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1 Introduction

In many applications, individuals with certain outcome values are more likely

selected for the sample. For example, in forestry the largest trees may be more

likely to be selected; in case-control studies, cases are typically selected with

larger probability than controls. In such situations, we say that the selection

mechanism (or sampling design) is informative. The result of an informative

selection is a sample that is not representative of the target population and a

weighting procedure is needed to downweight the outcomes of individuals that

appear more often in the sample. This is the idea of design-based estimation,

where the Horvitz-Thompson expansion estimator or the weighted sample mean

are the basic estimators of a population mean. Design-based estimators are

consistent when the sample size is large and do not require model assumptions.

However, when estimating at highly disaggregated levels of a population (e.g. in

counties), the sample sizes in some of these disaggregated areas might be very

small, leading to unreliable design-based estimators for those small areas. This

occurs because design-based estimators are direct in the sense of using only the

sample observations from the corresponding target area. Small area estimation

techniques obtain indirect estimators based on implicit or explicit models that

link the data from all the areas through common parameters. These models

increase the “effective” sample size considerably, leading to more efficient small

area estimators, see Rao and Molina (2015) for an updated monograph on small

area estimation.

For the estimation of general non-linear parameters for small areas, Molina

and Rao (2010) introduced the empirical best (EB) method based on the unit

level nested error model of Battese, Harter and Fuller (1977). Non-linear param-

eters of great interest are poverty or inequality indicators, which can be used to

obtain poverty or inequality maps showing the regional distribution of poverty

in a certain population or country. The World Bank has been producing poverty

maps for many countries all over the world using traditionally the method of

Elbers, Lanjouw and Lanjouw (2003), called here ELL method. Under the same

model assumptions, EB method for poverty mapping outperforms ELL method

when the area effects are significant, see Molina and Rao (2010). Both methods

assume that the model for the sampled units is exactly the same as the model
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considered for the population; in other words, the sample selection mechanism

is not affecting the distribution of the outcomes (non-informative selection). In

the case of informative selection, using the sample to obtain EB estimators of

poverty indicators without any weighting will lead to biased estimators.

In the literature we can find two approaches to handle informative selection

in small area estimation. The approach of Pfeffermann and Sverchkov (2007)

is to calculate the sample likelihood as the usual likelihood conditional on the

selected sample, where the inclusion probabilities are modeled in terms of the

observed outcomes and covariates. In contrast, the approach of Verret et al.

(2015) is to model the outcomes in terms of the sampling weights or inclusion

probabilities and covariates, that is, to augment the assumed population model

for the outcomes by including the weights or inclusion probabilities as an ad-

ditional covariate. Both methods are used to estimate small area means and

are not directly applicable to non-linear parameters. In fact, applying the aug-

menting model approach of Verret et al. (2015) for non-linear parameters would

require to have the inclusion probabilities or sampling weights not only for the

sample units, but for the non-sample units as well. In this paper we propose

a very simple procedure that reduces the bias due to an informative selection

mechanism based on combining the ideas of conditioning on the sample of the

EB method with the correct weighting of design-based estimators. Instead of

conditioning on the sample mean of the target area as EB method does, we pro-

pose to condition on the weighted sample mean using as weights the inverses of

the inclusion probabilities. This leads to a weighted EB approach called here

pseudo EB.

The paper is organized as follows. Section 2 introduces the assumed popula-

tion model. Section 3 defines informative/non-informative selection. EB method

is reviewed in Section 4 and our proposal is described in Section 5. A bootstrap

procedure for mean squared error estimation is included in Section 6. Results

of simulation experiments carried out under both informative and non informa-

tive selection are described in Section 7. Finally, Section 8 applies the proposed

method to poverty mapping in Spanish provinces by gender and compares the

resulting estimates with the unweighted EB estimates of Molina and Rao (2010).

2 Population model

In this paper, we wish to estimate a certain characteristic in each of m domains

or areas Ui, i = 1, . . . ,m, into which our finite population U is partitioned. Each

3



domain Ui has population size Ni, i = 1, . . . ,m, where N =
∑m

i=1Ni is the total

population size. We denote by Yij the measurement of the study variable for

j-th unit within i-th domain. We wish to estimate possibly non-linear domain

parameters that are separable, in the sense that they can be expressed as

Hi =
1

Ni

Ni∑
j=1

h(Yij), i = 1, . . . ,m, (1)

where h(·) is a real measurable function. For the special case h(y) = y, we obtain

the mean of domain i, that is, Hi = Ȳi.

We assume that the population measurements Yij follow the nested error

model introduced by Battese et al. (1988),

Yij = x′ijβ + vi + eij, vi
iid∼ N(0, σ2

v),

eij
iid∼ N(0, σ2

e), j = 1, . . . , Ni, i = 1, . . . ,m, (2)

where xij is a p×1 vector of auxiliary variables, β is the p×1 vector of regression

coefficients, vi is the effect of domain i and eij is the individual regression error,

where domain effects and errors are all mutually independent. Let us write the

model in matrix notation by defining the domain vectors and matrices

yi = (Yi1, . . . , YiNi
)′, Xi = (xi1, . . . ,xiNi

)′, ei = (ei1, . . . , eiNi
)′, i = 1, . . . ,m.

Then, model (2) becomes

yi
ind∼ N(Xiβ,Vi), Vi = σ2

v1Ni
1′Ni

+ σ2
eINi

, i = 1, . . . ,m, (3)

where 1k denotes a vector of ones of size k and Ik is the k × k identity matrix.

Additionally, we denote by y = (y′1, . . . ,y
′
m)′ the population vector of measure-

ments, X = (X′1, . . . ,X
′
m)′ is the population design matrix and θ = (β′, σ2

v , σ
2
e)
′

is the vector of unknown model parameters.

3 Sample selection mechanism

The target domain parameters Hi, i = 1, . . . ,m, are estimated based on a sample

s drawn from the population U using a given selection mechanism or sampling

design. The sample s is composed of subsamples si, drawn independently from

each domain Ui, i = 1, . . . ,m. Let ni be the sample size of domain i, i = 1, . . . ,m.

The total sample size is then n =
∑m

i=1 ni. We denote by ri = Ui − si the set of

out-of-sample units from domain i, of size Ni − ni, i = 1, . . . ,m.
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In this paper, we assume that the population matrix X of auxiliary variables

is available from a census or a register. Then, all the probability distributions

involved in this paper are conditional on X but we will omit this dependence in

the notation for simplicity.

Traditional model-based inference assumes that the selection mechanism is

noninformative. This means that the probability of the sample is not related

with the outcome values. More formally, let P (s|y) be the probability of sample s

according to the selected sampling mechanism given y. We say that the sampling

design is noninformative when

P (s|y) = P (s), ∀y ∈ IRN ,∀s.

Equivalently, using Bayes Theorem, the sampling is noninformative when

f(y|s) = f(y), ∀y ∈ IRN ,∀s.

Otherwise, we say that the sampling design is informative. Under noninformative

sampling, f(ys|s) = f(ys) and then inference based on the usual likelihood f(ys)

is valid. This means that the selection process does not affect the distribution of

the outcomes for selected units.

4 EB method

This method assumes that the sampling design is noninformative. Then, the

outcomes corresponding to sampled units preserve the same distribution as the

outcomes for out-of-sample units, given by (2) under the considered nested error

model. Let us decompose the domain vector yi into subvectors corresponding

to sample and out-of-sample elements as yi = (y′is,y
′
ir)
′, where the subscript s

denotes the sample units and r the out-of-sample units. The sample data is then

ys = (y′1s, . . . ,y
′
ms)
′. For a general domain parameter Hi = Hi(yi), the best

predictor is defined as the function of the sample observations ys that minimizes

the mean squared error (MSE) and is given by

H̃B
i (θ) = Eyir

(Hi|yis;θ),

where the expectation is taken with respect to the distribution of yir|yis, which

depends on the true value of θ. For a domain parameter Hi that is separable as

in (1), the best predictor reduces to

H̃B
i (θ) =

1

Ni

[∑
j∈si

h(Yij) +
∑
j∈ri

H̃B
ij (θ)

]
, (4)
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where H̃B
ij (θ) = E[h(Yij)|yis;θ] is also the best predictor of the out-of-sample

element Hij = h(Yij). The best predictor H̃B
i (θ) is exactly model unbiased for

Hi regardless of the complexity of the function h(·). However, it cannot be calcu-

lated in practice since model parameters θ are typically unknown. An empirical

best predictor (EB) of Hi, denoted as ĤEB
i , is then obtained by replacing θ in

H̃B
i (θ) by a consistent estimator θ̂, that is, ĤEB

i = H̃B
i (θ̂). The EB predictor is

not exactly unbiased, but the bias arising from the estimation of θ is typically

negligible when the overall sample size n is large. For h(·) linear and under

normality of y, the EB predictor of Hi equals the empirical best linear unbiased

predictor (EBLUP) of Hi.

Given the nested error model specified in (2) and assuming non-informative

selection, the out-of-sample vectors yir given the sample data vectors yis are

independent and follow exactly the same distribution as yir|ȳis, where ȳis is the

unweighted sample mean for area i. Thus, the best predictor of Hij = h(Yij)

is H̃B
i (θ) = E[h(Yij)|ȳis;θ]. For an out-of-sample observation Yij, j ∈ ri, we

have Yij|ȳis ∼ N(µij|s, σ
2
ij|s), where the conditional mean and variance are given

respectively by

µij|s = x′ijβ + γis(ȳis − x̄′isβ), σ2
ij|s = σ2

v(1− γis) + σ2
e , j ∈ ri, (5)

for x̄is = n−1i
∑

j∈si xij and γis = σ2
v/(σ

2
v + σ2

e/ni).

Foster, Greer and Thorbecke (1984) introduced a family of poverty indicators,

called here FGT poverty indicators, which contain several widely-used poverty

measures and which are separable in the sense described above. In particular,

the poverty maps released by World Bank are traditionally based on members

of this family. Let Eij be a welfare measure for individual j in area i and z be

the poverty line. The family of FGT poverty indicators for domain i is given by

Fαi =
1

Ni

Ni∑
j=1

Fαij, Fαij =

(
z − Eij

z

)α
I(Eij < z), j = 1, . . . , Ni, α ≥ 0, (6)

where I(Eij < z) = 1 if Eij < z, and I(Eij < z) = 0 otherwise. For α = 0, we

obtain the poverty incidence, measuring the frequency of income-based poverty.

For α = 1, we get the poverty gap, measuring the poverty depth. Both indicators

together give a good description of poverty.

Consider that the population model (2) holds for Yij = log(Eij + c), for a

positive constant c. Then, we can express Fαij in terms of the response variable

Yij as

Fαij =

[
z − exp(Yij) + c

z

]α
I[exp(Yij)− c < z] =: hα(Yij),
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which shows that Fαi is a separable parameter. According to (4), the best pre-

dictor of Hi = Fαi is given by

F̃B
αi(θ) =

1

Ni

(∑
j∈si

Fαij +
∑
j∈ri

F̃B
αij(θ)

)
, (7)

where F̃B
αij(θ) = E[hα(Yij)|ȳis;θ] is the best predictor of Fαij = hα(Yij). For

α = 0, 1, the best predictor F̃B
αij(θ) can be calculated analytically. Let us define

αij = [log(z + c) − µij|s]/σij|s. Then, the best predictors of F0ij and F1ij are

respectively given by

F̃B
0ij(θ) = Φ(αij), (8)

F̃B
1ij(θ) = Φ(αij)

{
1− 1

z

[
exp

(
µij|s +

σ2
ij|s

2

)
Φ(αij − σij|s)

Φ(αij)
− c

]}
, (9)

where Φ(·) is the c.d.f. of a standard Normal random variable, N(0, 1).

For separable area parameters Hi = N−1i
∑Ni

j=1 h(Yij) with more complex h(·),
analytical expressions may not be available. In any case, the EB predictor ĤEB

ij =

E[h(Yij)|ȳis; θ̂] of a general Hij = h(Yij) can be approximated by Monte Carlo,

similarly as in Molina and Rao (2010). This is done by simulating L replicates

{Y (`)
ij ; ` = 1, . . . , L} of Yij, j ∈ ri, from the estimated conditional distribution of

Yij|ȳis and then averaging over the L replicates as ĤEB
ij = L−1

∑L
`=1 h(Y

(`)
ij ).

A variation of EB method, called census EB, was defined by Guadarrama,

Molina and Rao (2016) to handle the case when the sample units cannot be

identified in the census of auxiliary variables, in which case the EB estimators,

given by (7) with θ replaced by a consistent estimator θ̂, cannot be calculated.

The census EB estimator is obtained by predicting the sample values Hij, j ∈ si,
as well as the out-of-sample ones Hij, j ∈ ri as

ĤCEB
i =

1

Ni

Ni∑
j=1

ĤEB
ij . (10)

Typically the sampling fraction ni/Ni is very small, and in that case the census

EB estimator of Hi is approximately equal to the EB estimator.

5 Pseudo EB method

As stated above, under the nested error model (2), yir|ȳis follows exactly the

same distribution as yir|yis and the best predictor of Hij = h(Yij), j ∈ ri can
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be expressed as H̃B
ij = E[h(Yij)|ȳis]. When the sample selection mechanism is

informative, to avoid a bias due to a non-representative sample, the estimation

procedure should incorporate the sampling weights. Let wij be the sampling

weight of j-th unit within i-th domain and wi· =
∑

j∈si wij. We consider the same

conditioning idea of the EB estimator, but now we condition on the weighted

sample mean ȳiw = w−1i·
∑

j∈si wijyij instead of on the unweighted sample mean

ȳis. Thus, we define the pseudo best (PB) estimator of Hij = h(Yij) as

H̃PB
ij (θ) = E[h(Yij)|ȳiw;θ]. (11)

The PB estimator of the separable area parameter Hi is then

H̃PB
i (θ) =

1

Ni

[∑
j∈si

h(Yij) +
∑
j∈ri

H̃PB
ij (θ)

]
. (12)

Jiang and Lahiri (2006) used a similar approach in the special case of area

means under the nested error model and also in the case of a binary response

variable and a logit linking model. However, their method is applicable only for

area level covariates in the unit level models, unlike our method. For example,

the area mean vector X̄i = N−1i
∑Ni

i=1 xij may be used as area level covariates in

the unit level model.

Similarly as in the EB method, the PB estimator (12) depends on the true

values of the model parameters θ = (β′, σ2
v , σ

2
e)
′, which need to be estimated. We

define the pseudo EB (PEB) predictor as the PB predictor with θ replaced by a

consistent estimator such as maximum likelihood (ML), restricted ML (REML)

estimators or estimators based on the method of moments (You and Rao, 2002).

For an out-of-sample variable Yij, j ∈ ri, under the nested error population

model (2), we have Yij|ȳiw
ind.∼ N(µwij|s, σ

2w
ir|s), with conditional mean and variance

given respectively by

µwij|s = x′ijβ + γiw(ȳiw − x̄′iwβ), σ2w
ij|s = σ2

v(1− γiw) + σ2
e , (13)

where x̄iw = w−1i·
∑

j∈si wijxij and γiw = σ2
v/(σ

2
v + σ2

eδ
2
i ), for δ2i = w−2i·

∑
j∈si w

2
ij.

Observe that the mean µwij|s is obtained from µij|s given in (5) by replacing the

unweighted best predictor ṽis = γis(ȳis − x̄′isβ) of the domain effect vi by its

weighted version, given by ṽiw = γiw(ȳiw − x̄′iwβ).

For the FGT poverty indicators of order α = 0, 1, the best predictors are

given by (8) and (9) with µij|s and σ2
ij|s replaced by the weighted versions µwij|s

and σ2w
ij|s. For more complex separable parameters, such as the FGT indicators for

α > 1, we can apply a Monte Carlo procedure to approximate the PEB predictor
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of Hij = h(Yij) similarly as done for the EB predictor. We generate L replicates

{Y (`)
ij ; ` = 1, . . . , L} of Yij, j ∈ ri, from the estimated conditional distribution of

Yij|ȳiw and then average over the L replicates as ĤPEB
ij = L−1

∑L
`=1 h(Y

(`)
ij ).

Similarly as in the census EB estimator given in (10), we define the census

PEB estimator as

ĤCPEB
i =

1

Ni

Ni∑
j=1

ĤPEB
ij . (14)

Note that the census PEB estimator (14) is obtained by predicting all the pop-

ulation values, Hij = h(Yij), j ∈ Ui.
For the special case of a domain mean Hi = Ȳi, if β is estimated by the

weighted regression estimator β̂w given in You and Rao (2002), the census PEB

estimator of Hi = Ȳi equals the pseudo EBLUP of You and Rao (2002). Similarly,

the PEB estimator obtained from (12) tends to the pseudo EBLUP as the domain

sampling fraction fi = ni/Ni becomes small. Thus, for a domain mean Ȳi, the

census PEB estimator (and PEB for small domain sampling fraction) preserves

the good properties of the pseudo EBLUP, which are: a) design consistency as ni

becomes large, and b) automatic benchmarking to the survey regression estimator

of the overall population total, provided the sampling weights are calibrated to

agree with the known population total wi· = Ni. Stefan (2005) and Verret et al.

(2015) showed that the pseudo EBLUP of the area mean Ȳi performs well under

informative sampling in terms of bias and mean squared error (MSE).

6 Parametric bootstrap MSE estimator

The PEB estimators proposed in the previous section are essentially model-based

even though they incorporate the sampling weights. For this reason, here we

propose estimators of the MSE of PEB estimators under the model. For this, we

consider a similar bootstrap procedure as in Molina and Rao (2010), based on

the parametric bootstrap method for finite populations introduced by González-

Manteiga et al. (2008). The parametric bootstrap estimator of the MSE of ĤPEB
i

is obtained as follows: i) Fit the model (2) to the sample data (ys,Xs) and obtain

estimators β̂w, σ̂2
u and σ̂2

e of β, σ2
u and σ2

e respectively. ii) For b = 1, . . . , B,

with B large, generate v
∗(b)
i ∼ N(0, σ̂2

v) and e
∗(b)
ij ∼ N(0, σ̂2

e), j = 1, . . . , Ni,

i = 1, . . . ,m, independently. iii) Construct B iid bootstrap population vectors

y∗(b), b = 1, . . . , B, with elements Y
∗(b)
ij generated as

Y
∗(b)
ij = x′ijβ̂w + v

∗(b)
i + e

∗(b)
ij , j = 1, . . . , Ni, i = 1, . . . ,m.
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From each bootstrap population b, calculate the true value of the domain pa-

rameter H
∗(b)
i = N−1i

∑Ni

j=1 h(Y
∗(b)
ij ), b = 1, . . . , B. iv) From each bootstrap

population b, take the sample with the same indexes as the initial sample s and,

using the sample elements y
∗(b)
s of y∗(b) and the known population vectors xij,

j ∈ Ui, calculate the bootstrap pseudo EB predictors of Hi, denoted Ĥ
PEB∗(b)
i ,

b = 1, . . . , B. v) A bootstrap estimator of MSE(ĤPEB
i ) is then

mse(H̃PEB
i ) =

1

B

B∑
b=1

(
Ĥ
PEB∗(b)
i −H∗(b)i

)2
. (15)

7 Simulation experiments

We carried out simulation experiments to analyze the performance of the PEB

estimators F̂ PEB
αi of poverty incidences and gaps Fαi, α = 0, 1, compared to EB

estimators F̂EB
αi . We also compare with two types of direct estimators, namely

the usual (unweighted) sample means (SMs) and the weighted sample means

(WSMs), given respectively by

F̄αi =
1

ni

∑
j∈si

Fαij, F̄αi,w =
1

wi·

∑
j∈si

wijFαij. (16)

Since we are dealing with informative selection mechanisms but we are obtain-

ing model-based estimators, our simulation experiments will be with respect to

the joint distribution of the population vector y and the sample s; that is, under

a model-design setup, where, in each Monte Carlo (MC) simulation, a popula-

tion vector y is generated and a sample s is drawn according to a given selection

mechanism. Subsections 7.1 and 7.2 describe two simulation experiments where

the sample is drawn by (complex but) non-informative and informative selection

mechanisms respectively.

7.1 Simulation study with non-informative selection

We consider the same simulation setup as in Molina and Rao (2010), where the

population contains N = 20, 000 units distributed into m = 80 domains, with

Ni = 250 units in each domain i = 1, . . . ,m. We consider two dummy auxiliary

variables, xq ∈ {0, 1}, q = 1, 2, whose values are generated as xq,ij ∼ Bern(pqi),

q = 1, 2, with success probabilities given by p1i = 0.3 + 0.5 i/m and p2i = 0.2,

i = 1, . . . ,m. The xq,ij values are kept fixed across simulations. The vector

of true regression coefficients is taken as β = (3, 0.03,−0.04)
′

and the domain

effects variance and error variance are respectively σ2
v = 0.152 and σ2

e = 0.52.
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In each MC simulation out of K = 1, 000, we generate a population vector

y(k), whose elements Y
(k)
ij are generated from the nested error model (2). Using

the population vector y(k), we calculate the true values of the domain parame-

ters F
(k)
αi , i = 1, . . . ,m. We fixed the poverty line at z = 12, which is approxi-

mately 0.6 times the median of a population of incomes {Eij; j = 1, . . . , Ni, i =

1, . . . ,m}, where Eij = exp(Yij) with Yij generated as mentioned above. For

each Monte Carlo population k = 1, . . . , K, we draw a sample s(k). We use

independent Poisson sampling within each domain i, with inclusion probability

for individual j in the sample from domain i taken as πij ∼ Beta(α1, α2). We

set α1 = 2.5 and select α2 to achieve a specified expected domain sample size,

n̄i = K−1
∑K

k=1 n
(k)
i , where n

(k)
i is the realized sample size in domain i in the

k-th MC simulation replicate. We consider three expected domain sample sizes:

n̄i = 25, 50, 75. To achieve approximately those domain sample sizes, we take

α2 = 25, α2 = 10 and α2 = 5 respectively.

With the sample data from the k-th Monte Carlo population y
(k)
s , we compute

direct estimators of F
(k)
αi , namely SM and also WSM as in (16), using as weights

wij = π−1ij . We also compute EB and pseudo EB estimates of F
(k)
αi , for α = 0, 1

and i = 1, . . . ,m, using the population values of the auxiliary variables. For

the EB estimator, we computed σ̂2
v , σ̂

2
e and β̂ by the REML method. For the

pseudo EB estimator, we used the weighted estimator β̂w given in You and Rao

(2002) and the REML estimators of σ2
v and σ2

e . We evaluate the performance

of estimators in terms of relative bias (RB) and relative root MSE (RRMSE).

Let F̂
(k)
αi be one of the obtained estimates (SM, WSM, EB or pseudo EB) in MC

replicate k. RB and RRMSE are approximated empirically as

RB(F̂αi) =

K−1
K∑
k=1

(F̂
(k)
αi − F

(k)
αi )

K−1
K∑
k=1

F
(k)
αi

, RRMSE(F̂αi) =

√√√√K−1
K∑
k=1

(F̂
(k)
αi − F

(k)
αi )2

K−1
K∑
k=1

F
(k)
αi

.

Averages across domains of absolute RB (ARB) and of RRMSE (RRMSE) are

also calculated as

ARBα = m−1
m∑
i=1

|RB(F̂αi)|, RRMSEα = m−1
m∑
i=1

RRMSE(F̂αi).

Figures 1, 2 and 3 display, respectively for n̄i = 25, 50 and 75, percent RB

(left) and RRMSE (right) of the estimators of the poverty gap, F1i, for each

11



domain i = 1, . . . ,m (x-axis). These figures show that all the estimators dis-

play a small RB for the three expected sample sizes, although the WSM appears

to be more unstable across domains than the other ones. This estimator also

performs the worst in terms of RRMSE, followed by the SM. Thus, model-based

estimators (EB and pseudo EB) appear to be significantly more efficient than the

two types of direct estimators (SM and WSM) for all the domains. In this sim-

ulation experiment with non-informative sampling, weighted estimators (WSM

and pseudo EB) loose efficiency with respect to the respective unweighted ones,

but the efficiency loss of the pseudo EB turns out to be much smaller than the

loss of the WSM with respect to the SM. As expected, the gain in efficiency of

the model-based estimators compared to the direct estimators decreases as the

expected sample size increases, with SMs becoming close to model-based estima-

tors for the largest expected domain sample size n̄i (Figure 3). Conclusions for

the poverty incidence, F0i, are similar and hence figures are not shown.

Table 1 displays averages of absolute RB and RRMSE across domains for the

considered expected domain sample sizes. This table shows that ARB is small

(< 2%) for all the considered estimators and sample sizes. EB and pseudo EB

estimators have considerably smaller RRMSE than direct estimators for small

n̄i and preserve smaller RRMSE even for the largest value of n̄i. Since the sam-

ple selection mechanism is in this case non-informative, the RRMSE of pseudo

EB estimator turns out to be between 3% and 4% larger than that of EB esti-

mator. This suggests that EB estimators work well under unequal probability

sampling as long as the inclusion probabilities do not depend on the outcomes.

Nevertheless, in this case pseudo EB estimator does not loose too much.

Table 1: Averages across domains of percent absolute RB and RRMSE for SM,

WSM, EB and pseudo EB estimators of poverty incidence, F0i, and poverty gap,

F1i, under non-informative selection with n̄i = 25, 50, 75.

n̄i = 25 n̄i = 50 n̄i = 75

ARB RRMSE ARB RRMSE ARB RRMSE

Method F0i F1i F0i F1i F0i F1i F0i F1i F0i F1i F0i F1i

SM 1.34 1.65 46.27 58.69 0.69 0.87 29.03 36.85 0.54 0.66 21.41 27.93

WSM 1.65 1.94 56.46 71.59 0.83 1.12 36.26 45.95 0.68 0.82 26.98 34.34

EB 0.74 0.89 28.21 35.60 0.46 0.60 20.99 26.73 0.40 0.47 17.58 22.29

PEB 0.88 1.04 31.25 39.29 0.54 0.72 24.13 30.43 0.49 0.61 20.07 25.39
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Figure 1: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under non-informative selection

with n̄i = 25.
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Figure 2: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under non-informative selection

with n̄i = 50.
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Figure 3: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under non-informative selection

with n̄i = 75.
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7.2 Simulation study with informative selection

A simulation experiment was carried out under the same setup as in Section 7.1,

that is, with the same population structure and the same model that generates

the population values. However, in this experiment, for each MC replicate, we

draw the sample using an informative selection mechanism, where the probability

of selecting a unit from a given domain depends on the outcome for that unit.

Thus, again, we generate K = 1, 000 population vectors y(k), k = 1, . . . , K from

the true nested error model (2). For each MC replicate k, we draw a sample

s(k). The sample s(k) is drawn independently for each domain using Poisson

sampling as in the previous experiment. However, in this case the inclusion

probability, πij, for individual j in the sample from domain i depends on a

random variable Zij that is correlated with the unexplained part of Yij, i.e, the

model error eij. More concretely, each population unit j comes to the sample

si from domain i according to a Bernoulli random value Qij ∼ Bern(πij), with

πij = b−1 exp(−aZij), for a > 0, b > 0, where Zij ∼ Gamma(τij, θij), with model

parameters τij and θij depending on the model error eij. Here, the degree of

informativeness can be measured by the size of the correlation coefficient between

Zij and eij. A 40% correlation coefficient is approximately achieved by taking

τij = 5 × (2 + 0.25eij) and θij = 0.25 × (2 + 0.25eij). To make this simulation

experiment comparable with the previous one, we take the same expected domain

sample sizes n̄i = 25, 50, 75, which can be approximately obtained by fixing

14



a = 0.15 and then taking b = 5.5 for n̄i = 25, b = 2.5 for n̄i = 50 and b = 1.5 for

n̄i = 75. From each sample s(k), the four estimators (SM, WSM, EB and pseudo

EB) are computed.

Figures 4, 5 and 6 depict percent RB (left) and RRMSE (right) of the poverty

gap, F1i, for n̄i = 25, 50 and 75 respectively. These figures show how, when the

inclusion probabilities are related with the outcome values, the two unweighted

estimators (SM and EB) exhibit a substantial positive RB (about 15%). Com-

paring EB and pseudo EB estimators in terms of RRMSE, the situation is exactly

the opposite of the previous simulation study, with pseudo EB estimators hav-

ing smaller RRMSE than EB estimators for all the domains. For the poverty

incidence, F0i, plots are not shown because conclusions are similar.

Again, in Table 2 we can see ARB and RRMSE of the estimators. This

table confirms that the weighted estimators (WSM and pseudo EB) preserve

a small ARB for the three considered expected domain sample sizes, whereas

the unweighted estimators (SM and EB) have ARB over 13% for the poverty

incidence, F0i, and over 15% for the poverty gap, F1i. In terms of RRMSE,

pseudo EB is more efficient than all the other estimators for the three considered

expected domain sample sizes, but the WSM becomes close to the pseudo EB

estimator for the largest n̄i. In terms of RRMSE, the improvement of the pseudo

EB over the unweighted EB estimator is not striking, but it is in terms of ARB.

Table 2: Averages across domains of percent absolute RB and RRMSE for SM,

WSM, EB and pseudo EB estimators of poverty incidence, F0i, and poverty gap,

F1i, under informative selection with n̄i = 25, 50, 75.

n̄i = 25 n̄i = 50 n̄i = 75

ARB RRMSE ARB RRMSE ARB RRMSE

Method F0i F1i F0i F1i F0i F1i F0i F1i F0i F1i F0i F1i

SM 13.35 15.93 51.14 66.13 13.08 15.66 33.47 42.96 13.12 15.99 25.38 32.61

WSM 1.39 1.72 46.13 56.98 0.83 1.04 28.69 35.11 0.53 0.65 20.15 24.66

EB 13.25 16.15 31.27 39.27 13.09 15.83 24.80 30.98 13.16 16.04 21.53 26.94

PEB 0.79 0.99 29.06 36.59 0.47 0.63 21.94 27.71 0.44 0.55 17.95 22.75

We also studied the performance of the parametric bootstrap procedure de-

scribed in Section 6 for estimation of the MSE of the pseudo EB estimator. We

considered the same simulation setup as above, considering an informative sam-

ple, but since the proposed bootstrap procedure gives a model-based MSE, in

this case we carry simulations only under the model (given the selected sample).
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Figure 4: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under informative selection,

n̄i = 25.
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Figure 5: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under informative selection,

n̄i = 50.
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Figure 6: Percent RB (left) and RRMSE (right) of SM, WSM, EB and pseudo

EB estimators of poverty gap, F1i, for each area, under informative selection,

n̄i = 75.
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The true MSEs were previously approximated with K = 50, 000 MC replicates.

Then, we perform other K = 500 MC simulation replicates, and in each we cal-

culate the bootstrap MSE estimators (15) with B = 500 bootstrap replicates.

The expected values of the bootstrap MSE estimators across the K = 500 MC

replicates are shown in Figure 7 together with the empirical MSEs for the poverty

gap, F1i, with n̄i = 50. This figure shows that the expected values of the boot-

strap MSE estimator are almost equal to the true MSE values. Similar results

were observed for the poverty incidence, F0i, (not reported).

8 Application to poverty mapping in Spain

In this section we compare the performance of pseudo EB and EB estimators.

For this, we consider the same application of Molina and Rao (2010), dealing

with estimation of poverty incidences and gaps for the Spanish provinces by gen-

der using the 2006 Spanish Survey on Income and Living Conditions (SILC).

The SILC collects microdata on income and living conditions in a timely and

comparable way across EU countries. The results obtained from the SILC are

used for the structural index of social cohesion. The SILC survey provides re-

liable estimates for the overall Spain and for large Spanish regions (Autonomus

Communities), but it does not allow reliable estimation for Spanish provinces by

gender because of the small SILC sample sizes in some of these domains. Thus,
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Figure 7: True MSEs of pseudo EB estimators of poverty gap, F1i, and expected

values of bootstrap MSE estimators with B = 500 bootstrap replicates, for each

domain.
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the small areas here are the m = 52 Spanish provinces for each gender. The

overall sample size is 17,739 for women and 16,650 for men. The population size

is 22,077,565 for women and 21,509,962 for men.

As auxiliary variables in the nested error model, we considered the same as

in Molina and Rao (2010), namely the indicators of quinquennial age groups, of

having Spanish nationality, of the three levels of the variable education level and

of the three categories of the variable labor force status. Similarly as in Molina

and Rao (2010), full census matrices Xi were constructed by replicating each

record in the Spanish Labor Force Survey (LFS) a number of times equal to its

LFS sampling weight. These matrices Xi were treated as the census matrices

because the LFS has a very large sample size.

The welfare measure Eij considered here is the equivalent annual net income,

which is defined as the household annual net income divided by a measure of

household size calculated according to the scale defined by OCDE. The poverty

line was also computed as z = 0.6×Median(Eij). Finally, due to the right skew-

ness of the equivalent annual net income, we consider the same transformation

as in Molina, Nandram and Rao (2014), given by Yij = T (Eij) = log(Eij + c),

where c is selected such that the residuals obtained from the model fit, êij =

Yij − x′ijβ̂ − v̂i, are approximately symmetric. We fitted separate models for

women and men.
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We compare the estimates obtained using the EB and pseudo EB methods

and their estimated coefficients of variation (estimated RRMSEs). Instead of the

original EB and pseudo EB methods, since here the sampling fractions are very

small for all provinces, we applied the census EB and census PEB respectively.

Figure 8 confirms that census EB estimates are approximately equal to EB esti-

mates for all provinces in this application. As noted above, the same occurs for

pseudo EB estimates.

Figure 8: Census EB estimates of poverty incidence, F0i, (left) and poverty gap,

F1i, (right) against EB estimates for each province, i, for men.
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In model-based inference, it is important to check the fitted model. Figure

9 shows a scatterplot of pseudo EB residuals, êijw = Yij − x′ijβ̂w − v̂iw, against

predicted values Ŷij = x′ijβ̂w+ v̂iw in the model for men (left) and women (right).

Plots look acceptable without any visible pattern. Figure 10 shows that even after

the considered log-transformation, the distribution of pseudo EB residuals has

slightly heavier tails than the normal distribution. These plots are practically

identical to those obtained for EB residuals. Figure 11 shows Q-Q plots of

estimated area effects v̂iw under pseudo EB approach for each province, again for

men (left) and for women (right). In this case, estimated random effects seem to

follow a normal distribution.

Molina, Nandram and Rao (2014) analyzed graphically if the sampling weights

are related with the response variables and no relation was observed. This indi-

cates that, in this application, the sampling design is at most weakly informative.

Thus, we expect only small differences between pseudo EB and EB estimators

and their estimated CVs.

First of all we compare EB and pseudo EB estimates with usual direct esti-
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Figure 9: Pseudo EB residuals against predicted values obtained from the model

for men (left) and women (right).
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Figure 10: Q-Q plot of pseudo EB residuals obtained fro the model for men (left)

and women (right).
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Figure 11: Q-Q plot of estimated random effects by pseudo EB for men (left)

and women (right) for each province i.
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mates (WSMs). Figure 12 displays EB estimates (left) and pseudo EB estimates

(right) of poverty incidence for men against WSMs, with province sample sizes

indicated in the point labels. On the left plot, we can see that most of the points

are on the top-left side of the line, with only few points on the other side. The con-

sidered direct estimators (WSMs) are design-unbiased because sampling weights

are calibrated so that wi· = Ni. Then, the fact that EB estimates for most do-

mains are above direct estimates suggests that EB estimators are slightly biased

upwards, and this bias could be in part due to a (weakly) informative sampling.

Looking now at the right plot showing pseudo EB estimates against WSMs, this

plot shows more points distributed at both sides of the line, which indicates that

pseudo EB estimates have a smaller design bias than EB estimates. Results are

similar for the poverty gap and also for women, so plots are not shown.

Tables 3 and 4 report obtained estimates with estimated bootstrap CVs for a

selection of domains. CVs are in fact estimated RRMSEs. Since the considered

direct estimators (WSMs) are ratio estimators, the MSE was calculated by using

the Taylor linearization method. For EB estimators, the MSE was obtained

using the parametric bootstrap approach of Molina and Rao (2010). Finally, for

pseudo EB estimators, the MSE was approximated by the bootstrap procedure of

Section 6. These tables report the results for a selection of domains. Concretely,

we show the domains with sample sizes closest to minimum, maximum, first,

second and third quartiles. In these tables, the three types of estimates agree to

a some extent for the domains with larger sample sizes. However, direct estimates

differ significantly for the two domains with smaller sample sizes, giving a much
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Figure 12: EB estimates of poverty incidence for men in left panel and pseudo

EB in right panel against ratio direct estimates for each province i.
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larger estimate for Soria:Females and a much smaller estimate for Gerona:Males.

As expected, since the selection is at most weakly informative, estimated CVs of

pseudo EB estimators for these selected domains are slightly larger than those

of EB estimators except for the domain with the smallest sample size. However,

PEB estimators lead to large reduction in CV relative to direct estimators, while

preserving a small bias under the design as shown in simulations.

Table 3: Results for poverty incidence F0i: Direct, EB and pseudo EB estimates

together with estimated coefficients of variation, cv, (%) for the Spanish provinces

by gender with sample sizes closest to minimum, quantiles 0.25, 0.5, 0.75 and

maximum.

Province Gen Dom ni F̂DIR
0i F̂EB

0i F̂ PEB
0i cv(F̂DIR

0i ) cv(F̂EB
0i ) cv(F̂ PEB

0i )

Soria F 42 17 55.62 32.70 36.93 42.69 15.36 14.61

Gerona M 17 145 5.05 16.25 15.90 36.44 13.28 15.11

Jaén F 23 230 33.86 32.84 30.83 11.78 5.60 6.92

Sevilla M 41 472 20.90 20.51 19.90 10.64 6.10 6.36

Barcelona F 8 1483 10.87 13.80 13.25 7.86 5.27 6.56

Let us now look at the estimates for each province. Figure 13 displays car-

tograms of EB (left) and pseudo EB (right) estimates of poverty incidence F0i in

Spanish provinces for women. Figure 14 shows the analogous estimates for the

poverty gap. It is clear from these figures that the provinces with larger poverty

incidence and poverty gap are those at the south and west of Spain. Neverthe-
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Table 4: Results for poverty gap F1i: Direct, EB and pseudo EB estimates

together with estimated coefficients of variation, cv, (%) for Spanish provinces

with sample sizes closest to minimun, quantiles 0.25, 0.5, 0.75 and maximum.

Province Gen Dom ni F̂DIR
1i F̂EB

1i F̂ PEB
1i cv(F̂DIR

1i ) cv(F̂EB
1i ) cv(F̂ PEB

1i )

Soria F 42 17 24.97 12.28 14.46 60.52 18.77 16.86

Gerona M 17 145 1.87 5.31 5.26 40.74 19.56 21.80

Jaén F 23 230 11.42 11.97 11.05 14.35 7.01 8.70

Sevilla M 41 472 3.42 6.86 6.67 12.39 8.16 8.29

Barcelona F 8 1483 3.62 4.11 3.96 10.26 8.13 10.10

less, EB estimates give more provinces with largest poverty incidence (over 30%).

For the poverty gap, the colors also tend to be darker for EB estimates. Maps

for EB method are not exactly the same as those obtained in Molina and Rao

(2010) in some of the provinces because here a separate model is fitted for men

and women. Figure 15 shows the analogous plots for men. Again, EB estimates

seem to give a larger number of very poor provinces than pseudo EB estimates

according to both poverty incidence and gap. All these results indicate that EB

estimates might be slightly biased upwards and pseudo EB estimates seem to be

correcting this bias to some extent.

9 Conclusions

To handle informative selection when estimating separable non-linear small area

parameters, we proposed pseudo EB estimators obtained as expected values with

respect to the distribution of out-of-sample variables given the weighted sam-

ple means. This method combines the conditioning idea of the EB method for

small area estimation of general parameters of Molina and Rao (2010) with the

weighting approach of design-based inference. In our simulation studies, pseudo

EB estimators reduce considerably the bias of EB estimators when the selection

mechanism is informative. On the other hand, under a non-informative com-

plex selection mechanism, the loss of efficiency is small. In the application, we

obtained evidences of small upward bias of EB estimates, which seems to be

reduced by pseudo EB estimates. Thus, pseudo EB estimates represent a com-

promise between model-based and design-based inference, reducing the design

bias of purely model-based estimators but at the same time gaining efficiency

with respect to direct estimators with the use of a model that represents the
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Figure 13: Cartograms of estimated percent poverty incidences, F0i, in Spanish

provinces for women obtained with EB (left) and pseudo EB (right) methods.
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Figure 14: Cartograms of estimated percent poverty gap, F1i, in Spanish

provinces for women obtained with EB (left) and pseudo EB (right) methods.
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Figure 15: Cartograms of estimated percent poverty incidences, F0i, in Spanish

provinces for men obtained with EB (left) and Pseudo EB (right) methods.
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Figure 16: Cartograms of estimated percent poverty gap, F1i, in Spanish

provinces for men obtained with EB (left) and pseudo EB (right) methods.
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common factors that affect the outcomes in all the areas.

R codes of simulation studies are available under request.
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Thesis, Université Libre de Bruxelles.

Verret, F., Rao, J.N.K. and Hiridoglou, M.A. (2015) Model-based small area

estimation under informative sampling. Surv. Methodol., 41, 333-347.

You, Y. and Rao, J.N.K. (2002) A pseudo-empirical best linear unbiased pre-

dictor approach to small area estimation using survey weights. Can. J.

Statist., 30 (3), 431-439.

27


	PORTADA_WP_Estadistica0516.pdf
	PseudoEB_2016-04-07.pdf

