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Abstract

My thesis considers various aspects of microeconomic theory and focuses on the

different types of uncertainty that players can encounter. Each chapter studies

a setting with a different type of uncertainty and draws conclusions about how

players are likely to behave in such a situation.

The first chapter focuses on games of incomplete information and is joint work

with Peter Eccles. We provide conditions to allow modelling situations of asym-

metric information in a tractable manner. In addition we show a novel relation-

ship between certain games of asymmetric information and corresponding games

of symmetric information. This framework establishes links between certain games

separately studied in the literature. The class of games considered is defined by

scalable preference relations and a scalable information structure. We show that

this framework can be used to solve asymmetric contests and auctions with loss

aversion.

In the second chapter I move to situations in which information is almost complete.

In joint work with Peter Eccles, we consider the robustness of subgame perfect

implementation in situations when the preferences of players are almost perfectly

known. More precisely we consider a class of information perturbations where

in each state of the world players know their own preferences with certainty and

receive almost perfectly informative signals about the preferences of other players.

We show that implementations using two-stage sequential move mechanisms are

always robust under this class of restricted perturbations, while those using more

stages are often not.

The third chapter deals with a case of complete information and is joint work with
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Peter Eccles. We introduce the family of weighted Raiffa solutions. An individual

solution is characterised by two parameters representing the bargaining weight of

each player and the speed at which agreement is reached. First we provide a coop-

erative foundation for this family of solutions, by appealing to two of the original

axioms used by Nash and a simple monotonicity axiom. Using similar axioms we

give a new axiomatization for a family of weighted Kalai-Smorodinsky solutions.

Secondly we provide a non-cooperative foundation for weighted Raiffa solutions,

showing how they can be implemented using simple bargaining models where of-

fers are intermittent or the identity of the proposer is persistent. This shows that

weighted Raiffa solutions have cooperative foundations closely related to those of

the Kalai-Smorodinksy solution, and non-cooperative foundations closely related

to those of the Nash solution.

The fourth chapter is closely related to the third chapter and is joint work with

Bram Driesen and Peter Eccles. It provides a non-cooperative foundation for asym-

metric generalizations of the continuous Raiffa solution. Specifically, we consider

a continuous-time variation of the classic Stahl-Rubinstein bargaining model, in

which each player’s opportunity to make proposals is produced by an independent

Poisson process, and a finite deadline ends the negotiations. Under the assump-

tion that future payoffs are not discounted, it is shown that the payoffs realized

in the unique subgame perfect equilibrium of this game approach the continuous

Raiffa solution as the time horizon tends to infinity. The weights reflecting the

asymmetries among the players, correspond with the Poisson arrival rates of their

respective proposal processes
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Chapter 1

Scalable Games: Modelling

Games of Incomplete information

1.1 Introduction

It is commonly known that there are many economic situations, where each party

knows something which the other parties do not know. For instance, a company

may know its cost of producing a certain product but not know the cost of its

competitors. Alternatively in a common value auction a bidder may know how

much he thinks the object is worth but not know the estimates of other bidders.

In our analysis we will refer to these situations where each party has some private

information as games of asymmetric information.

The main contribution of this paper is to introduce an information structure that

ensures situations of asymmetric information can be modelled in a tractable man-

ner.

The key condition we consider is on the nature of players’ private information -

the scalable information structure. This condition ensures that a player’s private

information - his signal - does not provide him with information about how his

signal compares to that of other players. That is to say after observing his signal

a player cannot infer anything about whether the signal observed is a relatively

high or relatively low compared to those of his opponents. We say that the scalable
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Chapter 1

information structure exhibits maximal rank uncertainty, because a player’s private

information does not provide him with information about the rank of his payoff

type.

To illustrate this information structure, consider the following examples. Abreu

and Brunnermeier (2003) study the formation of asset price bubbles. Investors

learn about the existence of a bubble, but they cannot infer whether they are

likely to be among the first or the last to learn about the existence of a bubble.

Similarly in the double auctions studied by Satterthwaite et al. (2014), bidders and

the seller do not know whether their valuation is likely to be higher or lower than

that of the other bidders - and the seller. Their valuation does not provide them

with information about the rank of their signal. The same information structure

is also used in an application to contests and auctions with loss averse players

considered in this paper.

All of the above are examples where a scalable information structure has been

used to model a situation of asymmetric information which is intractable under

alternative modelling assumptions. The equilibria in these examples are simple

and easy to find. We refer to them as constant strategy equilibria as they are

described by a single parameter for each player. In Abreu and Brunnermeier

(2003)’s model of the formation of asset price bubbles, once he learns about the

existence of the bubble, each investor decides to ride the bubble for a fixed amount

of time independent of the time at which he learns. In the double auction example,

all bidders shade their valuation by a constant amount, whatever their valuation.

In our application to auctions and contests with loss averse bidders, players bid a

constant proportion of their valuation or the effort exerted is a constant proportion

of their ability respectively. The framework suggested here therefore allows us

to study and make revenue comparisons for such auctions, which have received

considerable attention in the literature, but cannot be solved under alternative

modelling assumptions.1

Our entire analysis is restricted to games where players’ preferences satisfy a mild

1See Gill and Prowse (2012), Lange and Ratan (2010) and Eisenhuth and Ewers (2015) for
example.
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condition, which is naturally satisfied in many situations and includes all cases

where preferences are homogeneous of some degree k among others.

While the focus of our analysis lies on situations of asymmetric information, the

theoretical contribution of our paper is to provide a link between games of asym-

metric information and games of symmetric information.

One can think of a common situation where all parties share the same information,

but there is some additional information, which cannot be accessed by any of the

parties. Extreme weather events are one example of such a situation, since all

parties have the same information from a central weather forecast agency but still

face uncertainty. In our analysis, these situations where all parties involved have

the same information but nevertheless there is some uncertainty are referred to as

games of symmetric information.

We show that under the scalable information structure and mild restrictions on

players’ preferences, games of asymmetric information are strategically equivalent

to games of symmetric information. Although these games differ only in what is

observed by the players, they are typically used to study very different situations.

Our framework therefore provides a novel link between seemingly unrelated games.

The relevance of this link is illustrated by demonstrating a link between a second

price auction with a reserve price where in one case participants know their val-

uation, but do not know the reserve price and in the other case they know the

reserve price but are uncertain about their valuation. Another application using

our framework to solve an otherwise complex situation considers the bargaining

process to dissolve a business following bankruptcy.

The remainder of the paper is structured as follows. In the remainder of this sec-

tion we relate the suggested approach to the literature. In section two, we illustrate

the use of the framework in two simple examples. The key property of maximal

rank uncertainty is discussed in detail section three. Section four introduces the

model. The scalable structure is presented in section five, while section six contains

the simplicity analysis. In section seven we present present an application to auc-

tions with loss aversion to illustrate the simplicity and tractability of our model.

13
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Restricting attention to settings where players’ preferences can be represented by

utility functions, we introduce the equivalence between scalable games of asym-

metric information and scalable games of symmetric information in section eight.

The relevance of this link is illustrated in section nine. Section ten concludes.

1.1.1 Related Literature

In the literature, models which satisfy the scalable preference and scalable infor-

mation structure considered in this paper have been used to model specific situ-

ations of uncertainty. As mentioned above, the formation of asset price bubbles

studied by Abreu and Brunnermeier (2003) and the double auctions considered

by Satterthwaite et al. (2014) are two such models. Other examples include the

clock games considered by Brunnermeier and Morgan (2010), as well as supply

function competition studied by Vives (2011). While these papers provide models

for specific situations, we aim at providing a general tool to model situations of

asymmetric information.

The information structure of the proposed class of games of asymmetric infor-

mation, referred to as scalable games has close links with the literature on global

games introduced by Carlsson and Van Damme (1993) and considered in Morris

and Shin (2002) and Morris and Shin (2003) among others. As in global games,

players face uncertainty about the state of the world θ which is drawn from a

diffuse prior. Moreover each player does not observe θ but instead receives a par-

tially informative signal si about the state of the world, where si = θ + zi and zi

can be interpreted as a noise term. However, in global games the main objective

is equilibrium selection which arises since coordination is more difficult when the

state of the world is unknown. Moreover the games considered in our paper do not

necessarily have dominance regions and a player’s signal typically enters his payoff

function directly. Above all the focus of this paper lies on the characterization of

equilibria in games of asymmetric information rather than equilibrium selection in

games of complete information.

The framework proposed in our paper also has close ties with the literature on

14



Chapter 1

quadratic utility models 2 In these games there is also uncertainty about the state

of the world and players receive a noisy signal of the state. Quadratic utility

models typically focus on the social value of information and the role of information

acquisition.3 Applications to Cournot competition are provided by Vives (1988)

and Myatt and Wallace (2013).

As in our paper, each player receives a signal about the state of the world which can

be interpreted as his type and may enter his payoff function directly. The payoff

function in most quadratic utility models depend on the actions of others only

through the aggregate. Scalable games of asymmetric information require weaker

conditions on the preference structure - for example allowing for loss aversion -

at the cost of making stronger distributional assumptions on the state and the

signals: the information structure in a quadratic utility model is affine, satisfying

the assumption that E[θ|si] = αsi + β; in the related scalable game in additive

form we require the shape of the distribution to be the same for all types and hence

E[θ|si] = si + β.

In a recent paper, Morris et al. (2015) propose the concept of uniform rank belief.

When there are two players, the authors say that players have a uniform rank

belief if each of them assigns probability 1
2

to having a higher payoff type than his

opponent independent of his payoff type. Meanwhile the maximal rank uncertainty

property suggested in this paper, says that the probability each player assigns to

being in any particular rank is independent of his type, but it need not be equal

to 1
2

or 1
n

in the case of n players.

Finally considering a translation from one game to a strategically equivalent game,

which is easier to solve, has been proposed by Baye and Hoppe (2003) in the case of

rent seeking and patent races. However they consider relationships between games

of complete information, while we consider translations from a game of asymmetric

information to a game of symmetric information. The aim to model situations of

2A comprehensive treatment of these games is provided in Angeletos and Pavan (2007) for a
continuum of players, while Ui and Yoshizawa (2014) consider a discrete number of players.

3For models with endogenous information structures see for example Colombo and Pavan
(2014) Myatt and Wallace (2012) and Pavan (2014).
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incomplete information in a tractable manner is also pursued by Compte and

Postlewaite (2013) who consider a private value first price auction, where bidders

shade their bid by a constant amount, independent of their valuation.

1.2 Illustrative Examples

We now introduce a simple example to illustrate the strategic equivalence of certain

games that are closely related, but have a different information structure. Three

cases are distinguished (i) a game of asymmetric information, where a player faces

uncertainty about the signals of other players, (ii) the case where players have sym-

metric information, but nevertheless there is some uncertainty and (iii) a complete

information game.

1.2.1 Single-player Example

Consider a game, where there is one buyer wanting to buy a product. His valuation

for the product is given by s ∈ (0,∞). The reserve price for the product is given by

θ ∈ (0,∞). The buyer offers to pay a fraction of his valuation a ∈ {1
3
, 1

2
}. Hence,

the suggested price is given by p(s) = as. In case the price offered by the player is

higher than the reserve price, he obtains a payoff of u(a, s, θ) = s(1− a) ifsa ≥ θ.

If the proposed price is below the reserve price the buyer obtains a payoff of zero:

u(a, s, θ) = 0 if θ > as.

Suppose that θ is determined according to an improper prior with density function

g(θ) = 1
θ

for all θ ∈ (0,∞). For any level of θ, the conditional distribution of s is

given as follows:

f(s|θ) =


1
4

if s = 2θ

3
4

if s = 3θ

0 otherwise

(1.1)

First consider the game where the buyer observes his valuation s but does not know

the reserve price θ. This is the game we refer to as scalable game of asymmetric

information. By Bayesian updating the buyer assigns a probability of g(θ|s) = 2
11

16



Chapter 1

to the case θ = s
2

and assigns the remaining probability g(θ|s) = 9
11

to the case

θ = s
3
.

The buyer’s expected payoff from offering a = 1
2

is given by E
[
u(1

2
, s, θ)|s

]
=

s(1 − 1
2
) = s

2
. Meanwhile his expected payoff from choosing a = 1

3
is given by

E
[
u(1

3
, s, θ)|s

]
= 9

11
s(1 − 1

3
) = 6s

11
. Hence, the buyer prefers to offer a = 1

3
inde-

pendent of his valuation.

Now consider instead the case where the buyer observes the reserve price - the

price displayed at a shop - but does not know his valuation. This is the game we

refer to as scalable game of symmetric information.

His expected payoff from offering a = 1
2

is given by E
[
u(1

2
, s, θ)|θ

]
= 1

4
2θ(1− 1

2
) +

3
4
3θ(1 − 1

2
) = 11θ

8
. Meanwhile his expected payoff from choosing a = 1

3
is given

by E
[
u(1

3
, s, θ)|θ)

]
= 3

4
3θ(1 − 1

3
) = 3θ

2
. Again the buyer prefers to offer a = 1

3

independent of the reserve price.

Moreover, note that the ratio of choosing a = 1
3

to choosing a = 1
2

is the same in

both cases and is given by 12
11

. As will become clear later, this structure satisfies

our scalability assumptions. We will show that these two games are equivalent.

Secondly, these games were very easy to solve. The optimal decision of a player

does not depend on his valuation or the reserve price respectively. In fact any games

in the class of scalable games proposed in this paper can be solved by looking at

the optimal action for a buyer with a valuation s = 1 (or a reserve price θ = 1). It

is not necessary to consider the optimal decision for each valuation (reserve price)

separately. This also means that the game is strategically equivalent to a game of

complete information which one could choose to solve instead.

1.2.2 Multi-player Example

To further illustrate this concept and show that the framework can also capture

games with several players and using a different information structure, we now

present a second example.
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Consider a world with two competing countries labeled {1, 2} who actively exert

their influence in a certain region. At time θ a new militant group emerges, which

threatens the security of one country but furthers the interests of the other.

Each country does not immediately learn of this new development, but rather finds

out at some time si. After learning of existence of the militant group, each country

must choose how long to wait until deciding upon a response. This waiting time is

denoted by ai ≥ 0. It is assumed that decisions are immediately put into action.

Since better intelligence will lead to more effective intervention, it is assumed

that the payoff associated with executing an action after waiting for a time ai is

ui(ai, si) = ai. However so that the two countries do not enter into direct conflict,

only the first action chosen is executed, and the second mover receives a payoff

of ui(ai, si) = 0. It is assumed that countries have no prior information about

when the new group will emerge, and this is modelled by θ being drawn from a

diffuse prior with g(θ) = 1 for all θ ∈ R. Furthermore we assume that si = θ + zi,

where each zi is independent of θ and is distributed uniformly over the interval

[0, 1]. Each country observes its signal, the time at which it learns si, but does not

observe θ.

As will be clear from the formal definition that follows this game is a scalable game

of asymmetric information.

In order to solve this scalable game we look for a symmetric equilibrium in con-

stant strategies of the form σi(si) = a∗. Since constant strategies directly imply

monotonicity of reactions, the maximization problem of country i can be written

as follows:

max
ai

∫ si

si−1

aig(θ̃|si)(1− F (si + ai − aj|θ̃))dθ̃

The key condition we consider is on the nature of players’ private information -

the scalable information structure. This condition ensures that a player’s private

information does not provide him with information about how his payoff type

compares to that of other players. That is to say after observing his signal a

player cannot infer anything about whether the signal observed is a relatively high
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or relatively low compared to those of his opponents. The scalable information

structure exhibits maximal rank uncertainty, because a player’s private information

does not provide him with information about the rank of his payoff type.∫ si

si−1

(1− F (si + ai − aj|θ̃))dθ̃ =

∫ si

si−1

f(si + ai − aj|θ̃)dθ̃

Since we are looking for a symmetric equilibrium ai = aj. Moreover from the infor-

mation structure, we know that
∫ si
si−1

(1− F (si|θ̃))dθ̃ = 0.5 for all si. Independent

of its signal, each country is always equally likely to have the lower or to have the

higher signal. We also know that
∫ si
si−1

f(si|θ̃)dθ̃ = 1 and hence σi(si) = 0.5. It

turns out that this strategy is an equilibrium in constant strategies.

Consider now that instead of delay both countries learn of the emergence of the

new militant group immediately and hence observe the state θ. Again each coun-

try chooses how long to wait until deciding upon its response, ai. However in this

version of the game there is a delay between the decision to act and the imple-

mentation of the action itself. This delay is given by zi = si − θ, where again zi

is drawn from a uniform distribution over the interval [0, 1] for each i ∈ {1, 2}.
Country i is the first mover only if ai + si < aj + sj and in this case country i

receives a payoff of ui(ai, si) = ai. The second mover again receives a payoff of

u(ai, si) = 0. The maximisation problem for each country looks as follows:

max
ai

ai

(
1−

∫ θ+1

θ

Fi(s̃i + ai − aj|θ)ds̃i
)

Taking first order conditions leads to:

1−
∫ θ+1

θ

Fi(s̃i + ai − aj|θ)ds̃i = ai

∫ θ+1

θ

f(s̃i + ai − aj|θ)

In a symmetric equilibrium we know that ai = aj. Moreover by the scalable

information structure,
∫ θ+1

θ
Fi(s̃i + ai − aj|θ))ds̃i = 0.5 and

∫ θ+1

θ
f(s̃i|θ)ds̃i = 1.

Therefore σi = 0.5 for i, j is an equilibrium of this game.
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1.3 Key property

The key property driving the results in these examples is what we refer to as

maximal rank uncertainty. We now consider this property in some more detail.

Suppose there is a set of players I = {1, 2, ..., n}. Further suppose that each player

i receives a signal si ∈ R.

We now define the rank ri of player i as follows. Let the set I i = {j : sj ≥ si},
so that j ∈ I i only if the signal of player j is greater or equal to the signal of

player i. With this notation in mind, define ri = |I i|. This means that ri captures

the number of players with a signal greater than or equal to si. Hence if ri = 1

then player i has the highest signal amongst all players and if ri = n then player

i has the lowest signal amongst all players. The key property of our model can be

informally stated as follows:

P (ri = m|si) = P (ri = m|s′i) for all si, s
′
i,m, i

This equation captures that fact that the probability any player i assigns to having

the n-highest signal is independent of his signal. It means that a player’s signal does

not give him information about his relative position compared to other players.

This contrasts with a model where players have independent types. For instance

consider a two player model where (i) I = {1, 2}, (ii) si and sj are drawn from a

uniform distribution over [0, 1] and (iii) si and sj are drawn independently. In this

case:

P (ri = 1|si) = si for all si

This equation captures the fact that a player who observes a signal si close to 1

is very confident that he has the highest signal and si = 1, while a player who

observes a signal si close to 0 is very confident that he has the lower signal and

ri = 2.

Hence in a model with independent types players gain rank information about

their relative position compared to other players when they observe their signal.

Meanwhile the key property in our model ensures that players do not gain rank
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information from observing their signal. We believe this to be a more appropriate

way to model certain situations such as some auctions where a bidder’s valuation

may not help him decide whether he has the highest valuation or not (this would

be the case in situations where having a higher valuation increases the likelihood

that other bidders also have a high valuation).

1.4 The Model

We now introduce the general model and formally define a class of games with

maximal rank uncertainty, capturing the illustrative examples above.

Consider a finite set of players I = {1, ..., n}. The state is denoted by θ ∈ Θ = (θ, θ)

and each player is associated with a signal si ∈ Si = (si, si). In most applications

this signal can be thought of as a player’s type and hence describing his preferences.

For simplicity we consider Si = Θ for all i ∈ I. We expect the results to hold for

any open interval Si.

Each player i simultaneously and independently chooses an action ai ∈ Ai ⊆ R.

Action sets may be player specific. To ease notation we use s = (s1, . . . , sn) to

denote the vector of players’ signals and a = (a1, . . . , an) to denote the vector of

players’ actions. Moreover we define ω = (a, θ, s) to be an outcome described by a

vector of actions a the state θ and the vector of all players signals s. Let Ω denote

the set of outcomes.

In order to cover both expected and certain non-expected utility frameworks, we

state players’ preference relations in terms of lotteries over outcomes. A lottery

L ∈ L is a cumulative distribution over the outcomes Ω, L : Ω 7→ [0, 1], where an

outcome ω is given by (a, θ, s). Each player has a preference relation over the set of

lotteries L. It is assumed that these preference relations are complete, continuous

and transitive, but crucially we do not assume the independence axiom.

The information structure is given as follows. The distribution of each player’s

signal si is given by Fi(s
∗
i |θ). These distributions are assumed to be independent
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conditional on θ and F (s|θ) denotes the distribution of all players’ signals con-

ditional on θ. In addition we assume that these conditional distributions have a

density, which we denote by fi(si|θ).

It is crucial in our analysis that we allow θ to have an improper prior distribution.

To this aim, we define the prior over θ with a function g : Θ → [0,∞). The

probability that θ ≤ θ∗ given si, G(θ∗|si) is given as follows:

Gi(θ
∗|si) =

∫ θ∗

θ

fi(si|θ)g(θ)∫
Θ
fi(si|θ̃)g(θ̃)dθ̃

dθ. (1.2)

The case of a proper prior corresponds to the case in which (i) g plays the role of a

density and (ii) (1.2) is the standard Bayes rule. However, the above formulation

also allows for improper priors in which
∫

Θ
g(θ)dθ =∞. We use gi(θ

∗|si) to denote

the probability density function corresponding to Gi(θ
∗|si).

To simplify notation, we use Γ to summarise the primitives of the model:

Γ ≡ {I,Θ, (Ai)i∈I , (�i)i∈I , g, (Fi)i∈I}

Two cases of this basic model are studied in our paper. The difference lies in the

source of the uncertainty. First we consider the case where each player privately

observes his signal si, but does not observe the state. This is the game we refer

to as a game of asymmetric information. Second we consider the case where all

players observe the state, but do not observe their private signals si. This is the

game we refer to as a game of symmetric information.

We write A(Γ) to denote the game of asymmetric information where each player

privately observes si while θ is not observed. Similarly S(Γ) is used to denote the

game of symmetric information where θis commonly known among all players, but

the signals si are not observed.

1.4.1 Strategies

In order to avoid introducing additional notation, we will jointly define the strate-

gies used in games of asymmetric information and games of symmetric information,
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despite the differences in what is observed by the players.

A strategy for player i is described by a cumulative distribution function over

actions, conditional on the state θ and on the player’s signal si and is denoted

by σi(ai, θ, si). This notation allows us to capture both mixed strategies and pure

strategies succinctly. We use σ to denote (σ1, . . . , σn).

In a game of asymmetric information A(Γ), players do not observe the state θ and

hence feasible strategies are constant in θ. The set of strategies which are constant

in θ is denoted by ΣA, as it is the set of feasible strategies under asymmetric

information: σAi (ai, θ, si) = σAi (ai, θ
′, si) for all θ, θ′, si and ai. A typical element

in this set for player i is denoted by σAi .

Similarly, in a game of symmetric information S(Γ), players do not observe their

signal si, and we require the strategy to be constant in si. The set of such strategies

is denoted by ΣS and describes the feasible strategies in a game of symmetric

information: σSi (ai, θ, si) = σSi (ai, θ, s
′
i) for all θ, si, s

′
i and ai. A typical element in

this set for player i is denoted by σSi .

Our analysis makes use of strategies which are constant in both si and θ. We refer

to these strategies as constant strategies. The set of these strategies is given by

ΣC and a typical element in this set for player i is denoted σCi : σCi (ai, θ, si) =

σAi (ai, θ
′, s′i) for all θ, θ′, si, s

′
i and ai. A typical element in this set for player i is

denoted by σAi .

In the examples mentioned in the introduction, these constant strategies corre-

spond to all investors riding the bubble for a fixed amount of time, shading their

valuation by a constant amount in the double auction or bidding a constant frac-

tion of their valuation respectively.

1.4.2 Equilibria

Suppose (i) player i has observed a signal s∗i , (ii) player i chooses an action ai ∈ Ai
and (iii) other players play according to the strategy profile σA where σA(a|s) =∏

j∈I σ
c(aj). We define LAi [s∗i ; ai, (σ

c
j)j 6=i] to capture the weights that player i

assigns to different outcomes in this situation. Hence:
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LAi [s∗i ; ai, (σ
c
j)j 6=i](a, s, θ) =


(∏

i6=j σ
c
j(aj)

) ∫ θ
θ

∫ s−i
s−i

g(θ̃|s∗i )f (̃s−i|θ̃)ds̃−idθ̃ if si ≥ s∗i and ai ≥ a∗i

0 otherwise

The equilibrium for a game of asymmetric information A(Γ) can now be defined

as follows:

Definition 1 (Constant strategy equilibrium: Game of asymmetric information).

A strategy profile σA ∈ ΣA is a constant strategy equilibrium of the game A(Γ) if

for all players i ∈ I and for all signals s∗i ∈ Si (i) σA(a|s∗) =
∏

j∈I σ
c
j(aj) and (ii)

for all actions a∗i ∈ supp(σci ) and all deviations âi ∈ Ai it holds that:

LAi [s∗i ; a
∗
i , (σ

c
j)j 6=i] �i LAi [s∗i ; âi, (σ

c
j)j 6=i]

This definition says that the constant strategy profile σA is an equilibrium, if each

player i - given that he observes signal s∗i - weakly prefers the lottery generated

by choosing choosing any optimal action a∗i ∈ suppσci compared to the lottery

generated by choosing any alternative action âi. Although this definition only

considers constant strategy profiles, it allows for arbitrary deviations. Hence a

constant strategy equilibrium of A(Γ) is also a Bayesian Nash equilibrium of A(Γ).

Suppose now that (i) the state is known to be θ∗, (ii) player i chooses action

a∗i and (iii) other players play according to the strategy profile σS(a|θ∗) where

σS(a|θ∗) =
∏

j∈I σ
c
j(aj). We define LSi [θ∗; a∗i , (σ

c
j)j 6=i] to capture the weights that

player i assigns to different outcomes in this situation. Therefore:

LSi [θ∗; ai, (σ
c
j)j 6=i](a, s, θ) =


(∏

i6=j σ
c
j(aj)

) ∫ s

s
f (̃s|θ∗)ds̃ if θ ≥ θ∗ and ai ≥ a∗i

0 otherwise

A constant strategy equilibrium in this game of symmetric information S(Γ), can

now be defined as follows:

Definition 2 (Constant strategy equilibrium: Game of symmetric information).

A strategy profile σS ∈ ΣS is a constant strategy equilibrium of the game S(Γ) if
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for all states θ∗ ∈ Θ and for all players i ∈ I (i) σS(a|θ∗) =
∏

j∈I σ
c
j(aj) and (ii)

for all actions a∗i ∈ supp(σi) and all deviations âi ∈ Ai it holds that:

LSi [θ∗; a∗i , (σ
c
j)j 6=i] �i LSi [θ∗; âi, (σ

c
j)j 6=i]

This definition says that the constant strategy profile σS is an equilibrium, if each

player i - given that the state is θ - weakly prefers the lottery generated by choosing

choosing any optimal action a∗i ∈ suppσi compared to the lottery generated by

choosing any alternative action âi. Again note that while this definition only

considers constant strategy profiles, it allows for arbitrary deviations and hence

constant strategy equilibria of S(Γ) are also Bayesian Nash equilibria of S(Γ). In

the next section we propose conditions on the preference relation and information

structure which help ensure that constant strategy equilibria exist.

1.5 Scalable primitives

We now propose conditions on the players’ preference relations and the information

structure which lead to games with the desired scalability properties.

In order to define scalable games in a general framework, we use a generator and

an operator to state the required conditions. A generator, denoted by H, is a

strictly increasing bijection from Θ to R. We also assume that it is differentiable.4

Secondly the operator associated to the generator H, denoted by ⊕H , maps any

two numbers (a, b) ∈ Θ2 into the unique number a⊕H b ∈ Θ that solves:

a⊕H b ≡ H−1
(
H(a) +H(b)

)
The operator 	H is defined symmetrically as a 	H b ≡ H−1

(
H(a) − H(b)

)
. 5

An obvious example is H(x) = x. In this case, the operators ⊕H and 	H are

the usual sum and subtraction, respectively. Another example is the case when

4The assumption of differentiability is made in order to simplify calculations. We believe
that this assumption is not necessary.

5The terms ⊕H and 	H can be thought of the the normal + and − after a projection of the
state space from R to Θ.
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Table 1.1. The generator

Θ H(θ) a⊕H b a	H b
R θ a+ b a− b

R++
1
θ

a× b a÷ b

H(x) = ln(x). Here the operators ⊕H and 	H are the usual multiplication and

division, respectively.

In some cases it is useful to consider a reference point for either the signal of

player i or the state. For a generator H, we use 0H := x such that H(x) = 0.6

Returning to the illustrative examples, the reference point in the case of a single

buyer wanting to buy an object would be his valuation s = 1, or the reserve price

θ = 1, while in the two country example, the reference point corresponds to the

case where a firm learns about the existence of the military group at time zero or

where the military group is formed at time zero.

1.5.1 Scalable preference relations

Given an outcome ω = (a, θ, s),let ω⊕Hk ≡ (a, θ⊕Hk, s⊕Hk) and let [L⊕Hk](w) ≡
L(w ⊕H k). This allows us to introduce scalable preference relations.

Definition 3 (Scalable preference relations). A preference relation �i is scalable

with respect to H if whenever:

Li �i L′i

then,

[Li ⊕H k] �i [L′i ⊕H k]

This definition says that if player i prefers lottery Li to the lottery L′i, then he

will also prefer the lottery corresponding to scaling up the signals of all players

and the state by some constant k using the notion of scalability given by H and

keeping all actions constant, in lottery L, to a similarly scaled version of the

lottery L′. This preference structure is naturally satisfied in many situations. All

6The choice of this reference point is arbitrary and has no particular meaning.
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examples mentioned in the introduction - including auctions and contests with

loss averse players - exhibit scalable preference relations. Moreover this general

preference structure allows us to capture and hence study situations which cannot

be modelled using expected utility, such as the auctions with loss averse players.

However this general structure is not always necessary. We will later present a

simple sufficient condition for it to be satisfied.

1.5.2 Scalable information structure

The second key element of our analysis is the information structure. A scalable

information structure is defined as follows:

Definition 4 (Scalable information structure). The information structure {g, {Fi(si|θ)}i∈I}
is scalable with respect to H if:

1. g(θ) = H ′(θ) for all θ ∈ Θ

2. For all θ, k, si ∈ Θ

Fi(si|θ) = Fi(si ⊕H k|θ ⊕H k)

The first part of this definition ensures that the notion of scalability used in the

information structure corresponds is appropriate for the primitives.

Part two of this definition captures the fact that the conditional distribution of

signals has a similar shape when θ is changed. When a⊕H b = a + b this implies

that conditional beliefs are additively invariant: that is to say the shape of the

distribution is common knowledge but players do not know their position in the

distribution. For instance this holds when players know that the distribution is

uniform over the interval [θ − 1, θ + 1], but do not necessarily know the value of

the state θ. This is illustrated in Figure 1.1.

Meanwhile when a ⊕H b = a × b this definition implies that conditional beliefs

are homogeneous of degree 0. For instance this holds when players know that the

distribution is uniform over the interval [0, 2θ], but do not necessarily know the

value of the median θ. This is illustrated in Figure 1.2.
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fi(si|θ) fi(si|θ′)

θ θ + 1θ − 1 θ′ θ′ + 1θ′ − 1

Figure 1.1. Uniform:Additive

fi(si|θ)

fi(si|θ′)

θ θ′

Figure 1.2. Uniform: Multiplicative

1.5.3 Scalable Games

Considering a structure with primitives given by Γ, where players simultaneously

choose an action, we say that the structure is scalable if the preference relations
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are scalable (see definition 3.5.1) and the information structure is scalable (see

definition 4).

More precisely, combining the notion of a scalable information structure with the

definition of S(Γ) and A(Γ), we define the following:

Definition 5 (Scalable game of asymmetric information). We say that the game

of asymmetric information A(Γ) is a scalable game of asymmetric information,

if the preferences (�i)i∈I are scalable (see definition 3.5.1) and the information

structure {g,(Fi)i∈I} is scalable (see definition 4).

Definition 6 (Scalable game of symmetric information). We say that the game of

symmetric information S(Γ) is a scalable game of symmetric information, if the

preferences (�i)i∈Iare scalable (see definition 3.5.1) and the information structure

{g,(Fi)i∈I} is scalable (see definition 4).

These are the two types of games to which we apply our framework.

1.6 Analysis: Simplicity

In this section we show that scalable games are particularly tractable. This is

demonstrated by drawing the connection between scalable games of asymmetric

information A(Γ) and an associated game of complete information.

Informally, scalable games are particularly easy to solve, because in order to deter-

mine the optimal strategy for each player, it is sufficient to look at one particular

signal or state for each player. The optimal actions are the same, when he has a

different signal, or the state is different. In the case of pure strategies, the problem

is reduced from solving for a fixed point in the space of functions to solving for a

fixed point in the space of vectors, one for each player.

This simplicity can also be demonstrated by considering a related game of complete

information.

Let LAi [σc, 0H ] represent the lottery that player i assigns to possible outcomes when

(i) player i observes signal si = 0H and (ii) players play according to constant

strategy profile σ(a|s) = σc(a). As a reminder:
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LAi [σc, 0H ](a, si, s−i, θ) =

σc(a)
∫
θ

∫
s−i

g(θ|0H)f(s−i|θ)ds−idθ when si ≥ 0H

0 otherwise

Using this notation we can now define the complete information game C(Γ):

Definition 7 (Complete information game C(Γ)). The complete information game

corresponding to the primitives Γ is given by C(Γ) := {I, (Ai)i∈I , (�ci)i∈I} where:

σc �ci σ̂c if and only if LAi [σc] �i LAi [σ̂c]

This leads us to the following result:

Proposition 1.6.1 (Game of complete information). For goven primitives Γ, the

constant strategy profile σc is a Bayesian Nash equilbrium of the scalable game

A(Γ), if and only if it is a Nash equilibrium of the complete information game

C(Γ).

Hence a scalable game where players have a symmetric information - denoted by

A(Γ) - is particularly easy to solve because it is sufficient to study a corresponding

game of complete information C(Γ). If we also require that (i) the independence

axiom holds (so that preferences can be represented by a utility function) and

(ii) each action space Ai is finite then it is a standard result that the complete

information game C(Γ) must have an equilibrium (possibly in mixed strategies).

Then by appealing to proposition 1.6.1, we can ensure that an equilibrium in

constant strategies also exists in the game of asymmetric information A(Γ). Even

when these conditions do not hold, an equilibrium can often be found by studying

the game of complete information C(Γ).

Being able to focus on equilibria in constant strategies, makes scalable games easier

to solve than more general games of incomplete information. When looking for an

equilibrium in constant strategies, the problem reduces from looking for a fixed

point in the space of functions to finding a fixed point in the space of vectors.
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1.7 Applications: Simplicity

To show that the simplicity of the scalable game framework allows to study situ-

ations which are difficult to model under alternative assumptions, we now present

an application to auctions and contests with loss averse participants.

1.7.1 Auctions and Contests with loss averse players

We now study how loss aversion affects the bidding behaviour - or respectively the

effort exerted - in auctions or contests. In particular we compare the effects of loss

aversion in first price auctions and all pay auctions.

Consider a contest with I participants, where one prize is to be handed out. Player

i’s valuation of the prize is given by his signal si. Each contestant’s effort is denoted

by ai and is interpreted as the proportion of his valuation he spends. The outcome

function is given as follows:

φi(a, s, θ) =

1 if aisi ≥ ajsj for all j 6= i

0 otherwise
(1.3)

We consider information structures {g, F (s|θ)} which are scalable according to

definition 3.5.1. In the scalable game of asymmetric information the probability

player i assigns to winning the contest and hence the contest success function is de-

noted ψ(ai, a−i). Assuming that contestants choose constant efforts, this function

is independent of si and is given as follows:

ψi(ai, a−i) =

∫ s

−∞n

(φi(a, s̃, θ)|θ)ds̃ (1.4)

Note that this function is strictly increasing in ai given a−i. Given a vector of

actions a, a contestant is equally likely to win, independent of his signal.

The analysis extends to any contest success function ψi(ai, a−i) which is strictly

increasing in ai given a−i and does not depend on si, but is not necessarily derived

from a deterministic allocation rule.
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In addition we assume that players are loss averse. In particular, players feel a loss,

whenever their true payoff is lower than their expected payoff. This loss is given

by β times the expected payoff minus the actual payoff, whenever this is positive:

ui =

πi − β(E(πi)− πi) if πi ≤ E(πi)

πi otherwise
(1.5)

A related definition of expectation based loss aversion is considered in Koszegi and

Rabin (2006).

1.7.2 Loss Aversion in standard contests

First we consider a standard contest, where each contestant pays his effort.

Player i’s expected utility is denoted V (ai, a−i|β) and is given as follows:

V (ai, a−i|β) = ψi(ai, a−i)si − asi − β
[
1− ψi(ai, a−i)

][
ψi(ai, a−i)si

]
(1.6)

Note that the corresponding distribution over outcomes is scalable ( see definition

4). Since we have assumed a scalable information structure (see definition 3.5.1),

this is a scalable game of asymmetric information. We now show that this problem

is indeed tractable.

First differentiating with respect to ai observing that in equilibrium δV (ai,a−i|β)
δai

= 0,

we consider the effect of changes in the degree of loss aversion β:

δV

δβδai
= 2
[
ψi(ai, a−i)−

1

2

]
(1.7)

Since V is a single-peaked function. Hence at equilibrium δV
δai

= 0. If ψi(ai, a−i) >
1
2
, then an increase in β will increase δV

δai
= 0. In order to remain in equilibrium ai

will increase. On the other hand if ψi(ai, a−i) <
1
2
, the opposite effect prevails and

ai will decrease. This leads to the following proposition:

Proposition 1.7.1. In a contest where all players pay their effort and which is a

scalable game of asymmetric information A(Γ), if players become more loss averse
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(ie β increases), then

• Players with over a half chance of winning will bid higher.

• Bidders with under a half chance of winning will bid lower.

1.7.3 First price auction with loss aversion

Now consider the case of a contest, where players do not have to pay their cost and

hence a generalised first price auction with loss averse players. The distribution

over outcomes remains scalable and the problem is still tractable. In this case, the

expected utility is given as follows:

V (ai, aj|β) = ψi(ai, aj)
[
si − asi

]
− β

[
1− ψi(ai, aj)

][
ψi(ai, aj)(s− asi)

]
=

[
(1− ai)ψi(ai, aj)

][
1− βψi(ai, aj)

]

Differentiating with respect to ai and noting that in equilibrium δV
δai

= 0 gives:

ai = 1− ψi(ai, aj)− βψi(ai, aj)2

δψi(ai,aj)

δai

(1.8)

Moreover in a symmetric first price auction, the player with highest bid receives

the object and ai = aj. Hence:

ai = 1−
1
2
− β 1

4

δψi(ai, ai)δai
(1.9)

An increase in β leads to an increase of the right hand side. Therefore for the first

order condition to continue to hold, ai must increase. This leads to the following

result:

Proposition 1.7.2. In a generalised first price auction which is a scalable game

of asymmetric information, where players are loss averse, then: If players become

more loss averse (ie β increases) they choose a higher effort (bid).
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Using propositions 1.7.1 and 1.7.2 we can determine the optimal strategy for a loss

averse bidder participating in a general contest or a first price auction respectively.

Although due to the improper prior, the seller’s expected revenue cannot be com-

puted under the scalable information structure, it can be calculated for any given

state θ. Propositions 1.7.1 and 1.7.2 can therefore be used to determine a seller’s

- and buyers’ - preferred auction mechanism when players are loss averse.

1.8 Analysis: Equivalence

In many applications players’ preferences satisfy the independence axiom. This

means that players have expected utility and their preferences can be represented

by von Neumann-Morgenstern utility functions. We now provide a sufficient con-

dition for preferences to satisfy definition 3.5.1 when players are expected utility

maximisers. This expected utility representation will also be used to show the

equivalence between games of asymmetric information and games of symmetric

information.

We denote the von Neumann-Morgenstern utility function of player i by ui(a, θ, s),

where a is the vector of players’ actions, θ is the state and s is the vector of players’

signals.

Attention is limited to utility functions which satisfy the following:

Assumption 1 (Scalable payoff structure).

g(θ)ui(a, s, θ) = g(θ ⊕H k)ui(a, s⊕H k, θ ⊕H k) for all i ∈ I

It is clear that if a utility function satisfies assumption 1, then the corresponding

preference relation over lotteries are scalable (see definition 3.5.1). Therefore utility

functions that satisfy assumption 1 are a special case of the more general class

of preferences studied in the previous section. Assumption 1 is satisfied when

H(θ) = θ, the operator ⊕H represents + and:

ui(a, s, θ) = ui(a, s + k, θ + k)
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Moreover, assumption 1 is also satisfied when H(θ) = ln(θ), the operator ⊕H
represents × and:

ui(a, s, θ) =
1

k
ui(a, s.k, θ.k)

Hence assumption 1 holds for utility functions which are (i) homogeneous of degree

0 in the log transform and (ii) homogeneous of degree 1. In particular, it is

satisfied by all the examples using utility functions given in this paper. This

includes (i) beauty contests and quadratic utility models where utility functions are

homogeneous of degree 0 in the log transform and (ii) first price, second price and

all pay auctions with risk neutral bidders where utility functions are homogeneous

of degree 1. Using this assumption, we can now state the main result of this paper:

Theorem 1.8.1. Suppose A(Γ) is a scalable game of asymmetric information and

S(Γ) is a scalable game of symmetric information with the same primitives Γ.

If preferences in ΓS satisfy assumption 1, then the strategy profile σC is a Nash

equilibrium of A(Γ) if and only if it is a Nash equilibrium of S(Γ).

The proof can be found in the appendix.

This result shows that there is a correspondence between the equilibria of (i)

the game A(Γ) where each player i observes some private information si and (ii)

the game S(Γ), where all players observe some public information θ and have

no private information. Therefore this result provides a deeper understanding of

certain strategic situations, where the equilibrium outcomes are the same when (i)

each player i observes private information si and (ii) players all observe the same

piece of public information θ.

1.9 Applications: Symmetric information and asym-

metric information

To illustrate the relevance of the link between A(Γ) and S(Γ), we now present

two applications. The first application focuses on second price auctions, while the

second application studies creditors bargaining in a bankruptcy situation. We then
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provide two examples to show that the equivalence of asymmetric and symmetric

games is indeed important.

1.9.1 Second Price Auctions

First we consider a second price auction where players have valuations si and

there is an unknown reserve price θ. In the first situation, there are two collectors

interested in buying a first edition book. They are labeled {1, 2}. It could be the

case that each collector knows how much he values the book (ie the value of si) but

does not know the reserve price set by the seller (ie the value of θ). Collectors may

then choose to enter the auction with ai = E or choose not to enter the auction

with ai = NE. To order the decisions, we assign NE = 0 and E = 1. Each

collector who enters submits a secret bid (a collector who does not enter submits a

bid of 0), and if the reserve price is not met then there is no sale. Crucially there

is a cost to attending the auction given by c. Therefore a collector may be put

off attending the auction because of the cost involved in participating. Assuming

that when a collector chooses to enter he bids his valuation, the following utility

function represents this situation.

ui(a, θ, s) =


si −max{sj, θ} − c if ai = P aj = P si > max{sj, θ}

−c if ai = E aj = {E,NE} si < max{sj, θ}

0 if ai = NE

(1.10)

Secondly we consider a second price auction for oil tracts. Now consider a situation

with two oil firms labeled {1, 2}. It could well be the case that the buyer knows

the reserve price (denoted by θ), but does not can only estimate how much oil the

tract contains and hence the value of the oil tract (denoted by si). Firms may then

choose to enter the auction with ai = E or choose not to enter the auction with

ai = NE. Each firm who enters submits a secret bid (a firm who does not enter

submits a bid of 0), and if the reserve price is not met then there is no sale. Again

there is a cost to attending the auction of c. Therefore as before a firm may be

put off attending the auction because of the cost involved in participating. This
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situation is represented by exactly the same utility function as above, but instead

of observing si firms observe θ.

Note that the utility function is the same in both cases and players are risk neutral

expected utility maximisers. Assuming that in both situations g(θ) = 1 for all

θ ∈ R ensures assumption 1 holds. In addition assuming that the distribution of

valuations such that definition 3.5.1 is satisfied, we can apply theorem 1.8.1. From

the theorem it follows directly, that the two games described have the same set of

constant equilibria.

Since the second game is a game of symmetric information, it is possible to average

over the uncertainty to form a complete information game C(Γ). We define

πi = P (si > max{sj, θ})E[si −max{sj, θ}|si > max{sj, θ}]

to be the expected payoff of player i given that both players participate in the

auction:

E NE

E

(
π1 − c, π2 − c

) (
E[s1−θ|s1>θ]
P (s1>θ)

− c, 0)

)

NE

(
0, E[s2−θ|s2>θ]

P (s2>θ)
− c

) (
0, 0

)
Having tackled the problem using a general distribution, to fix ideas we now con-

sider a specific example. Say s1 is drawn uniformly from [θ, θ + 6], while s2 is

drawn uniformly form [θ, θ + 4]. The table above now reduces to:

E NE

E (2− c, 2
3
− c) (3− c, 0)

NE (0, 2− c) (0, 0)

If c ≤ 2
3
, then it is a dominant strategy for each player to enter the auction. This

is because player 1 receives (at worst) an expected payoff of 2− c > 0, while player

2 receives (at worst) an expected payoff of 2
3
− c ≥ 0.7 Hence an auctioneer can

7Despite the weak inequality it is still a dominant strategy because if player 1 chooses NE
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guarantee himself revenue R = min{s1, s2} + 4
3

by setting the entry cost c to be
2
3
. This is better than simply running a second price auction where the auctioneer

raises revenue min{s1, s2}.

If c ∈ (2
3
, 3) only player 1 will participate in the auction. Hence the auctioneer

will sell the object at the reserve price of θ ≤ min{s1, s2}. Hence in this case

the optimal entry cost is 2
3
. This analysis shows that an auctioneer can set an

entry cost players are always willing to pay. Importantly the entry cost does not

jeopardise the chance that the object is sold. This is true even though the reserve

price is included in the support of all the players. This effect is driven by the fact

that no player knows he has a valuation close to the reserve price and so each player

is willing to pay an entry fee in the hope that he has a valuation significantly above

the reserve price. This strikingly differs from the standard model, where players

with low valuations are unwilling to pay entry fees.8

This simple example gives an indication of how the modelling tool proposed in our

paper can be applied to second price auctions to help set either the entry cost or

the reserve price. The next section looks at how this modelling tool can be used

to uncover links between games which have been studied in the literature.

1.9.2 Bankruptcy and Bargaining

Consider a company going bankrupt. There are two senior creditors numbered

{1, 2}. Creditor i is owed si. However there is only θ to distribute and it may be

the case that s1 + s2 > θ and the company does not have enough money to fully

repay its senior creditors.

Each creditor demands part of his money. Hence the strategy set for each player

is given by Ai = [0, 1], where ai = 1 captures a creditor demanding all his money

and ai < 1 captures a creditor demanding only some of his money.

If there the company has enough money to satisfy both demands then each creditor

is paid the amount he demanded (any surplus is divided between junior creditors).

then 2− c > 0
8A resulting effect of the standard model is that entry fees typically mean that the object

may not be sold.
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However if the company does not have enough money to satisfy both demands then

creditors enter arbitration. Each creditor is awarded a fraction βi of the surplus.

However since β1 + β2 < 1, there is always an agreement that Pareto dominates

disagreement.

ui(a, θ, s) =

 aisi if a1s1 + a2s2 ≤ θ

βisi otherwise
(1.11)

We assume a scalable information structure with G(θ) = ln(θ) and g(θ) = 1
θ
.

Moreover, it can be checked that the preference relation is scalable with respect

to this G satisfying assumption 1 and hence theorem 1.8.1 applies.

One typical situation in a bankruptcy case is where the assets of the company are

unknown and players have private information about how much they are owed.

This would be captured by the game A(Γ). Another situation is where the assets

of the company are known, but players do not know exactly how much they will

gain in arbitration. In case players choose which proportion of their claim to

demand, this would be captured by the game S(Γ). This correspondence unifies

much of the literature on bargaining.

1.10 Conclusion

In this paper we proposed a framework for modelling situations of asymmetric

information. This framework can be used to model such situations in a tractable

way and establishes a close connection between certain games of asymmetric in-

formation and games of symmetric information. The relevance of both points is

illustrated using examples.

In future work we would like to use this framework to study particular situations

in more detail and provide additional key applications. Such applications consider

the risk estimates banks provide to the regulator as well as a general model for the

formation of asset price bubbles. Furthermore an extension to multi dimensional

signal spaces and action spaces may increase the relevance of this framework. In ad-

dition we are interested in comparing the scalable information structure proposed
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here, to other information structures typically used in the literature. In particular

we would like to draw the link with the independent types assumption and consider

intermediate cases. The goal is to develop a full comprehensive framework covering

a range of information structures, for the general class of payoffs considered in this

paper.

1.11 Appendix A: Proofs Analysis: Simplicity

1.11.1 Proof of proposition 1.6.1

Proof. Suppose the strategy profile σ∗ is a Nash equilibrium of C(Γ). If a∗i ∈
supp(σ∗i ), then (a∗i , σ

∗
−i) �Ci (âi, σ

∗
−i) for all âi.

Hence Li[a
∗
i , σ

∗
−i, 0H ] �Ci iLi[âi, σ

∗
−i, 0H ].

By the scalability of payoffs (definition 3.5.1) and the scalability of the information

structure (definition 4):

Li[a
∗
i , σ

∗
−i, 0H ] �Ci Li[âi, σ∗−i, 0H ]⇒ Li[a

∗
i , σ

∗
−i, s

∗
i ] �A Li[âi, σ∗−i, s∗i ]

Hence player i has no incentive to deviate from the strategy profile σ∗i when he

observes s∗i .

1.12 Appendix B: Proofs Applications: Simplic-

ity

1.12.1 Proof of proposition 1.7.1: Loss Aversion in an all

pay contest

Proof.

V (ai, a−i|β) = ψi(ai, a−i)si − asi − β
[
1− ψi(ai, a−i)

][
ψi(ai, a−i)si

]
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Differentiating with respect to ai gives:

δV

δai
=

δψi(ai, a−i)

δai
− 1− β

[
1− ψi(ai, a−i)

][δψi(ai, a−i)
δai

]
+ β

[δψi(ai, a−i)
δai

][
ψi(ai, a−i)

]
=

δψi(ai, a−i)

δai
− 1− β δψi(ai, a−i)

δai

[
1− ψi(ai, a−i)

]
+ β

[
ψi(ai, a−i)

]
=

δψi(ai, a−i)

δai
− 1 + β

δψi(ai, a−i)

δai

[
2ψi(ai, a−i)− 1

]

δV

δai
=

δψi(ai, a−i)

δai
− 1 + β

δψi(ai, a−i)

δai

[
2ψi(ai, a−i)− 1

]

Differentiating with respect to β yields:

δV

δβδai
= 2

δψi(ai, a−i)

δai

[
ψi(ai, a−i)−

1

2

]

Now it is assumed that V is a single-peaked function and we use the condition

that ψi(ai, a−i) is strictly increasing in ai. Hence at equilibrium δV
δai

= 0.

1.12.2 Proof of proposition 1.7.2: Loss aversion in a first

price contest

Proof.

V (ai, aj|β) = ψi(ai, aj)
[
si − asi

]
− β

[
1− ψi(ai, aj)

][
ψi(ai, aj)(s− asi)

]
=

[
(1− ai)ψi(ai, aj)

][
1− βψi(ai, aj)

]
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δV

δai
=

[
(1− ai)ψi(ai, aj)

][
− β δψi(ai, aj)

δai

]
+
[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

][
1− βψi(ai, aj)

]

Looking at just the terms involving β:

δV ′

δai
= −β

[δψi(ai, aj)
δai

(
(1− ai)ψi(ai, aj)

)
+ ψi(ai, aj)

(
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

)]
= −β

[
ψi(ai, aj)

2
]

Looking at terms not involving β:

δV ′′

δai
=

[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

]

In equilibrium δV
δai

= δV ′

δai
+ δV ′′

δai
= 0. Hence:

0 =
[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

]
+ β

[
ψi(ai, aj)

2
]

Collecting terms:
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β
[
ψi(ai, aj)

2
]]

+ ψi(ai, aj)

δψi(ai,aj)

δai

=
[
(1− ai)

]

ai = 1−
β
[
ψi(ai, aj)

2
]]

+ ψi(ai, aj)

δψi(ai,aj)

δai

ai = 1− ψi(ai, aj)

[
δψi(ai, aj)

δai

]−1[
βψi(ai, aj) + 1

]

An increase in β leads to an increase in the right hand side of the equation (if ai

is held constant). Hence for the FOC to continue to hold ai must increase.

1.13 Appendix C: Proofs Analysis: Equivalence

1.13.1 Proof of Theorem 1.8.1

Proof. We first prove this for the case where f(si|θ) is a discrete distribution.

Suppose σ(a|s) = σC(a) is a constant strategy profile. Suppose also that σ is a

pure strategy so that for some a∗ = (a∗1, ..., a
∗
n), it holds that σC(a) = 1 whenever

ai ≥ a∗i for all i ∈ I and σC(a) = 0 otherwise. Suppose further that σ is a BNE of

A(Γ). This means that when player i has signal 0H he has no incentive to deviate.

Hence for all deviations âi ∈ Ai it holds that V1(a∗i , a
∗
−i; 0H) ≥ V1(â, a∗−i; 0H) where:

V A
1 (ai, a−i) =

∑
(θ,s−i)

g(θ|0H)f−i(s−i|θ)ui(ai, a−i; 0H , s−i; θ)

Note that:

g(θ|0H) =
g(θ)f(0H |θ)∑
θ̃ g(θ̃)f(0H |θ̃)

Now define:
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V A
2 (ai, a−i) =

∑
(θ,s−i)

g(θ)f(0H |θ)f−i(s−i|θ)ui(ai, a−i; 0H , s−i; θ)

Substituting g(θ|0H) =
[
g(θ)f(0H |θ)

][ ∫
g(θ̃)f(0H |θ̃)dθ̃

]−1

and multiplying each

side by the constant in the second set of square brackets it follows that V2(a∗i , a
∗
−i; 0H) ≥

V2(â, a∗−i; 0H). Now define:

V A
3 (ai, a−i) =

∑
(θ,s−i)

f(0H |θ)f−i(s−i|θ)ui(ai, a−i; 0H 	 θ, s−i 	 θ; 0H)

Note that by the extra condition imposed it follows that:

g(θ)ui(ai, a−i; θ; 0H , s−i) = g(0H)ui(ai, a−i; 0H 	 θ, s−i 	 θ; 0H)

It follows from this equation that V A
2 (ai, a−i) = g(0H)V S

3 (ai, a−i) and hence V S
3 (a∗i , a

∗
−i) ≥

V S
3 (âi, a

∗
−i).

Define also:

V S
4 (ai, a−i) =

∑
(ŝi,ŝ−i)

f(ŝi|0H)f−i(ŝ−i|0H)ui(ai, a−i; ŝi, ŝ−i; 0H)

Define ŝi = 0H 	H θ and ŝj = sj 	H θ. Note that from the assumption that the

distribution is scalable it follows that (i) f(ŝi|0H) = f(0H |θ) and (ii) f(ŝi|0H) =

f(sj|θ). Using these facts and substitutions it follows that V S
3 (ai, a−i) = V S

4 (ai, a−i).

Hence V S
4 (a∗i , a

∗
−i) ≥ V S

4 (âi, a
∗
−i). This shows that σC(a) is also a Nash equilibrium

of the game of symmetric information. The reverse direction can easily be seen

by repeating the steps above. Finally it is clear that the case where f(si|θ) is

a continuous distribution (although needing more notation) can be proved along

similar lines.
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1.14 Appendix D: Additional Material

1.14.1 Alternative specification of preferences: scalable ac-

tions

We show that our framework can also be used to model situations of asymmetric

information, where preferences over lotteries are unchanged when scaling the ac-

tions of all players, the signals of all players and the state. For instance, consider

the case of an auction, where payoffs are homogeneous of degree one: multiplying

the valuations, the bids of all players by a constant their payoffs are multiplied

by the same constant. If the game satisfies this alternative definition of scalable

preferences and the information structure is scalable, these games are strategically

equivalent to a scalable game of asymmetric information A(Γ), where ai = âi	H si
and âi is the action chosen in this alternative game. These strategies are of the

form σi(si) = e∗i ⊕H si, where e∗i is a player specific constant. These games can be

studied in their original form. However the translation to the scalable game form

is useful for studying the link between asymmetric information and symmetric

information.

Consider a game of asymmetric information, A(Γ) = I, (Âi)i∈I , (�i)i∈I , g, (Fi)i∈I ,
where Âi = Θ for all i ∈ I and the information structure is scalable with respect

to G ( see definition 3.5.1). If the game A(Γ) = I, (Ai)i∈I , (�i)i∈I , g, (Fi)i∈I

Given ω = (â, θ, s), let ω⊕̂Gk ≡ (a⊕H , θ ⊕H k, s ⊕H k) and let [L⊕̂Gk](w) ≡
L(w⊕̂Gk). Suppose the preference relations satisfy the following definition:

Definition 8 (Alternative scalable preference relations ). A preference relation �i
is alternatively scalable with respect to G if whenever:

L �i L′

then,

[L⊕̂Hk] �i [L′⊕̂Hk]
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This definition says that if a player prefers lottery L to lottery L′ then, when all

the actions, the state and the signals are scaled up by a constant, he continues

to prefer the scaled up lottery arising from L to the one arising from L’. This

definition differs from the standard definition of a scalable preference structure in

that all the elements of ω are scaled including the actions.

In some applications, the preference structure satisfies this alternative definition

of scalable preference relations. In these cases, there exists a transformation ai =

âi	H , which redefines the action space from Âi = Θ to Ai, such that when the

actions are changed from âi to ai, the transformed preference relations satisfy

definition 4. Formally, this can be stated as follows:

Proposition 1.14.1. In a game Γ̂A = {I, (Âi)i∈I , (�i)i∈I , g, F}, if Ai = Θ for

all i ∈ I and players’ preferences satisfy definition 8, there exists a strategically

equivalent game A(Γ) = {I, (Ai)i∈I , (�i)i∈I , g, F}: If σAi is an equilibrium of A(Γ),

then σ̂Ai where âi = ai ⊕H si, is an equilibrium of Γ̂A.

The proof follows immediately from substitutions.9

As an example consider the case of an auction. The true actions players take are

their bids âi in [0,∞). A first price auction clearly satisfies definition 8. However

instead of considering the bids directly, we can consider the case where players

choose the proportion of their valuation they want to bid ai = âi 	H si. Using

these proportions to describe a player’s preferences, these satisfy definition 3.5.1.

9 A similar result exists for S(Γ), but it is slightly more complicated, because actions require
scaling by si which is not observed in S(Γ).
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Robustness of Subgame Perfect

Implementation

2.1 Introduction

This paper studies the robustness of implementation in subgame perfect equilib-

rium (SPE) in the fashion of Moore and Repullo (1988) and Aghion et al. (2012).

A social choice function (SCF) is said to be implemented fully, if there exists a

mechanism such that the outcome prescribed by the SCF is the unique equilib-

rium of the mechanism in all states. Subgame perfect implementation is relevant

when sequential mechanisms are used. Although the existing literature on imple-

mentation in SPE characterizes the set of SCFs which can be implemented under

different informational assumptions, these papers do not provide a distinction be-

tween SCFs that are seen to be implemented in practice and those that are not.

This distinction is an important aim of implementation, as in any situation it

allows a social planner to fully understand the set of SCFs he can choose from.

In this paper we show that placing a very reasonable restriction on the information

players have about their own preferences and on the information they have about

the preferences of others, allows to distinguish between SCFs which we are seen

to be implemented in practice and those that do not appear. More precisely

we focus on environments where information is almost complete and introduce
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information perturbations where each player has more precise information about

his own preferences than do other players. These perturbations are referred to as

restricted information perturbations.

Moore and Repullo (1988) show that under complete information almost any SCF

can be implemented in SPE. Taking a step away from implementation under com-

plete information, Aghion et al. (2012) (henceforward AFHKT) show that any

implementation of a non-Maskin monotonic SCF is not robust to a general class of

information perturbations we refer to as full perturbations. Maskin monotonicity is

a very restrictive requirement and is violated by many SCFs that are implemented

in practice, for example firms paying a higher wage to workers with higher out-

side options. The result obtained by AFHKT therefore questions the usefulness of

subgame perfect implementation.

In this paper we argue that typically each player is better informed about his own

preferences than is any other player. We restrict attention to a class of perturba-

tions by requiring that players know their own preferences with certainty. This is

a reasonable restriction as there are many situations where each player knows his

preferences, while others may be slightly uncertain.1 One example of such a setting

is that studied by Bester and Kraehmer (2012) who consider a seller making an

offer to a buyer who has private information about how much he values the good.

We show that these restrictions provide a good distinction between SCFs seen to

be implemented in practice and those that are not. In particular we demonstrate

that under these restricted information perturbations, a wide range of SCFs can

be robustly implemented, including many that are not Maskin monotonic. The

class of SCFs that can be implemented robustly under the restricted perturbations

considered here is therefore strictly larger than those that can be implemented

robustly under a wider range of full perturbations.

Informally, the reason why the implementability of certain SCFs is robust to re-

stricted perturbations but not full perturbations is the following: Under restricted

1Our logic also applies to cases where a player is slightly uncertain about his own preferences,
as long as he is more certain about them than is any other player.
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perturbations, players know their preferences with certainty and do not gain infor-

mation about their own preferences from the actions of another player. Meanwhile

when using full perturbations players have some uncertainty about their own pref-

erences, and hence may update their beliefs about their own preferences after the

moves of other players. In particular, in a two-stage game the result of AFHKT re-

lies on off-equilibrium beliefs which ensure that the second-mover gains a significant

amount of information about his own preferences after observing an off-equilibrium

move from the first-mover. The lack of belief updating considered here leads to a

much larger class of robust mechanisms under restricted perturbations.

Consider the example of a single firm and two types of workers, who differ in

their outside option. A ’bad’ sequential equilibrium is one where a high type

worker accepts a wage that is below his outside option. These equilibria may arise

under full information perturbations and rely on the fact that the worker is less

informed about his own preferences than the firm. This may occasionally be the

case for example when the firm has more information about the job description

than the worker. However in most situations this is unlikely to hold, for instance

when the worker is more informed of his preferences or outside options. Hence

in many applications restricted perturbations are the more appropriate tool for

assessing whether a certain mechanism is robust. Using this analysis, subgame

perfect implementation is very robust in settings where players are confident about

which allocations they value.

For most of the paper, we restrict attention to non-stochastic mechanisms where

players move sequentially. This restriction is motivated by the fact that in many

situations mechanisms where players move simultaneously are not feasible. For

instance when bargaining a player must observe the offer made by his opponent

before deciding whether to accept or reject the offer made: indeed in most bargain-

ing models - for instance Rubinstein (1982) - players move sequentially. In contrast

Baliga (1999) and Bergin and Sen (1998) study implementation in a similar setting

with incomplete information and extensive form games, but where players choose

their actions simultaneously. These papers show that allowing players to move

simultaneously leads to much more permissive results than those presented here.
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Meanwhile Corchón and Ortuno-Ort́ın (1995) and in a generalisation Yamato

(1994) consider similar information structures where each player perfectly knows

the preferences of other players in his own group but has imperfect information

about players outside his group. Using Bayesian and dominant strategy implemen-

tation as equilibrium concepts they find that Nash implementation in complete in-

formation is a necessary and sufficient condition for robust implementation. In this

paper we focus on a two player setting and study subgame perfect implementation

which is particularly relevant in sequential move games.

Our main result relates to the concept of exact implementation studied by Moore

and Repullo (1988) as well as Abreu and Matsushima (1994). The term exact im-

plementation in a setting with information perturbations is used to mean that the

desired allocation is always implemented whenever players observe correct signals

about the state. The main result of our paper then proves a sufficient condition

for a SCF to be exactly implementable with restricted information perturbations.

In particular we show that any SCF which can be implemented in a two-stage

sequential move game in complete information can be implemented exactly with

restricted information perturbations. Moreover requiring two stage implementa-

tion is more permissive than requiring Maskin monotonicity, but more restrictive

than requiring only three stage implementation.

Since the necessary and sufficient conditions for two stage implementation do not

provide great insight, the relevance of two stage implementation is illustrated using

a number of examples. Many standard settings of principal agent interaction

proceed in two stages, where the principal offers a contract. The agent can reject

the contract, accept it - or in some cases - choose an action. Indeed, the examples

given in this paper can be interpreted as classic principal agent settings. More

precisely, the analysis can be be interpreted as studying the robustness of the

outcome of principal agent interactions to small levels of asymmetric information.

Finally, we consider the weaker concept of virtual implementation studied by Abreu

and Sen (1991). Virtual implementation with information perturbations requires

that the desired allocation is implemented almost always, but does not exclude
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the possibility for the wrong allocation to be occasionally implemented even when

players observe the correct signals. In a deviation from most literature we do not

consider virtual implementation using a stochastic element in the mechanism.2

Instead we follow an approach introduced by Serrano and Vohra (2010) and allow

players to choose mixed strategies. We say that an SCF is virtually implementable

when in the only equilibrium of the game with information perturbations, players

choose mixed strategies, such that the outcome prescribed by the SCF is reached

almost always and the probability with which any type chooses a different path

becomes arbitrarily small when the information perturbations tend to zero.

Using an example, we show that requiring only virtual implementation some SCFs

are robust to restricted information perturbations, although they are not robust

when exact implementation is required. This argument shows that the set of SCFs

that can be considered robust to information perturbations become larger when

considering weaker concepts of implementation. The decision of which concept is

appropriate may depend on the situation one has in mind.

The remainder of the paper proceeds as follows. In section two we provide an

example to illustrate the differences between implementability under complete in-

formation, full perturbations and restricted perturbations respectively, as well as

present the intuition behind these differences. Section three introduces the model

and formal definitions. The sufficient condition for robust implementation under

restricted perturbations is presented in section four. In section five we consider

the case of virtual implementation. Section six concludes.

2.2 Example

Suppose a firm (P ) is bargaining with a worker (A). There are two states of the

world Θ = {L,H}, which represent the fact that workers may either be high type

(H) or low type (L). The probability that the worker is high type is αH ∈ (0, 1),

while the probability that the worker is low type is αL = 1− αH . There are three

2This approach is often criticised, because implementation relies on the mechanism designer
committing to occasionally implement an allocation that he knows is not Pareto efficient at the
point of implementing it.
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outcomes X = {wH , wL, d}. First a high wage wH may be agreed, secondly a low

wage wL may be agreed and thirdly a default option d may be reached. Both types

of workers are equally productive when working for the firm and so the preferences

of the firm do not depend on the type of the worker. The firm prefers to pay a low

wage rather than a high wage, and prefers to pay a high wage rather than failing

to make an agreement:

Firm’s preferences: uP (wL; θ) > uP (wH ; θ) > uP (d; θ) for θ ∈ {L,H}

Meanwhile, all workers prefer the high wage to any other alternative. However,

low type workers prefer to receive the low wage rather than the outside option,

while the high type workers prefer the outside option to the low wage. Therefore

the preferences of each type of worker are given as follows:

Low type’s preferences: uA(wH ; θ) > uA(wL; θ) > uA(d; θ) for θ = L

High type’s preferences: uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θ = H

All of the above is commonly known. Players negotiate according to the following

two-stage sequential move bargaining procedure. In the first stage the firm makes

an offer w ∈ {wL, wH}, and then in the section stage the worker chooses to accept

(Y ) or decline (N) the offer. If the worker accepts the wage offer this agreement

is made, and otherwise the default option is reached. The extensive-form version

of this game is given in Figure 1.3

Figure 2.1. Two stage mechanism.

We analyse this game under three different information structures. In the first case

3Each node is an information sets and there are no moves by nature, as we assume that
workers are born with their preferences.
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we consider complete information, where both players know the worker’s type. In

the second and third case, we assume that one player knows the worker’s type,

while the other receives a signal s ∈ {sL, sH} which is highly correlated with the

worker’s type. More precisely after observing a signal sL the probability of the

worker being low type is equal to (1 − ε), while after observing a signal sH the

probability of the worker being high type is equal to (1 − ε). After receiving

such a signal a player is highly confident - although not completely sure - about

the worker’s type: in this case we say the worker’s type is ε-known. Throughout

the example it is assumed that ε > 0 and ε is sufficiently small. A more formal

approach is taken in the next section.

Complete information

First consider the case of complete information, where the worker’s type is com-

monly known. In this case there is a unique SPE, where on the equilibrium path the

firm offers the low type worker the low wage, the firm offers the high type worker

the high wage and all offers are accepted. Off the equilibrium path, low type

workers accept a high wage and high type workers reject a low wage. Therefore in

complete information this mechanism implements a SCF f(θ), where f(L) = wL

and f(H) = wH . Note that this SCF is not Maskin monotonic, since both types

of workers prefer a high wage to a low wage and yet only the high type workers re-

ceive a high wage while the low type workers receive a low wage. Formally Maskin

monotonicity is defined as follows:

Definition 9 (Maskin monotonicity). An SCF ψ is Maskin monotonic, if for all

θ, θ′ ∈ Θ:

ψ(θ) = x and θ′ ∈ Li(x, θi) for i = A,B imply ψ(θ′) = x

where Li(x, θi) is the lower contour set of player i with preferences θi at allo-

cation x.

An information perturbation where workers know their own preferences

Secondly consider the case where the worker’s type is known by the worker and

ε-known by the firm. Since the worker knows his own type, high type workers
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always reject the low wage, while low type workers always accept it. Given ε is

sufficiently small it follows that:

αL(1− ε)
(
uP (wL; θ)− uP (wH ; θ)

)
> αHε

(
uP (wH ; θ)− uP (d; θ)

)
The left hand side represents the firm’s gains when offering a low wage rather than

a high wage to a low type player having received a signal sL which was correct.

Meanwhile the right hand side denotes the losses that the firm incurs when offering

a low wage - which is rejected - rather than a high wage after an incorrect signal

sL. If ε is sufficiently small and the signal is sufficiently reliable, it is clear that the

gains from offering a low wage outweigh the loss of occasionally reaching the default

after an incorrect signal. It follows that there is a unique sequential equilibrium

where the firm offers a low wage after observing a signal sL and a high wage after

observing a signal sH . Note that the unique sequential equilibrium is very close to

the complete information SPE. Hence this mechanism can be considered robust to

those information perturbations where the worker knows his own preferences.

An information perturbation where workers do not know their own

preferences

Finally, consider the case where the worker’s type is known by the firm and ε-

known by the worker. In this case there are two distinct sequential equilibria.

First there is a separating equilibrium, which is almost outcome-equivalent to the

complete information SPE. In the first stage the firm nearly always offers a high

type worker the high wage and a low type worker the low wage. Then in the second

stage the workers always accept if they receive a high wage or if they receive a low

wage and have a low signal. They play mixed strategies when the firm offers a low

wage and they receive a high signal. If ε is small this third case happens rarely,

and the complete information outcome is nearly always reached. In this ’trusting’

sequential equilibrium, workers believe the firm is very likely to have made the

appropriate offer unless they have reason to believe otherwise.

However, there is also another pooling equilibrium which leads to a very different

outcome. In the first stage the firm offers all workers the high wage, and in

the second stage all workers accept. To ensure that this is indeed a sequential
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equilibrium, it is assumed that workers have the following off-equilibrium beliefs: if

the firm makes a low offer (which does not happen in equilibrium), then the worker

believes he is very likely to be a high type regardless of his initial signal. This means

that the off-equilibrium beliefs are such that the firm’s off-equilibrium move is much

more informative than the worker’s original signal. Therefore when a worker who

has received a low signal sL receives a low offer wL, he believes there is a significant

chance that he is high type and rejects the offer. In this ’suspicious’ pooling

equilibrium workers do not believe that the firm has made the appropriate offer

when the firm makes an off-equilibrium move. These suspicious off-equilibrium

beliefs sustain what AFHKT refer to as a ’bad’ sequential equilibrium.

AFHKT prove that any mechanism implementing a non-Maskin monotonic SCF

in complete information is not robust to certain information perturbations. This

example suggests that this result relies on the fact that players learn about their

own preferences from the actions of other players. The main result of this paper

formalises this. We show that bad sequential equilibria arise precisely in the case

where the second mover significantly updates his belief about his own preferences

from observing the other player’s move. We prove that any SPE implementation

in complete information which uses a two stage sequential mechanism is robust to

those information perturbations where players remain certain of their own prefer-

ences. This shows that many SPE implementations in complete information are

robust to the class of perturbations which are most relevant for many situations.

2.3 The model

There are two players i = {A,B} and the payoff type of each player is denoted by

θi ∈ Θi. The state is given by the pair of payoff types θ = (θA, θB) ∈ ΘA×ΘB = Θ.

We let X denote the set of allocations, while players’ Bernoulli utilities are denoted

by ui(x; θi). These utilities depend only on the eventual allocation x ∈ X and the

player’s type θi. It is assumed that the state space Θ and the set of outcomes X

are finite. A complete information SCF f is a one to one mapping from a state to

an outcome, f : Θ 7→ X.

Before any move is made, player A observes a signal sA = (sAA, s
A
B) ∈ SA and
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player B observes a signal sB = (sBA, s
B
B) ∈ SB where sij is a signal about player

j′s preferences. We identify the signal sets with the state space so that SA =

SB = Θ. Signals are drawn from a common prior described by ν ∈ V , where

ν : Θ× SA × SB 7→ [0, 1] and
∑
ν = 1.

We restrict our focus to extensive form mechanisms Γ with a finite number of

stages where players move sequentially and every move is immediately and per-

fectly observed by the other player. Without loss of generality it is assumed that

player A moves first, players move alternately and the number of stages is 2N for

some N ∈ N).

In any stage n, if n is odd then player A chooses a strategy σA,n ∈ ΣA,n, while

if n is even then player B chooses a strategy σB,n ∈ ΣB,n. Therefore in the first

stage player A makes a move, in the second stage player B moves and so on. Let

σA = (σA,1, σA,3....σA,2N−1) and σB = (σB,2, σB,4....σB,2N) denote a possible set of

strategies for player A and player B respectively. Furthermore let σ = (σA, σB),

and write Γ(σ) ∈ X to mean the allocation implemented when players choose

strategies σ. It is assumed that all strategy sets ΣA,n and ΣB,n are finite.

Players may condition their strategies on their signal and previously observed

moves. Hence a strategy profile hi,n at stage n for player imaps a vector (si, σi,1, σi,2, ...., σi,n−1)

to a strategy σn. A complete strategy profile hi for player i denotes a set of strat-

egy profiles for each stage where that player moves. Hence the strategy profile

h = (hA, hB) is a subgame perfect equilibrium (SPE) of the complete information

game Γ if players have no incentive to deviate from this strategy profile.

Players initially form their beliefs based on their signal and the initial common

prior. As the game progresses, players may update their beliefs after the move of an

opponent. A belief profile φi,n for player i at stage nmaps a vector (si, σi,1, σi,2, ...., σi,n−1)

to a prior ν. A complete belief profile φi denotes a set of belief profiles for every

stage, and φ = (φA, φB) denotes a pair of such belief profiles. The pair (h, φ)

is a sequential equilibrium (SE) induced by the game (Γ, v) if φ represents a set

of consistent beliefs given that (i) players are playing according to the strategy

profile h and (ii) given their beliefs ν players have no incentive to deviate from the
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strategy profile h in any information set.4

2.3.1 Three informational environments

We now outline three possible restrictions on the prior ν which capture three

different informational environments. First consider a complete information envi-

ronment where players are certain of each others preferences. This is only the case

when players always receive the correct signal about their own preferences and the

preferences of their opponent. Hence we say that ν0 is a complete information

prior if ν puts probability 1 on sA = sB = θ.

Definition 10 (Complete information). The prior ν0 is a complete information

prior, if and only if ∑
θ∈Θ

ν0(θ, θ, θ) = 1

Secondly consider the environment where both players observe a highly reliable

signal about the preferences of both players as studied by AFHKT. In particular

suppose that the reliability of the signal is such that a player is misinformed about

either the preferences of his opponent or his own preferences with a probability

lower than ε. Therefore sA = θ and sB = θ with probability greater than 1 − 2ε,

and hence we define a full (ε)-perturbation as follows:

Definition 11 (Full (ε)-perturbations). The prior νε is a full (ε)-perturbation if

and only if ∑
θ∈Θ

νε(θ, θ, θ) > 1− 2ε

Finally consider an environment where players are certain of their own preferences

and observe a highly reliable signal about the preferences of the other player.

Suppose that players are misinformed about the preferences of his opponent with

a probability lower than ε. As before, since players are almost always correctly

informed about both their preferences and their opponent’s preferences sA = θ

and sB = θ with probability 1− 2ε. However since players are certain of their own

4This definition follows Aghion et al. (2012) who provide a formal definition of a sequential
equilibrium in these multistage games in their online appendix.
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preferences there is an additional requirement, since both sAA = θA and sBB = θB

with probability 1. Hence a prior νε with restricted (ε)-perturbations is defined as

follows:

Definition 12 (Restricted-(ε) perturbations). The prior νε is a restricted (ε)-

perturbation if and only if

1. νε is a full (ε)-perturbation

2. If sAA 6= θA, then νε(θ, sA, sB) = 0

3. If sBB 6= θB, then νε(θ, sA, sB) = 0

Finally define VC to be the set of complete information priors, V ε
F to be the set of

full (ε)-perturbations and V ε
R to be the set of restricted (ε)-perturbations. Note that

VC ⊂ V ε
R ⊂ V ε

F . The next two sections investigate under what conditions exact im-

plementation and virtual implementation are robust to restricted (ε)-perturbations.

2.4 Exact implementation

We now give a definition of exact implementation in an environment with infor-

mation perturbations. We say that a SCF f is robustly implementable with in-

formation perturbations if - when perturbations are sufficiently small - the desired

outcome is implemented with probability one whenever players receive the correct

signals.5 Under information perturbations, the definition of exact implementation

can be extended as follows:

Definition 13. A mechanism Γ exactly implements a SCF f : X 7→ Θ with

restricted (full) perturbations if and only if given any complete information prior

ν0 ∈ VC and any sequence of priors {νε}ε>0 whenever

1. νε ∈ V ε
R (νε ∈ V ε

F )

5Note that the standard definition of exact implementation requires the desired allocation to
be implemented with probability one in all cases. Under information perturbations this definition
leads to trivial results, since clearly the wrong allocation will arise when players receive the wrong
signals. For the analysis to be sensible, the definition is adapted to allow for other outcomes in
the rare case, where players receive wrong signals.
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2. The sequential equilibrium (σε, φε) is induced by the game (Γ, νε)

then there exists some ε such that Γ(σε) = f(θ) whenever i) ε < ε and ii) sA =

sB = θ

Using this definition, the main result of AFHKT applies in our setting:

Theorem 2.4.1 (AFHKT). An SCF f can be robustly implemented with full per-

turbations if and only if

1. f is Maskin-monotonic

2. f is implementable in a complete information setting

This result holds in a very general setting with n ≥ 2 players, where moves may be

either sequential or simultaneous. It relies on the fact that in extensive form games

with several stages, additional equilibria can be formed by choosing off-equilibrium

beliefs judiciously. We discussed an example of an additional bad equilibrium that

arises when full perturbations are considered in the previous section. It follows

that using additional stages does not increase the number of SCFs that can be

implemented. As shown by AFHKT, certain small information perturbations can

reduce the power of sub-game perfect implementation significantly.

However if we rule out the possibility that players are mistaken about their own

preferences and only consider this smaller class of restricted perturbations, the

situation is not nearly so bleak. Our example has already shown that the im-

plementability of some SCFs are robust to restricted perturbations and not full

perturbations. We now generalise this result and give a sufficient condition for

exact implementation under restricted perturbations.

2.4.1 Sufficient condition

In this section we introduce a sufficient condition for exact implementation with

restricted information perturbations which is significantly weaker than Maskin-

monotonicity. This shows that restricting the set of information perturbations in

an intuitive way significantly increases the set of SCFs that are robustly imple-

mentable. We first make the following definition:
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Definition 14 (F2). An SCF f ∈ F2 if it can be implemented under complete

information by a two stage mechanism with sequential moves.

We now state our sufficient condition for robust implementation with restricted

information perturbations:

Theorem 2.4.2 (Sufficiency). If an SCF f ∈ F2, then it can be robustly imple-

mented with restricted information perturbations.

In order to prove this result we first characterize the SPEs under full information

in two stage sequential move games. We have to show that the strategy profile

used in any sequential equilibrium with sufficiently small restricted information

perturbations coincides with a SPE in complete information. It is easy to show that

the second mover - assuming he receives the correct signal - chooses his strategy

in the same way as he does under complete information, because when making

his decision, the second mover has not updated his preferences and simply chooses

the allocation he likes most. Given that the second-mover behaves as he does

under complete information, it is then possible to show that the first-mover also

behaves as he does under complete information as long as his signal is correct

and perturbations are sufficiently small. The complete proof can be found in the

appendix.

2.4.2 Comparison with complete information

In order to illustrate that restricted perturbations provide an appropriate criterion

for distinguishing between SCFs which are seen to be implemented in practice and

those that are not, we now provide a comparison with the case of complete infor-

mation. We show that robustness to restricted perturbations is more restrictive

than implementation under complete information.

We consider the canonical mechanism introduced by Moore and Repullo (1988).

Although this mechanism can be used to implement a wide-range of SCFs under

complete information, it is not robust to restricted perturbations. More precisely

there exist SCFs which can be exactly implemented using this mechanism under

complete information, but cannot exactly be implemented under restricted per-

turbations. Hence exact implementation under restricted perturbations is a more
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Table 2.1. Example: Simple three stage mechanism: Implementable under complete information, not
implementable under restricted perturbations

Preferences

Firm: uP (wL; θ) > uP (xH ; θ) > uP (wH ; θ) > uP (xL; θ)
θ ∈ {L,H}
Low type: uA(wH ; θ) > uA(wL; θ) > uA(xL; θ) > uA(xH ; θ)
θ = L

High type: uA(wH ; θ) > uA(wL; θ) > uA(xH ; θ) > uA(xL; θ)
θ = H

restrictive criterion than exact implementation under complete information. In

particular many SCFs that require complex mechanisms to be implemented un-

der complete information can not be implemented when allowing for restricted

information perturbations.

This is illustrated using the following example. Again consider a setting where a

firm denoted by P wants to hire a a worker denoted by A. The worker may be a

high type or a low type. In this example there are two outside options denoted xH

and xL respectively. The players’ preferences are given in Table 1. Now consider

the mechanism represented in Figure 2.

Figure 2.2. Moore and Repullo mechanism

Under complete information this Moore and Repullo mechanism implements the

SCF where the high type worker receives wL and the low type worker receives wH .

However note that the separating equilibrium implemented under complete infor-

mation is not robust to restricted information perturbations. If the firm believes
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that it faces a high type whenever a worker starts by choosing the branch on the

right, the firm will react by offering the worker the choice between the two outside

options. This creates a ’bad’ pooling sequential equilibrium in which all workers

receive wL. The SCF where the low type worker receives wH and the high type

worker receives wL, is therefore not robust to restricted information perturbations.

Hence this shows that the canonical Moore-Repullo mechanism is not robust to

restricted perturbations.6.

Other examples of two stage sequential move mechanisms seen in practice include

a decision on a public good, where one agent announces how much he is willing

to contribute, before a second agent decides to raise the amount to the critical

threshold or to not contribute. Alternatively one can think of a principal agent

setting, where the principal offers a menu of contracts and the agent chooses his

preferred contract.

One should note that implementability in two stages under complete information

is sufficient for exact implementation with restricted perturbations, but is not

necessary. In the appendix we present an example of an SCF that can be exactly

implemented in three stages with restricted perturbations but not in two stages.7

2.5 Virtual Implementation

In this section we show that the range of SCFs that are robust to restricted infor-

mation perturbations becomes even larger, when considering the weaker concept

of virtual implementation. Formally virtual implementation requires that for each

ε > 0 there exists a nearby game Γε such that in any sequential equilibrium of

this game the desired outcome is obtained with probability greater than 1 − ε.

This is weaker than the concept of exact implementation considered previously,

6Note that this does not prove that the SCF cannot be implemented robustly. But it cannot
be implemented robustly using the mechanism suggested by Moore and Repullo (1988)

7However, these examples are rare and difficult to construct. In particular the example we
present is such that by allowing for simultaneous move in the first stage and then allowing one
of the players to move again in the second stage, the SCF can be implemented in two stages.
Hence by weakening condition F2 to implementability in two stages where the first stage allows
for simultaneous moves, while only one player moves in the second stage.
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since we now allow for the possibility that the desired outcome is occasionally not

implemented even in cases when both players receive the correct signals. More

precisely:

Definition 15. A mechanism Γ virtually implements an SCF f : X 7→ Θ with

restricted (full) perturbations if and only if given any δ > 0, any complete infor-

mation prior ν0 ∈ VC and any sequence of priors {νε}ε>0 whenever

1. νε ∈ V ε
R (νε ∈ V ε

F )

2. The sequential equilibrium (σε, φε) is induced by the game (Γ, νε)

then there exists some ε such that P
(

Γ(σε) = f(θ)
)
> 1− δ whenever ε < ε

Most previous work on virtual implementation - see Serrano and Vohra (2010)

for an exception - considers stochastic mechanisms where in equilibrium players

play according to pure strategies. In these cases the slight uncertainty over the

eventual outcome is caused by the stochasticity of the mechanism. In contrast,

in the examples considered below slight uncertainty over the eventual outcome is

caused by the fact that players do not play pure strategies, but rather play almost

pure strategies, allowing them to deviate from the main strategy prescribed for

their type occasionally.

Virtual implementation under restricted perturbations is less permissive than vir-

tual implementation under complete information, while being more permissive than

exact implementation under restricted perturbations. To show the first part of this

claim it is sufficient to consider the canonical Moore-Repullo mechanism analysed

above. It can immediately be seen that this mechanism - and hence the canonical

mechanism - is not robust to restricted perturbations even when considering the

weaker criterion of virtual implementation. This follows from the fact that this

mechanism has a pooling equilibrium, as explained in the previous section. When-

ever ’bad’ sequential equilibria arise from pooling, both virtual implementation

and exact implementation fail.

To show the second part of this claim we provide an example of an SCF which

cannot be robustly implemented under restricted perturbations if exact imple-

mentation is required, but is robust when requiring only virtual implementation.
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Table 2.2. Complex three stages: Virtually implementable under restricted perturbations not exactly
implementable under restricted perturbations

Preferences

Firm: uP (yL; θ) > uP (wL; θ) > uP (xH ; θ) > uP (wH ; θ) > uP (xL; θ) > uP (yH ; θ)
θ ∈ {L,H}
Low type: uA(wH ; θ) > uA(wL; θ) > uA(xL; θ) > uA(xH ; θ) > uA(yL; θ) > uA(yH ; θ)
θ = L

High type: uA(wH ; θ) > uA(wL; θ) > uA(xH ; θ) > uA(xL; θ) > uA(yH ; θ) > uA(yL; θ)
θ = H

This difference follows from the fact that exact implementation requires the com-

plete information allocation to be implemented whenever both players receive the

correct signal. Virtual implementation allows rare occasions where players devi-

ate from their complete information strategy in which case a different allocation

is implemented despite both players receiving the correct signal. Robust virtual

implementation requires these ’differences’ to become increasingly rare as signal

precision increases. An example of such a setting is discussed below.

2.5.1 Comparison with exact implementation

We now give an example of an SCF which can be virtually implemented robustly,

but cannot be exactly implemented robustly. Note also that the example is con-

structed such that the SCF can be virtually implemented robustly using a three

stage mechanism, even though it cannot be virtually implemented using a two-

stage mechanism.

Let Θ = {L,H}, X = {wL, wH , xH , xL, yH , yL} and consider the preference profile

given in Table 2.

Now consider the SCF f : Θ 7→ X, where f(H) = wL and f(L) = wH . This SCF

is implementable using restricted perturbations but it is not implementable in a

two stage sequential move mechanism in complete information.
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Figure 2.3. Complex three stage mechanism

To show that this SCF can be virtually implemented using restricted perturba-

tions, consider the mechanism represented in Figure 3. This mechanism virtually

implements the SCF described above both under complete information and with

restricted perturbations. The extra off equilibrium outcomes yL and yH ensure that

the bad sequential equilibrium that arises in the three stage example described in

the previous section does not arise here. Note that in complete information this

mechanism implements the allocation wH if the worker is type L and wL if the

worker is type H.

When restricted information perturbations are introduced, the mechanism fails

to implement this SCF exactly. To see this, consider the following equilibrium.

Define mL to be the proportion of low types and mH to be the proportion of

high types. Suppose perturbations happen with probability at most ε and that

ε is sufficiently small. Finally choose mixing probabilities α and β such that the

following equations are satisfied:

uP (wH) = (1− α)mHν(sH |θH)uP (xH) +mLν(sH |θL)uP (xL)

uH(wL) =
[
ν(sL|θH) + βν(sH |θH)

]
uH(wH) + (1− β)ν(sH |θH)uH(xH)

In the first stage all low types choose the right branch. Meanwhile high types mix,

with a proportion α choosing the left branch and a proportion (1 − α) choosing

the right branch. In the second stage if the worker chose the left branch the firm

always chooses wL. Meanwhile if the worker chose the right branch and the firm
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observes a signal sL the firm always chooses wH . Finally if the worker chose the

right branch and the firm observes a signal sH the firm mixes: with probability β

the firm chooses wH while with probability (1− β) the firm proceeds to the third

stage. In the third stage a high type worker chooses xH or yH while a low type

worker chooses xL or yL.

It can be easily checked that the strategy profile above outlines a SPE whenever

ε > 0. In the appendix it is proved that this is indeed the unique SPE. Note

that in the first round high types mix between choosing the left branch and the

right branch, and so this mechanism does not exactly implement the desired SCF

under restricted perturbations. However as ε → 0, then α → 1 where α denotes

the fraction of high types who choose the left branch in the first round. This -

together with the fact that the SPE outlined above is unique - shows that this

mechanism does virtually implement the desired SCF under restricted perturba-

tions. In particular if perturbations are sufficiently small, then the proportion of

high types imitating low types can be made to be arbitrarily small. Hence the

desired allocation is reached in almost all cases.

This example shows that when exact implementation is prevented by the behaviour

of a small proportion of types, allowing players to mix with small probabilities,

virtual implementation (as defined above) may still be possible. Note that as

the precision of the signal increases, the proportion of players deviating from the

complete information equilibrium becomes small. On the one hand - as shown in

the previous section - exact and virtual implementation under restricted perturba-

tions coincide when implementation is prevented by the creation of fully pooling

’bad’ sequential equilibria. On the other hand, there exist other cases - particu-

larly when perturbations only slightly change equilibrium outcomes - where virtual

implementation is more permissive than exact implementation.

2.6 Discussion

The central message of this paper is that the power of SPE implementation depends

on the relevant set of information perturbations and the strength of implementa-

tion required. At one extreme, if information perturbations are irrelevant and
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Table 2.3. Summary (Example 3 can be found in the appendix)

Exact Implementation Virtual Implementation

Full Perturbations Maskin Monotonic Maskin Monotonic

Restricted Perturbations Two-stage mechanisms and Example 3 Also Example 2

Complete Information Condition C Condition C

there is complete information, a wide range of SCFs can be implemented using

Moore-Repullo mechanisms. Meanwhile, at the other extreme, if full perturba-

tions are relevant, then AFHKT show that only Maskin-monotonic SCFs can be

implemented. In this paper we have considered the intermediate case of restricted

perturbations and provide results which lie somewhere between these two extremes.

These results are summarised in Table 3.

The exact power of implementation under restricted perturbations depends on

whether virtual implementation or exact implementation is required. One argu-

ment for considering virtual implementation is that the definition of exact imple-

mentation already allows for mistakes in the rare case when players receive the

wrong signal. Hence the concept of exact implementation given here is already - in

some sense - a restricted type of virtual implementation, and so it seems natural to

instead consider the full version of virtual implementation instead. Meanwhile, an

argument for considering exact implementation is that it requires players to follow

pure strategies, which are more intuitive than the almost pure strategies players

follow when considering virtual implementation.

There are two ways in which the results presented here could be easily extended.

First the sufficiency result stated here can be extended to an n-player framework
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where each player moves exactly once. One extra restriction would be necessary:

players who move earlier must not be able to communicate information about the

preferences of any player who moves later. The proof would be very similar to the

two-player case, albeit with extra notation.

The second extension involves considering a class of perturbations wider than

those considered in this paper, but still more restricted than than full information

restrictions. Note that the formation of ’bad’ sequential equilibria relies on players

changing their beliefs about their own type to a significant extent. Therefore the

results above are also robust to a more general class of restricted perturbations. In

particular consider the case where the second-mover receive a signal about their

own preferences which is highly (but not perfectly) reliable, while the first-mover

receives a significantly less reliable signal. In these cases the second-mover is much

more informed than the first-mover, and hence only updates his beliefs about his

own preferences by a small amount. This ensures ’bad’ sequential equilibria cannot

be formed, and that two-stage implementations continue to be robust.
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2.7 Appendix

2.7.1 Proof of Proposition 2.4.2

Before proving this theorem we introduce some additional notation and definitions.

We use hB(sB, σA) ∈ ΣB to denote the strategy chosen by player B when he

observes signal sB and player A has chosen strategy σA. Hence, hB ∈ HB is a

strategy profile of player B, where HB is the set of all such profiles.

Meanwhile hA(sA, hB) ∈ ΣA denotes the strategy chosen by player A when he

observes signal sA and expects player B to play according to strategy profile hB.

Hence hA ∈ HA denotes a strategy profile determining the choice of player A when

he observes a certain signal and has a certain belief about the strategy profile

of player B. HA is the set of all such strategy profiles. We now define H∗B and

H∗A(hB), which denote the possible SPE strategy profiles that occur in a complete

information setting:

Definition 16. hB ∈ H∗B if and only if for all σA, for all θ and for all σ̂B ∈ ΣB

uB(Γ(σA, hB(θ, σA)); θB) ≥ uB(Γ(σA, σ̂B); θB)

Definition 17. hA ∈ H∗A(hB) if and only if for all θ and for all σ̂A ∈ ΣA

uA(Γ(σA, hB(θ, σA)), θA) ≥ uA(Γ(σ̂A, hB(θ, σ̂A)), θA)

In a complete information setting with the complete information prior ν, the

following proposition is immediately implied by the definitions above:

Proposition 2.7.1. (hA, hB) denote a SPE of Γ iff hB ∈ H∗B and hA ∈ H∗A(hB)

This characterizes the SPEs under full information in two stage sequential move

games. Note that any sequential move game with finite strategy sets has at least

one equilibrium. Hence in order to prove 2.4.2 it is sufficient to show that the

strategy profile used in any sequential equilibrium with sufficiently small restricted

information perturbations coincides with a SPE in complete information.
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To do this consider a game with restricted information perturbations (Γ, νε) and

corresponding sequential equilibrium strategy profiles (hεA, h
ε
B). It is sufficient to

prove that for some ε > 0, hεB ∈ H∗B and hεA ∈ H∗A(hB) whenever ε ≤ ε. The proof

is now split into two parts.

First we prove that hεB ∈ H∗B. This follows from the fact that player B knows his

own preferences with certainty and hence in response to player A’s move chooses

his preferred alternative. 8

Secondly we prove hεA ∈ H∗A(hεB). The proof relies on the fact that player A knows

his own type with certainty and estimates the type of player B correctly with

probability (1 − ε). Hence as ε → 0 the incentives of player A are very similar

to the incentives he has in complete information. In particular the probability

ε event where he estimates the type of player B incorrectly becomes relatively

unimportant.

We slightly abuse notation by defining uA(σA, σB; θA) := uA(Γ(σA, σB); θA). More-

over throughout the proof we use the fact that perturbations are restricted: that

is to say sAA = θA and sBB = θA.

Proof of 2.4.2 Part (i): hεB ∈ H∗B

Proof. Suppose this does not hold. Then for some signal s̃B, and strategy σ̃A there

exists a deviating strategy σ̂B such that:

uB(σ̃A, h
ε
B(s̃B, σ̃A); s̃BB) < uB(σ̃A, σ̂B; s̃BB)

Since information perturbations are restricted sBB = θB, and it follows that:

uB(σ̃A, h
ε
B(s̃B, σ̃A); θB) < uB(σ̃A, σ̂B; θB)

8Note that this is the part of the proof that does not hold in the setting AFHKT consider.
In their setting player B may infer something about his own preferences from the move of player
A. In particular, uB(Γ(σA, σB); θB) 6= uB(Γ(σA, σB); sBB).
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Consider the following strategy profile:

ĥεB(sB, σA) =

σ̂B if (sB, σA) = (s̃B, σ̃A)

hεB(sB, σA) otherwise

Playing according to strategy profile ĥεB rather than strategy profile hεB leads to

a higher payoff in the subgame when (sB, σA) = (s̃B, σ̃A) and the same payoff

otherwise. Hence hεB cannot be a sequential equilibrium profile of the game (Γ, νε).

This is a contradiction, and completes the proof.

Proof of 2.4.2 Part (ii): hεA ∈ H∗A(hεB)

Proof. First define the following:

u := min
x,sA
{uA(x; sAA)}

u := max
x,sA
{uA(x; sAA)}

σA(sA) = hεA(sA, hεB)

u(sA) := uA(σA(sA), hεB(sA, σA(sA)); sAA)

û(sA) := max
σ̃A
{uA(σ̃A, h

ε
B(sA, σ̃A); sAA)}

We use u and u to refer to the maximum and minimum payoffs player A could

receive, while u(sA) is the utility player A obtains when he plays according to strat-

egy σA(sA) = hA(sA, hεB), player B has the same signal as him (sB = sA) and plays

according to a strategy profile hεB. Meanwhile û(sA) is the maximum utility player

A could obtain in this situation by choosing some arbitrary strategy. Let σ̂A(sA)

be one of these maximizing strategies, so that û(θ) = uA(σ̂A(θ), hεB(θ, σ̂A(θ)); θ).

Now suppose hεA /∈ HA(hεB). Remembering that hA is a strategy profile of a

sequential equilibrium, we aim for a contradiction. Since hεA /∈ HA(hεB), it follows

that for some signal s̃A there exists a profitable deviation σ̃A. That is to say:

71



Chapter 2

uA(σA(s̃A), hεB(s̃A, σA(s̃A)); s̃AA) < uA(σ̃A, h
ε
B(s̃A, σ̃A); s̃AA) (2.1)

Using the definition of σ̂A, note that the strategy σ̂A(sA) maximizes the payoff of

player A given his signal is sA. Therefore:

uA(σ̃A, h
ε
B(s̃A, σ̃A); s̃AA) ≤ uA(σ̂A(s̃A), hεB(s̃A, σ̂A(s̃A)); s̃AA) (2.2)

Putting these equations 2.1 and 2.2 together and using the definition of u(sA) and

û(sA) leads to the following:

uA(σA(s̃A), hεB(s̃A, σA(s̃A)); s̃AA) < uA(σ̂A(s̃A), hεB(s̃A, σ̂A(s̃A)); s̃AA)

u(s̃A) < û(s̃A)

Now let δ = û(s̃A) − u(s̃A) and note that δ > 0. Define an alternative strategy

profile ĥεA as follows:

ĥεA(sA) =

σ̂A(sA) when sA = s̃A

σA(sA) when sA 6= s̃A

We now show that ĥεA is a profitable deviation. When sA 6= s̃A, payoffs under both

strategy profiles are equal under both strategy profiles z, so we focus on the case

where sA = s̃A. Note that in this case ĥεA(sA) = σ̂A(s̃A) and hεA(sA, hεB) = σA(s̃A).

Since information perturbations are restricted, θA = s̃AA. Hence it is enough to

show that:

S = EsB∈ΘB [uA(σ̂A(s̃A), hεB(sB, σ̂A(s̃A)); s̃AA)]− EsB∈ΘB [uA(σA(s̃A), hεB(sB, σA(s̃A)); s̃AA)] > 0

First note that with probability p > (1 − ε), sB = s̃A. In this case the left hand

side is equal to û(s̃A), while the right-hand side is equal to u(s̃A). Moreover with

probability ε any payoff between uA ∈ [u, u] may be obtained. These observations
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lead to the following bounds:

EsB∈ΘB [uA(σ̂A(s̃A), hεB(sB, σ̂A(s̃A)); s̃AA)] ≥ (1− ε)û(s̃A) + εu

EsB∈ΘB [uA(σA(s̃A), hεB(sB, σA(s̃A)); s̃AA)] ≤ (1− ε)u(s̃A) + εu

Using these bounds, the fact that δ = û(s̃A)−u(s̃A) > 0 and assuming ε < 1
2

gives:

S ≥ (1− ε)û(s̃A) + εu− (1− ε)u(s̃A)− εu

> δ − 2ε(u− u)

δ > 0 and both δ and (u− u) are fixed parameters. Therefore there exists some ε

such that S > 0 whenever ε ∈ (0, ε). This shows that ĥεA is a profitable deviation

and hence hεA cannot be the strategy profile of a sequential equilibrium. This

proves the result.

2.7.2 Example: F2 is sufficient but not necessary

Consider again the initial example of the firm and the worker. Now however there

is a third type of worker, (θB = S). This worker has an outside option that he

prefers to wH , but otherwise has the same preferences as the high type worker.

This outside option can be thought of as another job offer with a high salary. In

case he does not reach an agreement with the firm he takes the outside offer. Also

suppose that there are two types of firms (θA ∈ {Y,N}). One firm would like to

hire this special worker by offering him a wage that is even higher than the outside

option. The other type of the firm does not want to pay such a high wage.

The references are given in Table 4.

The social choice function where f(N,L) = f(Y, L) = wL, f(N,H) = f(Y,H) =

wH , f(N,S) = d and f(Y, S) = S can be implemented in three stages in complete

information, where the worker first chooses between the special branch and the

normal branch. In case the worker has chosen the special branch, the firm decides
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Table 2.4. Example: F2 is not necessary

Preferences

Norm fi uP (wL; θ) > uP (wH ; θ) > uP (d; θ) > uP (S; θ) for θ ∈ {(N,L), (N,H), (Y, L), (Y,H)}
Spec fi uP (wL; θ) > uP (wH ; θ) > uP (S; θ) > uP (d; θ) for θ ∈ {Y, S}

uP (wL; θ) > uP (wH ; θ) > uP (S; θ) > uP (d; θ) for θ ∈ {(N,L), (N,H)}
Low t uA(S, θ) > uA(wH ; θ) > uA(wL; θ) > uA(d; θ) for θB = L
High t uA(S, θ) > uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θB = H
Spec t uA(S, θ) > uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θB = S

to pay a very high wage S if the worker is indeed the special type and the firm

is special, too. It chooses outside option d otherwise. On the other hand, if the

worker chooses the normal branch, the game continues as in the basic example.

If the proportion of special firms is sufficiently small and normal workers dislike

allocation O sufficiently, then this mechanism is robust to restricted perturbations

and the SCF can be implemented robustly, despite requiring three stages. Note

however, that this mechanism can be reduced to two stages, when allowing players

to move simultaneously in the first stage. Workers report that they are normal

or special and the firm chooses one of S and the default d and one of wH and

wL. If the worker chooses the special branch the game ends and S or d as chosen

by the firm is implemented. If the worker chooses the normal branch then if the

firm chose wH this is implemented. In the final case, where the worker has chosen

the normal branch and the firm chose wL, the worker gets to make a final choice

between accepting wL and rejecting the offer to implement the default d.

2.7.3 Simultaneous moves

We now provide an example to show that the credible threat condition is not

necessary for robust implementation under restricted information perturbations

when allowing players to move simultaneously.

Consider the case where there are two players A and B. For simplicity assume
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that the preferences of player B are fixed, while player A’s preferences are given

by θ or θ̂. We assume that player A knows his preferences with certainty while the

signal player B receives is equal to player A’s preferences with probability 1 − ε
and equal to the other preference with the remaining probability ε. Now consider

the following mechanism:

θ̂

θ

θ̂ : (0, 1, 0)

θ : (1, 0, 10)

θ θ̂

Γ (0, 0, 0)

(7, 7, 3)

A

B

Figure 2.4. Simultaneous moves

In the first stage of the game both players simultaneously choose between reporting

θ and reporting θ̂. This is described in Figure 2.4. If both players report θ̂ then

the game ends and players receive the payoffs given in brackets. The first number

corresponds to the payoff of player A if he is type θ, the second number is the

payoff of player A if he is type θ̂ and the third number is the payoff of player B.

Similarly if player B reports θ̂ and player A reports θ, the payoffs are (0, 0, 0) and

the game ends.
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θ θ̂

A

B

(−1,−1,−1)
θ θ̂

(5, 5, 5)

A

θ θ̂

(2,−3, 0) (−3,−2, 10)

Figure 2.5. Mechanism Γ

Now consider the case where player A reports θ̂ and player B reports θ. In this

case player A has got a second move and chooses again between the reports θ and

θ̂ which correspond to payoff vectors of (1, 0, 10) and (0, 1, 0) respectively.

In the case where both players report θ, they start playing the mechanism Γ given

by the game tree in Figure 2.5 in the second stage.

It can easily be checked that the underlying preferences do not satisfy the credible

threat condition.

We now show that despite this fact, the simultaneous move mechanism described

above robustly implements the social choice function with payoffs (5, 5) in state θ

and (7, 3) in state θ̂ under restricted information perturbations. For simplicity we

assume that the states θ and θ̂ are ex-ante equally likely.

First note that the unique equilibria under complete information are given by

the reports (θ, θ, θ, θ) in state θ and (θ̂, θ̂) in state θ̂. Hence the desired SCF is

implemented under complete information.

Now consider the case where player A’s realised preferences are θ. If the mechanism
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Γ is reached, player A has got a dominant strategy to re-report his preferences as

θ. Moreover whenever player A’s preferences are θ his initial report is θ. This

ensures him a payoff of 2 which is greater than any payoff he can hope to achieve

by reporting θ̂, since the reports (θ̂, θ̂) are not an equilibrium. Knowing this,

player B assigns a high probability to player A’s preferences being θ whenever he

observes A re-reporting himself as θ and mechanism Γ is played. As a consequence

B also reports θ and the desired allocation is implemented. There cannot be a

case, where player A re-reports his preferences as θ and player B then assigns a

higher probability to A’s preferences being θ̂ than before the first stage.

Secondly consider the case where player A’s preferences are given by θ̂. Then the

reports (θ̂, θ̂) are an equilibrium. Player A cannot gain by deviating as there does

not exist an allocation which gives him a higher payoff. Player B cannot gain by

deviating to another report either: If he reports θ player A has got another move

where he has a dominant strategy to re-report θ̂, leaving player B with a payoff

0 < 3. Hence the report (θ̂, θ̂) is an equilibrium if the state is θ̂.

Note also that it is the only equilibrium in this state. In particular the mechanism Γ

played when the reports are (θ, θ) cannot be an equilibrium, as it would implement

an allocation (−1,−1), which neither of the players likes.

2.7.4 Virtual Implementation

We now prove that the SPE equilibrium in mixed strategies stated in section 5.1

is indeed the unique equilibrium of the mechanism described and hence virtually

implements the desired SCF.

Proof. Let δ =
√
ε and suppose ε is sufficiently small. In this case, if more than

fraction δ of low types choose the left branch, the principal - on observing signal

sL will challenge the report. This is because the report is sufficiently likely to

originate from a low type and hence:

uP (wL) <
δ(1− ε)mL

δ(1− ε)mL + εmH

uP (yL) +
εmH

δ(1− ε)mL + εmH

uP (yH)
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Secondly note that if more than fraction δ of low types choose the right branch,

the principal - on observing signal sL will accept the report. This is because the

report is sufficiently likely to originate from a low type and hence:

uP (wH) >
δ(1− ε)mL

δ(1− ε)mL + εmH

uP (xL) +
εmH

δ(1− ε)mL + εmH

uP (xH)

Suppose there is a SPE where more than δ low types choose the left branch in

the first round. Then these low types with probability greater than (1− ε) would

receive payoff uL(yL). If ε is sufficiently low, it is optimal for these low types to

deviate and choose the right branch in the first round guaranteeing a payoff higher

than uL(yL). It follows that in any SPE a fraction at least (1−δ) low types chooses

the right branch in the first stage.

Since a high fraction of low types report L in the first round, it follows from above

that the principal - on observing a report of L and signal sL - will always accept

the report and implement wH . Since this is the highest payoff a low type can

receive it follows that all low types will report L in the first round.

Since only high types choose the left branch, it follows that the firm will accept

to pay wL, whenever a worker chooses the left branch in the first stage. Therefore

high type workers have a choice between (i) choosing the left branch and receiving

a guaranteed payoff of uH(wL) and (ii) choosing the right branch. Suppose all high

types choose the right branch. Then the firm - on observing a worker has chosen

the right branch and a signal sH - will challenge the worker by moving to the third

stage - and xH will be implemented. In this case high types - preferring wH to xH

- would have an incentive to deviate and choose the left branch initially. Suppose

now on the other hand that all high types choose the left branch. Then the firm

- on observing that the right branch has been chosen and a signal sH - will not

challenge and wH will be implemented. In this case high types - preferring wH to

wL - would have an incentive to deviate.

It follows from the two observations above that high types must mix in the first

stage. Moreover for high types to be indifferent over their mixing, it follows that
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the principal must mix in the second stage after observing a report L and a signal

sH . The mixing parameters α and β are calculated above, and hence this is the

unique SPE.
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Generalised Weighted Raiffa

Solutions

3.1 Introduction

In the 1950s Nash (1950) and Raiffa (1953) independently introduced two solution

concepts to a general bargaining problem, which has since been studied extensively.

While Nash motivated his solution by appealing to the independence of irrelevant

alternatives (IIA) axiom, Raiffa focused on the interim steps necessary to reach

a final agreement. Both of these original solutions require that identical players

are treated equally, and effectively assume that all players have equal bargaining

weight. However in many situations this is not the case, and one party can influence

the outcome of negotiations more effectively than another due to different levels

of skill or commitment.

Acknowledging this fact, Harsanyi and Selten (1972) introduced a family of weighted

Nash solutions, where each player is assigned a bargaining weight. These bargain-

ing weights concisely model differences between players, which are not related to

the players’ payoff functions. Firstly one can think of the bargaining weights re-

flecting player specific characteristics: a player who is more patient or who can

quickly respond with a counter-proposal might be expected to achieve a higher al-

location than a player who is less patient or takes longer to respond to proposals.

Secondly differences in bargaining weight may reflect differences in the negotia-
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tion procedure or institutional framework. For instance permanent members of

the UN security council have a veto while other countries do not, and this system

means that permanent members are in a stronger position to negotiate favourable

agreements than non-permanent members. This paper extends the original so-

lution proposed by Raiffa (1953) to accommodate the case where players have

asymmetric bargaining weights.

Weighted versions of other bargaining solutions such as the egalitarian solution

(Thomson (1994)) and Kalai-Smorodinksy solution (Kalai (1977), Thomson (1994),

Dubra (2001)) have also been proposed. Although the Raiffa solutions have re-

ceived considerable attention (see for example Anbarci and Sun (2013) and Trockel

(2015)) - as far as we are aware - these solutions have not been generalised to ac-

commodate unequal bargaining weights. In this paper we introduce and provide

cooperative and non-cooperative foundations for a family of weighted Raiffa solu-

tions. The cooperative foundation appeals to two of the original axioms proposed

by Nash and a monotonicity axiom focusing on interim agreements. Meanwhile the

non-cooperative foundation shows that these solutions can be implemented using

simple bargaining models where offers are made either intermittently or where the

identity of the proposer is persistent.

Weighted bargaining solutions are used in many economic applications. Prominent

examples include wage bargaining in labour economics (see for example Shimer

(2005))) and bankruptcy negotiations in the finance literature (see Yue (2010)).

The vast majority of these applications use the weighted Nash solution, due to its

strong cooperative and non-cooperative foundations. We show that weighted Raiffa

solutions have similarly strong foundations and hence should be considered as an

alternative. In particular considering these different solutions alongside each other

could serve as a robustness check, and help determine whether the predictions

of a model are sensitive to the solution concept used. Furthermore our results

underline the fact that bargaining models with patient players and relatively close

deadlines are associated with the Raiffa solution, while bargaining models with

relatively impatient players and distant deadlines are associated with the Nash

solution. This has implications for the design of negotiation protocols, since policy

makers may be able to affect the outcome of negotiations simply by changing the
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timing of the deadline.

The second section outlines a characterisation for the family of weighted Raiffa

solutions. It is related to the characterisation provided by Diskin et al. (2011) who

introduce and characterise a family of p-Raiffa solutions. This family includes

the discrete and continuous Raiffa solutions introduced by Raiffa (1953) as the

extreme cases when p = 1 and as p approaches 0 respectively. We build on this

approach with two important differences. Firstly, we do not use a symmetry ax-

iom in order to characterise a family of weighted (λ, p)-Raiffa solutions. Secondly,

rather than axiomatizing on the sequence of interim agreements, our character-

isation uses weaker axioms related to the eventual bargaining solution wherever

possible. These weaker axioms are commonly used in bargaining theory, making

it easier to compare with existing results.

In order to be able to make further comparisons we also provide a new axiomati-

zation for weighted Kalai-Smorodinsky solutions which uses similar axioms. This

helps to show how the weighted Raiffa solution, the weighted Kalai-Smorodinsky

solution and the weighted egalitarian solution can all be axiomatized by appealing

to different versions of a monotonicity axiom combined with scale invariance and

Pareto optimality.

The third section provides non-cooperative foundations for weighted Raiffa solu-

tions. We introduce a class of bargaining models that can be used to approximately

implement any weighted Raiffa solution. The games considered have a finite num-

ber of rounds, where players do not discount and the identity of the proposer is

determined by a Markov process with (n + 1) states. In state i player i makes a

proposal, while in state (n+1) no offer is made. If an offer is accepted by all other

players then it is implemented. Otherwise negotiations continue to the next round.

In particular we show that specific types of this general model - when offers are

intermittent or the identity of the proposer is persistent - implement a weighted

Raiffa solution.

This class of bargaining models generalises the finite horizon models studied by

Stahl (1972) and Sjostrom (1991). Moreover it is also related to the infinite horizon
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model considered by Binmore et al. (1986) which implements the Nash solution. In

particular our model has a strong resemblance with the generalised version of this

model considered by Britz et al. (2010). While they consider an infinite horizon

model with a discount factor where the identity of the proposer is determined by

a Markov process, we consider a similar environment with a finite horizon and

no discount factor. This shows that when discounting is the dominant factor a

weighted Nash solution is implemented, while when deadlines are the dominant

factor a weighted Raiffa solution is implemented. Hence our analysis extends the

results in Gomes et al. (1999) and Imai and Salonen (2012), who study this effect

in settings where all players are equally likely to be selected as proposer in each

round. We now outline the bargaining problem and introduce the family of Raiffa

solutions.

3.1.1 The bargaining problem

Consider n-player bargaining problems where the set of players is denoted by

N = {1, , . . . , n}. Players negotiate over how to split a cake of size one with free

disposal. The default allocation is normalised to 0 ∈ Ren, while the set of feasible

allocations X ⊂ Ren is defined as follows:

X =
{

x :
∑

xi ≤ 1 and xj ≥ 0 for all j ∈ N
}

Each player i has a utility function ui : [0, 1] 7→ Re, which maps a quantity xi to

a payoff si. We assume that all ui are strictly increasing and strictly concave.1

Using these utility functions, the set of feasible payoff vectors S ⊂ Ren is defined

as follows:

S =
{

s : there exists x ∈ X such that si = ui(xi) for all i ∈ N
}

Since the utility functions are concave and X is a simplex, it follows that S is

convex. Define the default allocation of player i to be di = ui(0) and let d =

(d1, d2, ..., dn) be the vector of all players’ default allocations. We refer to the pair

1This models situations where all players strictly prefer more cake to less cake and are strictly
risk averse.
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(S,d) as the utility representation of a bargaining problem. An n-player bargaining

solution Φ maps a utility representation (S,d) to a solution Φ(S,d) ∈ S. This

final requirement captures the fact that a bargaining solution Φ selects a feasible

payoff vector. When s ∈ S, we define the ideal point for player i as mi(s|S). This

is the highest utility level that player i could receive while still ensuring that each

player j receives a utility of at least sj.

mi(s|S) = max{ŝi|ŝ ∈ S and ŝj ≥ sj for all j ∈ N}

We define m(s|S) to be the vector of such utility levels, and refer to this as the

ideal point given s. Note that by convexity of S, mi(s|S) is strictly decreasing

in sj whenever j 6= i. This captures the fact that players are in a competitive

situation: if the utility allocation sj of an opponent j 6= i increases, keeping that

of the remaining players at least constant, then the highest feasible utility of player

i - namely mi(s|S) is reduced.

3.1.2 The family of Raiffa solutions:

Ideal points have been used by Raiffa (1953) and Diskin et al. (2011) to define

bargaining solutions as a limit of an iterative process, and below we extend this

approach. The initial point of the iteration is fixed to be the default allocation

mi(s(k)|S). Subsequent steps s(k+1) are determined by the current disagreement

point s(k) and the current ideal point m(s(k)|S). This captures the fact that dur-

ing a negotiation some player i considers two pieces of information: first he focuses

on what he is sure to obtain, namely the current disagreement point si(k); secondly

he focuses on what he could possibly obtain in an ideal world namely si(k). Finally

the bargaining solution Φ(S,d) is given to be the limit of this process. Each step

in the iterative process can be thought of as an interim agreement, where every

player prefers the interim agreement s(k + 1) to the interim agreement s(k).

The two-player discrete Raiffa solution was the first iterative bargaining solution

to be introduced in Raiffa (1953). Here the new agreement s(k + 1) is calculated

by taking the midpoint between the current agreement s(k) and the current ideal

point m(S, s(k)). By convexity of S this point lies in S.
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Definition 18 (Discrete Raiffa solution).

The two-player discrete Raiffa solution is defined as Φ(S,d) = limk→∞ s(k) where:

• s(0) = d

• s(k + 1) = 1
2
s(k) + 1

2
m(s(k), S)

This solution is illustrated in Figure 3.1.

player 1

player 2

•

Figure 3.1. Discrete Raiffa solution

Salonen (1988) extends this solution to n-players, and provides an axiomatization

for these n-player discrete Raiffa solutions. While in the two-player case each

player moves half way towards his current ideal point, for the n-player case this

may lead to payoffs which are not feasible. Therefore in the n-player case each

player moves a fraction 1
n

towards their ideal point.

A more general set of n-player Raiffa solutions is considered by Diskin et al. (2011).

The Raiffa solutions in this family are characterized by a parameter p determining

the step size of interim agreements and hence the speed of convergence to a solu-

tion. When p = 1, the p-Raiffa solution corresponds to the discrete Raiffa solution.

However when p < 1 interim agreements lie closer together, and the sequence s(k)

converges more slowly. As p→ 0, the interim agreements become arbitrarily close.
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This approximates the n-player continuous Raiffa solution. The two player version

of this solution was introduced by Raiffa (1953) and axiomatized by Peters and

Damme (1991). The family of solutions considered by Diskin et al. (2011) can be

stated as follows:

Definition 19 (p-Raiffa solution).

For p ∈ (0, 1] the n-player p-Raiffa solution is defined as Φp(S,d) = limk→∞ s(k)

where:

• s(0) = d

• s(k + 1) =
(

1− p
n

)
s(k) + p

n
m(S, s(k))

For the two-player case with bargaining weights equal to 0.7 and 0.3 respectively,

this is illustrated in Figure 3.2.

player 1

player 2 •

Figure 3.2. P-Weighted Raiffa solution P =(0.7,0.3)

Our contribution is to generalise this set of Raiffa solutions to a more general set of

weighted bargaining solutions where players may have different bargaining weights.

A bargaining weight λi ∈ (0, 1) is assigned to each player, and the parameter λ =

(λ1, λ2..., λn) denotes the vector of players’ exogenous bargaining weights. Without

loss of generality we assume that Σλi = 1, and define (λ, p)-Raiffa solutions as

follows:
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Definition 20 ((λ, p)-Raiffa solution).

The n-player (λ, p)-Raiffa solution is defined as Φλ,p(S,d) = limk→∞ s(k) where:

• s(0) = d

• si(k + 1) =
(

1− pλi
)
s(k) + pλim(s(k)|S)

For the two player case, where λ = (0.75, 0.25) and p = 0.8, this solution is

illustrated in Figure 3.3.

player 1

player 2 •

Figure 3.3. Weighted Generalised Raiffa solution: (0.75, 0.25, 0.2)

The next two sections provide a cooperative and a non-cooperative foundation for

this family of bargaining solutions.

3.2 Cooperative foundation

In this section we provide a cooperative foundation for (λ, p)-Raiffa solutions. First

we introduce some additional notation. The set of individually rational points that

all players prefer over the default is referred to as Sd := {s ∈ S|si ≥ di for all i}.
We use PF (S) := {v ∈ S|m(v|S) = v} to refer to those points in S that are Pareto

optimal. It is further assumed that any point which is weakly Pareto optimal is
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also strictly Pareto optimal - ie mi(v|S) = vi implies v ∈ PF (S).2

Unlike other solution concepts, the Raiffa solution explicitly specifies a sequence of

interim points between the default allocation and the bargaining solution. These

interim points can be thought of as a series of interim agreements that players make

before reaching the final solution. To capture this idea that a bargaining solution

may be reached through a number of interim agreements, Diskin et al. (2011) model

interim solutions by using a step function. In a similar way we say that an interim

solution maps a bargaining problem (S, s) to a unique point δ(S, s) ∈ S whenever

s ∈ S. An interim solution δ(S,d) can be interpreted as a first interim agreement

that players reach as they move towards the eventual bargaining solution Φ(S,d).

We say that δ is associated with the bargaining solution Φ if repeated applications

of the interim solution δ eventually approximate the bargaining solution Φ:

Definition 21 (Interim solutions δ).

An interim solution δ is associated with a bargaining solution Φ iff Φ(S,d) =

limk→∞ dk where d0 = d and dk+1 = δ(S,dk) for all (S,d)

Note that the interim solution δ = Φ is trivially associated with the bargaining

solution Φ. Hence it is clear that any bargaining solution Φ is associated with at

least one interim solution. We say an interim solution δ is non-trivial if d /∈ PF (S)

implies δ(S,d) /∈ PF (S). Following most of the literature we focus only on Pareto

optimal and scale-invariant bargaining solutions. Furthermore we require that

any points which are not individually rational do not affect the final bargaining

solution. This leads to the following axioms:

Scale invariance (SI)

If b, c ∈ Ren+ and F (x) = b · x + c, then Φ(F (S), F (d)) = F (Φ(S, d))

Pareto optimality (PO)

If s′i > Φi(S, d) for all i ∈ N , then s′ /∈ S

Irrelevance of non-individually rational points (IIR)

Φ(S,d) = Φ(T,d) whenever Sd = Td

2Note that this follows immediately if the bargaining set S is associated with strictly increas-
ing utility functions
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Along with these standard axioms, we introduce an axiom requiring that if any

feasible allocation s ∈ Sd remains feasible when the bargaining set changes from S

to T , then such a change is weakly beneficial for all players. Therefore if additional

allocations become feasible, then no player becomes worse off. This requirement

is captured as follows:

Φ-monotonicity (Φ-MON)

If S ⊆ T, then Φi(S,d) ≤ Φi(T,d)

We say that moving from S to T is an enlargement of the feasible set if and only

if S ⊆ T . Hence the Φ monotonicity condition says that if the feasible set is

enlarged, then no player becomes worse off. Although this axiom seems plausible,

it is not compatible with Pareto optimality and scale invariance. This is shown by

the following result due to Thomson (1994):

Proposition 3.2.1 ((λ)-Egalitarian solutions).

If Φ satisfies (IIR), (PO) and (Φ-MON) then Φ is a (λ)-weighted Egalitarian

solution. The (λ)-weighted Egalitarian solution is not scale invariant and is defined

uniquely as follows:

EGλ(S,d) ∈
{

s|si = di + kλi for some k ∈ Re+

}
∩ PF(S)

This shows that the axiom of Φ-monotonicity is too strong to characterise scale-

invariant and Pareto optimal solutions. In light of this result, we consider the

following weaker axiom of δ-monotonicity:

δ-monotonicity (δ-MON) For some interim solution δ associated with Φ:

If S ⊆ T, then δi(S,d) ≤ δi(T,d) for all i

The δ-monotonicity axiom also appeals to the idea that enlarging the feasible set

should benefit players. However while Φ monotonicity requires that an enlargement

of the feasible set weakly increases the final allocation of any player, δ monotonicity

only requires that for some step function δ associated with Φ an enlargement of
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the feasible set weakly increases the allocation of any player after the first interim

agreement. More precisely there exists a δ associated with Φ such that if S ⊆ T ,

then the payoff δi(S,d) assigned to player i after the first interim agreement when

the bargaining set is S is weakly less than the payoff δi(T,d) assigned to player i

after the first interim agreement when the bargaining set is T . Using this axiom,

we now state the main result of this section:

Proposition 3.2.2 ((λ, p)-Raiffa solutions - monotonicity).

If Φ satisfies (IIR), (SI), (PO), (δ-MON) then Φ is a (λ, p)-weighted Raiffa solu-

tion.

The result shows that weighted Raiffa solutions are the only bargaining solutions

that satisfy a monotonicity condition on a path of interim agreements. First note

that the weighted Raiffa solutions satisfy the axioms: clearly (IIR), (SI) and (PO)

are satisfied. To see (δ-MON) is also satisfied consider the following interim solu-

tion:

δi(S,d) = pλimi(d|S) + (1− pλi)si for all i

Showing that no other solutions satisfy these axioms is non-trivial. The proof first

considers a weaker axiom, which says that if the maximum gain available to player

i - namely mi(d|S) - increases as the bargaining set changes from S to T , then the

allocation player i will receive after the first interim agreement will also increase:

δ-initial gain (δ-INITIAL) For some interim solution δ associated with Φ:

If mi(d|S) ≤ mi(d|T ) then δi(S,d) ≤ δi(T,d) for all d ∈ S

Since S ⊂ T implies mi(d|S) ≤ mi(d|T ) it follows that δ-initial gain is implied by

δ-monotonicity. Hence to prove the previous proposition, it is sufficient to prove

the following lemma:

Lemma 3.2.3 ((λ, p)-Raiffa solutions - initial gain).

If Φ satisfies (SI), (PO), (δ-INITIAL) then Φ is a (λ, p)-weighted Raiffa solution.

Since Raiffa solutions - unlike other bargaining solutions - determine interim agree-

ments solely using the current interim agreement which can be interpreted as the
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current default allocation d and the current ideal point m(d|S) this result seems

intuitively plausible. The proof builds on techniques from Diskin et al. (2011),

who axiomatize the symmetric version. However it is by no means a simple ex-

tension, and additional complications arise here for two reasons: first dropping

the symmetry axiom allows a wider class of weighted bargaining solutions to be

axiomatized; secondly the Φ-scale invariance axiom here is weaker than the δ-scale

invariance axiom used by Diskin et al. (2011).3 This complicates the proof, but

makes comparisons with other axiomatizations easier and clarifies the exact role

of the interim agreement function. The next section explores such a comparison

between this family of Raiffa solutions and the Kalai-Smorodinsky solution.

3.2.1 Weighted Kalai-Smorodinsky solutions

In this section we provide a new axiomatization for the family of weighted Kalai-

Smorodinsky (KS) solutions. Unlike existing results - such as that found in Dubra

(2001) - the axiomatization below appeals only to the concept of monotonicity.

These solutions are defined as follows:

Definition 22. Given a bargaining problem (S,d) and bargaining weights λ the

weighted KS solution is uniquely defined as follows:

KSλ(S,d) =
{
s|si = di +aλi

(
mi(S,d)−di

)
for all i∩WP (S) where a ∈ Re+

}
In order to motivate the following two axioms, we introduce the concept of relative

bargaining strength. Given a bargaining problem (S,d) we make the following

definition:

Ri,j(S,d) =
mi(S,d)− di
mj(S,d)− dj

For any bargaining problem (S,d) the value Ri,j(S,d) is referred to as the relative

bargaining strength of player i to player j. This value is given by the ratio between

the maximum gains player i can hope to achieve to the maximum gains player

j can hope to achieve. We say that a change in the bargaining set from S to T

3In particular the δ-invariance used by Diskin et al. (2011) immediately implies Φ-invariance,
while Φ-invariance does not imply δ-invariance.
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places player i in a relatively stronger bargaining position compared with another

player j if Ri,j(S,d) ≤ Ri,j(T,d). An enlargement of the bargaining set also puts

player i in a relatively stronger bargaining position compared to another player j,

if the maximum gains player i can hope to achieve has increased proportionally

more compared to the maximum gains player j can hope to achieve.

This intuition motivates another way of restricting that the Φ-monotonicity axiom.

The alternative restriction says that if the initial bargaining strength of player i

weakly increases then either a player’s final allocation weakly increases or the

relative bargaining strength of player i compared to some other player j strictly

decreases. This leads to the following axiom:

Φ- initial monotonicity (Φ-R-INITIAL)

Suppose mi(d|S) ≤ mi(d|T ). Then:

Either Φi(S,d) ≤ Φi(T,d) or Ri,j(S,d) > Ri,j(T,d) for some j

Combined with Pareto optimality, scale invariance and symmetry this axiom uniquely

characterises the KS-solution. Moreover it is strictly weaker than the monotonic-

ity axiom introduced by Kalai (1977).4 However dropping the symmetry axiom

does not lead to a unique family of weighted bargaining solutions: indeed the large

class of monotonic solutions that satisfy the remaining three axioms has been fully

characterised by Peters and Damme (1991). Therefore a characterisation of the

family of KS weighted solutions requires an additional axiom.

The new axiom we propose uses a similar restriction to the one imposed on

the Φ-monotonicity axiom above, but the restriction is placed on the weaker δ-

monotonicity axiom. Although the δ-monotonicity axiom is attractive - the same

interim agreement δ(S,d) may not always be appropriate for two bargaining prob-

lems (S,d) and (T,d) where players have the same initial bargaining strength. In

particular the same interim agreement may not be appropriate in those cases where

4The monotonicity axiom introduced by Kalai (1977) is slightly stronger. Using the notation
above, the first clause becomes S ⊂ T and the second clause becomes: Either Φi(S,d) ≤ Φj(S,d)
or mj(S,d) < mj(T,d). We use the slightly weaker axiom above in order to show a connection
with the new axiom introduced below
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players initially have the same initial bargaining strength but when the agreement

δ(S,d) leads to one player having much greater relative bargaining strength under

the new problem (S, δ(S,d)) compared to the new problem (T, δ(S,d)). In such

cases the player who is moving to a position with less relative bargaining strength

may demand a higher allocation, to compensate for his loss in relative bargaining

power. This motivates the following axiom:

δ-restricted monotonicity (δ-R-MON)

Suppose mi(S,d) ≤ mi(T,d). Then there exists a non-trivial δ associated with Φ

such that:

Either δi(S,d) ≤ δi(T,d) or Ri,j(S, δ(S,d)) < Ri,j(T, δ(S,d)) for some j 6= i

This axiom says that if the initial bargaining strength of player i (weakly) improves

after a change from S to T then either this player will have a weakly higher

allocation δi(T,d) after an interim agreement or the relative bargaining strength

of player i compared to player j improves when the default is δ(S,d) and the

bargaining set changes from S to T . This additional requirement allows a player

to receive less after the first interim agreement in those cases when his initial

bargaining strength has improved but where the same interim agreement δ(S,d)

would result in a significantly greater relative bargaining strength. This extra

restriction models the fact that players may take into account their future relative

bargaining strength when deciding upon interim agreements: a player may be more

reluctant to make an agreement if it leads to a situation where he is in a relatively

weak bargaining position.

Since δ-restricted monotonicity is weaker than δ-monotonicity, it follows from

above that weighted Raiffa solutions satisfy this axiom. It is shown in the ap-

pendix that weighted Kalai-Smorodinsky solutions also satisfy this axiom. Using

the Φ-restricted monotonicity axiom above leads to the following characterisation:

Proposition 3.2.4 (Weighted Kalai-Smorodinsky solution). If Φ satisfies (SI),

(PO), (Φ-RMON) and (δ-RMON), then Φ is a λ-weighted Kalai-Smorodinsky so-

lution.
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Table 3.1. Axiom summary

Generalized Raiffa Kalai-Smorodinsky Egalitarian Nash
Pareto Optimality 4 4 4 4

Scale Invariance 4 4 4

δ-monotonicity 4 (4)
Restricted δ-monotonicity (4) 4∗ (4)

Φ-monotonicity 4

Restricted Φ-monotonicity 4 (4)
IIA (4) 4

Restricted IIA 4∗∗ (4) (4)

Another axiomatization of the weighted family of KS solutions is provided by

Dubra (2001). This axiomatization is based on Φ-monotonicity and a weakened

version of the irrelevant alternatives axiom (IIA) used by Nash. In contrast here

we show that weighted KS solutions can also be characterised by using a weakened

version of δ-monotonicity rather than a weakened version of (IIA). A full summary

of these results is given in Table 1. The unbracketed entries are sufficient to

characterise the relevant family of weighted solutions. Meanwhile the bracketed

entries are not needed for the characterisation, but are further properties satisfied

by the solution in question. The starred entries capture the two alternative ways

to axiomatize the weighted Kalai-Somorodinsky solution:

This shows the strong connection between the cooperative foundations of weighted

Raiffa solutions and weighted KS solutions. Both solution families can be charac-

terised by appealing to the concepts of monotonicity, scale invariance and Pareto

optimality. On the one hand, weighted KS solutions are more forward-looking and

focus primarily on the eventual outcome. This family can can be characterised us-

ing restricted monotonicity axioms on both the bargaining solution as well as the

path of interim solutions. In contrast the weighted Raiffa solutions put more focus

on the current default point, and can be characterised by a stronger monotonicity

axiom on the path of interim solutions.
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3.3 Non-cooperative foundation

We now consider non-cooperative foundations for (λ, p)-Raiffa solutions, by

showing how these solutions can arise from simple non-cooperative games. More

precisely we suggest bargaining procedures that could be used by a planner to

implement a certain (λ, p)-Raiffa solution, in situations where the set of utility

functions (ui)i∈N is common knowledge among players but is not known by the

planner. The procedures we consider implement bargaining solutions to any arbi-

trary degree of accuracy. Exact implementation can be achieved by modifying the

procedure considered by Trockel (2011).

First we outline the bargaining procedure. Without loss of generality, consider

bargaining sets S where the default is normalized to d = 0. Players have T rounds

to reach an agreement. In each round the bargaining procedure may be in one of

(n + 1) states. When the procedure is in state i, player i makes an offer, while if

the process is in state (n + 1) no offer is made. The player selected to make an

offer proposes a feasible allocation. If all other players accept the game ends and

the allocation proposed is implemented. Otherwise the game continues to the next

round. If after T rounds no agreement is reached, then the default allocation 0 is

implemented.

In the first round the bargaining procedure starts in state 1. In every subsequent

round the state evolves according to a Markov process, with transition matrix Q.

Let qjk be the probability that given that negotiations are in state j in round t,

the state in round t+ 1 is k.

We first introduce some additional notation. When τ rounds remain and negotia-

tions are in state j we define rτ,ji for each player i as follows:

• When no rounds remain: r0,j
i = 0 for all players i and all states j

• When τ rounds remain: rτ,ji = qikmi(r
τ−1,i, S)+

∑
j 6=i qjkr

τ−1,k
j for all players

i and all states j

When it is clear from the context which bargaining problem (S, d) is being referred

to, we abuse notation by writing m̂τ,i = mi(r
τ,i, S). Moreover we write (ai, b−i) to
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refer to a vector with the i’th element equal to ai and the j’th element equal to bj

whenever i 6= j. We first prove a preliminary lemma:

Lemma 3.3.1.

The utility allocation rτ,j is in the feasible set: rτ,j ∈ S for all j and for all τ

Proof. The proof follows by induction. The base case is trivial, since r0,j = 0 ∈ S.

For the inductive step assume rτ,j ∈ S. Define sτ,i = (m̂τ,i, rτ,i−i) and note that

sτ,i ∈ S. Using the inductive assumption we get:

rτ+1,j
i =

∑
k 6=i

qjkr
τ,k
i + qjim̂

τ,i

=
∑
k 6=i

qjks
τ,k + qjis

τ,i

Hence rτ+1,j =
∑

k∈N qj,ks
τ,k. Since all vectors sτ,k ∈ S and S is a convex set, it

follows that rτ+1,j ∈ S

Using this lemma, we now show that the following is a subgame perfect equilibrium

(SPE):

Proposition 3.3.2 (SPE with immediate acceptance).

The bargaining model with transition matrix Q has the following SPE. If τ ad-

ditional rounds remain before the default is implemented and negotiations are in

state i ≤ n, then player i proposes (m̂τ,i, rτ,i−i). This offer is accepted by all other

players.

The proof follows by induction and can be found in the appendix, where we show

that players have no profitable deviations in any subgame.

Here rτ,ji is player i’s expected utility of continuing negotiations, and the minimum

utility level he is prepared to accept. The proposer j offers each player i this

reservation utility rτ,ji , while assigning himself the remainder mj(r
τ,j, S). Moreover

the proposer at least weakly prefers this allocation to continuing to the next round,

while the other players are indifferent.
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If player 1 is strictly risk averse and receives a strictly positive utility allocation

m̂τ,1
1 > 0, then this is the unique SPE. This is because risk averse proposers strictly

prefer to make an acceptable offer rather than continuing to the next round.5.

Intuitively this result follows from the fact that delaying agreement until close

to the deadline increases the risk a player faces and hence a risk averse proposer

will strictly prefer to make an immediate agreement. If player 1 is risk neutral or

m̂τ,1
1 = 0, then there may be other SPEs where player 1 makes an unacceptable

initial offer. However these (unusual) SPEs lead to the same expected utility as the

one defined above. Therefore we restrict attention to the equilibrium characterised

above. We now consider a specific family of transition matrices Q0(λ, p), where

qi,j = pλj whenever 1 ≤ j ≤ n and qi,n+1 = 1− p. The two player case is given by:

Q0(λ, p) =

pλ1 pλ2 1− p
pλ1 pλ2 1− p
pλ1 pλ2 1− p

 (3.1)

This transition matrix models a situation where offers are made intermittently. In

every round each player has a fixed chance of being selected to be the proposer.

Using this simple transition matrix where all the rows are the same, leads to the

following result. All remaining proofs an be found in the appendix.

Proposition 3.3.3 (Intermittent Offers).

Consider the bargaining model with transition matrix Q0(λ, p), where proposals are

made intermittently. Assume players follow the SPE strategies outlined above. As

the number of rounds T → ∞, the utility players obtain converge to their utility

level under the (λ, p)-weighted Raiffa solution.

We now consider bargaining models where proposals are made regularly in every

round. However instead of each player having a fixed chance of being the proposer

in each round, we assume that the player who proposed in round t is more likely

to propose again in round t + 1. This captures situations where one party is able

to revise their offer an uncertain number of times before another party can make a

proposal. To model these situations with persistent offers, we define the transition

5Meanwhile no SPE exists where player j rejects a proposal when indifferent. This is because
in this case the proposer would maximize his utility by proposing the lowest sj > rτ,1j
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matrix

Q1(λ, p) := pQ0(λ, 1) + (1− p)I. In the two player case:

Q1(λ, p) =

pλ1 + 1− p pλ2 0

pλ1 pλ2 + 1− p 0

pλ1 pλ2 1− p

 (3.2)

This model with persistent offers leads to the following result:

Proposition 3.3.4 (Persistent offers).

Consider the bargaining model with transition matrix Q1(λ, p), where the identity of

the proposer is persistent. Assume players follow the SPE strategies outlined above.

As the number of rounds T → ∞, the expected utility players obtain converge to

their utility level under the (λ, p)-weighted Raiffa solution.

Hence the family of weighted Raiffa solutions can be implemented either when

offers are made intermittently, or when the identity of the proposer is persistent.

The theorem below shows that these solutions can also be implemented by models

combining both these features:

Theorem 3.3.5.

Consider any model with transition matrix Qµ(λ, p) = µQ0(λ, p) + (1− µ)Q1(λ, p)

where µ ∈ [0, 1]. Assume players follow the SPE strategies outlined above. As the

number of rounds T →∞, the utility players obtain converge to their utility level

under the (λ, p)-weighted Raiffa solution.

Proof. Define d(0) = 0 and di(τ) := (1 − λip) + λipmi(S, d(τ − 1)). Note that

d(τ) converges to the (λ, p)-Raiffa solution, as τ → ∞. After appealing to the

immediate acceptance lemma, it remains to be shown that for all τ :

di(τ) = rτ,ji ∀j 6= i

We prove this by induction. The base case is trivial. From their respective defini-

tions, r0,j = d(0) = 0 for all j.

Now consider the inductive step. Suppose di(τ) = rτ,ji ∀ j 6= i.
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rτ+1,j
i = µ

( n∑
k=1,k 6=i

λkpr
τ,k
i + λipm̂

τ,i
i + (1− p)rτ,n+1

i

)
+(1− µ)

( n∑
k=1,k 6=i

λkpr
τ,k
i + λipm̂

τ,i
i + (1− p)rτ,ji

)
=

n∑
k=1,k 6=i

λkpr
τ,k
i + (1− p)rτ,n+1

i + (1− µ)(1− p))rτ,ji + λipmi(S, r
τ,i)

= (1− λip)di(τ) + λipmi(S, d(τ))

= di(τ + 1)

The first line states the definition of rτ+1,j
i . Rearranging and collecting terms

leads to the second line. The third line uses the induction hypothesis, using the

fact that reservation utilities are the same in every state. In the final step, the

definition of d is applied. Since mi(S, d(τ) ≥ di(τ) it follows that when τ rounds

remain, all players receive at least di(τ). Hence as the number of rounds remaining

τ → ∞, the utility players obtain converge to d(τ). Therefore if T is large, then

the (λ, p)-Raiffa solution is approximately implemented.

These implementations show that the (λ, p)-Raiffa solution arises from a number

of simple bargaining models, where offers are made intermittently or the identity

of the proposer is persistent. In particular any (λ, p)-Raiffa solution can be imple-

mented by a simple bargaining model without discounting, where in every round

players have a fixed chance of being the proposer regardless of past history. This

provides a strong non-cooperative foundation for this family of weighted bargaining

solutions.

3.4 Discussion

When players are risk neutral, the bargaining weights correspond to the pro-

portion of cake each player is allocated in equilibrium as is the case under the Nash

and the KS solution. Hence the solution concepts coincide when players are risk
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neutral.

We have shown that the (λ, p)-Raiffa solution can be implemented in simple games

using discrete time. When players have equal bargaining weights and p→ 0 which

means that offers are made rarely, the model presented can approximately imple-

ment the continuous Raiffa solution. In the two player case, this is done using the

following Q-matrix, where ε→ 0.

Qε(λ, p) =

ε ε 1− 2ε

ε ε 1− 2ε

ε ε 1− 2ε


This discrete time model is related to the continuous time model studied by Am-

brus and Lu (2015a), who consider offers arriving according to a Poisson process.

This suggests that the λ-continuous Raiffa solution and related weighted solutions

may also arise in continuous time settings.

Finally the implementations introduced have similarities with implementations of

the weighted Nash solution. In particular Britz et al. (2010) show that a weighted

Nash solution arises in settings similar to those considered above, where there

are infinitely many rounds and players discount at a rate tending to one. We

conjecture that if a discount factor is added to the finite horizon game described

above, the weighted Nash solution will be implemented whenever β → 1, βT → 0

and Q is irreducible. This result would bridge the infinite horizon result proved in

Britz et al. (2010) and the finite horizon result proved here.

Currently the weighted Nash solution is the standard solution used in applications

by economists. However we argue here that the weighted (λ, p)-Raiffa solutions

also have strong foundations and may in some situations be preferred, particularly

in settings where discounting is unimportant.

3.5 Appendix

3.5.1 Literature Summary:
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Table 3.2. Literature summary

Nash Kalai-Smorodinsky Raiffa p = {0, 1} Raiffa p = (0, 1)

SYMMETRIC Axiomatic Nash (1953) Kalai-Smorodinsky (1970) Raiffa (1953) Diskin et al (2011)

VERSION Simultaneous Nash (1953) Moulin (1984) - - - -

Myerson (1991)
Sequential Binmore et al (1970) - - Sjostrom p = 1 (1991) Diskin et al (2011)

Gomes (1998)

ASYMMETRIC Axiomatic Chung & Ely (1975) Dubra (2001) This paper This paper
This paper

VERSION Simultaneous Carlsson (1991) - - - - - -

Sequential Britz et al (2011) - - This paper This paper

101



Chapter 3

3.5.2 Additional notation

We first introduce some additional notation. Throughout the appendix we use

bold numbers to refer to a vector with n elements all of which are equal to the

bold number. Hence 1 represents the unit vector. We use k ∈ Ren to refer to a

generic vector such that ki = k for all i. Moreover a bold letter v is used to refer

to any generic vector v = (v1, . . . , vn) ∈ Ren++.

3.5.3 Consequences of scale invariance

Define a such that a1 = a ∈ PF (S) and define ∆̂(λ) = CH{0, ( 1
λi
,0−i)}. Using

these definitions let Ta,λ = CH(∆̂(λ), a). We first prove a lemma related to these

convex sets. It says that if the process starts on a path towards a then it does not

change direction.

Lemma 3.5.1. Suppose Φ is associated with a partial solution δ which satisfies

δ-monotonicity. Moreover suppose δ(Ta,λ,0) = pa. Then Φ(Ta,λ,0) = a.

Proof. Consider the following linear mapping M : λ 7→ λ and δ(S,0) 7→ 0. Now

note that M(Sδ(S,0)) = S. Hence by scale invariance:

M
(

Φ(SδS,d, δ(S,0))
)

= Φ(S,0)

M
(

Φ(S,0)
)

= Φ(S,0)

But since the linear mapping M has a unique fixed point, given by λ, it follows

that: Φ(S,0) = λ.

Lemma 3.5.2. If Φ(∆(λ),0) = 1, then δ(∆(λ),0) = p1

Proof. Let δ(∆(λ),0) = pa where a ∈ PF (∆(λ)). By the lemma above Φ(∆(λ),0) =

a. Hence a = 1 and δ(∆(λ),0) = p1.
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3.5.4 Proof: Weighted Raiffa solution

We split the proof of proposition 3.2.2 into two parts for clarity. The second part

is similar to the proof of the symmetric case which can be found in Diskin et al.

(2011). However since the axioms considered here are weaker - in particular the

Φ-invariance axiom is weaker than the δ-invariance axiom used by Diskin et al.

(2011), a longer proof is required.

First the simplex is defined as follows:

∆(1) = {s ∈ Ren |
n∑
i=1

si ≤ 1 and s ≥ 0}

For any vector v = (v1, v2, . . . , vn) ∈ Ren++ the invertible linear transformation

fv : Ren 7→ Ren is defined as follows: for any s ∈ Ren, fv
i (s) = visi. Using the

linear transformation fv we can now define the stretched simplex ∆(v) as follows:

∆(v) = fv(∆(1))

In the first section of the proof, we show that for some p ∈ [0, 1] and some λ ∈ Ren+,
1
k
δ(∆(k), 0)→ pλ as k →∞. We can then use this fact in the second part of the

proof and avoid using the stronger axiom of δ-invariance.

Lemma 3.5.3. 1
k
δ(∆(k),0)→ pλ as k →∞ for some λ ∈ [0, 1]n and p ∈ (0, 1].

Proof. Note that δ(∆(v),0) = g(v)fv(λ) where g(v) ∈ Re is a constant multiply-

ing each element in fv(λ). If not it follows from Φ-invariance that Φ(∆(v),0) 6=
Φ(∆(v), δ(∆(v),0)) and this violates the fact that δ is associated with Φ.

Note that fk(λ) = kλ and hence 1
k
δ(∆(k),0) = g(k)λ.

Take k′ > k and define v = (k′1, k−1). Now ∆(k) ⊂ ∆(v) ⊂ ∆(k’), and so by

δ-monotonicity δ(∆(k),0) ≤ δ(v, 0) ≤ δ(∆(k’),0).
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Using the definition above, it follows that g(k)fk(λ) ≤ g(v)fv(λ) ≤ g(k′)fk′(λ).

Now the first inequality implies that g(k) ≤ g(v). Suppose this was not true. Then,

since fv
n = fk

n the last component of δ(∆(k),0) is higher than the last component

of δ(∆(v),0). This violates δ-monotonicity. Meanwhile the second inequality im-

plies that g(v) ≤ g(k′). Suppose this was not true. Then since fv
1 = fk′

1 , the first

component of δ(∆(v),0) is higher than the first component of δ(∆(k’),0). This

violates δ-monotonicity.

Putting these inequalities together implies g(k) ≤ g(v) ≤ g(k′). Note that

g(k) is increasing in each of its arguments. Moreover g(k) is bounded above

by 1, since otherwise δ(∆(k), 0) /∈ ∆(k). Furthermore g(k) must be positive,

or δ(∆(k),0) /∈ ∆(k), which violates the requirement that δ is feasible. Finally

g(k) 6= 0, because otherwise repeated applications of the interim agreement func-

tion would not change the interim agreement point and hence the pareto optimal

solution would never be reached. Hence g(k) ∈ (0, 1] and is increasing in each of

its elements ki for ß ∈ {1, . . . , n}.

Therefore as k → ∞ and considering the particular sequence of k, it must be

the case that for some p ∈ (0, 1], g(k) → p. Since δ(∆(k),0) = g(k)fk(λ) and

fk(λ) = kλ, it follows that 1
k
δ(∆(k),0)→ pλ.

Lemma 3.5.4. If 0 ∈ S and m(S,0) = 1, then Φ(S,0) = Φ(S, pλ)

Proof. Take any normalised bargaining problem (S,0) such that the ideal point

m(0) = 1. In order to show the result, it is sufficient to prove that for any degree

of accuracy ε > 0 there exists an interim agreement d1 such that ||d1 − pλ|| < ε

and Φ(S,0) = Φ(S, d1).

First - using the earlier result - pick K such that for all k > K, (p − ε)λ ≤
1
k
δ(∆(k),0) ≤ pλ. Define S(k) = fk(S) and consider the stretched simplex ∆(k) ⊆
S(k). By δ-monotonicity, δ(∆(k),0) ≤ δ(S(k),0). Since 1

k
δ(∆(k),0) ≥ (p − ε)λ,

it follows that δ(S(k),0) ≥ k(p− ε)λ.
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Secondly for a ∈ Re where a > 2 define v(a, i) as follows. vi(a, i) = ak
a−1

and when-

ever j 6= i vj(k, i) = ak. Note that for some scalar b ∈ Re+, δ(∆(v(a, i)),0) =

bfv(a,i)(λ). If not the bargaining solution would violate Φ-invariance, or the in-

terim agreement function δ would not be associated with Φ.

Now note that ∆(v(a, i)) ⊆ ∆(ak). Using δ-monotonicity for all j 6= i:

δj(∆(v(a, i)),0) = bf
v(a,i)
j (λ)

= bakλj

≤ δj(∆(ak),0)

≤ pakλj

It follows that b ≤ p. But also note that S(k) ⊆ ∆(v(a, i)), and so by δ-

monotonicity:

δi(∆(v(a, i)),0) = bf
v(a,i)
i (λ)

=
bak

a− 1
λi

≥ δi(S(k),0)

Since a can be arbitrarily high, it follows that δ(S(k),0) ≤ bkλ ≤ pkλ.

Finally define d1 = 1
k
δ(S(k),0). Using Φ-invariance twice note that:
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fk
(

Φ(S,0)
)

= Φ(fk(S), fk(0))

= Φ(S(k),0)

= Φ(S(k), δ(S(k),0))

= Φ(S(k), kd1)

= Φ(fk(S), fk(d1))

= fk
(

Φ(S, d1)
)

Since fk is invertible, this implies that Φ(S,0) = Φ(S, d1). Also note from the two

results above that k(p − ε)λ ≤ δ(S(k),0) ≤ kpλ, and hence (p − ε)λ ≤ d1 ≤ pλ.

Since ε is arbitrarily small, this proves the result.

3.5.5 Proof: Weighted Kalai-Smorodinsky solution

Proof: 3.2.4 Weighted Kalai-Smorodinsky solution

Proof. Take a normalised bargaining problem (S,d) such that:

1. d = 0

2. mi(S,0) = 1
λi

Define a such that a1 = a ∈ PF (S). Moreover define ∆̂(λ) = CH{0, ( 1
λi
,0−i)}.

Note that Φ(∆,0) = λ and hence by - scale invariance - Φ(∆̂(λ),0) = 1.

Finally define T := CH{S, a}. Appealing to the two lemmas, for some scalars

p > 0 and p′ > 0:
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Φ(∆̂(λ),0) = 1 (scale invariance argument above)

δ(∆̂(λ),0) = p 1 (using lemma 3.5.2)

δ(T,0) = p’ 1 (δ-monotonicity lemma)

Φ(T,0) = a (using lemma 3.5.1)

Φ(S,0) = a (Φ-monotonicity)

Φ(S,0) = ΦKS
λ (S,0) (definition of ΦKS

λ )

This proves that Φ(S,0) = ΦKS
λ (S,0), whenever S is suitably normalised. The full

result follows by appealing to scale invariance.

3.5.6 Proofs: Non cooperative foundation

Proof: 3.3.2 SPE

Proof. The proof follows by induction. We show that players have no profitable

deviations in any subgame. Consider the base case. WLOG suppose negotiations

are in state i in the last round.

1. Any player j 6= i is indifferent between accepting (receiving sj = 0) and

rejecting (receiving sj = 0). Hence rejecting is not a profitable deviation.

2. Suppose player i makes a lower offer, where for one player sj < 0. In this

case player j rejects and player i receives di = 0 ≤ mi(S,0). Hence making

a lower offer is not a profitable deviation.

3. Suppose player i makes a higher offer where sj > 0 and s−j ≥ 0. The offer is

accepted, but since, mi() is strictly decreasing in the utilities of other players

mi(S, (0−j, xj)) < mi(S,0). Hence making a higher offer is not a profitable

deviation.

Hence if negotiations are in state i ≤ n in the last round, then player i proposes

(m̂0,i, r0,i
−i) and this offer is accepted

Now, consider the inductive step. Suppose that when τ rounds remain player i

proposes (m̂τ,i, rτ,i−i).
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1. If player j 6= i rejects, the process will move to the next round and will enter

state k with probability qi,j. By the inductive step, in the next round the

offer (m̂τ,k, rτ,k−k) will be accepted. Hence if player j rejects he expects to

receive
∑

k 6=j qikr
k,τ
i +qijmi(r

τ,j) = rτ,ji , So player j 6= i is indifferent between

accepting and rejecting. Hence rejecting is not a profitable deviation.

2. If player i makes any player a lower offer, where sj < rτ,ij player j rejects. In

this case - by using the same argument as above, player i expects to receive

rτ,i in the next round. Since rτ,i ∈ S, it follows that m̂τ,i ≥ rτ,i. Hence

making a lower offer is not a profitable deviation.

3. If player i makes a higher offer s where sj > rτ,ij and s−i ≥ rτ,i−i, then the

offer is accepted. However since mi() is strictly decreasing in the utilities of

other players mi(S, s) < mi(S, r
τ,i). It follows that si < m̂τ,i, and so making

a higher offer is not a profitable deviation.

Hence if negotiations are in state i ≤ n with τ rounds remaining, then player i

proposes (m̂τ,i, rτ,i−i) and this offer is accepted.
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A Non-Cooperative Foundation

for the Continuous Raiffa Solution

4.1 Introduction

Almost simultaneously to the seminal work of Nash (1950), Nash (1953), Raiffa

(1953) formulated two closely related alternatives to the Nash bargaining solution.

The first – the discrete or sequential Raiffa solution – is defined as the limit of a se-

ries of intermediate agreements that is constructed by an iterative random dictator

procedure. The second solution he proposed – the continuous Raiffa solution – is

in the same spirit, but assumes that the step size between intermediate agreements

is infinitesimally small. As such, it is obtained as the endpoint of a continuous

intermediate agreement curve. The advantage of this second approach is that the

resulting solution remains well-defined if bargaining problems are allowed to be

non-convex. Indeed, while it is standard to assume that the feasible sets in the

bargaining problem are convex, there is a wide literature that recognizes that this

requirement may in many instances be too strict.1 As such, we do not require that

bargaining problems have convex feasible sets.

A prolific strand of literature in economics, known as the Nash program, focuses

on non-cooperative foundations for cooperative solution concepts. More specif-

1 See among others Conley (1991), Conley and Wilkie (1994), Conley and Wilkie (1996),
Zhou (1997), Xu (2006), Xu and Yoshihara (2013)
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ically, this agenda aims at constructing reasonable non-cooperative games such

that their (unique) equilibrium payoffs yield, or somehow approximate, the out-

come of the considered cooperative solution concept. While several results provide

non-cooperative support for the discrete Raiffa solution, the continuous version

has received much less attention.2 With this paper we aim to address this gap in

the literature. In particular, we provide a direct support result for the continuous

Raiffa solution.

The game constructed to this end is an n-player bargaining model in the tradi-

tion of Stahl (1972) and Rubinstein (1982). Players are assumed to make proposals

that are instantaneously accepted or rejected by all opponents; in case of unan-

imous agreement, the proposal is implemented, otherwise it is rejected and the

game continues. Apart from these common features, the game differs from the

classic models in several important ways: bargaining occurs in continuous time

and the game features a finite deadline that ends the negotiations with all play-

ers obtaining zero payoffs. Moreover, the timing of the proposals is stochastic in

the sense that they are governed by independent player-specific Poisson processes.

It turns out that this game has a unique subgame perfect equilibrium (SPE) in

which players use Markovian strategies, and the first proposal made is accepted.

The main result of this paper is that the payoffs players realize in this SPE converge

to the continuous Raiffa solution as the horizon tends to infinity.

Ambrus and Lu (2015b) consider a coalitional version of the above-described

game, in the spirit of Okada (1996), Okada (2011), Chatterjee and K. (1993) and

Yan (2003). The key distinction between the two versions lies in their respective

underlying cooperative problems: Ambrus and Lu (2015b) take this to be a convex

TU game, whereas the present paper assumes it is a pure bargaining problem. As

is well-known, both are special cases of the more general class of NTU games (see

a.o. Hart (2004)). Furthermore, Ambrus and Lu (2015b)’s framework assumes

that players are impatient in the sense that utilities are discounted over time.

These distinctions are important. Where we obtain non-cooperative support for

the continuous Raiffa solution, as described above, Ambrus and Lu (2015b) obtain

a non-cooperative foundation for the core of the underlying TU game.

2A notable exception is Diskin et al. (2011), who provide support for solutions that approx-
imate the continuous Raiffa solution. See the discussion of the related literature below.
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Finally, it is demonstrated that the support result does not depend in full on

the chosen proposer protocol. In particular, we adopt a variation of the well-known

rejector-proposes protocol, studied by Selten (1981), Chatterjee and K. (1993) and

Britz and Predtetchinski (2012) among others, and show that this does not affect

the SPE, nor the associated payoffs, nor its limit as the horizon tends to infinity.

Related Literature The Nash program literature on the Raiffa solution has

primarily focused on its discrete version. Myerson (1991)( pp. 393-394) describes

a two-player, discrete- and finite-time, random-recognition bargaining game that

can be regarded a discrete-time analogue of the game considered in this paper.

The payoffs associated with the unique SPE of this game converge to the discrete

Raiffa solution, as the number of bargaining rounds T diverges to infinity.

Sjostrom (1991) proposes a similar game with the assumption that payoffs are

discounted with factor r. This game too has a finite deadline that ends negotia-

tions, and actions take place at T equidistant time points within this fixed time

interval. Sjostrom (1991) demonstrates that the unique SPE payoffs of this game

converge to an outcome within a certain distance from the discrete Raiffa solution,

as the partition of the bargaining interval [0, T ] becomes more and more refined.

Diskin et al. (2011) introduce a class of generalized Raiffa solutions for n play-

ers; each such solution corresponds to the limit point of a series of intermediate

agreements, where the step size between agreements lies within the interval (0, 1/n].

They provide a non-cooperative foundation for their solution class that is again

based on Myerson’s game. Of course, this support result only holds for generalized

solutions with strictly positive step size, and thus necessarily entails an approxi-

mation that is absent from the model in this paper. To our knowledge this paper

provides a first direct support result for the continuous Raiffa solution.

Structure of the Paper The remainder of the paper is organized as follows.

Section 2 introduces the bargaining problem and the continuous Raiffa solution.

Section 3 describes and analyzes the non-cooperative bargaining game. In Section

4 it is demonstrated that the payoffs associated with the unique SPE of this game

converge to the continuous Raiffa solution as the horizon tends to infinity. Section

5 considers an alternative proposer protocol, and Section 6 concludes.
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4.2 Preliminaries

4.2.1 The Bargaining Problem

A bargaining problem is defined by a finite set of players N := {1, . . . , n} with

n ≥ 2, and a subset S of Rn, that is closed and strictly comprehensive (i.e. y ∈ S
and x ≤ y implies x ∈ S; if x 6= y, then z > x for some z ∈ S)3, that contains

an outcome z > 0 =: (0, . . . , 0), and is such that S ∩ Rn
+ is bounded. It is further

assumed that S satisfies the following condition:4

(A1): There exists a K > 0 such that for all i, j ∈ N , and for all x, y ∈ ∂S ∩ Rn
+

with x−{i,j} = y−{i,j}: |xi − yi| ≤ K|xj − yj|.

Note that we do not insist on convexity of S.

Fixing the set of players N , a bargaining problem is henceforth denoted by its

feasible set S. The class of all bargaining problems S is denoted B. A bargaining

solution is a map ϕ : B → Rn that assigns to each bargaining problem S ∈ B a

unique outcome ϕ(S) ∈ S.

The interpretation of the bargaining problem is as follows. An outcome x ∈ Rn

represents a utility allocation, in the sense that each xi is the utility payoff obtained

by player i; the feasible set S represents the set of all utility allocations players

in N can jointly realize; players must find agreement on an outcome x ∈ S, and

failure to do so leads to the unfavorable outcome 0. The point 0 is therefore also

called the disagreement point.5 The solution outcome ϕ(S) is interpreted as the

compromise reached by the players in N when faced with the problem S. Condition

(A1) says that if an agent i gives up some of his utility ε > 0, then there is an

upper bound Kε on the associated compensation other agents (i.e., j ∈ N \ {i})
can feasibly attain.

Condition (A1) is a rather mild assumption. For instance, if the bargaining

problem is a utility representation of simple economic division problem, then the

condition already holds if the agents’ utility functions are continuously differen-

3For x, y ∈ Rn, x ≥ y is taken to mean xi ≥ yi for all i ∈ N ; the vector inequalities >, ≤
and < are similarly defined.

4For a closed set S ∈ Rn, ∂S := S \ int(S), where int(S) denotes the interior of S.
5Normalization of the disagreement point to the zero vector 0 is without loss of generality.

112



Chapter 4.

S

(a) S satisfies (A1)

S

(b) S violates (A1)

Figure 4.1. An illustration of condition (A1).

tiable. It is worth pointing out that Condition (A1) is not implied by convexity.

Examples demonstrating this are easily constructed.

4.2.2 A Family of Raiffa Solutions

In order to define our solutions of interest, we first formalize the notion of

a maximal claims vector. Given a bargaining problem S ∈ B and an outcome

x ∈ S ∩ Rn
+, let m(x, S) := (m1(x, S), . . . ,mn(x, S)), where

mi(x, S) := max{yi|(x1, . . . , xi−1, yi, xi+1, . . . , xn) ∈ S}

for all i ∈ N . Each mi(x, S) is the maximal claim player i holds over the surplus

that remains of S, given that an intermediate agreement has been reached on the

outcome x. Note that m(·, S) is a well-defined vector function by strict compre-

hensiveness of S and compactness of the set S ∩ Rn
+. Whenever the problem S is

understood, we write m(x) rather than m(x, S).

Given a convex problem S ∈ B, the discrete Raiffa solution (Raiffa (1953)) is

then defined as the limit of the sequence {xt}∞t=0, where x0 = 0 and

xt+1 := xt +
1

n
(m(xt)− xt) (4.1)

for all t ≥ 1. It is based on the intuitive notion that agreement is found on the

midpoint of all the maximal claims agents hold over the surplus to divide. If this
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midpoint is not efficient, then agents again stake out their maximal claim over

the surplus that remains, and reach a next compromise on the midpoint of those

claims. The solution outcome is reached by iteratively applying this reasoning,

until the entire surplus is allocated.

S

�

R(S)

S

�

�

�

�

Figure 4.2. An illustration of the continuous Raiffa solution.

Note that if the problem S is not convex, then the midpoint of all maximal

claims need not be feasible, and the discrete Raiffa solution may not be well-

defined. This problem can be addressed by decreasing the step size 1/n in (4.1)

to some 0 < c < 1/n, as proposed by Diskin et al. (2011), or to 0, as proposed by

Raiffa (1953). In the latter case, (4.1) becomes an initial value problem, and the

sequence of intermediate agreements becomes an intermediate agreement curve.

The limit point of this curve is our solution of interest, the continuous Raiffa so-

lution. It has been considered for convex two-player problems by Raiffa (1953),

Livne (1989), Peters and Damme (1991) among others; in these studies, the inter-

mediate agreement curve is obtained as the solution of the initial value problem

dx1/dx2 = (m1(x, S) − x1)/(m2(x, S) − x2) with the initial condition x1(0) = 0.

In a multiple-player setting, the intermediate agreement curve could similarly be

obtained by parameterizing the utilities of players i ∈ N \ {n} in terms of the

utility of player n. However, in their discussion of the continuous Raiffa solution,

Diskin et al. (2011) explicitly used the continuous version of (4.1). Their definition

can be generalized to a class of weighted Raiffa solutions.

Definition 23. For μ := (μ1, . . . , μn) ∈ R
n
++, the continuous Raiffa solution

Rμ : B → R
n is defined as

Rμ(S) := lim
t→∞

x(t)
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where x : [0,∞)→ S is the unique solution of the Initial Value Problem6

x′(t) = µ(m(x(t))− x(t)) and x(0) = 0. (4.2)

The class R := {Rµ | µ ∈ Rn
++} contains all such solutions.

Up to a constant c > 0, R(c,...,c) is the unique symmetric solution inR; this solution

is also denoted R. An argument similar to Theorem 5 of Diskin et al. (2011) shows

that all solutions in R are well-defined.

Proposition 4.2.1. For all S ∈ B and µ ∈ Rn
++, problem (4.2) has a unique

solution x : [0,∞)→ Rn, and limt→∞ x(t) is contained in the boundary of S.

All proofs are relegated to the Appendix.

4.3 A Non-Cooperative Bargaining Game

We consider a continuous-time bargaining game with stochastic timing of pro-

posals and a finite deadline, similar to the game proposed by Ambrus and Lu

(2015b). The underlying framework of this game is a bargaining problem S ∈ B,

as defined in the previous section. Bargaining occurs in a continuous time interval

[0, T ], where the deadline T is finite and known to all players. For each player

i ∈ N , the opportunity to make proposals is produced by a Poisson process with

player-specific arrival rate λi > 0. These processes are assumed to be independent,

and the associated arrival rates are further assumed to sum to one. The latter is

without loss of generality, since the interval in which bargaining occurs can always

be rescaled.

Whenever player i’s process realizes, he proposes an allocation x ∈ S. Oppo-

nents then make instantaneous and sequential accept/reject decisions concerning

this proposal. It is assumed that the order in which players decide on the made

proposal corresponds with their indices – i.e. player k’s decision precedes player

l’s decision if and only if k < l.7 If all of i’s opponents accept, then bargaining

6For x, y ∈ Rn, we define xy := (x1y1, . . . , xnyn).
7The exact order in which players decide on made proposals is irrelevant.
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ends with the implementation of the proposal. If at least one player rejects, then

the game continues until the next arrival occurs and the above procedure is re-

peated. If no agreement is reached at or before the deadline T , then bargaining

ends, and all players realize their disagreement value 0. A particular game of this

form is described by Γ = {S, λ, T}, where S ∈ B is the underlying pure bargaining

problem, λ := (λ1, . . . , λn) the vector of players’ arrival rates, and T the deadline

ending negotiations.

4.3.1 Strategies

A strategy in a game Γ = {S, λ, T} consists of two elements: which proposals

to make when proposing, and which to accept or reject when responding. Which

action a player chooses in either situation may depend on the history of play of

the game. Consider a player i ∈ N . If he is the proposer at t ∈ [0, T ], then the

history includes the times 0 ≤ t1 ≤ . . . ≤ tk < t of all previous offers (if any),

and for each such time tl, l = 1, . . . , k, it specifies the corresponding proposal,

the corresponding proposer, and the corresponding set of rejectors. If he is the

responder at t ∈ (0, T ], then the history further includes the time-t proposal, the

identity of its proposer, and the (possibly empty) set of rejectors so far.

Denote by Hp
i the set of all histories after which player i must make a proposal,

and denote by Hr
i the set of all histories after which he must respond to a proposal.

His strategy is then described by the pair (fi, gi), where fi : Hp
i → S maps histories

of Hp
i into feasible proposals x ∈ S, and gi : Hr

i → {Y,N} maps histories of Hr
i

into an accept/reject decision on the prevalent offer. A strategy profile is a tuple

(f, g) ≡ (fi, gi)i∈N .

4.3.2 Subgame Perfect Equilibrium

Heuristically, the construction of an SPE is based on the idea that proposers

make offers such that responders are indifferent between accepting and rejecting.

In particular, fixing a game Γ = {S, λ, T}, it is assumed that each agent i ∈ N

proposing at time t ∈ [0, T ], offers all opponents j ∈ N \ {i} their respective reser-

vation values – denoted rj(t) – and that he claims pi(t) for himself. Furthermore,

it is assumed that such proposals are accepted.
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These assumptions allow us to derive an expression for agents’ reservation val-

ues. Consider again a player i in N . At any time t ∈ [0, T ] the next realization

of any of the n concurrent processes occurs at a time s in the interval [t, T ]. The

probability that it is player i’s process that then realizes, is given by λi; with prob-

ability 1 − λi some other process realizes first. Thus, player i’s expected utility

payoff at time s is ui(s) = λipi(s) + (1 − λi)ri(s). Since the waiting time until

the first next offer is exponentially distributed with rate 1, we obtain the following

expression for ri(t):

ri(t) =

∫ T

t

e−(s−t)[λipi(s) + (1− λi)ri(s)]ds.

After offering all agents j 6= i their reservation values rj(t), a proposer i claims

the utility that makes his proposed allocation efficient. That is, pi(t) = mi(r(t)).

This leads to the following system of equations:

ri(t) =

∫ T

t

e−(s−t)[λipi(s) + (1− λi)ri(s)]ds, (4.3a)

pi(t) = mi(r(t)). (4.3b)

for all i ∈ N and t ∈ [0, T ]. It turns out that it has a unique solution.

Lemma 4.3.1. System (4.3) has a unique solution (p∗, r∗) : [0, T ]→ Rn × Rn.

Similar to Rubinstein (1982), a strategy profile can be constructed based on

the solution to system (4.3).

Definition 24. (f ∗, g∗) is a strategy profile, such that for all i ∈ N and for all

t ∈ [0, T ]:

• If i is proposing at time t, he offers r∗j (t) to all j 6= i,

and claims p∗i (t) for himself.

• If i is responding at time t, he accepts a proposal v iff

vi ≥ r∗i (t).

(4)

An argument similar to Claim 3 of Ambrus and Lu (2015b) shows that (f ∗, g∗) is

the unique SPE of the game.
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Proposition 4.3.2. (f ∗, g∗) is the unique SPE of the game Γ.

4.4 Main Result

This section investigates the behavior of the payoffs (p∗, r∗) associated with the

unique SPE (f ∗, g∗) as the horizon T tends to infinity. Consider the game Γ from

the previous section. Figure 4.3 shows the SPE payoffs of a player i ∈ N , as a

function of the time t ∈ [0, T ].

T

1

0

0

p∗
i (t)

r∗
i (t)

Figure 4.3. The SPE payoffs of a player i ∈ N .

The shape of these payoff curves is intuitive: the closer players get to the horizon T ,

the higher the probability the game will run out without another offer being made,

and thus the higher the cost of rejecting a proposal. This means that, as the game

approaches T , responders will have to accept lower offers, and proposers can make

higher claims for themselves. This reasoning underlines the history-independent

nature of the SPE: which proposals players make, or agree on, depends only on the

time that remains until the game expires. It is thus useful to define functions x and

y that specify players’ SPE payoffs as a function of the remaining time to T . More

specifically, x(t) := r∗(T − t) and y(t) := p∗(T − t). It is then sufficient to study

the limit behavior of the functions x and y. To see this, suppose that after the

start of the game, the first process realizes at some time t̄ ∈ [0, T ]. Then the game

concludes at t̄ and the payoffs players realize are given by x(T − t̄) and y(T − t̄).
Since the first arrival is exponentially distributed with a unit rate parameter, t̄ is

finite, meaning (T − t̄) will tend to infinity with T .

The functions x and y are derived from system (4.3). In particular, by (4.3b)
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T1 T2 T3

1

0

t̄

p∗
i (t)

r∗
i (t)

T1 − t̄ T2 − t̄ T3 − t̄

1

0

0

yi(t)

xi(t)

Figure 4.4. Time-t̄ SPE payoffs with deadlines T3 > T2 > T1.

y(t) = m(x(t)) = m(r∗(T − t)) = p∗(T − t), and by (4.3a),

xi(t) = r∗i (T − t)

=

∫ T

T−t
e−(s−T+t)[λip

∗
i (s) + (1− λi)r∗i (s)]ds

=

∫ t

0

e(τ−t)[λip
∗
i (T − τ) + (1− λi)r∗i (T − τ)]dτ

=

∫ t

0

e(τ−t)[λiyi(τ) + (1− λi)xi(τ)]dτ.

for all i ∈ N . In the first place, this implies x(0) = 0. Furthermore, differentiating

with respect to t yields

dxi(t)

dt
= λi(mi(x(t))− xi(t)) (4.5)

Thus, we obtain (4.2), the Initial Value Problem that defines the λ-weighted Raiffa

solution, where λ = (λ1, . . . , λn). It then follows from the definition that x(T − t̄)
converges to Rλ(S) as T diverges. Since y(t) = m(x(t)) for all t, it follows from

continuity of m(·) that y(T − t̄) converges to m(Rλ(S)); since Rλ(S) ∈ ∂S, it

follows that y(T − t̄) converges to Rλ(S) as well. Hence, also the payoff of the

time-t̄ proposer converges to the value implied by the λ-weighted Raiffa solution.

We may summarize as follows.
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Theorem 4.4.1. The payoffs associated with the unique SPE of a game Γ =

{S, λ, T} converge to Rλ(S) as the horizon T tends to infinity.

Remark. There are two potential criticisms on Theorem 4.4.1. In the first

place, it only provides approximate non-cooperative support for the Raiffa solution.

More seriously, for every finite horizon, there is a strictly positive probability that

bargaining ends before any player has the opportunity to make a proposal. In such

a case players realize zero payoffs, without an action ever being played. However,

using the approach of Trockel (2011), both criticisms may be tackled at once.

In particular, consider an extension of the game Γ in which the deadline T is

not exogenously specified, but rather, it is chosen by the first rejector of the

first proposal. Then the game does not conclude before an offer is made, the

first proposer proposes exactly the (weighted) Raiffa solution, and all opponents

immediately accept. Hence, it yields an exact support result for Rµ.

Remark. Theorem 4.4.1 should not be confused with Theorem 2 of Ambrus

and Lu (2015b). They consider a coalitional bargaining framework, where the

underlying cooperative game is a convex TU game, while we take the underlying

game to be a pure bargaining problem. Of course, for TU games where generating

any surplus requires the grand coalition, Ambrus and Lu (2015b) also implement

the continuous Raiffa solution, but the restriction to TU games means they only do

so on the domain of bargaining problems for which the Pareto set is a linear trans-

formation of the (n − 1)-dimensional unit simplex. In such bargaining problems,

the λ-weighted continuous Raiffa solution coincides with the λ-weighted discrete

Raiffa solution, the λ-weighted Nash bargaining solution, the λ-weighted Kalai-

Smorodinsky solution, and many others. The distinction arises in pure bargaining

problems where utility is not transferable, indeed, the framework considered in this

paper. This does not mean that this set-up is more general; as mentioned before,

TU games and pure bargaining problems are simply different subsets of the class

of NTU games.

4.5 An Alternative Proposer Protocol

Selten (1981) studied an elegant alternative proposer protocol in which the
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player who rejects the current proposal is called to make the next proposal. This

protocol - also named the rejector-proposes protocol - has been studied primarily in

the context of coalitional bargaining games, and has been shown to have potentially

important implications for the resulting equilibria (see e.g. Chatterjee and K.

(1993)). In this section it is demonstrated that this is not the case in the present

game. That is, under the rejector-proposes protocol, the SPE is unchanged, SPE

payoffs are unchanged, and these payoffs continue to converge to the Raiffa solution

as the deadline of negotiations tends to infinity. This is in line with the findings

of Britz et al. (2010), Britz and Predtetchinski (2012), who consider a bargaining

game that provides non-cooperative support for the asymmetric Nash bargaining

solution; whether the underlying protocol is action-independent or whether the

designated next proposer is the last rejector, turns out to be immaterial to their

support result.8

The Game As before, bargaining occurs in continuous time, in an interval that

ranges from 0 to T with T > 0, the rate at which a player i ∈ N can make

proposals is governed by a Poisson process with player-specific arrival rate λi, and

without loss of generality it is assumed that
∑

i λi = 1.

The main difference with respect to the game defined above is that players’

processes no longer run concurrently. Instead, there is always a single designated

next proposer who will make his offer at the first next arrival of his own Poisson

process. It is assumed that player î ∈ N is the designated next proposer at time

0. A second departure from the previous game is that the proposer also votes on

his own proposal, and moreover, that he is the first to do so. In particular, we

assume that if player i puts an offer on the table, then the order of votes is given

by [i, i + 1, . . . , n, 1, . . . , i − 1] if i > 1, and by [1, . . . , n] otherwise.9 Unanimous

agreement on a proposal continues to end the game with the implementation of

that proposal. However, if unanimous agreement is not reached, then the game

continues, but now with the first rejector in the above-defined order in the role of

designated next proposer. As before, if no unanimous agreement is reached before

8Britz and Predtetchinski (2012) in fact study a more general action-dependent proposer
protocol that includes the rejector-proposes protocol as a special case.

9While the exact order of the players deciding after the proposer continues to be irrelevant,
it is essential that the proposer decides on his own offer first.
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or at time T , then players realize the disagreement outcome 0. Such a game is

denoted by ΓRP = {S, λ,N}, where S, λ and T are as defined above.

Strategies In a game ΓRP, strategies are somewhat simpler to define. In par-

ticular, rather than specifying the identities of all previous proposers, histories

only need to specify who is the first proposer. The identities of all subsequent

proposers can then be inferred from the play of the game. Thus, a history in Hp
i

specifies the first designated next proposer î ∈ N , and further specifies for each

t ∈ (0, T ] the times 0 ≤ t1 ≤ . . . ≤ tk < t of all previous proposals (if any), the

corresponding proposals, and the corresponding sets of rejectors. A history in Hr
i

additionally specifies the time-t proposal, and the set of rejectors prior to i. A

strategy for player i is again a pair of functions (fi, gi) with fi : Hp
i → S and

gi : Hr
i → {Y,N}; a strategy profile is again denoted by (f, g).

Subgame Perfect Equilibrium A heuristic reasoning is helpful in the con-

struction of an SPE. Consider a game ΓRP, and assume that players play a strategy

profile (f, g), such that proposers make all opponents indifferent between accept-

ing and rejecting, and furthermore that such proposals are immediately accepted.

Suppose a player i’s associated time-t (expected) payoff, given that player j ∈ N
is called to be the next proposer, is denoted qji (t). Since the first rejector is called

to be the next proposer, and since the proposal prescribed by f is assumed to be

accepted by all, deviating leads to the payoff ri(t) := qii(t). Hence, if player i is

the proposer at time t, he offers rj(t) to all opponents j 6= i. Denoting the payoff

i realizes himself as pi(t), this yields

ri(t) =

∫ T

t

λie
−λi(s−t)pi(s)ds (4.6a)

pi(t) = mi(r(t)) (4.6b)

for all i = 1, . . . , n and t ∈ [0, T ]. Observe that ri(T ) = 0. Furthermore, differ-

entiating equation (4.6a) yields r′i(t) = −λipi(t) + λiri(t). Thus, the solutions to

systems (4.3) and (4.6) coincide.

Proposition 4.5.1. System (4.6) has a unique solution (p̂, r̂) : [0, T ]→ Rn ×Rn.

Moreover, (p̂, r̂) = (p∗, r∗).
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This allows for defining a strategy profile (f̂ , ĝ) that is analogous to (f ∗, g∗). In

particular, given a time-t history in Hp
i , a proposer i’s strategy f̂i is to propose

(p∗i (t), r
∗
−i(t)); given a time-t history in Hr

i that includes the time-t proposal v ∈ S,

a responder i’s strategy ĝi is to accept v if and only if vi ≥ r∗i (t). An argument

analogous to Proposition 4.3.2 then demonstrates that the change of protocol has

no influence on the outcome of the game.

Proposition 4.5.2. (f̂ , ĝ) is the unique SPE in the game ΓRP.

4.6 Concluding Remarks

This paper has provided a non-cooperative foundation for the continuous Raiffa

solution in multilateral bargaining problems. Moreover we showed that this foun-

dation does not rely on the convexity of the bargaining set. While the game

introduced to this end is rather natural, it does include the somewhat unrealis-

tic assumption that players do not discount their payoffs over time. A natural

extension would thus be to allow for the discounting of utilities. In this case, a

connection seems to arise with the Nash bargaining solution. It may in the first

place be conjectured that the game enriched with a discount factor continues to

have a unique SPE in stationary strategies, and that the associated SPE payoffs

continue to converge to a stationary point as the deadline T tends to infinity. Given

that the feasible set satisfies a certain smoothness condition, this stationary point

will in fact converge to the Nash bargaining solution as the discount factor tends

to one (see e.g. Kultti and Vartiainen (2010)). Exploring the modified version of

the game with a discount factor in more detail is left for future work.

.1 Proofs

.1.1 Proof of Proposition 4.2.1

Consider S ∈ B, and let ‖ · ‖ denote the taxicab metric – i.e., for x ∈ Rn,

‖x‖ :=
∑n

i=1 |xi|. Then we have the following useful lemma.
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Lemma .1.1. The function m(·) is Lipschitz continuous on D := {z ∈ S | z′ ≤
z ≤ z′′ where z′, z′′ ∈ S ∩ Rn

+ with z′ < z′′}, with Lipschitz constant L = nK.

Proof. Consider v, w ∈ D, and define the sequence {zk}nk=0 where z0 := v, and

for all k = 1, . . . , n, zk := (w1, . . . , wk, vk+1, . . . , vn). Then each zk is an element of

D, and zk and zk−1 only differ in the k-th coordinate. For k ∈ N and i ∈ N \ {k},
we have that the points (mi(z

k), zk−i) and (mi(z
k−1), zk−1

−i ) are in ∂S ∩ Rn
+. Since

S ∈ B, it then follows from condition (A1) that

|mi(z
k)−mi(z

k−1)| ≤ K|zkk − zk−1
k | = K|wk − vk|.

In addition, |mk(z
k)−mk(z

k−1)| = 0 ≤ K|wk − vk|. Then for all i ∈ N we have

|mi(w)−mi(v)| =

∣∣∣∣∣
n∑
k=1

mi(z
k)−mi(z

k−1)

∣∣∣∣∣ ≤
n∑
k=1

|mi(z
k)−mi(z

k−1)|

≤
n∑
k=1

K|wk − vk| = K‖w − v‖.

Therefore, ‖m(w)−m(v)‖ =
∑n

i=1 |mi(w)−mi(v)| ≤ nK‖w − v‖. 2

Fix some µ ∈ Rn
++ and define f(x) := µ(m(x)− x). By Lemma .1.1, the function

f satisfies a uniform Lipschitz condition on S ∩ Rn
+. Then by the Picard-Lindelöf

theorem it follows that problem (4.2) has a unique solution x(t). Consider the

maximal interval of existence [0, ω) of this solution.

(i) For all z ∈ int(S)∩Rn
+, f(z) > 0. Hence, x(t) is a strictly increasing function.

Then by the extension theorem (e.g. Theorem 8.33 of Kelley and Peterson

(2010)), it follows that x(t) converges to a point x̂ ∈ ∂S ∩ Rn
+ as t→ ω.

(ii) Assume that ω is finite. Then the function v(t) := x(ω − t) is the unique

solution to the problem [v′(t) = −f(v) and v(0) = x̂]. Since v′(0) = 0, it

follows that v(t) = x̂ for all t ∈ [0, ω]. Since this implies 0 = x(0) = v(ω) = x̂

– a contradiction – it follows that ω =∞. 2
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.1.2 Proof of Lemma 4.3.1

The first equation of the obtained system (4.3) can be equivalently written as

a differential equation. In particular, for i ∈ N we have

dri(t)

dt
= 0− dt

dt
e−(t−t)[λipi(t) + (1− λi)ri(t)]

+

∫ T

t

e−(s−t)[λipi(s) + (1− λi)ri(s)]ds

= −[λipi(t) + (1− λi)ri(t)] + ri(t)

= −λimi(r(t), S) + λiri(t)

Furthermore, r(T ) = 0̄. Then the proof follows along the lines of Proposition

4.2.1. 2

.1.3 Proof of Proposition 4.3.2

Consider the game Γ, and for t ∈ [0, T ], let ri(t) and ri(t) respectively be

player i’s associated supremum and infimum reservation values over all SPE’s, and

all time-t histories in Hr
i . Assume that

r(t) = r(t) = r∗(t) and r∗(t) ∈ int(S) for all t ∈ [T̂ , T ], (7)

where T̂ is some time in (0, T ], r∗ represents players’ reservation values under

strategy profile (f ∗, g∗), and int(S) again denotes the interior of S. The aim of the

proof is to show that (7) also holds on a non-trivial time interval that precedes T̂ .

The following lemma helps define that interval.

Lemma .1.2. There exists a c > 0 such that for all x ∈ int(S)∩Rn
+, we have that

x+ c(m(x)− x) ∈ S.

Proof. Let x ∈ int(S) ∩ Rn
+, let y := x + α∗(m(x) − x) where α∗ := max{α |

x + α(m(x) − x) ∈ S}, and let F := {z ∈ Rn | x ≤ z ≤ y}. By Lemma .1.1 it

follows that for all v, w ∈ F , we have

‖(m(w)− w)− (m(v)− v)‖ ≤ (1 + nK)‖w − v‖. (8)
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Note that m(y) = y, so ‖(m(x) − x) − (m(y) − y)‖ = ‖m(x) − x‖. Furthermore,

‖x− y‖ = ‖x− x− α∗(m(x)− x)‖ = α∗‖m(x)− x‖. Then by (8), it follows that

‖m(x)− x‖ ≤ α∗(1 + nK)‖m(x)− x‖.

Since x ∈ int(S) ∩ Rn
+, this implies α∗ ≥ 1

1+nK
. It follows that for all x ∈ int(S),

x+ 1
1+nK

(m(x)− x) ∈ S. 2

Let τ := ln 2
2+c

, where c is as in Lemma .1.2. Then the probability of another

arrival in the interval [T̂ − τ, T̂ ] is given by c/2

Lemma .1.3. For all t ∈ [T̂ − τ, T̂ ] we have r(t) ∈ int(S).

Proof. Let v be an SPE proposal accepted at a time t ∈ [T̂ − τ, T̂ ]. Any player

i ∈ N can secure the payoff r∗i (T̂ ) by

(i) rejecting the proposal v at time t and all subsequent proposals at times

t′ ∈ (t, T̂ ], and

(ii) claiming r∗i (T̂ ) at any time t′ ∈ [t, T̂ ] where he himself is the proposer.

Then SPE implies that v ≥ r∗(T̂ ). Assume next that there is a player i ∈ N

with vi > mi(r
∗(T̂ )). Since then there is a player j 6= i for whom vj < r∗j (T̂ ),

contradicting the above, it follows that v ≤ m(r∗(T̂ )). It follows that expected

payoffs in SPE are bounded between r∗(T̂ ) and m(r∗(T̂ )).

Consider a player i and a time t ∈ [T̂ − τ, T̂ ]. If no more arrivals occur

within the interval [t, T̂ ], player i realizes the payoff r∗i (T̂ ); if on the other hand

a process does realize within this interval, then i’s payoff is bounded above by

mi(r
∗(T̂ )). The former occurs with a probability e−(T̂−t), and the latter with

probability (1− e−(T̂−t)). Hence,

ri(t) ≤ e−(T̂−t)r∗i (T̂ ) + (1− e−(T̂−t))mi(r
∗(T̂ ))

= r∗i (T̂ ) + (1− e−(T̂−t))(mi(r
∗(T̂ ))− r∗i (T̂ ))

≤ r∗i (T̂ ) +
c

2
(mi(r

∗(T̂ ))− r∗i (T̂ ))

< r∗i (T̂ ) + c(mi(r
∗(T̂ ))− r∗i (T̂ ))
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The lemma then follows by Lemma .1.2 and comprehensiveness of S. 2

Lemma .1.4. For all t ∈ [T̂ − τ, T̂ ] and i ∈ N we have

ri(t) =
∫ T̂
t
e−(s−t)[λimi(r(s)) + (1− λi)ri(s)]ds+ r∗i (T̂ ) and (9a)

ri(t) =
∫ T̂
t
e−(s−t)[λimi(r(s)) + (1− λi)ri(s)]ds+ r∗i (T̂ ). (9b)

Proof. Consider a player i, and define the following strategy profile. For all

t ∈ [0, T ]:

• Player i offers rj(t) to all j 6= i, and claims mi(r(t)) himself. Players j 6= i

accept an offer v iff vj ≥ rj(t). In case of disagreement, the game moves to

an SPE in which the first rejector j receives rj(t).

• Player k 6= i offers ri(t) to player i, rj(t) to all j 6= i, k, and claims

mk(ri(t), r−i(t)) for himself. Player i accepts a proposal v iff vi ≥ ri(t),

player j 6= i, k accepts v iff vj ≥ rj(t). In case k’s proposal is rejected, then

the game moves on to an SPE in which first rejector j realizes the payoff

rj(t).

It follows from Lemma .1.3 that for t ∈ [T̂ −τ, T̂ ], the above proposals are feasible.

It is further immediate that responders in this strategy profile cannot profitably

deviate from their strategies. To see that the same is true for proposers, consider

first the case where i is proposing. By Lemma .1.3 and the definition of m(·), it

follows that r(t) < m(r(t)), and thus ri(t) < mi(r(t)); it follows that player i has no

profitable deviation. Consider a proposer k 6= i, and observe that rk(t) < mk(r(t))

by similar reasoning as before. Moreover, mk(r(t)) ≤ mk(ri(t), ri(t)). If he deviates

from the above strategy, then k’s expected payoff is dominated by rk(t), and thus

by mk(ri(t), ri(t)). Hence, player k cannot profitably deviate either.
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It follows that for all t ∈ [T̂ − τ, T̂ ], we have

ri(t) =

∫ T

t

e−(s−t)[λimi(r(s)) + (1− λi)ri(s)]ds

=

∫ T̂

t

e−(s−t)[λimi(r(s)) + (1− λi)ri(s)]ds

+

∫ T

T̂

e−(s−t)[λimi(r
∗(s)) + (1− λi)r∗i (s)]ds

=

∫ T̂

t

e−(s−t)[λimi(r(s)) + (1− λi)ri(s)]ds+ r∗i (T̂ ).

All other cases are similar. 2

From Lemma 4.3.1 it follows that (r(t), r(t)) = (r∗(t), r∗(t)) is the unique solution

to system (9). Hence, condition (7) holds on the interval [T̂ − τ, T ].

Observe that r(T ) = r(T ) = 0̄ = r∗(T ) and 0 ∈ int(S). Thus, since τ > 0

and T is finite, iteratively applying the above argument leads in a finite number

of steps to the conclusion that r(t) = r(t) = r∗(t) for all t ∈ [0, T ]. It then follows

that the strategy profile (f ∗, g∗) is the unique SPE of the game Γ. 2

.1.4 Proof of Proposition 4.5.2

The argument is similar to Proposition 4.3.2. Attention is focused on the steps

that differ.

• Let ri(t) and ri(t) be player i’s supremum respectively infimum expected

payoff over all SPE’s, and all time-t histories in Hr
i that are such that, player

i is the designated next proposer. Again, assume that for all t ∈ [T̂ , T ], we

have r(t) = r(t) = r∗(t), and that r∗(t) is contained in int(S).

• Consider c > 0 as defined in Lemma .1.2, but now define τ := ln
(

2
2+c

) 1
λ̃ where

λ̃ := maxi∈N λi. Then whichever player is called to be the next proposer, the

probability of another arrival in the interval [T̂ − τ, T̂ ] is at most c/2.

• Consider an SPE in which a proposal v is accepted at some time t ∈ [T̂−τ, T̂ ].

Suppose that vi > mi(r
∗(T̂ )) for some player i ∈ N . Then there is a player
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j ∈ N \ i for whom vj < r∗j (T̂ ). As before, such a player can profitably

deviate from his strategy. In particular, he can realize r∗j (T̂ ) by rejecting v

at time t, becoming the designated next proposer, and rejecting each offer

he subsequently gets to make in the interval (t, T̂ ]. This again implies that

any expected SPE payoff in the interval [T̂ − τ, T̂ ] is below m(r∗(T̂ )).

Suppose that player i is called to be the next proposer at a time t ∈ [T̂ −
τ, T̂ ]. The probability of his process realizing within the interval [t, T̂ ] is

(1− e−λi(T̂−t)), and the probability that no arrival occurs is e−λi(T̂−t). In the

former case he realizes a payoff of at most mi(r
∗(T̂ )), in the latter case he

realizes a payoff in excess of r∗i (T̂ ). By the same reasoning as in Proposition

4.3.2 we then obtain ri(t) < r∗i (T̂ ) + c(mi(r
∗(T̂ ))− r∗i (T̂ )), which by Lemma

.1.2 and comprehensiveness implies r(t) ∈ int(S).

• Analogous to Proposition 4.3.2 we can define 2n strategy profiles, feasible

and optimal in the interval [T̂ − τ, T̂ ], such that

ri(t) =
∫ T̂
t
λie
−λi(s−t)mi(r(s))ds+ r∗i (T̂ ) and (10a)

ri(t) =
∫ T̂
t
λie
−λi(s−t)mi(r(s))ds+ r∗i (T̂ ). (10b)

for all i ∈ N . The unique solution of this system on the interval [T̂ − τ, T̂ ] is

again (r(t), r(t)) = (r∗(t), r∗(t)). As before, a finite number of iterations of

this argument leads to the conclusion that r∗(t) is the unique solution on the

entire interval [0, T ], and thus that the strategy profile (f̂ , ĝ) is the unique

SPE of the game. 2
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