous parallelism and heterogeneity. OmpSs
enables asynchronous parallelism by using data de-
pendencies among the tasks of the program. Offload-
ing the MPI kernels dynamically using the OmpSs
programming model could foster the adoption of the
recenly emerged MPMD execution model [5] .

Moreover, the execution of these applications are
generally handled by a RMS conscious of the status
of all the hardware available in the facilities. If an
application decided to change its allocated resources
for different others, the RMS should be noticed in order
to grant the operation at a given time.

II. Related Work

On the one hand, we find many contributions in the
field of process malleability, having as a result excel-
lent reconfiguration techniques or tools. For instance,
authors in [3] explored the integration of malleability
extensions in the process checkpointing and migration
library (PCM) [4]. They take advantage of moldability
to make the applications malleable by finishing and
restarting them again. Also, there are contributions
that make easier the adoption of malleability in applica-
tions with mechanisms of dynamic load-balancing [10],
as well as reconfiguration techniques that are able to
redistribute the workload and change the number of
processes of a running application to obtain a certain
performance [6].

On the other hand, projects that go further than just
malleability techniques have been paving the road to
exascale performance. One of the most remarkable is
the DEEP Project [2]. DEEP is an innovative response
to the exascale challenge, where a new organization
is proposed: instead of providing the nodes with ac-
celerators, the devices are put aside in an acceleration
cluster, called “booster”. In this scheme, both sides are

interconnected by a high performance network. Appli-
cations offload their tasks to the “boosters” by using
the OmpSs programming model.

[5] presents an extension of OmpSs to support dy-
namic offload of tasks among MPI processes. This
provides flexibility, performance and scalability. How-
ever, the integration of that extension in a RMS is not
addressed.

[1] presents a study of how to interact with an
OmpSs job and the RMS that manages the facility. This
work addresses the following limitations:

• The resources have to be requested on submis-
sion time, and the request is invariable. Hence,
regardless of whether the application is using the
“booster” or not, the resources are allocated.

• Queue and resource management. DEEP does not
know the status of the nodes and its resources,
making scheduling virtually impossible.

The work is concluded with a series of scripts to com-
municate the job and the RMS in order to perform the
reconfiguration. However, an intelligent system with
capacity of decision is left for future work.

III. Thesis Idea

The main objective of this thesis is to provide a user-
friendly methodology to manage the resources as-
signed to a running job. Following partly the work in
[1] (see Section II), our idea is still based on the fact
that heterogeneous systems are paving the road to the
exascale era, and that taking advantage of a program-
ming model that supports asynchronous parallelism
is crucial. Hence, combining the OmpSs multi-task
(internally handled by threads) support with the ca-
pabilities of MPI to make the most of the distributed
programming, the two most common programming
models will be explored:

• SPMD: MPI + OmpSs (OpenMP). The user code
should be adapted to provide a malleable MPI
application (similar to application-based check-
point/restart). Here, the application actively asks
for a change of its assigned resources on response
to a resource change request from the RMS.

56 Dynamic Management of Resource Allocation for OmpSs Jobs



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

• MPMD: MPI + OmpSs offload + OmpSs
(OpenMP). In this scenario, the offloaded stage
could be assigned with more or less resources
depending on the decisions automatically taken
by both the OmpSs runtime and the logic of the
resource manager. However, having a malleable
kernel like the one described in the previous point
could boost the benefits.

Technically speaking, the OmpSs application should
count with synchronization points where a re-
assignation of resources could be performed (whether
a variation in the quantity or only a replacement). The
synchronization points will be managed by a series
of directives. Thus, the OmpSs runtime will be the
responsible for moving data among tasks in different
machines.

In addition, another interesting study case is that
related to the states. Occasionally, servers save their
own states as a guarantee of recovery in the case of a
physical failure. This state could be loaded in another
server and the execution of its jobs could be resumed.
In this scenario the runtime of OmpSs should take
additional care and provide more information about
the states of its jobs in the different servers in order
to let the RMS decide an appropriate strategy to re-
schedule the jobs and the resources.

In order to take reallocation decisions, four situations
may happen:

1. An OmpSs job requests more resources: if the RMS
has available resources, the job will be provided
with them; otherwise, the request will be ignored
or postponed.

2. An OmpSs job finishes a computational stage giv-
ing as a result a release of part of the allocated
resources: the OmpSs runtime will notify the RMS
about which resources are made available.

3. The RMS decides to assign more resources to an
OmpSs job: at a given time, the RMS realizes
that there are unused resources. Hence, if a job
that previously had requested an expansion is still
running, Slurm will assign more resources to it.

4. The RMS notices a stress situation (the queue is
growing dramatically and the wait times have in-
creased sharply) or the priority of other jobs is

higher than that of the running job. If any run-
ning OmpSs job in the queue has been provided
with the capability of reducing its allocation, the
RMS could remove resources from the job. Of
course, the OmpSs runtime will be aware of the
location of the job data in order to redistribute it
appropriately.

On the side of the RMS, we have decided to make
use of Slurm [9]. Having an open source tool which
provides a complete API and has proven that can re-
assign resources during the execution of a job [1] will
increase the adoption of this project. Slurm is aware
of the status of all the hardware under its control and
ultimately the responsible for granting any reallocation
operation.

To summarize, the main contributions that we expect
from this work are:

• Integration of process malleability features in the
OmpSs programming model, with the following
actions:

– We will propose extensions to the current ap-
plication programming interface which will
be considered for the OpenMP programming
model.

– We will develop the required functionality
into the current OmpSs runtime and com-
piler.

– We will define two APIs to face the triggered
actions from both the RMS and the OmpSs
application:

⇤ The first API will allocate/release re-
sources.

⇤ While the second will check if there is
a need for changing the resources cur-
rently assigned. In this case, once the
RMS informs the application about a re-
source change, the application should
use the first API to reallocate new re-
sources.

• Novel dynamic reallocation scheduling policies
with the enough intelligence to perform smart
reallocation actions.

Sergio Iserte,Antonio J. Peña,Rafael Mayo Gual,Enrique S. Quintana-Orti,Vicenç Beltran 57



Nesus PhD Symposium 2016 February 2016 Vol. I, No. 1

• Extensive performance evaluations in order to
demonstrate the viability of using this new ap-
proach.

IV. Conclusion and Future Work

So far, the project is in an embryonic stage where we
are still pursing an MPI malleable application. The
application at issue will be used to measure the perfor-
mance among versions.

Apart from the immediate appealing of having
a process-malleable user-friendly environment, we
strongly believe that this work can be directly applied
on the resilience field, due to the capacity of adap-
tation to the environment that it presents. Exascale
performance will involve a massive number of nodes
working together. Such quantity of hardware increases
the likelihood of experiencing a malfunction. Working
at that scale a failure that entailed the re-execution
of a job would represent a large waste of money and
time. Having a system capable of reallocating effi-
ciently resources in execution time, would transpar-
ently be highly beneficial.

Acknowledgment

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ul-
trascale Computing (NESUS); and the Project TIN2014-
53495-R from MINECO and FEDER.

References

[1] Marco D’Amico. Extending deep offload program-
ming model. Master’s thesis, 2015.

[2] DEEP Project. http://www.deep-project.eu.

[3] Kaoutar El Maghraoui, Travis J. Desell,
Boleslaw K. Szymanski, and Carlos A. Varela.
Dynamic malleability in iterative MPI applica-
tions. In Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’07), pages
591–598. IEEE, May 2007.

[4] Kaoutar El Maghraoui, Boleslaw K. Szymanski,
and Carlos Varela. An architecture for reconfig-
urable iterative MPI applications in dynamic envi-
ronments. In Parallel Processing and Applied Mathe-
matics, pages 258–27. 2006.

[5] V. Beltran F. Sainz and J. Labarta. Collective of-
fload for heterogeneous cluster. 2nd IEEE Inter-
national Conference on High Performance Computing
(HiPC), Dec 2015.

[6] Gonzalo Martín, David E. Singh, Maria-Cristina
Marinescu, and Jesús Carretero. Enhancing the
performance of malleable MPI applications by us-
ing performance-aware dynamic reconfiguration.
Parallel Computing, 46:60–77, Jul 2015.

[7] MPI Standard 3.1. http://www.mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf.

[8] OmpSs. https://pm.bsc.es/ompss.

[9] SLURM Workload Manager.
http://slurm.schedmd.com.

[10] Masha Sosonkina, Layne T. Watson, Nicholas R.
Radcliffe, Rafael T. Haftka, and Michael W. Trosset.
Adjusting process count on demand for petascale
global optimization. Parallel Computing, 39(1):21–
35, Jan 2013.

58 Dynamic Management of Resource Allocation for OmpSs Jobs




