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Abstract

The problem of learning forest-structured discrete gregdhinodels from i.i.d. samples is con-
sidered. An algorithm based on pruning of the Chow-Liu tte®ugh adaptive thresholding is
proposed. It is shown that this algorithm is both structyrednsistent and risk consistent and the
error probability of structure learning decays faster thay polynomial in the number of samples
under fixed model size. For the high-dimensional scenariereskthe size of the modeland the
number of edgek scale with the number of samplassufficient conditions orin, d, k) are given
for the algorithm to satisfy structural and risk consisteac In addition, the extremal structures
for learning are identified; we prove that the independesgr, tree) model is the hardest (resp.,
easiest) to learn using the proposed algorithm in termsrof eates for structure learning.

Keywords: graphical models, forest distributions, structural cstgsicy, risk consistency, method
of types

1. Introduction

Graphical models (also known as Markov random fields) have a widgerahapplications in di-
verse fields such as signal processing, coding theory and bioinfoeneiee Lauritzen (1996),
Wainwright and Jordan (2003) and references therein for examipliesring the structure and pa-
rameters of graphical models from samples is a starting point in all theseatfpis The structure
of the model provides a quantitative interpretation of relationships amonggivitre collection of
random variables by specifying a set of conditional independenagoredaips. The parameters of
the model quantify the strength of these interactions among the variables.
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The challenge in learning graphical models is often compounded by thén&dypically only
a small number of samples are available relative to the size of the model (dimefsiata). This
is referred to as the high-dimensional learning regime, which differs @lassical statistics where
a large number of samples of fixed dimensionality are available. As a corexateple, in order
to analyze the effect of environmental and genetic factors on childhgthdha, clinician scientists
in Manchester, UK have been conducting a longitudinal birth-cohortyssutte 1997 (Custovic
et al., 2002; Simpson et al., 2010). The number of variables collected i afrtter ofd ~ 100
(dominated by the genetic data) but the number of children in the study is smallL(®). The
paucity of subjects in the study is due in part to the prohibitive cost of colgdtigh-quality
clinical data from willing participants.

In order to learn high-dimensional graphical models, it is imperative to stgeight balance
between data fidelity and overfitting. To ameliorate the effect of overfittirgs#tmples are often
fitted to asparse graphical modéWainwright and Jordan, 2003), with a small number of edges.
One popular and tractable class of sparse graphical models is the se¢'ahtidels. When re-
stricted to trees, the Chow-Liu algorithm (Chow and Liu, 1968; Chow andn&a 1973) provides
an efficient implementation of the maximum-likelihood (ML) procedure to learnttiuetsire from
independent samples. However, in the high-dimensional regime, evea m#&e overfit the data
(Liu et al., 2011). In this paper, we consider learning high-dimensioosf-structured (discrete)
graphical models from a given set of samples.

For learning the forest structure, the ML (Chow-Liu) algorithm doespmotiuce a consistent
estimate since ML favors richer model classes and hence, outputs a trereeraly We propose a
consistent algorithm calle@LThres, which has a thresholding mechanism to prune “weak” edges
from the Chow-Liu tree. We provide tight bounds on twerestimatiomndunderestimatiorrrors,
that is, the error probability that the output of the algorithm has more orrfedges than the true
model.

1.1 Main Contributions

This paper contains three main contributions. Firstly, we propose an alganamedCLThres and
prove that it is structurally consistent when the true distribution is foresttstred. Secondly, we
prove thatCLThres is risk consistent, meaning that the risk under the estimated model converges
to the risk of theforest projectiof of the underlying distribution, which may not be a forest. We
also provide precise convergence rates for structural and riskstemsies. Thirdly, we provide
conditions for the consistency QL Thres in the high-dimensional setting.

We first prove thatCLThres is structurally consistent, i.e., as the number of samples grows for
a fixed model size, the probability of learning the incorrect structureofsedges), decays to zero
for a fixed model size. We show that the error rate is in fact, dominated matb®f decay of the
overestimation error probabilifyWe use an information-theoretic technique known astie¢hod
of types(Cover and Thomas, 2006, Ch. 11) as well as a recently-developexdidee known as
Euclidean information theory (Borade and Zheng, 2008). We providgaer bound on the error
probability by using convex duality to find a surprising connection betwesnp\hrestimation error

1. Atreeis aconnectedacyclic graph. We use the teqpnoper foresto denote the set afisconnectedacyclic graphs.

2. The forest projection is the forest-structured graphical modelishadbsest in the KL-divergence sense to the true
distribution. We define this distribution formally in (12).

3. The overestimation error probability is the probability that the numbedgég learned exceeds the true number of
edges. The underestimation error is defined analogously
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rate and a semidefinite program (Vandenberghe and Boyd, 1996hanctisat the overestimation
error in structure learning decays faster than any polynomiafan a fixed data dimensiod.

We then consider the high-dimensional scenario and provide suffi@editions on the growth
of (n,d) (and also the true number of edgésto ensure thaCLThres is structurally consistent.
We prove that even ifl grows faster than any polynomial im(and in fact close to exponential in
n), structure estimation remains consistent. As a corollary from our analysealso show that
for CLThres, independent models (resp., tree models) are the “hardest” (resgies&ato learn in
the sense that the asymptotic error rate is the highest (resp., lowestgllanedels with the same
scaling of(n,d). Thus, the empty graph and connected trees are the extremal forestrgtsufor
learning. We also prove th&L Thres is risk consistent, i.e., the risk of the estimated forest distribu-
tion converges to the risk of the forest projection of the true model at @f&@g(dlogd,/n-Y) for
anyy > 0. We compare and contrast this rate to existing results such as Liu etHl)(20ote that
for this result, the true probability model does not need to be a foreststegidistribution. Finally,
we useCLThres to learn forest-structured distributions given synthetic and real-wotkl skts and
show that in the finite-sample case, there exists an inevitable trade-offdretive underestimation
and overestimation errors.

1.2 Related Work

There are many papers that discuss the learning of graphical modeisi&ta. See Dudik et al.
(2004), Lee et al. (2006), Abbeel et al. (2006), Wainwright et24106), Meinshausen and Buehlmann
(2006), Johnson et al. (2007), and references therein. Mostsé tinethods pose the learning prob-
lem as a parameterized convex optimization problem, typically with a regularizetiorto enforce
sparsity in the learned graph. Consistency guarantees in termarafd (and possibly the max-
imum degree) are provided. Information-theoretic limits for learning grapmwdels have also
been derived in Santhanam and Wainwright (2008). In Zuk et al.gR@®unds on the error rate
for learning the structure of Bayesian networks using the Bayesiamniation Criterion (BIC)
were provided. Bach and Jordan (2003) learned tree-structuredisnfzd solving the indepen-
dent component analysis (ICA) problem. A PAC analysis for learning thiatjan trees was given

in Chechetka and Guestrin (2007). Me#nd Jordan (2000) discussed the learning of graphical
models from a different perspective; namely that of learning mixtureseestrvia an expectation-
maximization procedure.

By using the theory of large-deviations (Dembo and Zeitouni, 1998; Den ikt@la 2000),
we derived and analyzed the error exponent for learning treesigorete (Tan et al., 2011) and
Gaussian (Tan et al., 2010a) graphical models. The error exponangusntitative measure of
performance of the learning algorithm since a larger exponent impliedex fdecay of the error
probability. However, the analysis does not readily extend to learniegtfanodels and furthermore
it was for the scenario when number of varialdedoes not grow with the number of samptedn
addition, we also posed the structure learning problem for trees as a sibpygpothesis testing
problem (Tan et al., 2010b) and derived a closed-form expressiahdé Chernoff-Stein exponent
in terms of the mutual information on the bottleneck edge.

In a paper that is closely related to ours, Liu et al. (2011) derivedistamey (and sparsistency)
guarantees for learning tree and forest models. The pairwise joint disbris are modeled using
kernel density estimates, where the kernels aielétr continuous. This differs from our approach
since we assume that each variable can only take finitely many values, léadingnger results on
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error rates for structure learning via the method of types, a powedoff pechnique in information
theory and statistics. We compare our convergence rates to these radatedwSection 6. Further-
more, the algorithm suggested in both papers uses a subset (usualbyf tadf)data set to learn the
full tree model and then uses the remaining subset to prune the modeldveisedog-likelihood on
the held-out set. We suggest a more direct and consistent method Ipabeesiolding, which uses
the entire data set to learn and prune the model without recourse to validation on -@utetdhta
set. It is well known that validation is both computationally expensive (BisB008, pp. 33) and a
potential waste of valuable data which may otherwise be employed to learn arhettel. In Liu
et al. (2011), the problem of estimating forests with restricted componess wias considered and
was proven to be NP-hard. We do not restrict the component size in thés pat instead attempt
to learn the model with the minimum number of edges which best fits the data.

Our work is also related to and inspired by the vast body of literature inrivdtion theory and
statistics on Markov order estimation. In these works, the authors useisaggularization and
model selection schemes to find the optimal order of a Markov chain (Metrely, 1989; Finesso
et al., 1996; Csismr and Shields, 2000), hidden Markov model (Gassiat and Bouch26@38)
or exponential family (Merhav, 1989). We build on some of these ideagpeoaf techniques to
identify the correct set of edges (and in particular the number of edgd® forest model and also
to provide strong theoretical guarantees of the rate of convergenice e$timated forest-structured
distribution to the true one.

1.3 Organization of Paper

This paper is organized as follows: We define the mathematical notation rmndllpstate the prob-

lem in Section 2. In Section 3, we describe the algorithm in full detail, highlightignost salient

aspect—the thresholding step. We state our main results on error ratgsiébui® learning in Sec-
tion 4 for a fixed forest-structured distribution. We extend these resulte taugih-dimensional case
when(n,d, k) scale in Section 5. Extensions to rates of convergence of the estimatedudiistrib
that is, the order of risk consistency, are discussed briefly in Sectibluerical simulations on
synthetic and real data are presented in Section 7. Finally, we concludestiission in Section 8.
The proofs of the majority of the results are provided in the appendices.

2. Preliminaries and Problem Formulation

LetG= (V,E) be an undirected graph with vertex (or node)\set {1,...,d} and edge sdf C (\é)

and letnbdi) :={j €V : (i, ]) € E} be the set of neighbors of vertexLet the set of labelettees
(connected, acyclic graphs) withnodes beT® and let the set oforests(acyclic graphs) wittk
edges andl nodes beJ'f(j for 0 < k< d-1. The set of forests includes all the trees. We reserve
the termproper forestdor the set of disconnected acylic grapbl%;gﬁfj. We also use the notation
F9:= ud=279 to denote the set of labeled forests wdthodes.

A graphical modelLauritzen, 1996) is a family of multivariate probability distributions (prob-
ability mass functions) in which each distribution factorizes according toengimdirected graph
and where each variable is associated to a node in the grapll. £€tl,...,r} (where 2<r < o)
be a finite set an&® the d-fold Cartesian product of the sét As usual, letP(X9) denote the
probability simplex over the alphab&t®. We say that the random vectdr= (Xy,...,Xg) with
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distributionQ € P(XY) is Markov onthe graphG = (V,E) if

Q(Xi [Xnbi)) = Q(Xi[xn\i),  VIEV, 1)

wherexy,; is the collection of variables excluding variableEquation (1) is known as tHecal
Markov property(Lauritzen, 1996). In this paper, we always assume that graphsiammal rep-
resentationdor the corresponding graphical model, that isQifis Markov onG, thenG has the
smallest number of edges for the conditional independence relations o fbld. We say the
distributionQ is aforest-structured distributioif it is Markov on a forest. We also use the nota-
tion D(TY) c P(XY) to denote the set al-variate distributions Markov on a forest wikhedges.
Similarly, D(F9) is the set of forest-structured distributions.

Let P € D(TY) be a discrete forest-structured distribution MarkovTen= (V,Ep) € T¢ (for
somek =0,...,d—1). Itis known that the joint distributio® factorizes as follows (Lauritzen,
1996; Wainwright and Jordan, 2003):

Plx) = iD/PI(X') (i,jl)_leEp ROOPI()°

where{PR }icy and{P, ;}i jce, are the node and pairwise marginals which are assumed to be posi-
tive everywhere.

The mutual information (MI) of two random variable® and X; with joint distributionP, j is
the functionl () : (X?) — [0,logr] defined as

. RLi (%, X;)
) (XaA,ij)EJCZF)I?J(XhXJ)IOQ R(X)Pj(x;)’ @)
This notation for mutual information differs from the usuék;;X;) used in Cover and Thomas
(2006); we emphasize the dependencd oh the joint distributionR j. The minimum mutual
informationin the forest, denoted dgn := min; j)cg, | (R,j) will turn out to be a fundamental
guantity in the subsequent analysis. Note from our minimality assumptionthiat O since all
edges in the forest have positive mutual information (none of the edgaefegenerate). When we
consider the scenario whedegrows withn in Section 5, we assume thiaf, is uniformlybounded
away from zero.

2.1 Problem Statement

We now state the basic problem formally. We are given a set of i.i.d. sam@pstatl ax" :=
{X1,...,Xn}. Each sample = (X 1,...,Xd) € X9 is drawn independently frofd e @(‘JE) a forest-
structured distribution. From these samples, and the prior knowledge thainthirected graph
is acyclic (but not necessarily connected), estimate the true set of &ggas well as the true
distributionP consistently.

3. TheForest Learning Algorithm: CLThres

We now describe our algorithm for estimating the edgdesegnd the distributiof®. This algorithm
is a modification of the celebrated Chow-Liu algorithm for maximum-likelihood (Mayning of
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tree-structured distributions (Chow and Liu, 1968). We call our algorimhres which stands
for Chow-Liu with Thresholding

The inputs to the algorithm are the set of sampfeand aregularizationsequencéen }nen (t0
be specified precisely later) that typically decays to zero, that ig, lie, = 0. The outputs are the
estimated edge set, denolﬁgl, and the estimated distribution, denot&d

1. Givenx", calculate the set gfairwise empirical distributiorfs(or pairwise type)s{ﬁj }ijev-
This is just a normalized version of the counts of each observed symiidland serves as a
set of sufficient statistics for the estimation problem. The dependerﬁg oh the samples
x" is suppressed.

2. Form the set oémpirical mutual informatiomuantities:
IRy = > P.,j(xi,xj)logiA"J(L i) ,
(X XJEX2 R(X)Pj(x))
for 1 <i,j <d. This is a consistent estimator of the true mutual information in (2).

3. Run a max-weight spanning tree (MWST) algorithm (Prim, 1957; Kiudleéb6) to obtain
an estimate of the edge set:

0

Eq_1:= argmax I(
ET=(V,E)eT? (i,j)eE

Q)

Let the estimated edge set ﬁg_l :={@1,...,84-1} where the edge§ are sorted accord-
ing to decreasing empirical mutual information values. We index the edgey skt to

emphasize that it had— 1 edges and hence is connected. We denote the sorted empirical

mutual information quantities a$l3@l) > > |(|3§d71). These first three steps constitute the
Chow-Liu algorithm (Chow and Liu, 1968).

4. Estimate the true number of edges usingtkinesholding estimator

~

kn = argmin{l (Ps) 1 1(Ps) > &n, I (Ps,,) < sn}. (3)
1<j<d-1

If there exists an empirical mutual informatid(Ps,) such thatl (Ps) = €, break the tie

arbitrarily>

5. Prune the tree by retaining only the ﬂ?}pedges, that is, define tlestimated edge sef the
forest to be
EEn = {é\l,...,%},
where{8& : Eg i < d: 1} is the ordered edge set defined in Step 3. Define the estimated
forest to befy = (V, E ).

4. In this paper, the termampirical distributionandtypeare used interchangeably.

5. Here were allow a bit of imprecision by noting that the non-strict inequsiiiti€3) simplify the subsequent analyses
because the constraint sets that appear in optimization problems will leel chemnce compact, insuring the existence
of optimizers.
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6. Finally, define the estiAmatedAdistributiﬁh to be thereverse I-projectiorfCsiszar and Matis,
2003) of the joint typd® onto T:. , that is,

P*(x) := argmin D(P|| Q).
QeD(Ty)

It can easily be shown that the projection can be expressed in terms of tgeahand
pairwise joint types:

P*(x) = [TR (% L e L
(x) i|;|/ (><|)(i7j|)_€|ERn (%) Py (X))

Intuitively, CLThres first constructs a connected tr&& Ey_1) via Chow-Liu (in Steps 1-3) before
pruning the weak edges (with small mutual information) to obtain the final steigy. The
estimated distributio* is simply the ML estimate of the parameters subject to the constraint that
P* is Markov on the learned tre‘%.

Note that if Step 4 is omitted arig is defined to bel — 1, thenCLThres simply reduces to the
Chow-Liu ML algorithm. Of course Chow-Liu, which outputs a tree, is gotgad to fail (not be
structurally consistent) if the number of edges in the true mkded — 1, which is the problem of
interest in this paper. Thus, Step 4, a model selection step, is essentifhatigy the true number
of edgek. This step is a generalization of the test for independence of discrete ylessosources
discussed in Merhav (1989). In our work, we exploit the fact that thpigcal mutual information
I (Iséj) corresponding to a pair of independent variatdewill be very small whem is large, thus a
thresholding procedure using the (appropriately chosen) regularizsgguenceée, } will remove
these edges. In fact, the subsequent analysis allows us to conclu@&tdpat, in a formal sense,
dominatesthe error probability in structure learningCLThres is also efficient as shown by the
following result.

Proposition 1 (Complexity of CLThres) CLThres runs in time @(n+logd)d?).

Proof The computation of the sufficient statistics in Steps 1 and 2 req@ifed®) operations. The
MWST algorithm in Step 3 requires at maStd?logd) operations (Prim, 1957). Steps 4 and 5
simply require the sorting of the empirical mutual information quantities on theddaree which
only requireO(logd) computations. |

4. Structural Consistency For Fixed Model Size

In this section, we keeg andk fixed and consider a probability mode] which is assumed to be
Markov on a forest ifg. This is to gain better insight into the problem before we analyze the high-
dimensional scenario in Section 5 wherandk scal@ with the sample siza. More precisely, we

are interested in quantifying the rate at which the probability of the errant@festructure learning

Ap = {x” € (X" By (X") # Ep} 4)

6. In that cas® must also scale, that is, we learfeaily of models agl andk scale.
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decays to zero as tends to infinity. Recall thaEEn, with cardinalityﬁn, is the learned edge set
by usingCLThres. As usual,P" is the n-fold product probability measure corresponding to the
forest-structured distributioB.

Before stating the main result of this section in Theorem 3, we first state xaliaauresult
that essentially says that if one is provided with oracle knowledge,gf the minimum mutual
information in the forest, then the problem is greatly simplified.

Proposition 2 (Error Rate with knowledge of Imin) Assume thatyli, is known inCLThres. Then
by letting the regularization sequence fe= Imin/2 for all n, we have

lim }Iog P"(Ap) <0, (5)

n—oo N
that is, the error probability decays exponentially fast.

The proof of this theorem and all other results in the sequel can be fauhd appendices.

Thus, the primary difficulty lies in estimating,,, or equivalently, the number of edglesNote
that if k is known, a simple modification to the Chow-Liu procedure by imposing the @instr
that the final structure contaitksedges will also yield exponential decay as in (5). However, in the
realistic case where both,j, andk are unknown, we show in the rest of this section that we can
design the regularization sequergzen such a way that the rate of decay®¥A,) decays almost
exponentially fast.

4.1 Error Ratefor Forest StructureLearning
We now state one of the main results in this paper. We emphasize that the foll@sirgis stated
for a fixed forest-structured distributidhe D(T¢) sod andk are also fixed natural numbers.

Theorem 3 (Error Ratefor Structure Learning) Assume that the regularization sequefieg ney
satisfies the following two conditions:

. ne
lim €, =0, L — co. (6)
n—oco n— logn

Then, if the true modelT= (V, Ep) is a proper forest (k< d — 1), there exists a constanpG (1, )
such that

o1 .
—Cp < Ilmgf n—EnIogP (An) @)
. 1
<limsup—logP"(An) < —1. (8)
n—e N€n

Fir |a"y, if the true model a-—— (V7 Ep) is a tree (k—— d— l), then
lim =logP"(A 0 9
nl n g ( n) <y, ( )

that is, the error probability decays exponentially fast.
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Figure 1: Graphical interpretation of the conditiongnAs n — o, the regularization sequeneg
will be smaller tharmi, and larger tham( {jj) with high probability.

4.2 Interpretation of Result

From (8), the rate of decay of the error probability for proper forissssibexponential but nonethe-
less can be made faster than any polynomial for an appropriate chogge ®he reason for the
subexponential rate is because of our lack of knowledde,gf the minimum mutual information
in the true foresTp. For trees, the rafds exponential£ exp(—nF) for some positive constar).
Learning proper forests is thus, strictly “harder” than learning tred® dondition ore, in (6) is
needed for the following intuitive reasons:

1. Firstly, (6) ensures that for all sufficiently largewe haves, < Inin. Thus, the true edges
will be correctly identified byCLThres implying that with high probability, there will not be
underestimation ag— .

2. Secondly, for two independent random variab¥esnd X; with distribution Q; ; = QQ;,
the sequendea(l (QF;)) = ©(1/n), whereQ); is the joint empirical distribution ofi i.i.d.
samples drawn fron®; j. Since the regularization sequerge= w(logn/n) has a slower
rate of decay thao(1(Q[})), & > 1(Q;) with high probability as — . Thus, with high
probability there will not be overestimation as- oo.

See Figure 1 for an illustration of this intuition. The formal proof follows frarmethod of types
argument and we provide an outline in Section 4.3. A convenient choigetbét satisfies (6) is

en:i=nP  VBe(01). (10)

Note further that the upper bound in (8) is also independem since it is equal to-1 for
all P. Thus, (8) is auniversalresult for all forest distribution® € D(F%). The intuition for this

7. We use the asymptotic notation from information theéryo denote equality to first order in the exponent. More
precisely, for two positive sequencs }neny and{bn}ney We say thasy, = by iff lim . n~1log(an/bn) = 0.

8. The notatiors(Z) denotes the standard deviation of the random variZbl&he fact that the standard deviation of
the empirical Mla(l ( ,”J )) decays as An can be verified by Taylor expandimggﬂj) aroundQ; j = QiQj and using
the fact that the ML estimate converges at a ratedf2 (Serfling, 1980).
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universality is because in the largeegime, the typical way an error occurs is due to overestimation.
The overestimation error results from testing whether pairs of randaaiwes are independent and
our asymptotic bound for the error probability of this test does not deparitie true distribution
P.

The lower boundCp in (7), defined in the proof in Appendix B, means that we cannot hope to
do much better usin@LThres if the original structure (edge set) is a proper forest. Together, (7)
and (8) imply that the rate of decay of the error probability for structunmleg is tight to within
a constant factor in the exponent. We believe that the error rates givEmeiorem 3 cannot, in
general, be improved without knowledge lgfi,. We state a converse (a necessary lower bound
on sample complexity) in Theorem 7 by treating the unknown forest grahuaéform random
variable over all possible forests of fixed size.

4.3 Proof |dea

The method of proof for Theorem 3 involves using the Gallager-Fanading technique (Fano,
1961, pp. 24) and the union bound to decompose the overall erroalpfityp P"(A,) into three
distinct terms: (i) the rate of decay of the error probability for learning thetedges (in terms of
the mutual information quantities) correctly—known as@tew-Liu error, (i) the rate of decay of
the overestimation error{kn > k} and (iii) the rate of decay of thenderestimation errOI{kn < k}.
Each of these terms is upper bounded using a method of types (Coverhanta3, 2006, Ch.
11) argument. It turns out, as is the case with the literature on Markov estenation (e.g.,
Finesso et al., 1996), that bounding the overestimation error poseseifitesjrchallenge. Indeed,
we show that the underestimation and Chow-Liu errors have exponeatiay dnn. However, the
overestimation error has subexponential decagxXp(—nep)).

The main technique used to analyze the overestimation error reliesididean information
theory(Borade and Zheng, 2008) which states that if two distributigrendv; (both supported on
a common finite alphabéf) are close entry-wise, then various information-theoretic measures can
be approximated locally by quantities related to Euclidean norms. For exampl€l tHivergence
D(vo||v1) can be approximated by the square of a weighted Euclidean norm:

(a))2

D(vollv1) = 5 Z +0([[vo—v1l[3)- (11)

acy

Note that ifvg ~ v1, thenD(vo||v1) is close to the sum in (11) and tl€||vo — v1||2) term can be
neglected. Using this approximation and Lagrangian duality (Bertsek89),1®e reduce a non-
convex |-projection (Csisr and Matlis, 2003) problem involving information-theoretic quantities
(such as divergence) to a relatively simglemidefinite progranfVandenberghe and Boyd, 1996)
which admits a closed-form solution. Furthermore, the approximation in (@d9rhesexactas
n— oo (i.e.,en, — 0), which is the asymptotic regime of interest. The full details of the proof ean b
found Appendix B.

4.4 Error Ratefor Learning the Forest Projection

In our discussion thus faP has been assumed to be Markov on a forest. In this subsection, we
consider the situation when the underlying unknown distribuRda not forest-structured but we
wish to learn its best forest approximation. To this end, we define the fioyjeaf P onto the set of
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forests (orforest projectiofto be

P:= argmin D(P||Q). (12)
QeD(59)

If there are multiple optimizing distribution, choose a projecfiiat is minimal, that is, its graph
Ts = (V, Ep) has thefewest number of edgesich that (12) holds. If we redefine the eveiitin (4)

to beAn := {EEn # Es}, we have the following analogue of Theorem 3.

Corollary 4 (Error Ratefor Learning Forest Projection) Let P be an arbitrary distribution and
the eventd,, be defined as above. Then the conclusior(@)r(9) in Theorem 3 hold if the regular-
ization sequencéen }ney Ssatisfieg6).

5. High-Dimensional Structural Consistency

In the previous section, we considered learning a fixed forest-stagttlistributionP (and hence
fixed d and k) and derived bounds on the error rate for structure learning. Hemnvéer most
problems of practical interest, the number of data samples is small comparediaddimension

d (see the asthma example in the introduction). In this section, we prove sufffecieditions on

the scaling of(n,d,k) for structure learning to remain consistent. We will see that evelnaifid

k are much larger than, under some reasonable regularity conditions, structure learning remains
consistent.

5.1 Structure Scaling Law

To pose the learning problem formally, we considexeguenc®f structure learning problems in-
dexed by the number of data poimtsFor the particular problem indexed bywe have a data set
X" = (Xq,...,%n) of sizen where each sampbg € X% is drawn independently from an unknown
d-variate forest-structured distributidh® € D(T¢), which hasd nodes andk edges and where
andk depend om. This high-dimensionasetup allows us to model and subsequently analyze how
d andk can scale witm while maintaining consistency. We will sometimes make the dependence
of d andk on n explicit, that is,d = d,, andk = k.

In order to be able to learn the structure of the models we assume that

P ; (d)

(A1)  lint = (;ng (ij)elEr:’(d) I(R)) >0, (13)
L . Y.

(A2) K:= 521];1 )qm’legx P} (%)) > 0. (14)

That is, assumptions (A1) and (A2) insure that there existBormlower bounds on the minimum
mutual information and the minimum entry in the pairwise probabilities in the foreselnas
the size of the graph grows. These are typical regularity assumptiortbefdrigh-dimensional
setting. See Wainwright et al. (2006) and Meinshausen and Buehim@66)(for example. We
again emphasize that the proposed learning algorithifhres has knowledge of neithdf: nor
K. Equipped with (A1) and (A2) and assuming the asymptotic behaviey of (6), we claim the
following theorem forCLThres.
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Theorem 5 (Structure Scaling Law) There exists two finite, positive constanis@ such that if
n> max{ (2log(d —k))**¢, Cylogd, C;log k} , (15)

for any{ > 0O, then the error probability of incorrectly learning the sequence of e@&{&p) }den
tends to zero asn,d,k) — . When the sequence of forests are trees, @logd (where C:=
max{Cy,C,}) suffices for high-dimensional structure recovery.

Thus, if the model parametefs, d, k) all grow withn butd = o(exp(n/C;)), k= o(exp(n/C,))
andd — k = o(exp(n*~P/2)) (for all B > 0), consistent structure recovery is possible in high dimen-
sions. In other words, the number of noadksan grow faster than any polynomial in the sample
sizen. In Liu et al. (2011), the bivariate densities are modeled by functioma fxd-lder class
with exponenta and it was mentioned (in Theorem 4.3) that the number of variables can grow
like o(exp(n®/(1+9))) for structural consistency. Our result is somewhat stronger but wenttogl
pairwise joint distributions as (simpler) probability mass functions (the algifaksea finite set).

5.2 Extremal Forest Structures

In this subsection, we study the extremal structures for learning, thaeistrilictures that, roughly
speaking, lead to the largest and smallest error probabilities for strdeamgng. Define the se-
quence

ha(P) := nin logP"(An), VneN. (16)

Note thathy, is a function of both the number of variablés- d, and the number of edgés= k in

the model®@ since itis a sequence indexedryin the next result, we assurte d, k) satisfies the
scaling law in (15) and answer the following question: How dagis (16) depend on the number
of edges, for a givend,? LetPfd) andPéd) be two sequences of forest-structured distributions with

a common number of nodels and number of edgekﬁ(Pl(d)) andkn(P§d>) respectively.

Corollary 6 (Extremal Forests) Assume thaCLThres is employed as the forest learning algo-
rithm. As n— oo, hn(Pid)) < hn(P2(d>) whenever .If(Pf”) > kn(Péd)) implying that k is maximized
when PY are product distributions (i.e.,ik= 0) and minimized when® are tree-structured dis-
tributions (i.e., k = dy — 1). Furthermore, if k(P%) = ky(P{), then k(P\?) = h,(P{V).

Note that the corollary is intimately tied to the proposed algori@imhres. We are not claiming
that such a result holds for all other forest learning algorithms. The intuitiothis result is the
following: We recall from the discussion after Theorem 3 that the otieneion error dominates
the probability of error for structure learning. Thus, the performarfc€ld hres degrades with
the number of missing edges. If there are very few edges Kj.és,very small relative taly), the
CLThres estimator is more likely to overestimate the number of edges as compared to if there a
many edges (i.ekn/d, is close to 1). We conclude that a distribution which is Markov oeapty
graph (all variables are independent) is thardestto learn (in the sense of Corollary 6 above).
Converselyjreesare theeasiesstructures to learn.

5.3 Lower Bounds on Sample Complexity

Thus far, our results are for a specific algoritiil hres for learning the structure of Markov forest
distributions. At this juncture, it is natural to ask whether the scaling laws @ofidm 5 are the best

1628



LEARNING HIGH-DIMENSIONAL MARKOV FORESTDISTRIBUTIONS

possible over all algorithms (estimators). To answer this question, we limitleassto the scenario
where the true grapfip is a uniformly distributed chance variaBlevith probability measuré.
Assume two different scenarios:

(a) Tp is drawn from the uniform distribution ofi¢, that is,P(Tp =t) = 1/|T9| for all forests
t € 7. Recall thatT¢ is the set of labeled forests withnodes and edges.

(b) Tp is drawn from the uniform distribution ofi%, that is,P(Tp =t) = 1/|59| for all forests
t € 39, Recall thaty? is the set of labeled forests withnodes.

This following result is inspired by Theorem 1 in Bresler et al. (2008)teNbat anestimatoror
algorithm T¢ is simply a map from the set of samplgé?)" to a set of graphs (eithérd or J9).
We emphasize that the following result is stated with the assumption that \veeenagingover the
random choice of the true grafh.

Theorem 7 (Lower Bounds on Sample Complexity) Letp < 1andr:=|X|. In case (a) above, if

(k—1)logd
dlogr (7
thenP(T9 # Tp) — 1 for any estimatoi 9 : (X9)" — T¢. Alternatively, in case (b), if
logd
n<p Togr’ (18)

thenP(T9 £ Tp) — 1 for any estimatofr 9 : (X9)" — 9.

This result, astrong conversestates thah = Q(g logd) is necessaryor any estimator with
oracle knowledge ok to succeed. Thus, we need at least logarithmically many samplesfin
the fractionk/d is kept constant as the graph size grows evenisf known preciselgnd does not
have to be estimated. Interestingly, (17) says thkisflarge, then we need more samples. This is
because there are fewer forests with a small number of edges as cdripémessts with a large
number of edges. In contrast, the performanc€loFhres degrades wheh is small because it is
more sensitive to the overestimation error. Moreover, if the estimator dddsaw k, then (18)
says thain = Q(logd) is necessaryor successful recovery. We conclude that the set of scaling
requirements prescribed in Theorem 5 is almost optimal. In fact, if the truetstedis is a tree,
then Theorem 7 foCLThres says that the (achievability) scaling laws in Theorem 5 are indeed
optimal (up to constant factors in th@ and Q-notation) sincen > (2log(d — k)< in (15) is
trivially satisfied. Note that ifip is a tree, then the Chow-Liu ML procedure ©kThres results in
the sample complexitg = O(logd) (see Theorem 5).

6. Risk Consistency

In this section, we develop results for risk consistency to study how faspainameters of the
estimated distribution converge to their true values. For this purpose, wesdbgrisk of the
estimated distributio* (with respect to the true probability mode) as

Rn(P*) :=D(P||P*) —D(P||P), (19)

9. The termchance variableattributed to Gallager (2001), describes random quaniitieQ — W that take on values
in arbitrary alphabetéV. In contrast, a random variab¥emaps the sample spa€eto the realsR.
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whereP is the forest projection d® defined in (12). Note that the original probability mo&edoes

not need to be a forest-structured distribution in the definition of the riskedd, ifP is Markov on

a forest, (19) reduces t&,(P*) = D(P||P*) since the second term is zero. We quantify the rate of
decay of the risk when the number of samplidends to infinity. Fo® > 0, we define the event

Cns = {x” e (XHn: R”;P*) > 6}. (20)

That is,C,, 5 is the event that thaverage riskR,(P*)/d exceeds some constahtWe say that the
estimatorP* (or an algorithm) i>-risk consistentf the probability ofC,, 5 tends to zero as — .
Intuitively, achievingd-risk consistency is easier than achieving structural consistency siace th
learned modeP* can be close to the true forest-projecti@rn the KL-divergence sense even if
their structures differ.

In order to quantify the rate of decay of the risk in (19), we need to debnee stochastic order
notation. We say that a sequence of random variafylesO(gn) (for some deterministic positive
sequencégn}) if for everye > 0, there exists 8 = Bg > 0 such that limsup.,,, Pr(|Ya| > Bgn) < €.
Thus, P(|Ys| > Bg,) > € holds for only finitely manyn.

We say that a reconstruction algorithm hiésk consistency of ordegor rate) g if Rn(P*) =
Op(9n). The definition of the order of risk consistency involves the true méddhtuitively, we
expect that as — o, the estimated distributioR* converges to the projectid?nsoﬂ%n(P*) —0in
probability.

6.1 Error Exponent for Risk Consistency

In this subsection, we consider a fixed distributi®@and state consistency results in terms of the
eventCp 5. Consequently, the model sizeand the number of edgésare fixed. This lends in-
sight into deriving results for the order of the risk consistency andigesvintuition for the high-
dimensional scenario in Section 6.2.

Theorem 8 (Error Exponent for 8-Risk Consistency) For CLThres, there exists a constaip >
0 such that for allo < & < &g,

Iimsup% logP"(Cn5) < —0. (21)

n—oo

The corresponding lower bound is

liminf }IogP”(Gn@) > —od. (22)

n—o N

The theorem states thatdfis sufficiently small, the decay rate of the probabilitydfs is expo-
nential, hence clearl¢LThres is &-risk consistent. Furthermore, the bounds on the error exponent
associated to the evefif, 5 areindependendf the parameters d? and only depend od and the
dimensionalityd. Intuitively, (21) is true because if we want the riskf to be at mosdd, then
each of the empirical pairwise margin§§j should bed-close to the true pairwise marginﬁ[j.

Note also that folC,, 5 to occur with high probability, the edge set does not need to be estimated
correctly so there is no dependencekon
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6.2 TheHigh-Dimensional Setting

We again consider the high-dimensional setting where the tuple of paranietdssk,) tend to
infinity and we have a sequence of learning problems indexed by the nwhtata point:. We
again assume that (13) and (14) hold and derive sufficient conditimaer uvhich the probability of
the event, 5 tends to zero for a sequencef/ariate distributiongP@ € P(X%)}gen. The proof
of Theorem 8 leads immediately to the following corollary.

Corollary 9 (3-Risk Consistency Scaling Law) Letd > 0 be a sufficiently small constant andca
(0,8). If the number of variables in the sequence of modBl§ }4cy satisfies d = o(exp(an)),
thenCLThres is &-risk consistent fof P} .

Interestingly, this sufficient condition on how number of varialdeshould scale witm for
consistency is very similar to Theorem 5. In particulad i polynomial inn, thenCLThres is both
structurally consistent as well @srisk consistent. We now study the order of the risk consistency
of CLThres as the model sizd grows.

Theorem 10 (Order of Risk Consistency) The risk of the sequence of estimated distributigi®®)* } gen
with respect to[ P4} 4.y satisfies

%ol (PO)") = 0p (G257 ) @3)

for everyy > 0, that is, the risk consistency f@LThres is of order(dlogd)/nt-.

Note that since this result is stated for the high-dimensional chsed, is a sequence in
but the dependence amis suppressed for notational simplicity in (23). This result implies that
if d =o(n~%) thenCLThres is risk consistent, that iR, ((P@)*) — 0 in probability. Note that
this result is not the same as the conclusion of Corollary 9 which refers fordtioability that the
average risk is greater than a fixed constarilso, the order of convergence given in (23) does not
depend on the true number of eddesThis is a consequence of the result in (21) where the upper
bound on the exponent associated to the e@lgptis independent of the parametershof

The order of the risk, or equivalently the rate of convergence of ttimated distribution to the
forest projection, is almost linear in the number of varialdemd inversely proportional to. We
provide three intuitive reasons to explain why this is plausible: (i) the dimertditime sufficient
statistics in a tree-structured graphical model is of ofd@t), (ii) the ML estimator of the natural
parameters of an exponential family converge to their true values at thefrél@(n*l/ 2) (Ser-
fling, 1980, Sec. 4.2.2), and (iii) locally, the KL-divergence behavestlile square of a weighted
Euclidean norm of the natural parameters (Cover and Thomas, 2008&ti&m (11.320)).

We now compare Theorem 10 to the corresponding results in Liu et all)201these recent
papers, it was shown that by modeling the bivariate denslﬁjgaas functions from a Blder class
with exponentr > 0 and using a reconstruction algorithm based on validation on a held-aigeta
the risk decays at a rafeof C~)p(dn‘°‘/(1+2°‘)), which is slower than the order of risk consistency
in (23). This is due to the need to compute the bivariate densities via kemsitydestimation.
Furthermore, we model the pairwise joint distributions as discrete probabilibg flaactions and
not continuous probability density functions, hence there is no depeaaentblder exponents.

10. The6p(~) notation suppresses the dependence on factors involving logarithms.

1631



TAN, ANANDKUMAR AND WILLSKY
X2 Xz o Xg
[ o [

Xet1 X1 X2
o @

Xs X3

Figure 2: The forest-structured distribution Markovabnodes andk edges. VariableXy. 1,...,Xgq
are not connected to the main star graph.

7. Numerical Results

In this section, we perform numerical simulations on synthetic and real éistéosstudy the effect
of a finite number of samples on the probability of the evéntefined in (4). Recall that this is the
error event associated to an incorrect learned structure.

7.1 Synthetic Data Sets

In order to compare our estimate to the ground truth graph, we learn theuséro€distributions that
are Markov on the forest shown in Figure 2. Thus, a subgraph gnbde ,k+ 1) is a (connected)
star while nodes&+2,...,d — 1 are not connected to the star. Each random varigplkakes on
values from a binary alphab&t= {0,1}. FurthermoreP;(x;) = 0.5 forx; =0,1and allj € V. The
conditional distributions are governed by the “binary symmetric channel”:

ey ) 07 Xp=x
Pia(Xjxa) = { 0.3 Xxj#x

for j =2,...,k+1. We further assume that the regularization sequence is givep:byn— for
somef € (0,1). Recall that this sequence satisfies the conditions in (6). We will @aryour
experiments to observe its effect on the overestimation and underestimatos err

In Figure 3, we show the simulated error probability as a function of the sasiyda for a
d = 101 node graph (as in Figure 2) with= 50 edges. The error probability is estimated based on
30,000 independent runs 6L Thres (over different data set'). We observe that the error probabil-
ity is minimized wher3 ~ 0.625. Figure 4 show the simulated overestimation and underestimation
errors for this experiment. We see thaflas: 0, the overestimation (resp., underestimation) error is
likely to be small (resp., large) because the regularization seqagietarge. When the number of
samples is relatively small as in this experiment, both types of errors contsiguidicantly to the
overall error probability. Whefp =~ 0.625, we have the best tradeoff between overestimation and
underestimation for this particular experimental setting.

Even though we mentioned thftin (10) should be chosen to be close to zero so that the
error probability of structure learning decays as rapidly as possible exaisiple demonstrates
that when given a finite number of sampl@sshould be chosen to balance the overestimation and
underestimation errors. This does not violate Theorem 3 since Theorgm@n3asymptotic result
and refers to the typical way an error occurs in the limihas «. Indeed, when the number of
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Figure 4: The overestimation and underestimation errorg fof0, 1).

samples is very large, it is shown that the overestimation error dominatesetad! grobability of
error and so one should chod$¢o be close to zero. The question of how best to select opfimal
when given only a finite number of samples appears to be a challengingvenese cross-validation
as a proxy to select this parameter for the real-world data sets in the nérhse

In Figure 5, we fix the value o8 at 0625 and plot the KL-divergencB(P||P*) as a func-
tion of the number of samples. This is done for a forest-structured distnbBtishose graph is
shown in Figure 2 and witd = 21 nodes an#t = 10 edges. The mean, minimum and maximum
KL-divergences are computed based on 50 independent rutisToies. We see that loB(P|| P*)
decays linearly. Furthermore, the slope of the mean curve is approximatelyhich is in agree-
ment with (23). This experiment shows that if we want to reduce the Kerdence between the
estimated and true models by a constant faétor O, we need to increase the number of samples
by roughly the same factek.
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Figure 5: Mean, minimum and maximum (across 50 different runs) of thelidérgence between
the estimated modé& and the true modd? for ad = 21 node graph withk = 10 edges.

7.2 Real Data Sets

We now demonstrate how well forests-structured distributions can modeeatdata sets which

are obtained from the UCI Machine Learning Repository (Newman et é8)19The first data

set we used is known as the SPECT Heart data set, which describessiiepaf cardiac Single
Proton Emission Computed Tomography (SPECT) images on normal andvadirgatients. The
data set containd = 22 binary variables and = 80 training samples. There are also 183 test
samples. We learned a forest-structured distributions using the 80 traemmgles for different

B € (0,1) and subsequently computed the log-likelihood of both the training and testesaripe
results are displayed in Figure 6. We observe that, as expected, thedtigedd of the training
samples increases monotonically wigth This is because there are more edges in the model when
[ is large improving the modeling ability. However, we observe that there iditiivey whenf3 is

large as evidenced by the decrease in the log-likelihood of the 183 testesarpe optimal value

of B in terms of the log-likelihood for this data set4s0.25, but surprisingly an approximation
with an empty graptf also yields a high log-likelihood score on the test samples. This implies that
according to the available data, the variables are nearly independerforébegraph fo = 0.25

is shown in Figure 7(a) and is very sparse.

The second data set we used is the Statlog Heart data set containindqajigaloneasurements
of subjects with and without heart disease. There are 270 subjects-ard® discrete and contin-
uous attributes, such as gender and resting blood pressure. We gdahgzcontinuous attributes
into two bins. Those measurements that are above the mean are encodmttatidse below the
mean as 0. Since the raw data set is not partitioned into training and test edesmed forest-
structured models based on a randomly chosen set0230 training samples and then computed

11. These data sets are typically employed for binary classification busathem for modeling purposes.
12. Whenf3 = 0 we have an empty graph because all empirical mutual informationtitigarnn this experiment are
smaller than 1.
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Figure 6: Log-likelihood scores on the SPECT data set

the log-likelihood of these training and 40 remaining test samples. We thee @moadditional
49 randomly partitioned training and test sets and performed the same letashkrand computa-
tion of log-likelihood scores. The mean of the log-likelihood scores ovesetl® runs is shown
in Figure 8. We observe that the log-likelihood on the test set is maximizBda®.53 and the
tree approximationf{ ~ 1) also yields a high likelihood score. The forest learned when0.53

is shown in Figure 7(b). Observe that two nodes (ECG and Cholesteeallisconnected from the
main graph because their mutual information values with other variables lane te threshold.
In contrast, HeartDisease, the label for this data set, has the highesé démat is, it influences and
is influenced by many other covariates. The strengths of the interactibmedreHeartDisease and
its neighbors are also strong as evidenced by the bold edges.

From these experiments, we observe that some data sets can be modebksiprafier forests
with very few edges while others are better modeled as distributions thanaostdree-structured
(see Figure 7). Also, we need to cho@searefully to balance between data fidelity and overfitting.
In contrast, our asymptotic result in Theorem 3 says ¢hathould be chosen according to (6) so
that we have structural consistency. When the number of data poiatirge,3 in (10) should
be chosen to be small to ensure that the learned edge set is equal to tbadr(essuming the
underlying model is a forest) with high probability as the overestimation emavimghtes.

8. Conclusion

In this paper, we proposed an efficient algorit@h hres for learning the parameters and the struc-
ture of forest-structured graphical models. We showed that the asymptaticrates associated
to structure learning are nearly optimal. We also provided the rate at whickrtbieprobability

of structure learning tends to zero and the order of the risk consist@ray.natural question that
arises from our analyses is whethgin (10) can be selected automatically in the finite-sample
regime. There are many other open problems that could possibly leverabe proof techniques
employed here. For example, we are currently interested to analyze thiteaf general graphi-
cal models using similar thresholding-like techniques on the empirical cormelatiefficients. The
analyses could potentially leverage on the use of the method of types. Waresatly exploring
this promising line of research.
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Appendix A. Proof of Proposition 2

Proof (Sketch The proof of this result hinges on the fact that both the overestimatiomaael-
estimation errors decay to zero exponentially fast when the thresholdssrcho bd yi,/2. This
threshold is able to differentiate between true edges (with Ml largerlghanfrom non-edges (with
MI smaller thanlyin) with high probability forn sufficiently large. The error for learning the tlp
edges of the forest also decays exponentially fast (Tan et al., ZDid3, (5) holds. The full details
of the proof follow in a straightforward manner from Appendix B which wesgnt next. |

Appendix B. Proof of Theorem 3

Define the evenB, := {Ey # Ep}, whereEy = {&1,...,&} is the set of tofk edges (see Step 3
of CLThres for notation). This is the Chow-Liu error as mentioned in Section 4.3.Afetlenote
the complement oB,,. Note that inB§, the estimated edge set dependkgptine true model order,
which isa-priori unknown to the learner. Further define the constant

 h 1 n
Kp:= rI&T{l}o—ﬁlogP (Bn). (24)

In other wordsKp is the error exponent for learning the forest structure incorrectlyrasg) the
true model ordek is known and Chow-Liu terminates after the addition of exaktgdges in the
MWST procedure (Kruskal, 1956). The existence of the limit in (24) argtsitivity ofKp follow
from the main results in Tan et al. (2011).

We first state a result which relies on the Gallager-Fano bound (Fa6a, pp. 24). The proof
will be provided at the end of this appendix.

Lemma 11 (Reduction to Model Order Estimation) For everyn € (0,Kp), there exists a Ne N
sufficiently large such that for every>nN, the error probability P(A,) satisfies

(1= N)P"(kn # KIBF) < P"(An) (25)
< P"(kn # k|BS) + 2exp—n(Kp —1)). (26)

Proof (of Theorem BWe will prove (i) the upper bound in (8) (ii) the lower bound in (7) and (iii)
the exponential rate of decay in the case of trees (9).

B.1 Proof of Upper Bound in Theorem 3

We now bound the error probabili’(k, # k|BS) in (26). Using the union bound,
P (kn # KIBf) < P"(kn > KIBF) + P"(kn < KIBF). 27)
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The first and second terms are known asdherestimatiorandunderestimatiorrrors respectively.
We will show that the underestimation error decays exponentially fast. Véestimation error
decays only subexponentially fast and so its rate of decay dominatesetsd oate of decay of the
error probability for structure learning.

B.1.1 UNDERESTIMATION ERROR

We now bound these terms staring with the underestimation error. By the upuow b

o~ ~

n c _ n — i|RC
Pk <K/Bp) < (k—1) max Pi(ky = ][By)

= (k—1)P"(kn = k— 1| B), (28)

o~

where (28) follows becaud®'(k, = j|B5) is maximized wherj = k— 1. This is because if, to the
contrary,P”(En = j|BS) were to be maximized at some othjex k— 2, then there exists at least two
edges, call thene;, e, € Ep such that event&; := {I(Py,) < &5} and &, := {I(Ps,) < 5} occur.
The probability of this joint event is smaller than the individual probabilitied, ih)&" (1N E2) <
min{P"(€1),P"(€2)}. This is a contradiction.
By the rule for choosin@n in (3), we have the upper bound

P(ky = k—1|BS) = P"(Jec Ep s.t.1(Ps) < &) < kmaxP"( (Ps) < &n), (29)
where the inequality follows from the union bound. Now, note thatdfEp, thenl (Ps) > €, for
n sufficiently large (since, — 0). Thus, by Sanov’s theorem (Cover and Thomas, 2006, Ch. 11),
P"(1(P.) < &n) can be upper bounded as

P(1(Py) < 80) < (n+ )" exp(n_min, (D(QIR):1(Q) <} ). (30)

Define the good rate function (Dembo and Zeitouni, 1998) in (30) tio H&(X?) x [0, 0) — [0, ),
which is given by

L(Ria) = min, {D(QIIR) :1(Q) <a}. (3D)

Clearly, L(Pe; @) is continuous ira. Furthermore it is monotonically decreasingarfor fixed Pe.
Thus by using the continuity df(Pe;-) we can assert: To every> 0, there exists & € N such
that for alln > N we havel (Ps; €n) > L(Pe;0) — . As such, we can further upper bound the error
probability in (30) as

P"(1(Pe) < &n) < (n+1)" exp(—n(L(Ps;0) —N)). (32)

By using the fact thakmn > 0, the exponent(Pe; 0) > 0 and thus, we can put the pieces in (28),
(29) and (32) together to show that the underestimation error is uppadbdwas

P"(kn < K|BS) < k(k—1)(n+1)" exp(—nerQiEn(L(Pe; 0) — n)> : (33)

Hence, ifk is constant, the underestimation erR(k, < k|BS) decays to zero exponentially fast
asn — oo, that is, the normalized logarithm of the underestimation error can be bd@sde

imsup= logP (K, < K|§) < — min(L(P;0) ).

n—oo
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The above statement is how independert.oHence, we can take the limit as— 0 to conclude
that: 1
Iirpsupﬁ logP"(ky < k|BE) < —Lp. (34)
— 00

The exponenkp := minecg, L(Pe; 0) is positive because we assumed that the model is minimal and
solmin > 0, which ensures the positivity of the rate functiofi; 0) for each true edge € Ep.

B.1.2 O/ERESTIMATION ERROR

Bounding the overestimation error is harder. It follows by first applyireguhion bound:

o~

n, ¢\ « (d—k— n _ i|RC
Pilko > KBp) < (d—k—1)  max Pi(kn=j[Bn)

= (d—k—1)P"(k, = k+1|B;), (35)

~

where (35) follows becaud®'(k, = j|BS) is maximized wherj = k+ 1 (by the same argument as
for the underestimation error). Apply the union bound again, we have

P'(ky=k+1/B%) < (d—k—1 PY(1(Ps) > g,). 36
(kn = k+1[Bp) < ( ) ey y2x P (Pe) = &n) (36)

From (36), it suffices to boun@(I (P:) > €,) for any pair of independent random variabi¥s Xj)
ande= (i, ]). We proAceed by applying the upper bound in Sanov’s theorem (ConvkeThomas,
2006, Ch. 11) td&®"(I (P:) > €n) which yields

P(1(Py) 2 60) < (n+ 1) exp(—n_min, (D(QIIR):1(Q) ) ) @7
QeP(X?)
for all n € N. Our task now is to lower bound the good rate function in (37), which wetteas
M : P(X?) x [0,00) — [0, 00):

M(Pe;b) == QQDEQZ){D(QH Pe) :1(Q) > b}. (38)

Note thatM (Pe; b) is monotonically increasing and continuoushirfor fixed P.. Because the se-
quence{en}ney tends to zero, when is sufficiently large,e, is arbitrarily small and we are in
the so-calledvery-noisy learning regiméBorade and Zheng, 2008; Tan et al., 2011), where the
optimizer to (38), denoted &3, is very close td. See Figure 9.

Thus, whem is large, the KL-divergence and mutual information can be approximated as

D(Q3P2) = 3¢ Thav -0 v, (39
(@) = v Hev +o(v]?), (40)

wheré3v :=vedQ;) — veqPs) € R"™. Ther? x r2 matricesII, andH, are defined as
II. ;= diag(1/vedPy)), (41)

He := D) (vQQ)) lop. (42)

13. The operator vé€) vectorizes a matrix in a column oriented way. Thus; i€ R'*!, veqC) is a lengtht? vector
with the columns ofC stacked one on top of anoth&({) in Matlab).
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{Q:1(Q)=¢n,}

Figure 9: Ase, — 0, the projection ofP. onto the constraint seftQ : 1(Q) > &,}, denotedQ;,
(the optimizer in (38)), approachés. The approximations in (39) and (40) become
increasingly accurate as, tends to zero. In the figureyp > n; anden, > €,, and the
curves are the (sub-)manifold of distributions such that the mutual informiatemnstant,
that is, the mutual information level sets.

In other words IT¢ is the diagonal matrix that contains the reciprocal of the elements ¢dPyec
on its diagonal He is the Hessialf of | (veqQ})), viewed as a function of véQ?) and evaluated
at P.. As such, the exponent for overestimation in (38) can be approximatedgogdratically
constrained quadratic prografQCQP), where := ved Q) — vedPe):

~ 1
M(Ps;€n) = min =z' Tz,
zeR2

. 1
subject to EzTHez >€,, 2'1=0. (43)

Note that the constrairt’ 1 = 0 does not necessarily ensure tigis a probability distribution so
M (Pe; €n) is an approximate lower bound to the true rate functib(Ps; €,), defined in (38). We
now argue that the approximate rate functhnn (43), can be lower bounded by a quantity that is
proportional toe,. To show this, we resort to Lagrangian duality (Bertsekas, 1999, CHt Ban

easily be shown that tHeagrangian dualcorresponding to the primal in (43) is
O(Pe;€n) i=¢€n Tg)x{u TIe > pHe}. (44)

We see from (44) thai(Pe; €n) is proportional te,. By weak duality (Bertsekas, 1999, Proposition
5.1.3), any dual feasible solution provides a lower bound to the primal, that is

9(Ps;€n) < M(Ps; €n). (45)

Note that strong duality (equality in (45)) does not hold in general duerintpahe non-convex
constraint set in (43). Interestingly, our manipulations lead lower bogridity (44), which is a
(convex) semidefinite program (Vandenberghe and Boyd, 1996).

Now observe that the approximations in (39) and (40) are accurate in thefilaigen because
the optimizing distributiorQ;, becomes increasingly close B. By continuity of the optimization

14. The first two terms in the Taylor expansion of the mutual informdt{eed Q},)) in (40) vanish because (ijPs) =0
and (ii) (vedQ},) — veqPe)) T Oveqq)! (Ved(Pe)) = 0. Indeed, if we expant(veqQ)) around a product distribution,
the constant and linear terms vanish (Borade and Zheng, 2008). Nwtétin (42) is an indefinite matrix because
I(vedQ)) is not convex.
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problems in (perturbations of) the objective and the constralit®e; e,) andM(Ps;,) are close
whenn is large, that is,

lim

neo M(Po;€n) 1 (46)

This can be seen from (39) in which the ratio of the KL-divergence to isaimationv ITev/2

is unity in the limit as||v|| — 0. The same holds true for the ratio of the mutual information to its
approximatiornv"Hev/2 in (40). By applying the continuity statement in (46) to the upper bound
in (37), we can conclude that for eveny> 0, there exists & € N such that

P'(1(Ps) > &) < (N+ 1) exp(—nM(Pe; £n)(1— n)) ,
for all n > N. Define the constant

Cp = min max{u: Il > pHe!. 47
P eeVxV:I(P)=0 >0 {W:TTe = pHe} (47)

By (44), (45) and the definition afs in (47),
P'(1(P.) > €n) < (N+1)" exp(—nencp(1—1)). (48)
Putting (35), (36) and (48) together, we see that the overestimation error
P"(kn > KIBF) < (d — k—1)°(n+1)" exp(—nence(1—1)). (49)

Note that the above probability tends to zero by the assumptiomghéiogn — o in (6). Thus, we
have consistency overall (since the underestimation, Chow-Liu and reatrestimation errors
all tend to zero). Thus, by taking the normalized logarithm (normalizedeh), the limsup inn
(keeping in mind thatl andk are constant), we conclude that

lim supi logP"(kn > K|BS) < —cp(1—n). (50)

n—oo n

Now by taken — O, it remains to prove that = 1 for all P. For this purpose, it suffices to show
that the optimal solution to the optimization problem in (44), dengteds equal to one for allle
andHe. Note thaty* can be expressed in terms of eigenvalues:

P = (max{eig(Hgl/zHeﬂgl/z)})71, (51)

where eigA) denotes the set of real eigenvalues of the symmetric matriBy using the defini-
tions of IT¢ andH¢ in (41) and (42) respectively, we can verify that the makrixITe Y 2Hel'Ig 12
is positive semidefinite with an eigenvalue at zero. This proves that thestagigenvalue of

H;l/zHel'[;l/2 is one and hence from (51)f = 1. The proof of the upper bound in (8) is com-

pleted by combining the estimates in (26), (34) and (50).
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B.2 Proof of Lower Bound in Theorem 3

The key idea is to bound the overestimation error using a modification of the bmuead in Sanov’s
theorem. Denote the set of types supported on a finitd séth denominaton as®,(Y) and the
type clasf a distributionQ € Py(Y) as

Tn(Q) == {y" € Y":P(-;y") =Q()},

Wherels( -;y") is the empirical distribution of the sequenge= (y,...,yn). The following bounds
on the type class are well known (Cover and Thomas, 2006, Ch. 11).

Lemma 12 (Probability of Type Class) For any Qe P,(Y) and any distribution P, the probability
of the type clas3,(Q) under P' satisfies:

(n+1) Mexp(—nD(Q||P)) < P"(Tn(Q)) < exp(—nD(Q||P)). (52)

To prove the lower bound in (7), assume tkat d — 1 and note that the error probabili® (k, #
k|BS) can be lower bounded b (1(P.) > €,) for any node paike such that (P.) = 0. We seek
to lower bound the latter probability by appealing to (52). Now choose aeseguof distributions
QM € {Q € Pn(X?) : 1(Q) > &n} such that

lim ‘M(Pe; £n) — D(QM ||Ps)| = 0.

n—o0

This is possible because the set of types is dense in the probability simplesb@and Zeitouni,
1998, Lemma 2.1.2(b)). Thus,

Pl (ﬁe) > €&n) = P(Tn(Q))

Qeﬂ’n(xgl (Q)>en
> PY(Ta(Q™))
> (n+1) " exp(—nD(Q" || Re)). (53)

where (53) follows from the lower bound in (52). Note from (46) that fitllowing convergence

holds: [M(Ps; €n) — M(Ps;€0)| — 0. Using this and the fact that i, — by| — 0 and|b, — ¢, — 0
then,|a, — cn| — O (triangle inequality), we also have

lim [M(Ps;€n) —D(Q™||Ps)| = 0.

n—oo

Hence, continuing the chain in (53), for any> 0, there exists & € N such that for alh > N,
P'(I(Ps) > &7) > (n+1) " exp(—n(M(Ps;£n) +1)). (54)

Note that an upper bound fdﬁ(Pe; €n) in (43) is simply given by the objective evaluated at any
feasible point. In fact, by manipulating (43), we see that the upper bowlsldgproportional te,,
that is,

M(Pe; €n) < Cp.&n,
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whereCp, € (0,») is some constaht that depends on the matric&k andH.. DefineCp :=
MaXecy xv:i (R,)—0Cr,- CoONtinuing the lower bound in (54), we obtain

P"(1(P) > €n) > (n+1)~" exp(—nen(Ce+1)),
for n sufficiently large. Now take the normalized logarithm and the liminf to conclude th

~

o1 . .
liminf e, logP"(kn # K|By) = —(Cp+n). (55)

Substitute (55) into the lower bound in (25). Now the resulting inequality is iedégnt ofn and
we can take) — 0 to complete the proof of the lower bound in Theorem 3.

B.3 Proof of the Exponential Rate of Decay for Treesin Theorem 3

For the claim in (9), note that far sufficiently large,

P"(An) > max{(1—n)P"(ky # kn| Br),P"(Bn)}, (56)
from Lemma 11 and the fact th@&t, C A,. Equation (56) gives us a lower bound on the error prob-
ability in terms of the Chow-Liu erroP"(B,,) and the underestimation and overestimation errors
P'(kn # kn|BE). If k=d — 1, the overestimation error probability is identically zero, so we only
have to be concerned with the underestimation error. Furthermore, 8)rad a corresponding
lower bound which we omit, the underestimation error event satBfigs, < k|BS) = exp(—nLp).
Combining this fact with the definition of the error expon&gtin (24) and the result in (56) estab-
lishes (9). Note that the relation in (56) and our preceding upper bamgige that the limit in (9)
exists. [ |

Proof (of Lemma 11 We note thaP”(An]En # k) = 1 and thus,

P"(An) < P"(kn # K) +P"(Ankn = K). (57)
By using the definition oKp in (24), the second term in (57) is precis&y(B,) therefore,
P"(An) < P"(kn # k) +exp(—n(Kp — 1)), (58)

for all n > N;. We further bouncP”(En # K) by conditioning on the ever#§. Thus, forn > 0,
P"(kn # K) < P"(kn # K|Bf) + P"(Bn)

o~

< P"(kn # KIBR) +exp(—n(Kp — 1)), (59)
for all n > N,. The upper bound result follows by combining (58) and (59). The Idweemd
follows by the chain

P"(An) > P"(kn # k) > P"({kn # k} N BS)

= P(kn 7 K| BR)P"(Br) > (1—n)P"(ka # K By),

which holds for alln > N3 sinceP"(B5) — 1. Now the claims in (25) and (26) follow by taking
N .= max{Nl, N>, N3}. |

15. We can easily remove the constraiht in (43) by a simple change of variables to only consider those vectors in the
subspace orthogonal to the all ones vector so we ignore it here foligitypro obtainCp,, suppose the matriw/e
diagonalizedHe, that is,He = W{ DeWe, then one can, for example, chod®g = min;p, ~o[WI eWe] .
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Appendix C. Proof of Corollary 4

Proof This claim follows from the fact that three errors (i) Chow-Liu error (ifjderestimation
error and (iii) overestimation error behave in exactly the same way as irdme®. In particular,

the Chow-Liu error, that is, the error for the learning thekamiges in the forest projection model
decays with error exponeKp. The underestimation error behaves as in (34) and the overestimation
error as in (50). |

Appendix D. Proof of Theorem 5

Proof Given assumptions (A1) and (A2), we claim that the underestimation expbpendefined
in (34), is uniformly bounded away from zero, that is,

L:= inf Lpw = inf L(PY;
|n p(d) (;QNeemIFH,) (Ps;0) (60)
is positive. Before providing a formal proof, we provide a plausibleuargnt to show that this
claim is true. Recall the definition &f(Pe; 0) in (31). Assuming that the joir = R j is close to a
product distribution or equivalently if its mutual informatidfP.) is small (which is the worst-case
scenario),

L(Pe;0) ~ Q£1Q2>{D(Pe!\ Q) :1(Q) =0} (61)
=D(Pe||RPj) =1(Pe) > lins > 0, (62)

where in (61), the arguments in the KL-divergence have been swapped is because when
Q~ P.entry-wise D(Q||P.) =~ D(P: || Q) in the sense that their difference is small compared to their
absolute values (Borade and Zheng, 2008). In (62), we used ttehédche reverse I-projection of
Pe onto the set of product distributionsBP;. Sinceli is constant, this proves the claim, that is,
L>0.

More formally, let

Be == {Qij € P(X?): Qi j(%, X)) > K, VXX € X}

be the set of joint distributions whose entries are bounded away frambyer > 0. Now, consider
a pair of joint distribution@éd)ﬁéd) € B¢ whose minimum values are uniformly bounded away
from zero as assumed in (A2). Then there exists a Lipschitz constaep@ndent ofl) U € (0, )
such that for all,

1Y) =1 (REY)] < U lvect L) — vedt L) I, (63)
where|| - ||1 is the vector’y norm. In factU := maxqes,, |0l (veqQ)) ||« is the Lipschitz constant

of I(-) which is uniformly bounded because the joint distributi®é® andPl” are assumed to be
uniformly bounded away from zero. Suppose, to the conttagy,0. Then by the definition of the
infimum in (60), for everyg > 0, there exists d € N and a correspondinge Ep such that ifQ*

is the optimizer in (31),

3 |veaPL”) —ved @) 3 © I (PY) ~1Q)P @ 12,

e>D HP ) 2log2 ~—  (2log2u? (2IogZ)U2’
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where (a) follows from Pinsker’s inequality (Cover and Thomas, 20@8ma 11.6.1), (b) is an
application of (63) and the fact that Féd) € By is uniformly bounded from zero (as assumed in
(14)) so is the associated optimiz@t (i.e., in By» for some possibly different uniform” > 0).
Statement (c) follows from the definition &fs and the fact tha®* is a product distribution, that is,
[(Q*) = 0. Sincee can be chosen to be arbitrarily small, we arrive at a contradiction. Tiués0)

is positive. Finally, we observe from (33) thatnf> (3/L)logk the underestimation error tends to
zero because (33) can be further upper bounded as

~ 2
P"(k, < K|BS) < (n+1)" exp(2logk—nL) < (n+1)" exp(SnL— nL) —0
asn — oo. TakeCy = 3/L in (15).
Similarly, given the same assumptions, the error exponent for structureng#y« , defined
in (24), is also uniformly bounded away from zero, that is,

K:= inf K 0.
den P9 =

Thus, ifn > (4/K)logd, the error probability associated to estimating the kaguiges (evenB,)
decays to zero along similar lines as in the case of the underestimation ek®C;Fa4/K in (15).
Finally, from (49), ifne, > 2log(d — k), then the overestimation error tends to zero. Since from
(6), €, can take the form~F for g > 0, this is equivalent ta’ P > 2log(d — k), which is the same as
the first condition in (15), namely > (2log(d — k))1*¢. By (26) and (27), these three probabilities
constitute the overall error probability when learning the sequence estfstructure$Ep) }den.
Thus the conditions in (15) suffice for high-dimensional consistency. |

Appendix E. Proof of Corollary 6

Proof First note thatk, € {0,...,d, — 1}. From (49), we see that far sufficiently large, the
sequencén(P) := (ng,) ~tlogP"(Ap) is upper bounded by

2 r?log(n+1)
L log(dy—ka 1)+ (64)

The last term in (64) tends to zero by (6). ThygP) = O((nen) tlog(dy — kn — 1)), where the
implied constant is 2 by (64). Clearly, this sequence is maximized (resp., miniwideshk, = 0
(resp.,ky = dn — 1). Equation (64) also shows that the sequémncis monotonically decreasing in
Kn. u

Appendix F. Proof of Theorem 7

Proof We first focus on part (a). Part (b) follows in a relatively straightfarvmanner. Define

Tvap (X") := argmaxP(Tp = t|x")
teT]
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to be the maximum a-posteriori (MAP) decoding rifleBy the optimality of the MAP rule, this
lower bounds the error probability of any other estimator. Wet= Tyap ((X%)") be the range of
the functionTuap, that is, a forest € W if and only if there exists a sequencésuch thaflyap =t.
Note thatW U W¢ = Tg. Then, consider the lower bounds:

P(T#Te)= 3 P(T#To[Te=t)P(To =)

teTd

> Y P(T#T[Te=t)P(To =t)
tewe

= Y PTr=t)=1- 3 P(To=1) (65)
tewe tew

—1- 3 |7 (66)

tew
>1- "7, (67)

where in (65), we used the fact tHT £ Tp|Tp =t) = 1 if t € WE, in (66), the fact thaP(Tp =t) =
1/|79]. In (67), we used the observatigw| < (|X¢|)" = r"d since the functiofyap : (X9)" — W
is surjective. Now, the number of labeled forests withdges andl nodes is (Aigner and Ziegler,
2009, pp. 204)T¢| > (d — k)d 1 > d*=1. Applying this lower bound to (67), we obtain

P(T # Tp) > 1—exp(ndlogr — (k— 1)logd) > 1—exp((p — 1)(k— 1) logd), (68)

where the second inequality follows by choicendh (17). The estimate in (68) converges to 1 as
(k,d) — o sincep < 1. The same reasoning applies to part (b) but we instead use the following
estimates of the cardinality of the set of forests (Aigner and Ziegler, 200B@:

(d—2)logd < log|F9| < (d—1)log(d +1). (69)

Note that we have lower bound¢#®| by the number trees witth nodes which isi9-2 by Cayley’s
formula (Aigner and Ziegler, 2009, Ch. 30). The upper bddridllows by a simple combinatorial
argument which is omitted. Using the lower bound in (69), we have

P(T # Tp) > 1—exp(ndlogr) exp(—(d — 2)logd) > 1—d?exp((p—1)dlogd),  (70)

with the choice ohin (18). The estimate in (70) converges to 1, completing the proof. |

Appendix G. Proof of Theorem 8

Proof We assume tha® is Markov on a forest since the extension to non-forest-structBrid

a straightforward generalization. We start with some useful definitionsalRieom Appendix B
thatB, ;= {I?k # Ep} is the event that the tdpedges (in terms of mutual information) in the edge
setEq_1 are not equal to the edges fiip. Also defineénﬁ = {D(P*||P) > &d} to be the event
that the divergence between the learned model and the true (forest) greater thadd. We will

16. In fact, this proof works farnydecoding rule, and not just the MAP rule. We focus on the MAP rule focoeteness.
17. The purpose of the upper bound is to show that our estimatég loh (69) are reasonably tight.
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4 5 4 Se
= Ep
2 3 6 2 3 6
[
Figure 10: Inﬁa (left), nodes 1 and 5 are the roots. The parents are definaﬂ;ﬁq) =i—1

fori=2,3,4,6 andn(i;ﬁﬁn) =0fori=1,5. InEp (right), the parents are defined as
T(i;Ep) =i—1fori=23,4 butn(i;Ep) = 0fori = 1,5,6 since(5,6),(0,1),(0,5) ¢ Ep.

see thaﬁnj is closely related to the event of interélts defined in (20). Lell, := {ﬁn < k} be
the underestimation event. Our proof relies on the following result, which is sitoillemma 11,
hence its proof is omitted.

Lemma 13 For everyn > 0, there exists a Nt N such that for all > N, the following bounds on

P"(Cn) hold:

(1 n)P"(Cn 5| BE,UE) < P"(Cp5) (72)
< P"(C5|BE, US) + exp(—n(min{Kp,Lp} —1)). (72)

Note that the exponential term in (72) comes from an application of the urdandband the
“largest-exponent-wins” principle in large-deviations theory (Den Hal&an2000). From (71)
and (72) we see that it is possible to bound the probabili@ng; by providing upper and lower
bounds forP”(énvé\iSﬁ,uﬁ). In particular, we show that the upper bound equalgexp) to first
order in the exponent. This will lead directly to (21). To proceed, we ralthe following lemma,
which is a generalization of a well-known result (Cover and Thomas,,200611). We defer the
proof to the end of the section.

Lemma 14 (Empirical Divergence Bounds) Let XY be two random variables whose joint dis-
tribution is Ry € P(X?) and |X| =r. Let (X",y") = {(X1,Y1),---, (X, Yn)} be n independent and
identically distributed observations drawn from ¥ Then, for every n,

PRy (D(Bqy [ Bay) > 8) < (n+1)" exp(—nd), (73)

wherePyy = Pxy /P, is the conditional type ofx",y"). Furthermore,

imint ~1ogPR, (D(Fy || Pxy) > 8) > 3. (74)

It is worth noting that the bounds in (73) and (74) are independent afigtebutionPx y (cf.
discussion after Theorem 8). We now proceed with the proof of The8ceTo do so, we consider
the directed representation of a tree distributip(Lauritzen, 1996):

Q) =[] Qi) (% X ) (75)

eV

wherert(i) is the parent of in the edge set dP (assuming a fixed root). Using (75) and conditioned
on the fact that the toj edges of the graph d®* are the same as those Hp (eventB5) and
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underestimation does not occur (evéfy), the KL-divergence betwedp* (which is a function of
the samples" and hence ofi) andP can be expressed as a sum ayéerms:

D(P*|[P) = Z/ D(p\im(if@n) |1 Pim(iEp) ) (76)
le

where the parent of nodein Eﬁn' denotedr(i; Eﬁn)’ is defined by arbitrarily choosing a root in
each component tree of the fordgt = \2 E; ). The parents of the chosen roots are empty sets.
The parent of nodein Ep are “matched” to those iy , that is, defined as(i; Ep) := m(i; EEn) if
(i,m(i;E; )) € Ep andm(i; Ep) := 0 otherwise. See Figure 10 for an example. Note that this can
be done becausg, > Ep by conditioning on the event8t andUS = {k, > k}. Then, the error

probability P"(C,, 5| B, Ur) in (72) can be upper bounded as

P (€ 5]BS, US) = P (Z/ D(Isi\n(i;l%n)le\n(i;Ep)) > 5d)3?nuﬁ> (77)
e
1 ~
=P" (d'ED(Pin(ifﬁn)Hp'ﬂ(i;EP)) > 5‘3%,11?,)
IS
<P" <Q3X{D(I5\i|n(i;ﬁﬁn)‘ple(i;EP))} ” 5‘33’113) 79
< 3 P (O, IFimose) > 32511 79
IS
< 3 (n+1)" exp( 1) = din+ )" exp(—nd). (80)
IS

where Equation (77) follows from the decomposition in (76). Equation {g1&ws from the fact
that if the arithmetic mean af positive numbers exceeds then the maximum exceeds Equa-
tion (79) follows from the union bound. Equation (80), which holds fonadl N, follows from the
upper bound in (73). Combining (72) and (80) shows thatif min{Kp,Lp},

lim sup} logP"(Cn5) < —0.
n—eo N '

Now recall thatén75 = {D(P*||P) > &d}. In order to complete the proof of (21), we need to swap
the arguments in the KL-divergence to bound the probability of the egnt= {D(P||P*) > &d}.

To this end, note that fog > 0 andn sufficiently large,|D(P*||P) — D(P||P*)| < € with high
probability since the two KL-divergences become cld3e P w.h.p. asn — «). More precisely,
the probability of{|D(P*||P) — D(P||P*)| > €} = {o(||P— P*||2) > €} decays exponentially with
some ratéMp > 0. Hence,

Iimsup%logP"(D(PH P*) > ad) < -3, (81)

n—seo

if < min{Kp,Lp,Mp}. If P is not Markov on a forest, (81) holds with the forest projectiom
place ofP, that is,

Iimsup%logP”(D(ﬁH P*) > &d) < 4. (82)

n—oo
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The Pythagorean relationship (Simon, 1973; Bach and Jordan, 20883 that
D(P||P*) = D(P||P) + D(P||P*) (83)

which means that the risk #&,(P*) = D(P|| P*). Combining this fact with (82) implies the assertion
of (21) by choosin@g := min{Kp,Lp,Mp}.

Now we exploit the lower bound in Lemma 14 to prove the lower bound in Thede The
error probabilityP"(C,, 5| Bf;, Uy;) in (72) can now be lower bounded by

P"(Cn5|BE, US) > max p" (D(Is'm(i;ékn) || PijisEp)) > 5d)33auﬁ> (84)
> exp(—n(dd +n)), (85)

where (84) follows from the decomposition in (77) and (85) holds forexefor sufficiently large
n by (74). Using the same argument that allows us to swap the arguments df tttiedfgence as
in the proof of the upper bound completes the proof of (22). [ |

Proof (of Lemma 1%Define thed-conditional-typical set with respect t«R € P(X?) as
83, = {0y € ()" : D(Ryy || Pxy) < 8},

where F?X‘Y is the conditional type ofx",y"). We now estimate th&; -probability of thed-
conditional-atypical set, that iﬁ’,QY((ngy)C)

Py ((82,,)°) = Z PRy (X" y") (86)
(x1,y"eX2:D(Pyy | Pk ) >0
= PRy (Tn(Qx.y)) (87)
Qx.y €Pn(X2):D(Qxy ||Pxjy) >0
< exp(—nD(Qx.v || Px.v)) (88)
Qx,y €Pn(X?):D(Qx v ||Pxy) >0
< exp(—nD(Qxy || Pxjv)) (89)
Qx,y €Pn(X2):D(Qx v [|Pxy)>d
< Z exp(—nod) (90)
Qx,y €Pn(X2):D(Qx v ||Pxy)>5
< (n+1)" exp(—nd), (91)

where (86) and (87) are the same because summing over sequenagigateat|to summing over
the corresponding type classes since every sequence in each typdadathe same probability
(Cover and Thomas, 2006, Ch. 11). Equation (88) follows from the rdettidypes result in
Lemma 12. Equation (89) follows from the KL-divergence version of thercrule, namely,

D(Qx.y [IPx.y) = D(Qxv || Pxy) + D(Qv || Ry)

and non-negativity of the KL-divergend®(Qy ||Ry). Equation (90) follows from the fact that
D(Qxyv || Pxjy) > & for Qxy € (S%w)c- Finally, (91) follows the fact that the number of types with

denominaton and alphabe? is upper bounded b§n + 1)r2. This concludes the proof of (73).
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We now prove the lower bound in (74). To this end, construct a seguehdistributions
{QY), € Pa(X?)}new such thaQl” = R, and D(Qg(']l,Hwa) — 3. Such a sequence exists by the
denseness of types in the probability simplex (Dembo and Zeitouni, 1998, Lemr2¢h}). Now
we lower bound (87):

PRy ((88,,)%) = PRy (Tn(Q%)) = (n+1)~" exp(—nD(QKY || Pxy))- 92)

Taking the normalized logarithm and liminf mon both sides of (92) yields

.1 _ ) (
lminf ~1ogPY v (83,.,)%) = liminf { ~D(QYY IPqy) —~ D(QY[IA) | = 3.

This concludes the proof of Lemma 14. |

Appendix H. Proof of Corollary 9

Proof If the dimensiond = o(exp(nd)), then the upper bound in (80) is asymptotically majorized
by poly(n)o(exp(na)) exp(—nd) = o(exp(nd) ) exp(—nd), which can be made arbitrarily small for
sufficiently large. Thus the probability tends to zeramas oo. |

Appendix |. Proof of Theorem 10

Proof In this proof, we drop the superscri@t) for all distributionsP for notational simplicity but
note thatd = d,,. We first claim thaD(P* || P) = Op(dlogd/n~Y). Note from (72) and (80) that by
takingd = (tlogd)/n*~Y (for anyt > 0),

1-y .
p" (dr:ogd D(P*||P) > T) <d(n+1)" exp(—tn'logd) +exp(—O(n)) = on(1).  (93)
Therefore, the scaled sequence of random variadﬁig%D(P* || P) is stochastically bounded (Ser-
fling, 1980) which proves the claif.

Now, we claim thatD(P||P*) = Op(dlogd/n!~Y). A simple calculation using Pinsker’s In-
equality and Lemma 6.3 in Csiazand Talata (2006) yields

D(Pxy||Pxy) < = D(Pxy || Pxy),

xlo

wherek := minyy Px v(X,y) andc = 2log2. Using this fact, we can use (73) to show that fonall
sufficiently large,

Py (D(Pxy || Py) > 8) < (n+1)" exp(—ndk /c),

that is, if the arguments in the KL-divergence in (73) are swapped, tleeexiionent is reduced by
a factor proportional te&. Using this fact and the assumption in (14) (uniformity of the minimum

18. In fact, we have in fact proven the stronger assertionigt || P) = op(dlogd/n'~Y) since the right-hand-side of
(93) converges to zero.
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entry in the pairwise joink > 0), we can replicate the proof of the result in (80) wdity c in place
of d giving
P"(D(P||P*) > &) < d(n+1)" exp(—ndk/c).

We then arrive at a similar result to (93) by takibig: (tlogd)/n*~Y. We conclude thab(P||P*) =
Op(dlogd/nt~Y). This completes the proof of the claim.

Equation (23) then follows from the definition of the risk in (19) and fromPRlyéhagorean the-
orem in (83). This implies the assertion of Theorem 10. |
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