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Abstract

The problem of learning forest-structured discrete graphical models from i.i.d. samples is con-
sidered. An algorithm based on pruning of the Chow-Liu tree through adaptive thresholding is
proposed. It is shown that this algorithm is both structurally consistent and risk consistent and the
error probability of structure learning decays faster thanany polynomial in the number of samples
under fixed model size. For the high-dimensional scenario where the size of the modeld and the
number of edgesk scale with the number of samplesn, sufficient conditions on(n,d,k) are given
for the algorithm to satisfy structural and risk consistencies. In addition, the extremal structures
for learning are identified; we prove that the independent (resp., tree) model is the hardest (resp.,
easiest) to learn using the proposed algorithm in terms of error rates for structure learning.

Keywords: graphical models, forest distributions, structural consistency, risk consistency, method
of types

1. Introduction

Graphical models (also known as Markov random fields) have a wide range of applications in di-
verse fields such as signal processing, coding theory and bioinformatics. See Lauritzen (1996),
Wainwright and Jordan (2003) and references therein for examples.Inferring the structure and pa-
rameters of graphical models from samples is a starting point in all these applications. The structure
of the model provides a quantitative interpretation of relationships amongst thegiven collection of
random variables by specifying a set of conditional independence relationships. The parameters of
the model quantify the strength of these interactions among the variables.
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The challenge in learning graphical models is often compounded by the factthat typically only
a small number of samples are available relative to the size of the model (dimension of data). This
is referred to as the high-dimensional learning regime, which differs fromclassical statistics where
a large number of samples of fixed dimensionality are available. As a concreteexample, in order
to analyze the effect of environmental and genetic factors on childhood asthma, clinician scientists
in Manchester, UK have been conducting a longitudinal birth-cohort study since 1997 (Custovic
et al., 2002; Simpson et al., 2010). The number of variables collected is of the order ofd ≈ 106

(dominated by the genetic data) but the number of children in the study is small (n ≈ 103). The
paucity of subjects in the study is due in part to the prohibitive cost of collecting high-quality
clinical data from willing participants.

In order to learn high-dimensional graphical models, it is imperative to strikethe right balance
between data fidelity and overfitting. To ameliorate the effect of overfitting, the samples are often
fitted to asparse graphical model(Wainwright and Jordan, 2003), with a small number of edges.
One popular and tractable class of sparse graphical models is the set of tree1 models. When re-
stricted to trees, the Chow-Liu algorithm (Chow and Liu, 1968; Chow and Wagner, 1973) provides
an efficient implementation of the maximum-likelihood (ML) procedure to learn the structure from
independent samples. However, in the high-dimensional regime, even a tree may overfit the data
(Liu et al., 2011). In this paper, we consider learning high-dimensional, forest-structured (discrete)
graphical models from a given set of samples.

For learning the forest structure, the ML (Chow-Liu) algorithm does notproduce a consistent
estimate since ML favors richer model classes and hence, outputs a tree in general. We propose a
consistent algorithm calledCLThres, which has a thresholding mechanism to prune “weak” edges
from the Chow-Liu tree. We provide tight bounds on theoverestimationandunderestimationerrors,
that is, the error probability that the output of the algorithm has more or fewer edges than the true
model.

1.1 Main Contributions

This paper contains three main contributions. Firstly, we propose an algorithm namedCLThres and
prove that it is structurally consistent when the true distribution is forest-structured. Secondly, we
prove thatCLThres is risk consistent, meaning that the risk under the estimated model converges
to the risk of theforest projection2 of the underlying distribution, which may not be a forest. We
also provide precise convergence rates for structural and risk consistencies. Thirdly, we provide
conditions for the consistency ofCLThres in the high-dimensional setting.

We first prove thatCLThres is structurally consistent, i.e., as the number of samples grows for
a fixed model size, the probability of learning the incorrect structure (setof edges), decays to zero
for a fixed model size. We show that the error rate is in fact, dominated by therate of decay of the
overestimation error probability.3 We use an information-theoretic technique known as themethod
of types(Cover and Thomas, 2006, Ch. 11) as well as a recently-developed technique known as
Euclidean information theory (Borade and Zheng, 2008). We provide anupper bound on the error
probability by using convex duality to find a surprising connection between the overestimation error

1. A tree is aconnected, acyclic graph. We use the termproper forestto denote the set ofdisconnected, acyclic graphs.
2. The forest projection is the forest-structured graphical model thatis closest in the KL-divergence sense to the true

distribution. We define this distribution formally in (12).
3. The overestimation error probability is the probability that the number of edges learned exceeds the true number of

edges. The underestimation error is defined analogously.
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rate and a semidefinite program (Vandenberghe and Boyd, 1996) and show that the overestimation
error in structure learning decays faster than any polynomial inn for a fixed data dimensiond.

We then consider the high-dimensional scenario and provide sufficient conditions on the growth
of (n,d) (and also the true number of edgesk) to ensure thatCLThres is structurally consistent.
We prove that even ifd grows faster than any polynomial inn (and in fact close to exponential in
n), structure estimation remains consistent. As a corollary from our analyses, we also show that
for CLThres, independent models (resp., tree models) are the “hardest” (resp., “easiest”) to learn in
the sense that the asymptotic error rate is the highest (resp., lowest), overall models with the same
scaling of(n,d). Thus, the empty graph and connected trees are the extremal forest structures for
learning. We also prove thatCLThres is risk consistent, i.e., the risk of the estimated forest distribu-
tion converges to the risk of the forest projection of the true model at a rateof Op(d logd/n1−γ) for
anyγ > 0. We compare and contrast this rate to existing results such as Liu et al. (2011). Note that
for this result, the true probability model does not need to be a forest-structured distribution. Finally,
we useCLThres to learn forest-structured distributions given synthetic and real-world data sets and
show that in the finite-sample case, there exists an inevitable trade-off between the underestimation
and overestimation errors.

1.2 Related Work

There are many papers that discuss the learning of graphical models from data. See Dudik et al.
(2004), Lee et al. (2006), Abbeel et al. (2006), Wainwright et al. (2006), Meinshausen and Buehlmann
(2006), Johnson et al. (2007), and references therein. Most of these methods pose the learning prob-
lem as a parameterized convex optimization problem, typically with a regularizationterm to enforce
sparsity in the learned graph. Consistency guarantees in terms ofn andd (and possibly the max-
imum degree) are provided. Information-theoretic limits for learning graphical models have also
been derived in Santhanam and Wainwright (2008). In Zuk et al. (2006), bounds on the error rate
for learning the structure of Bayesian networks using the Bayesian Information Criterion (BIC)
were provided. Bach and Jordan (2003) learned tree-structured models for solving the indepen-
dent component analysis (ICA) problem. A PAC analysis for learning thin junction trees was given
in Chechetka and Guestrin (2007). Meilă and Jordan (2000) discussed the learning of graphical
models from a different perspective; namely that of learning mixtures of trees via an expectation-
maximization procedure.

By using the theory of large-deviations (Dembo and Zeitouni, 1998; Den Hollander, 2000),
we derived and analyzed the error exponent for learning trees for discrete (Tan et al., 2011) and
Gaussian (Tan et al., 2010a) graphical models. The error exponent isa quantitative measure of
performance of the learning algorithm since a larger exponent implies a faster decay of the error
probability. However, the analysis does not readily extend to learning forest models and furthermore
it was for the scenario when number of variablesd does not grow with the number of samplesn. In
addition, we also posed the structure learning problem for trees as a composite hypothesis testing
problem (Tan et al., 2010b) and derived a closed-form expression for the Chernoff-Stein exponent
in terms of the mutual information on the bottleneck edge.

In a paper that is closely related to ours, Liu et al. (2011) derived consistency (and sparsistency)
guarantees for learning tree and forest models. The pairwise joint distributions are modeled using
kernel density estimates, where the kernels are Hölder continuous. This differs from our approach
since we assume that each variable can only take finitely many values, leadingto stronger results on
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error rates for structure learning via the method of types, a powerful proof technique in information
theory and statistics. We compare our convergence rates to these related works in Section 6. Further-
more, the algorithm suggested in both papers uses a subset (usually half)of the data set to learn the
full tree model and then uses the remaining subset to prune the model basedon the log-likelihood on
the held-out set. We suggest a more direct and consistent method based on thresholding, which uses
the entire data set to learn and prune the model without recourse to validation on a held-out data
set. It is well known that validation is both computationally expensive (Bishop, 2008, pp. 33) and a
potential waste of valuable data which may otherwise be employed to learn a better model. In Liu
et al. (2011), the problem of estimating forests with restricted component sizes was considered and
was proven to be NP-hard. We do not restrict the component size in this paper but instead attempt
to learn the model with the minimum number of edges which best fits the data.

Our work is also related to and inspired by the vast body of literature in information theory and
statistics on Markov order estimation. In these works, the authors use various regularization and
model selection schemes to find the optimal order of a Markov chain (Merhavet al., 1989; Finesso
et al., 1996; Csisźar and Shields, 2000), hidden Markov model (Gassiat and Boucheron, 2003)
or exponential family (Merhav, 1989). We build on some of these ideas andproof techniques to
identify the correct set of edges (and in particular the number of edges)in the forest model and also
to provide strong theoretical guarantees of the rate of convergence ofthe estimated forest-structured
distribution to the true one.

1.3 Organization of Paper

This paper is organized as follows: We define the mathematical notation and formally state the prob-
lem in Section 2. In Section 3, we describe the algorithm in full detail, highlightingits most salient
aspect—the thresholding step. We state our main results on error rates for structure learning in Sec-
tion 4 for a fixed forest-structured distribution. We extend these results to the high-dimensional case
when(n,d,k) scale in Section 5. Extensions to rates of convergence of the estimated distribution,
that is, the order of risk consistency, are discussed briefly in Section 6.Numerical simulations on
synthetic and real data are presented in Section 7. Finally, we conclude thediscussion in Section 8.
The proofs of the majority of the results are provided in the appendices.

2. Preliminaries and Problem Formulation

Let G= (V,E) be an undirected graph with vertex (or node) setV := {1, . . . ,d} and edge setE ⊂
(V

2

)

and let nbd(i) := { j ∈V : (i, j) ∈ E} be the set of neighbors of vertexi. Let the set of labeledtrees
(connected, acyclic graphs) withd nodes beTd and let the set offorests(acyclic graphs) withk
edges andd nodes beTd

k for 0 ≤ k ≤ d−1. The set of forests includes all the trees. We reserve
the termproper forestsfor the set of disconnected acylic graphs∪d−2

k=0T
d
k . We also use the notation

Fd := ∪d−1
k=0T

d
k to denote the set of labeled forests withd nodes.

A graphical model(Lauritzen, 1996) is a family of multivariate probability distributions (prob-
ability mass functions) in which each distribution factorizes according to a given undirected graph
and where each variable is associated to a node in the graph. LetX= {1, . . . , r} (where 2≤ r < ∞)
be a finite set andXd the d-fold Cartesian product of the setX. As usual, letP(Xd) denote the
probability simplex over the alphabetXd. We say that the random vectorX = (X1, . . . ,Xd) with
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distributionQ∈ P(Xd) is Markov onthe graphG= (V,E) if

Q(xi |xnbd(i)) = Q(xi |xV\i), ∀ i ∈V, (1)

wherexV\i is the collection of variables excluding variablei. Equation (1) is known as thelocal
Markov property(Lauritzen, 1996). In this paper, we always assume that graphs areminimal rep-
resentationsfor the corresponding graphical model, that is, ifQ is Markov onG, thenG has the
smallest number of edges for the conditional independence relations in (1)to hold. We say the
distributionQ is a forest-structured distributionif it is Markov on a forest. We also use the nota-
tion D(Td

k ) ⊂ P(Xd) to denote the set ofd-variate distributions Markov on a forest withk edges.
Similarly,D(Fd) is the set of forest-structured distributions.

Let P ∈ D(Td
k ) be a discrete forest-structured distribution Markov onTP = (V,EP) ∈ Td

k (for
somek = 0, . . . ,d− 1). It is known that the joint distributionP factorizes as follows (Lauritzen,
1996; Wainwright and Jordan, 2003):

P(x) = ∏
i∈V

Pi(xi) ∏
(i, j)∈EP

Pi, j(xi ,x j)

Pi(xi)Pj(x j)
,

where{Pi}i∈V and{Pi, j}(i, j)∈EP
are the node and pairwise marginals which are assumed to be posi-

tive everywhere.
The mutual information (MI) of two random variablesXi andXj with joint distributionPi, j is

the functionI(·) : P(X2)→ [0, logr] defined as

I(Pi, j) := ∑
(xi ,x j )∈X2

Pi, j(xi ,x j) log
Pi, j(xi ,x j)

Pi(xi)Pj(x j)
. (2)

This notation for mutual information differs from the usualI(Xi ;Xj) used in Cover and Thomas
(2006); we emphasize the dependence ofI on the joint distributionPi, j . The minimum mutual
information in the forest, denoted asImin := min(i, j)∈EP

I(Pi, j) will turn out to be a fundamental
quantity in the subsequent analysis. Note from our minimality assumption thatImin > 0 since all
edges in the forest have positive mutual information (none of the edges are degenerate). When we
consider the scenario whered grows withn in Section 5, we assume thatImin is uniformlybounded
away from zero.

2.1 Problem Statement

We now state the basic problem formally. We are given a set of i.i.d. samples, denoted asxn :=
{x1, . . . ,xn}. Each samplexl = (xl ,1, . . . ,xl ,d)∈Xd is drawn independently fromP∈D(Td

k ) a forest-
structured distribution. From these samples, and the prior knowledge that the undirected graph
is acyclic (but not necessarily connected), estimate the true set of edgesEP as well as the true
distributionP consistently.

3. The Forest Learning Algorithm: CLThres

We now describe our algorithm for estimating the edge setEP and the distributionP. This algorithm
is a modification of the celebrated Chow-Liu algorithm for maximum-likelihood (ML)learning of
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tree-structured distributions (Chow and Liu, 1968). We call our algorithmCLThres which stands
for Chow-Liu with Thresholding.

The inputs to the algorithm are the set of samplesxn and aregularizationsequence{εn}n∈N (to
be specified precisely later) that typically decays to zero, that is, limn→∞ εn = 0. The outputs are the
estimated edge set, denotedÊk̂n

, and the estimated distribution, denotedP∗.

1. Givenxn, calculate the set ofpairwise empirical distributions4 (or pairwise types) {P̂i, j}i, j∈V .
This is just a normalized version of the counts of each observed symbol inX2 and serves as a
set of sufficient statistics for the estimation problem. The dependence ofP̂i, j on the samples
xn is suppressed.

2. Form the set ofempirical mutual informationquantities:

I(P̂i, j) := ∑
(xi ,x j )∈X2

P̂i, j(xi ,x j) log
P̂i, j(xi ,x j)

P̂i(xi)P̂j(x j)
,

for 1≤ i, j ≤ d. This is a consistent estimator of the true mutual information in (2).

3. Run a max-weight spanning tree (MWST) algorithm (Prim, 1957; Kruskal, 1956) to obtain
an estimate of the edge set:

Êd−1 := argmax
E:T=(V,E)∈Td

∑
(i, j)∈E

I(P̂i, j).

Let the estimated edge set bêEd−1 := {ê1, . . . , êd−1} where the edgeŝei are sorted accord-
ing to decreasing empirical mutual information values. We index the edge set by d− 1 to
emphasize that it hasd− 1 edges and hence is connected. We denote the sorted empirical
mutual information quantities asI(P̂̂e1)≥ . . .≥ I(P̂̂ed−1). These first three steps constitute the
Chow-Liu algorithm (Chow and Liu, 1968).

4. Estimate the true number of edges using thethresholding estimator:

k̂n := argmin
1≤ j≤d−1

{
I(P̂̂ej ) : I(P̂̂ej )≥ εn, I(P̂̂ej+1)≤ εn

}
. (3)

If there exists an empirical mutual informationI(P̂̂ej ) such thatI(P̂̂ej ) = εn, break the tie
arbitrarily.5

5. Prune the tree by retaining only the topk̂n edges, that is, define theestimated edge setof the
forest to be

Êk̂n
:= {ê1, . . . , ê̂kn

},

where{êi : 1 ≤ i ≤ d− 1} is the ordered edge set defined in Step 3. Define the estimated
forest to bêT̂kn

:= (V, Êk̂n
).

4. In this paper, the termsempirical distributionandtypeare used interchangeably.
5. Here were allow a bit of imprecision by noting that the non-strict inequalities in (3) simplify the subsequent analyses

because the constraint sets that appear in optimization problems will be closed, hence compact, insuring the existence
of optimizers.

1622



LEARNING HIGH-DIMENSIONAL MARKOV FORESTDISTRIBUTIONS

6. Finally, define the estimated distributionP∗ to be thereverse I-projection(Csisźar and Mat́uš,
2003) of the joint typêP onto T̂̂kn

, that is,

P∗(x) := argmin
Q∈D(T̂̂kn

)

D(P̂||Q).

It can easily be shown that the projection can be expressed in terms of the marginal and
pairwise joint types:

P∗(x) = ∏
i∈V

P̂i(xi) ∏
(i, j)∈Êk̂n

P̂i, j(xi ,x j)

P̂i(xi)P̂j(x j)
.

Intuitively, CLThres first constructs a connected tree(V, Êd−1) via Chow-Liu (in Steps 1–3) before
pruning the weak edges (with small mutual information) to obtain the final structure Êk̂n

. The
estimated distributionP∗ is simply the ML estimate of the parameters subject to the constraint that
P∗ is Markov on the learned treêT̂kn

.

Note that if Step 4 is omitted and̂kn is defined to bed−1, thenCLThres simply reduces to the
Chow-Liu ML algorithm. Of course Chow-Liu, which outputs a tree, is guaranteed to fail (not be
structurally consistent) if the number of edges in the true modelk< d−1, which is the problem of
interest in this paper. Thus, Step 4, a model selection step, is essential in estimating the true number
of edgesk. This step is a generalization of the test for independence of discrete memoryless sources
discussed in Merhav (1989). In our work, we exploit the fact that the empirical mutual information
I(P̂̂ej ) corresponding to a pair of independent variablesêj will be very small whenn is large, thus a
thresholding procedure using the (appropriately chosen) regularization sequence{εn} will remove
these edges. In fact, the subsequent analysis allows us to conclude thatStep 4, in a formal sense,
dominatesthe error probability in structure learning.CLThres is also efficient as shown by the
following result.

Proposition 1 (Complexity of CLThres) CLThres runs in time O((n+ logd)d2).

Proof The computation of the sufficient statistics in Steps 1 and 2 requiresO(nd2) operations. The
MWST algorithm in Step 3 requires at mostO(d2 logd) operations (Prim, 1957). Steps 4 and 5
simply require the sorting of the empirical mutual information quantities on the learned tree which
only requiresO(logd) computations.

4. Structural Consistency For Fixed Model Size

In this section, we keepd andk fixed and consider a probability modelP, which is assumed to be
Markov on a forest inTd

k . This is to gain better insight into the problem before we analyze the high-
dimensional scenario in Section 5 whered andk scale6 with the sample sizen. More precisely, we
are interested in quantifying the rate at which the probability of the error event of structure learning

An :=
{

xn ∈ (Xd)n : Êk̂n
(xn) 6= EP

}
(4)

6. In that caseP must also scale, that is, we learn afamily of models asd andk scale.
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decays to zero asn tends to infinity. Recall that̂Ek̂n
, with cardinality k̂n, is the learned edge set

by usingCLThres. As usual,Pn is the n-fold product probability measure corresponding to the
forest-structured distributionP.

Before stating the main result of this section in Theorem 3, we first state an auxiliary result
that essentially says that if one is provided with oracle knowledge ofImin, the minimum mutual
information in the forest, then the problem is greatly simplified.

Proposition 2 (Error Rate with knowledge of Imin) Assume that Imin is known inCLThres. Then
by letting the regularization sequence beεn = Imin/2 for all n, we have

lim
n→∞

1
n

logPn(An)< 0, (5)

that is, the error probability decays exponentially fast.

The proof of this theorem and all other results in the sequel can be foundin the appendices.
Thus, the primary difficulty lies in estimatingImin or equivalently, the number of edgesk. Note

that if k is known, a simple modification to the Chow-Liu procedure by imposing the constraint
that the final structure containsk edges will also yield exponential decay as in (5). However, in the
realistic case where bothImin andk are unknown, we show in the rest of this section that we can
design the regularization sequenceεn in such a way that the rate of decay ofPn(An) decays almost
exponentially fast.

4.1 Error Rate for Forest Structure Learning

We now state one of the main results in this paper. We emphasize that the followingresult is stated
for a fixed forest-structured distributionP∈D(Td

k ) sod andk are also fixed natural numbers.

Theorem 3 (Error Rate for Structure Learning) Assume that the regularization sequence{εn}n∈N

satisfies the following two conditions:

lim
n→∞

εn = 0, lim
n→∞

nεn

logn
= ∞. (6)

Then, if the true model TP = (V,EP) is a proper forest (k< d−1), there exists a constant CP ∈ (1,∞)
such that

−CP ≤ liminf
n→∞

1
nεn

logPn(An) (7)

≤ limsup
n→∞

1
nεn

logPn(An)≤−1. (8)

Finally, if the true model TP = (V,EP) is a tree (k= d−1), then

lim
n→∞

1
n

logPn(An)< 0, (9)

that is, the error probability decays exponentially fast.
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-

6

n

Imin

εn = ω( logn
n )

I(Q̂n
i, j)≈

1
n

N

Figure 1: Graphical interpretation of the condition onεn. As n→ ∞, the regularization sequenceεn

will be smaller thanImin and larger thanI(Q̂n
i, j) with high probability.

4.2 Interpretation of Result

From (8), the rate of decay of the error probability for proper forestsis subexponential but nonethe-
less can be made faster than any polynomial for an appropriate choice ofεn. The reason for the
subexponential rate is because of our lack of knowledge ofImin, the minimum mutual information
in the true forestTP. For trees, the rate7 is exponential (

.
= exp(−nF) for some positive constantF).

Learning proper forests is thus, strictly “harder” than learning trees. The condition onεn in (6) is
needed for the following intuitive reasons:

1. Firstly, (6) ensures that for all sufficiently largen, we haveεn < Imin. Thus, the true edges
will be correctly identified byCLThres implying that with high probability, there will not be
underestimation asn→ ∞.

2. Secondly, for two independent random variablesXi and Xj with distribution Qi, j = QiQ j ,
the sequence8 σ(I(Q̂n

i, j)) = Θ(1/n), whereQ̂n
i, j is the joint empirical distribution ofn i.i.d.

samples drawn fromQi, j . Since the regularization sequenceεn = ω(logn/n) has a slower
rate of decay thanσ(I(Q̂n

i, j)), εn > I(Q̂n
i, j) with high probability asn→ ∞. Thus, with high

probability there will not be overestimation asn→ ∞.

See Figure 1 for an illustration of this intuition. The formal proof follows froma method of types
argument and we provide an outline in Section 4.3. A convenient choice ofεn that satisfies (6) is

εn := n−β, ∀β ∈ (0,1). (10)

Note further that the upper bound in (8) is also independent ofP since it is equal to−1 for
all P. Thus, (8) is auniversalresult for all forest distributionsP ∈ D(Fd). The intuition for this

7. We use the asymptotic notation from information theory
.
= to denote equality to first order in the exponent. More

precisely, for two positive sequences{an}n∈N and{bn}n∈N we say thatan
.
= bn iff lim n→∞ n−1 log(an/bn) = 0.

8. The notationσ(Z) denotes the standard deviation of the random variableZ. The fact that the standard deviation of
the empirical MIσ(I(Q̂n

i, j )) decays as 1/n can be verified by Taylor expandingI(Q̂n
i, j ) aroundQi, j = QiQ j and using

the fact that the ML estimate converges at a rate ofn−1/2 (Serfling, 1980).
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universality is because in the large-n regime, the typical way an error occurs is due to overestimation.
The overestimation error results from testing whether pairs of random variables are independent and
our asymptotic bound for the error probability of this test does not dependon the true distribution
P.

The lower boundCP in (7), defined in the proof in Appendix B, means that we cannot hope to
do much better usingCLThres if the original structure (edge set) is a proper forest. Together, (7)
and (8) imply that the rate of decay of the error probability for structure learning is tight to within
a constant factor in the exponent. We believe that the error rates given inTheorem 3 cannot, in
general, be improved without knowledge ofImin. We state a converse (a necessary lower bound
on sample complexity) in Theorem 7 by treating the unknown forest graph asa uniform random
variable over all possible forests of fixed size.

4.3 Proof Idea

The method of proof for Theorem 3 involves using the Gallager-Fano bounding technique (Fano,
1961, pp. 24) and the union bound to decompose the overall error probability Pn(An) into three
distinct terms: (i) the rate of decay of the error probability for learning the top k edges (in terms of
the mutual information quantities) correctly—known as theChow-Liu error, (ii) the rate of decay of
theoverestimation error{k̂n > k} and (iii) the rate of decay of theunderestimation error{k̂n < k}.
Each of these terms is upper bounded using a method of types (Cover and Thomas, 2006, Ch.
11) argument. It turns out, as is the case with the literature on Markov orderestimation (e.g.,
Finesso et al., 1996), that bounding the overestimation error poses the greatest challenge. Indeed,
we show that the underestimation and Chow-Liu errors have exponential decay inn. However, the
overestimation error has subexponential decay (≈ exp(−nεn)).

The main technique used to analyze the overestimation error relies onEuclidean information
theory(Borade and Zheng, 2008) which states that if two distributionsν0 andν1 (both supported on
a common finite alphabetY) are close entry-wise, then various information-theoretic measures can
be approximated locally by quantities related to Euclidean norms. For example, the KL-divergence
D(ν0 ||ν1) can be approximated by the square of a weighted Euclidean norm:

D(ν0 ||ν1) =
1
2 ∑

a∈Y

(ν0(a)−ν1(a))2

ν0(a)
+o(‖ν0−ν1‖

2
∞). (11)

Note that ifν0 ≈ ν1, thenD(ν0 ||ν1) is close to the sum in (11) and theo(‖ν0−ν1‖
2
∞) term can be

neglected. Using this approximation and Lagrangian duality (Bertsekas, 1999), we reduce a non-
convex I-projection (Csisźar and Mat́uš, 2003) problem involving information-theoretic quantities
(such as divergence) to a relatively simplesemidefinite program(Vandenberghe and Boyd, 1996)
which admits a closed-form solution. Furthermore, the approximation in (11) becomesexactas
n→ ∞ (i.e.,εn → 0), which is the asymptotic regime of interest. The full details of the proof can be
found Appendix B.

4.4 Error Rate for Learning the Forest Projection

In our discussion thus far,P has been assumed to be Markov on a forest. In this subsection, we
consider the situation when the underlying unknown distributionP is not forest-structured but we
wish to learn its best forest approximation. To this end, we define the projection of P onto the set of
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forests (orforest projection) to be

P̃ := argmin
Q∈D(Fd)

D(P||Q). (12)

If there are multiple optimizing distribution, choose a projectionP̃ that is minimal, that is, its graph
TP̃ = (V,EP̃) has thefewest number of edgessuch that (12) holds. If we redefine the eventAn in (4)

to beÃn := {Êk̂n
6= EP̃}, we have the following analogue of Theorem 3.

Corollary 4 (Error Rate for Learning Forest Projection) Let P be an arbitrary distribution and
the eventÃn be defined as above. Then the conclusions in(7)–(9) in Theorem 3 hold if the regular-
ization sequence{εn}n∈N satisfies(6).

5. High-Dimensional Structural Consistency

In the previous section, we considered learning a fixed forest-structured distributionP (and hence
fixed d and k) and derived bounds on the error rate for structure learning. However, for most
problems of practical interest, the number of data samples is small compared to the data dimension
d (see the asthma example in the introduction). In this section, we prove sufficient conditions on
the scaling of(n,d,k) for structure learning to remain consistent. We will see that even ifd and
k are much larger thann, under some reasonable regularity conditions, structure learning remains
consistent.

5.1 Structure Scaling Law

To pose the learning problem formally, we consider asequenceof structure learning problems in-
dexed by the number of data pointsn. For the particular problem indexed byn, we have a data set
xn = (x1, . . . ,xn) of sizen where each samplexl ∈ Xd is drawn independently from an unknown
d-variate forest-structured distributionP(d) ∈D(Td

k ), which hasd nodes andk edges and whered
andk depend onn. Thishigh-dimensionalsetup allows us to model and subsequently analyze how
d andk can scale withn while maintaining consistency. We will sometimes make the dependence
of d andk onn explicit, that is,d = dn andk= kn.

In order to be able to learn the structure of the models we assume that

(A1) Iinf := inf
d∈N

min
(i, j)∈E

P(d)

I(P(d)
i, j )> 0, (13)

(A2) κ := inf
d∈N

min
xi ,x j∈X

P(d)
i, j (xi ,x j)> 0. (14)

That is, assumptions (A1) and (A2) insure that there existsuniform lower bounds on the minimum
mutual information and the minimum entry in the pairwise probabilities in the forest models as
the size of the graph grows. These are typical regularity assumptions forthe high-dimensional
setting. See Wainwright et al. (2006) and Meinshausen and Buehlmann (2006) for example. We
again emphasize that the proposed learning algorithmCLThres has knowledge of neitherIinf nor
κ. Equipped with (A1) and (A2) and assuming the asymptotic behavior ofεn in (6), we claim the
following theorem forCLThres.
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Theorem 5 (Structure Scaling Law) There exists two finite, positive constants C1,C2 such that if

n> max
{
(2log(d−k))1+ζ,C1 logd,C2 logk

}
, (15)

for anyζ > 0, then the error probability of incorrectly learning the sequence of edge sets{EP(d)}d∈N

tends to zero as(n,d,k) → ∞. When the sequence of forests are trees, n> C logd (where C:=
max{C1,C2}) suffices for high-dimensional structure recovery.

Thus, if the model parameters(n,d,k) all grow withn butd = o(exp(n/C1)), k= o(exp(n/C2))
andd−k= o(exp(n1−β/2)) (for all β > 0), consistent structure recovery is possible in high dimen-
sions. In other words, the number of nodesd can grow faster than any polynomial in the sample
sizen. In Liu et al. (2011), the bivariate densities are modeled by functions from a Hölder class
with exponentα and it was mentioned (in Theorem 4.3) that the number of variables can grow
like o(exp(nα/(1+α))) for structural consistency. Our result is somewhat stronger but we model the
pairwise joint distributions as (simpler) probability mass functions (the alphabet X is a finite set).

5.2 Extremal Forest Structures

In this subsection, we study the extremal structures for learning, that is, the structures that, roughly
speaking, lead to the largest and smallest error probabilities for structurelearning. Define the se-
quence

hn(P) :=
1

nεn
logPn(An), ∀n∈ N. (16)

Note thathn is a function of both the number of variablesd = dn and the number of edgesk= kn in
the modelsP(d) since it is a sequence indexed byn. In the next result, we assume(n,d,k) satisfies the
scaling law in (15) and answer the following question: How doeshn in (16) depend on the number
of edgeskn for a givendn? LetP(d)

1 andP(d)
2 be two sequences of forest-structured distributions with

a common number of nodesdn and number of edgeskn(P
(d)
1 ) andkn(P

(d)
2 ) respectively.

Corollary 6 (Extremal Forests) Assume thatCLThres is employed as the forest learning algo-

rithm. As n→ ∞, hn(P
(d)
1 ) ≤ hn(P

(d)
2 ) whenever kn(P

(d)
1 ) ≥ kn(P

(d)
2 ) implying that hn is maximized

when P(d) are product distributions (i.e., kn = 0) and minimized when P(d) are tree-structured dis-

tributions (i.e., kn = dn−1). Furthermore, if kn(P
(d)
1 ) = kn(P

(d)
2 ), then hn(P

(d)
1 ) = hn(P

(d)
2 ).

Note that the corollary is intimately tied to the proposed algorithmCLThres. We are not claiming
that such a result holds for all other forest learning algorithms. The intuitionfor this result is the
following: We recall from the discussion after Theorem 3 that the overestimation error dominates
the probability of error for structure learning. Thus, the performance of CLThres degrades with
the number of missing edges. If there are very few edges (i.e.,kn is very small relative todn), the
CLThres estimator is more likely to overestimate the number of edges as compared to if there are
many edges (i.e.,kn/dn is close to 1). We conclude that a distribution which is Markov on anempty
graph (all variables are independent) is thehardestto learn (in the sense of Corollary 6 above).
Conversely,treesare theeasieststructures to learn.

5.3 Lower Bounds on Sample Complexity

Thus far, our results are for a specific algorithmCLThres for learning the structure of Markov forest
distributions. At this juncture, it is natural to ask whether the scaling laws in Theorem 5 are the best
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possible over all algorithms (estimators). To answer this question, we limit ourselves to the scenario
where the true graphTP is a uniformly distributed chance variable9 with probability measureP.
Assume two different scenarios:

(a) TP is drawn from the uniform distribution onTd
k , that is,P(TP = t) = 1/|Td

k | for all forests
t ∈ Td

k . Recall thatTd
k is the set of labeled forests withd nodes andk edges.

(b) TP is drawn from the uniform distribution onFd, that is,P(TP = t) = 1/|Fd| for all forests
t ∈ Fd. Recall thatFd is the set of labeled forests withd nodes.

This following result is inspired by Theorem 1 in Bresler et al. (2008). Note that anestimatoror
algorithm T̂d is simply a map from the set of samples(Xd)n to a set of graphs (eitherTd

k or Fd).
We emphasize that the following result is stated with the assumption that we areaveragingover the
random choice of the true graphTP.

Theorem 7 (Lower Bounds on Sample Complexity) Letρ < 1 and r := |X|. In case (a) above, if

n< ρ
(k−1) logd

d logr
, (17)

thenP(T̂d 6= TP)→ 1 for any estimator̂Td : (Xd)n → Td
k . Alternatively, in case (b), if

n< ρ
logd
logr

, (18)

thenP(T̂d 6= TP)→ 1 for any estimator̂Td : (Xd)n → Fd.

This result, astrong converse, states thatn = Ω( k
d logd) is necessaryfor any estimator with

oracle knowledge ofk to succeed. Thus, we need at least logarithmically many samples ind if
the fractionk/d is kept constant as the graph size grows even ifk is known preciselyand does not
have to be estimated. Interestingly, (17) says that ifk is large, then we need more samples. This is
because there are fewer forests with a small number of edges as compared to forests with a large
number of edges. In contrast, the performance ofCLThres degrades whenk is small because it is
more sensitive to the overestimation error. Moreover, if the estimator does not know k, then (18)
says thatn = Ω(logd) is necessaryfor successful recovery. We conclude that the set of scaling
requirements prescribed in Theorem 5 is almost optimal. In fact, if the true structureTP is a tree,
then Theorem 7 forCLThres says that the (achievability) scaling laws in Theorem 5 are indeed
optimal (up to constant factors in theO and Ω-notation) sincen > (2log(d− k))1+ζ in (15) is
trivially satisfied. Note that ifTP is a tree, then the Chow-Liu ML procedure orCLThres results in
the sample complexityn= O(logd) (see Theorem 5).

6. Risk Consistency

In this section, we develop results for risk consistency to study how fast the parameters of the
estimated distribution converge to their true values. For this purpose, we define therisk of the
estimated distributionP∗ (with respect to the true probability modelP) as

Rn(P
∗) := D(P||P∗)−D(P|| P̃), (19)

9. The termchance variable, attributed to Gallager (2001), describes random quantitiesY : Ω →W that take on values
in arbitrary alphabetsW. In contrast, a random variableX maps the sample spaceΩ to the realsR.
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whereP̃ is the forest projection ofP defined in (12). Note that the original probability modelP does
not need to be a forest-structured distribution in the definition of the risk. Indeed, ifP is Markov on
a forest, (19) reduces toRn(P∗) = D(P||P∗) since the second term is zero. We quantify the rate of
decay of the risk when the number of samplesn tends to infinity. Forδ > 0, we define the event

Cn,δ :=

{
xn ∈ (Xd)n :

Rn(P∗)

d
> δ
}
. (20)

That is,Cn,δ is the event that theaverage riskRn(P∗)/d exceeds some constantδ. We say that the
estimatorP∗ (or an algorithm) isδ-risk consistentif the probability ofCn,δ tends to zero asn→ ∞.
Intuitively, achievingδ-risk consistency is easier than achieving structural consistency since the
learned modelP∗ can be close to the true forest-projectionP̃ in the KL-divergence sense even if
their structures differ.

In order to quantify the rate of decay of the risk in (19), we need to definesome stochastic order
notation. We say that a sequence of random variablesYn = Op(gn) (for some deterministic positive
sequence{gn}) if for everyε > 0, there exists aB= Bε > 0 such that limsupn→∞ Pr(|Yn|> Bgn)< ε.
Thus, Pr(|Yn|> Bgn)≥ ε holds for only finitely manyn.

We say that a reconstruction algorithm hasrisk consistency of order(or rate) gn if Rn(P∗) =
Op(gn). The definition of the order of risk consistency involves the true modelP. Intuitively, we
expect that asn→ ∞, the estimated distributionP∗ converges to the projectioñP soRn(P∗)→ 0 in
probability.

6.1 Error Exponent for Risk Consistency

In this subsection, we consider a fixed distributionP and state consistency results in terms of the
eventCn,δ. Consequently, the model sized and the number of edgesk are fixed. This lends in-
sight into deriving results for the order of the risk consistency and provides intuition for the high-
dimensional scenario in Section 6.2.

Theorem 8 (Error Exponent for δ-Risk Consistency) For CLThres, there exists a constantδ0 >
0 such that for all0< δ < δ0,

limsup
n→∞

1
n

logPn(Cn,δ)≤−δ. (21)

The corresponding lower bound is

liminf
n→∞

1
n

logPn(Cn,δ)≥−δd. (22)

The theorem states that ifδ is sufficiently small, the decay rate of the probability ofCn,δ is expo-
nential, hence clearlyCLThres is δ-risk consistent. Furthermore, the bounds on the error exponent
associated to the eventCn,δ are independentof the parameters ofP and only depend onδ and the
dimensionalityd. Intuitively, (21) is true because if we want the risk ofP∗ to be at mostδd, then
each of the empirical pairwise marginalŝPi, j should beδ-close to the true pairwise marginalP̃i, j .
Note also that forCn,δ to occur with high probability, the edge set does not need to be estimated
correctly so there is no dependence onk.

1630



LEARNING HIGH-DIMENSIONAL MARKOV FORESTDISTRIBUTIONS

6.2 The High-Dimensional Setting

We again consider the high-dimensional setting where the tuple of parameters(n,dn,kn) tend to
infinity and we have a sequence of learning problems indexed by the numberof data pointsn. We
again assume that (13) and (14) hold and derive sufficient conditions under which the probability of
the eventCn,δ tends to zero for a sequence ofd-variate distributions{P(d) ∈ P(Xd)}d∈N. The proof
of Theorem 8 leads immediately to the following corollary.

Corollary 9 (δ-Risk Consistency Scaling Law) Let δ > 0 be a sufficiently small constant and a∈
(0,δ). If the number of variables in the sequence of models{P(d)}d∈N satisfies dn = o(exp(an)) ,
thenCLThres is δ-risk consistent for{P(d)}d∈N.

Interestingly, this sufficient condition on how number of variablesd should scale withn for
consistency is very similar to Theorem 5. In particular, ifd is polynomial inn, thenCLThres is both
structurally consistent as well asδ-risk consistent. We now study the order of the risk consistency
of CLThres as the model sized grows.

Theorem 10 (Order of Risk Consistency) The risk of the sequence of estimated distributions{(P(d))∗}d∈N

with respect to{P(d)}d∈N satisfies

Rn((P
(d))∗) = Op

(
d logd
n1−γ

)
, (23)

for everyγ > 0, that is, the risk consistency forCLThres is of order(d logd)/n1−γ.

Note that since this result is stated for the high-dimensional case,d = dn is a sequence inn
but the dependence onn is suppressed for notational simplicity in (23). This result implies that
if d = o(n1−2γ) thenCLThres is risk consistent, that is,Rn((P(d))∗) → 0 in probability. Note that
this result is not the same as the conclusion of Corollary 9 which refers to theprobability that the
average risk is greater than a fixed constantδ. Also, the order of convergence given in (23) does not
depend on the true number of edgesk. This is a consequence of the result in (21) where the upper
bound on the exponent associated to the eventCn,δ is independent of the parameters ofP.

The order of the risk, or equivalently the rate of convergence of the estimated distribution to the
forest projection, is almost linear in the number of variablesd and inversely proportional ton. We
provide three intuitive reasons to explain why this is plausible: (i) the dimensionof the sufficient
statistics in a tree-structured graphical model is of orderO(d), (ii) the ML estimator of the natural
parameters of an exponential family converge to their true values at the rateof Op(n−1/2) (Ser-
fling, 1980, Sec. 4.2.2), and (iii) locally, the KL-divergence behaves like the square of a weighted
Euclidean norm of the natural parameters (Cover and Thomas, 2006, Equation (11.320)).

We now compare Theorem 10 to the corresponding results in Liu et al. (2011). In these recent
papers, it was shown that by modeling the bivariate densitiesP̂i, j as functions from a Ḧolder class
with exponentα> 0 and using a reconstruction algorithm based on validation on a held-out data set,
the risk decays at a rate10 of Õp(dn−α/(1+2α)), which is slower than the order of risk consistency
in (23). This is due to the need to compute the bivariate densities via kernel density estimation.
Furthermore, we model the pairwise joint distributions as discrete probability mass functions and
not continuous probability density functions, hence there is no dependence on Ḧolder exponents.

10. TheÕp(·) notation suppresses the dependence on factors involving logarithms.
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Figure 2: The forest-structured distribution Markov ond nodes andk edges. VariablesXk+1, . . . ,Xd

are not connected to the main star graph.

7. Numerical Results

In this section, we perform numerical simulations on synthetic and real data sets to study the effect
of a finite number of samples on the probability of the eventAn defined in (4). Recall that this is the
error event associated to an incorrect learned structure.

7.1 Synthetic Data Sets

In order to compare our estimate to the ground truth graph, we learn the structure of distributions that
are Markov on the forest shown in Figure 2. Thus, a subgraph (nodes 1, . . . ,k+1) is a (connected)
star while nodesk+2, . . . ,d−1 are not connected to the star. Each random variableXj takes on
values from a binary alphabetX= {0,1}. Furthermore,Pj(x j) = 0.5 for x j = 0,1 and all j ∈V. The
conditional distributions are governed by the “binary symmetric channel”:

Pj|1(x j |x1) =

{
0.7 x j = x1

0.3 x j 6= x1

for j = 2, . . . ,k+1. We further assume that the regularization sequence is given byεn := n−β for
someβ ∈ (0,1). Recall that this sequence satisfies the conditions in (6). We will varyβ in our
experiments to observe its effect on the overestimation and underestimation errors.

In Figure 3, we show the simulated error probability as a function of the samplesizen for a
d = 101 node graph (as in Figure 2) withk= 50 edges. The error probability is estimated based on
30,000 independent runs ofCLThres (over different data setsxn). We observe that the error probabil-
ity is minimized whenβ ≈ 0.625. Figure 4 show the simulated overestimation and underestimation
errors for this experiment. We see that asβ → 0, the overestimation (resp., underestimation) error is
likely to be small (resp., large) because the regularization sequenceεn is large. When the number of
samples is relatively small as in this experiment, both types of errors contributesignificantly to the
overall error probability. Whenβ ≈ 0.625, we have the best tradeoff between overestimation and
underestimation for this particular experimental setting.

Even though we mentioned thatβ in (10) should be chosen to be close to zero so that the
error probability of structure learning decays as rapidly as possible, thisexample demonstrates
that when given a finite number of samples,β should be chosen to balance the overestimation and
underestimation errors. This does not violate Theorem 3 since Theorem 3is an asymptotic result
and refers to the typical way an error occurs in the limit asn → ∞. Indeed, when the number of
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Figure 3: The error probability of structure learning forβ ∈ (0,1).
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Figure 4: The overestimation and underestimation errors forβ ∈ (0,1).

samples is very large, it is shown that the overestimation error dominates the overall probability of
error and so one should chooseβ to be close to zero. The question of how best to select optimalβ
when given only a finite number of samples appears to be a challenging one.We use cross-validation
as a proxy to select this parameter for the real-world data sets in the next section.

In Figure 5, we fix the value ofβ at 0.625 and plot the KL-divergenceD(P||P∗) as a func-
tion of the number of samples. This is done for a forest-structured distribution P whose graph is
shown in Figure 2 and withd = 21 nodes andk = 10 edges. The mean, minimum and maximum
KL-divergences are computed based on 50 independent runs ofCLThres. We see that logD(P||P∗)
decays linearly. Furthermore, the slope of the mean curve is approximately−1, which is in agree-
ment with (23). This experiment shows that if we want to reduce the KL-divergence between the
estimated and true models by a constant factorA> 0, we need to increase the number of samples
by roughly the same factorA.
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Figure 5: Mean, minimum and maximum (across 50 different runs) of the KL-divergence between
the estimated modelP∗ and the true modelP for ad = 21 node graph withk= 10 edges.

7.2 Real Data Sets

We now demonstrate how well forests-structured distributions can model tworeal data sets11 which
are obtained from the UCI Machine Learning Repository (Newman et al., 1998). The first data
set we used is known as the SPECT Heart data set, which describes diagnosing of cardiac Single
Proton Emission Computed Tomography (SPECT) images on normal and abnormal patients. The
data set containsd = 22 binary variables andn = 80 training samples. There are also 183 test
samples. We learned a forest-structured distributions using the 80 training samples for different
β ∈ (0,1) and subsequently computed the log-likelihood of both the training and test samples. The
results are displayed in Figure 6. We observe that, as expected, the log-likelihood of the training
samples increases monotonically withβ. This is because there are more edges in the model when
β is large improving the modeling ability. However, we observe that there is overfitting whenβ is
large as evidenced by the decrease in the log-likelihood of the 183 test samples. The optimal value
of β in terms of the log-likelihood for this data set is≈ 0.25, but surprisingly an approximation
with an empty graph12 also yields a high log-likelihood score on the test samples. This implies that
according to the available data, the variables are nearly independent. Theforest graph forβ = 0.25
is shown in Figure 7(a) and is very sparse.

The second data set we used is the Statlog Heart data set containing physiological measurements
of subjects with and without heart disease. There are 270 subjects andd = 13 discrete and contin-
uous attributes, such as gender and resting blood pressure. We quantized the continuous attributes
into two bins. Those measurements that are above the mean are encoded as 1and those below the
mean as 0. Since the raw data set is not partitioned into training and test sets, we learned forest-
structured models based on a randomly chosen set ofn= 230 training samples and then computed

11. These data sets are typically employed for binary classification but weuse them for modeling purposes.
12. Whenβ = 0 we have an empty graph because all empirical mutual information quantities in this experiment are

smaller than 1.
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Figure 6: Log-likelihood scores on the SPECT data set

the log-likelihood of these training and 40 remaining test samples. We then chose an additional
49 randomly partitioned training and test sets and performed the same learningtask and computa-
tion of log-likelihood scores. The mean of the log-likelihood scores over these 50 runs is shown
in Figure 8. We observe that the log-likelihood on the test set is maximized atβ ≈ 0.53 and the
tree approximation (β ≈ 1) also yields a high likelihood score. The forest learned whenβ = 0.53
is shown in Figure 7(b). Observe that two nodes (ECG and Cholesterol) are disconnected from the
main graph because their mutual information values with other variables are below the threshold.
In contrast, HeartDisease, the label for this data set, has the highest degree, that is, it influences and
is influenced by many other covariates. The strengths of the interactions between HeartDisease and
its neighbors are also strong as evidenced by the bold edges.

From these experiments, we observe that some data sets can be modeled wellas proper forests
with very few edges while others are better modeled as distributions that are almost tree-structured
(see Figure 7). Also, we need to chooseβ carefully to balance between data fidelity and overfitting.
In contrast, our asymptotic result in Theorem 3 says thatεn should be chosen according to (6) so
that we have structural consistency. When the number of data pointsn is large,β in (10) should
be chosen to be small to ensure that the learned edge set is equal to the trueone (assuming the
underlying model is a forest) with high probability as the overestimation error dominates.

8. Conclusion

In this paper, we proposed an efficient algorithmCLThres for learning the parameters and the struc-
ture of forest-structured graphical models. We showed that the asymptotic error rates associated
to structure learning are nearly optimal. We also provided the rate at which theerror probability
of structure learning tends to zero and the order of the risk consistency.One natural question that
arises from our analyses is whetherβ in (10) can be selected automatically in the finite-sample
regime. There are many other open problems that could possibly leverage on the proof techniques
employed here. For example, we are currently interested to analyze the learning of general graphi-
cal models using similar thresholding-like techniques on the empirical correlation coefficients. The
analyses could potentially leverage on the use of the method of types. We arecurrently exploring
this promising line of research.
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not provided for the SPECT data set.
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Figure 8: Log-likelihood scores on the HEART data set
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Appendix A. Proof of Proposition 2

Proof (Sketch) The proof of this result hinges on the fact that both the overestimation andunder-
estimation errors decay to zero exponentially fast when the threshold is chosen to beImin/2. This
threshold is able to differentiate between true edges (with MI larger thanImin) from non-edges (with
MI smaller thanImin) with high probability forn sufficiently large. The error for learning the topk
edges of the forest also decays exponentially fast (Tan et al., 2011).Thus, (5) holds. The full details
of the proof follow in a straightforward manner from Appendix B which we present next.

Appendix B. Proof of Theorem 3

Define the eventBn := {Êk 6= EP}, whereÊk = {ê1, . . . , êk} is the set of topk edges (see Step 3
of CLThres for notation). This is the Chow-Liu error as mentioned in Section 4.3. LetBc

n denote
the complement ofBn. Note that inBc

n, the estimated edge set depends onk, the true model order,
which isa-priori unknown to the learner. Further define the constant

KP := lim
n→∞

−
1
n

logPn(Bn). (24)

In other words,KP is the error exponent for learning the forest structure incorrectly assuming the
true model orderk is known and Chow-Liu terminates after the addition of exactlyk edges in the
MWST procedure (Kruskal, 1956). The existence of the limit in (24) and the positivity ofKP follow
from the main results in Tan et al. (2011).

We first state a result which relies on the Gallager-Fano bound (Fano, 1961, pp. 24). The proof
will be provided at the end of this appendix.

Lemma 11 (Reduction to Model Order Estimation) For everyη ∈ (0,KP), there exists a N∈ N

sufficiently large such that for every n> N, the error probability Pn(An) satisfies

(1−η)Pn(k̂n 6= k|Bc
n)≤ Pn(An) (25)

≤ Pn(k̂n 6= k|Bc
n)+2exp(−n(KP−η)). (26)

Proof (of Theorem 3) We will prove (i) the upper bound in (8) (ii) the lower bound in (7) and (iii)
the exponential rate of decay in the case of trees (9).

B.1 Proof of Upper Bound in Theorem 3

We now bound the error probabilityPn(k̂n 6= k|Bc
n) in (26). Using the union bound,

Pn(k̂n 6= k|Bc
n)≤ Pn(k̂n > k|Bc

n)+Pn(k̂n < k|Bc
n). (27)
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The first and second terms are known as theoverestimationandunderestimationerrors respectively.
We will show that the underestimation error decays exponentially fast. The overestimation error
decays only subexponentially fast and so its rate of decay dominates the overall rate of decay of the
error probability for structure learning.

B.1.1 UNDERESTIMATION ERROR

We now bound these terms staring with the underestimation error. By the union bound,

Pn(k̂n < k|Bc
n)≤ (k−1) max

1≤ j≤k−1
Pn(k̂n = j|Bc

n)

= (k−1)Pn(k̂n = k−1|Bc
n), (28)

where (28) follows becausePn(k̂n = j|Bc
n) is maximized whenj = k−1. This is because if, to the

contrary,Pn(k̂n = j|Bc
n) were to be maximized at some otherj ≤ k−2, then there exists at least two

edges, call theme1,e2 ∈ EP such that eventsE1 := {I(P̂e1) ≤ εn} andE2 := {I(P̂e2) ≤ εn} occur.
The probability of this joint event is smaller than the individual probabilities, that is, Pn(E1∩E2)≤
min{Pn(E1),Pn(E2)}. This is a contradiction.

By the rule for choosinĝkn in (3), we have the upper bound

Pn(k̂n = k−1|Bc
n) = Pn(∃e∈ EP s.t. I(P̂e)≤ εn)≤ kmax

e∈EP

Pn(I(P̂e)≤ εn), (29)

where the inequality follows from the union bound. Now, note that ife∈ EP, thenI(Pe) > εn for
n sufficiently large (sinceεn → 0). Thus, by Sanov’s theorem (Cover and Thomas, 2006, Ch. 11),
Pn(I(P̂e)≤ εn) can be upper bounded as

Pn(I(P̂e)≤ εn)≤ (n+1)r2
exp

(
−n min

Q∈P(X2)
{D(Q||Pe) : I(Q)≤ εn}

)
. (30)

Define the good rate function (Dembo and Zeitouni, 1998) in (30) to beL : P(X2)× [0,∞)→ [0,∞),
which is given by

L(Pe;a) := min
Q∈P(X2)

{D(Q||Pe) : I(Q)≤ a} . (31)

Clearly,L(Pe;a) is continuous ina. Furthermore it is monotonically decreasing ina for fixed Pe.
Thus by using the continuity ofL(Pe; ·) we can assert: To everyη > 0, there exists aN ∈ N such
that for alln> N we haveL(Pe;εn) > L(Pe;0)−η. As such, we can further upper bound the error
probability in (30) as

Pn(I(P̂e)≤ εn)≤ (n+1)r2
exp(−n(L(Pe;0)−η)) . (32)

By using the fact thatImin > 0, the exponentL(Pe;0) > 0 and thus, we can put the pieces in (28),
(29) and (32) together to show that the underestimation error is upper bounded as

Pn(k̂n < k|Bc
n)≤ k(k−1)(n+1)r2

exp

(
−nmin

e∈EP
(L(Pe;0)−η)

)
. (33)

Hence, ifk is constant, the underestimation errorPn(k̂n < k|Bc
n) decays to zero exponentially fast

asn→ ∞, that is, the normalized logarithm of the underestimation error can be bounded as

limsup
n→∞

1
n

logPn(k̂n < k|Bc
n)≤−min

e∈EP
(L(Pe;0)−η).
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The above statement is now independent ofn. Hence, we can take the limit asη → 0 to conclude
that:

limsup
n→∞

1
n

logPn(k̂n < k|Bc
n)≤−LP. (34)

The exponentLP := mine∈EP L(Pe;0) is positive because we assumed that the model is minimal and
soImin > 0, which ensures the positivity of the rate functionL(Pe;0) for each true edgee∈ EP.

B.1.2 OVERESTIMATION ERROR

Bounding the overestimation error is harder. It follows by first applying the union bound:

Pn(k̂n > k|Bc
n)≤ (d−k−1) max

k+1≤ j≤d−1
Pn(k̂n = j|Bc

n)

= (d−k−1)Pn(k̂n = k+1|Bc
n), (35)

where (35) follows becausePn(k̂n = j|Bc
n) is maximized whenj = k+1 (by the same argument as

for the underestimation error). Apply the union bound again, we have

Pn(k̂n = k+1|Bc
n)≤ (d−k−1) max

e∈V×V:I(Pe)=0
Pn(I(P̂e)≥ εn). (36)

From (36), it suffices to boundPn(I(P̂e)≥ εn) for any pair of independent random variables(Xi ,Xj)
ande= (i, j). We proceed by applying the upper bound in Sanov’s theorem (Cover and Thomas,
2006, Ch. 11) toPn(I(P̂e)≥ εn) which yields

Pn(I(P̂e)≥ εn)≤ (n+1)r2
exp

(
−n min

Q∈P(X2)
{D(Q||Pe) : I(Q)≥ εn}

)
, (37)

for all n ∈ N. Our task now is to lower bound the good rate function in (37), which we denote as
M : P(X2)× [0,∞)→ [0,∞):

M(Pe;b) := min
Q∈P(X2)

{D(Q||Pe) : I(Q)≥ b} . (38)

Note thatM(Pe;b) is monotonically increasing and continuous inb for fixed Pe. Because the se-
quence{εn}n∈N tends to zero, whenn is sufficiently large,εn is arbitrarily small and we are in
the so-calledvery-noisy learning regime(Borade and Zheng, 2008; Tan et al., 2011), where the
optimizer to (38), denoted asQ∗

n, is very close toPe. See Figure 9.
Thus, whenn is large, the KL-divergence and mutual information can be approximated as

D(Q∗
n ||Pe) =

1
2

vT
Πev+o(‖v‖2), (39)

I(Q∗
n) =

1
2

vTHev+o(‖v‖2), (40)

where13 v := vec(Q∗
n)−vec(Pe) ∈ R

r2
. Ther2× r2 matricesΠe andHe are defined as

Πe := diag(1/vec(Pe)), (41)

He := ∇2
vec(Q)I(vec(Q))

∣∣
Q=Pe

. (42)

13. The operator vec(C) vectorizes a matrix in a column oriented way. Thus, ifC ∈ R
l×l , vec(C) is a length-l2 vector

with the columns ofC stacked one on top of another (C(:) in Matlab).

1639



TAN , ANANDKUMAR AND WILLSKY

�
�
���

Pe : I(Pe) = 0
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{Q: I(Q)=εn2}

decreasingεn
Q∗

n1

Q∗
n2










u

u

u

Figure 9: Asεn → 0, the projection ofPe onto the constraint set{Q : I(Q) ≥ εn}, denotedQ∗
n

(the optimizer in (38)), approachesPe. The approximations in (39) and (40) become
increasingly accurate asεn tends to zero. In the figure,n2 > n1 andεn1 > εn2 and the
curves are the (sub-)manifold of distributions such that the mutual information is constant,
that is, the mutual information level sets.

In other words,Πe is the diagonal matrix that contains the reciprocal of the elements of vec(Pe)
on its diagonal.He is the Hessian14 of I(vec(Q∗

n)), viewed as a function of vec(Q∗
n) and evaluated

at Pe. As such, the exponent for overestimation in (38) can be approximated bya quadratically
constrained quadratic program(QCQP), wherez := vec(Q)−vec(Pe):

M̃(Pe;εn) = min
z∈Rr2

1
2

zT
Πez,

subject to
1
2

zTHez ≥ εn, zT1 = 0. (43)

Note that the constraintzT1 = 0 does not necessarily ensure thatQ is a probability distribution so
M̃(Pe;εn) is an approximate lower bound to the true rate functionM(Pe;εn), defined in (38). We
now argue that the approximate rate functionM̃ in (43), can be lower bounded by a quantity that is
proportional toεn. To show this, we resort to Lagrangian duality (Bertsekas, 1999, Ch. 5). It can
easily be shown that theLagrangian dualcorresponding to the primal in (43) is

g(Pe;εn) := εnmax
µ≥0

{µ : Πe � µHe}. (44)

We see from (44) thatg(Pe;εn) is proportional toεn. By weak duality (Bertsekas, 1999, Proposition
5.1.3), any dual feasible solution provides a lower bound to the primal, that is,

g(Pe;εn)≤ M̃(Pe;εn). (45)

Note that strong duality (equality in (45)) does not hold in general due in part to the non-convex
constraint set in (43). Interestingly, our manipulations lead lower bounding M̃ by (44), which is a
(convex) semidefinite program (Vandenberghe and Boyd, 1996).

Now observe that the approximations in (39) and (40) are accurate in the limitof largen because
the optimizing distributionQ∗

n becomes increasingly close toPe. By continuity of the optimization

14. The first two terms in the Taylor expansion of the mutual informationI(vec(Q∗
n)) in (40) vanish because (i)I(Pe) = 0

and (ii) (vec(Q∗
n)−vec(Pe))

T∇vec(Q)I(vec(Pe)) = 0. Indeed, if we expandI(vec(Q)) around a product distribution,
the constant and linear terms vanish (Borade and Zheng, 2008). Note that He in (42) is an indefinite matrix because
I(vec(Q)) is not convex.
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problems in (perturbations of) the objective and the constraints,M̃(Pe;εn) andM(Pe;εn) are close
whenn is large, that is,

lim
n→∞

M̃(Pe;εn)

M(Pe;εn)
= 1. (46)

This can be seen from (39) in which the ratio of the KL-divergence to its approximationvT
Πev/2

is unity in the limit as‖v‖ → 0. The same holds true for the ratio of the mutual information to its
approximationvTHev/2 in (40). By applying the continuity statement in (46) to the upper bound
in (37), we can conclude that for everyη > 0, there exists aN ∈ N such that

Pn(I(P̂e)≥ εn)≤ (n+1)r2
exp
(
−nM̃(Pe;εn)(1−η)

)
,

for all n> N. Define the constant

cP := min
e∈V×V : I(Pe)=0

max
µ≥0

{µ : Πe � µHe}. (47)

By (44), (45) and the definition ofcP in (47),

Pn(I(P̂e)≥ εn)≤ (n+1)r2
exp(−nεncP(1−η)) . (48)

Putting (35), (36) and (48) together, we see that the overestimation error

Pn(k̂n > k|Bc
n)≤ (d−k−1)2(n+1)r2

exp(−nεncP(1−η)) . (49)

Note that the above probability tends to zero by the assumption thatnεn/ logn→ ∞ in (6). Thus, we
have consistency overall (since the underestimation, Chow-Liu and now the overestimation errors
all tend to zero). Thus, by taking the normalized logarithm (normalized bynεn), the limsup inn
(keeping in mind thatd andk are constant), we conclude that

limsup
n→∞

1
nεn

logPn(k̂n > k|Bc
n)≤−cP(1−η). (50)

Now by takeη → 0, it remains to prove thatcP = 1 for all P. For this purpose, it suffices to show
that the optimal solution to the optimization problem in (44), denotedµ∗, is equal to one for allΠe

andHe. Note thatµ∗ can be expressed in terms of eigenvalues:

µ∗ =
(

max
{

eig(Π−1/2
e HeΠ

−1/2
e )

})−1
, (51)

where eig(A) denotes the set of real eigenvalues of the symmetric matrixA. By using the defini-

tions ofΠe andHe in (41) and (42) respectively, we can verify that the matrixI−Π
−1/2
e HeΠ

−1/2
e

is positive semidefinite with an eigenvalue at zero. This proves that the largest eigenvalue of
Π

−1/2
e HeΠ

−1/2
e is one and hence from (51),µ∗ = 1. The proof of the upper bound in (8) is com-

pleted by combining the estimates in (26), (34) and (50).
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B.2 Proof of Lower Bound in Theorem 3

The key idea is to bound the overestimation error using a modification of the lower bound in Sanov’s
theorem. Denote the set of types supported on a finite setY with denominatorn asPn(Y) and the
type classof a distributionQ∈ Pn(Y) as

Tn(Q) := {yn ∈ Yn : P̂( · ;yn) = Q( ·)},

whereP̂( · ;yn) is the empirical distribution of the sequenceyn = (y1, . . . ,yn). The following bounds
on the type class are well known (Cover and Thomas, 2006, Ch. 11).

Lemma 12 (Probability of Type Class) For any Q∈Pn(Y) and any distribution P, the probability
of the type classTn(Q) under Pn satisfies:

(n+1)−|Y|exp(−nD(Q||P))≤ Pn(Tn(Q))≤ exp(−nD(Q||P)). (52)

To prove the lower bound in (7), assume thatk < d−1 and note that the error probabilityPn(k̂n 6=
k|Bc

n) can be lower bounded byPn(I(P̂e) ≥ εn) for any node paire such thatI(Pe) = 0. We seek
to lower bound the latter probability by appealing to (52). Now choose a sequence of distributions
Q(n) ∈ {Q∈ Pn(X

2) : I(Q)≥ εn} such that

lim
n→∞

∣∣∣M(Pe;εn)−D(Q(n) ||Pe)
∣∣∣= 0.

This is possible because the set of types is dense in the probability simplex (Dembo and Zeitouni,
1998, Lemma 2.1.2(b)). Thus,

Pn(I(P̂e)≥ εn) = ∑
Q∈Pn(X2):I(Q)≥εn

Pn(Tn(Q))

≥ Pn(Tn(Q
(n)))

≥ (n+1)−r2
exp(−nD(Q(n) ||Pe)), (53)

where (53) follows from the lower bound in (52). Note from (46) that thefollowing convergence
holds: |M̃(Pe;εn)−M(Pe;εn)| → 0. Using this and the fact that if|an−bn| → 0 and|bn− cn| → 0
then,|an−cn| → 0 (triangle inequality), we also have

lim
n→∞

∣∣∣M̃(Pe;εn)−D(Q(n) ||Pe)
∣∣∣= 0.

Hence, continuing the chain in (53), for anyη > 0, there exists aN ∈ N such that for alln> N,

Pn(I(P̂e)≥ εn)≥ (n+1)−r2
exp(−n(M̃(Pe;εn)+η)). (54)

Note that an upper bound for̃M(Pe;εn) in (43) is simply given by the objective evaluated at any
feasible point. In fact, by manipulating (43), we see that the upper bound isalso proportional toεn,
that is,

M̃(Pe;εn)≤CPeεn,
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whereCPe ∈ (0,∞) is some constant15 that depends on the matricesΠe and He. DefineCP :=
maxe∈V×V:I(Pe)=0CPe. Continuing the lower bound in (54), we obtain

Pn(I(P̂e)≥ εn)≥ (n+1)−r2
exp(−nεn(CP+η)),

for n sufficiently large. Now take the normalized logarithm and the liminf to conclude that

liminf
n→∞

1
nεn

logPn(k̂n 6= k|Bc
n)≥−(CP+η). (55)

Substitute (55) into the lower bound in (25). Now the resulting inequality is independent ofn and
we can takeη → 0 to complete the proof of the lower bound in Theorem 3.

B.3 Proof of the Exponential Rate of Decay for Trees in Theorem 3

For the claim in (9), note that forn sufficiently large,

Pn(An)≥ max{(1−η)Pn(k̂n 6= kn|B
c
n),P

n(Bn)}, (56)

from Lemma 11 and the fact thatBn ⊆An. Equation (56) gives us a lower bound on the error prob-
ability in terms of the Chow-Liu errorPn(Bn) and the underestimation and overestimation errors
Pn(k̂n 6= kn|B

c
n). If k = d−1, the overestimation error probability is identically zero, so we only

have to be concerned with the underestimation error. Furthermore, from (34) and a corresponding
lower bound which we omit, the underestimation error event satisfiesPn(k̂n < k|Bc

n)
.
= exp(−nLP).

Combining this fact with the definition of the error exponentKP in (24) and the result in (56) estab-
lishes (9). Note that the relation in (56) and our preceding upper boundsensure that the limit in (9)
exists.

Proof (of Lemma 11) We note thatPn(An|̂kn 6= k) = 1 and thus,

Pn(An)≤ Pn(k̂n 6= k)+Pn(An|̂kn = k). (57)

By using the definition ofKP in (24), the second term in (57) is preciselyPn(Bn) therefore,

Pn(An)≤ Pn(k̂n 6= k)+exp(−n(KP−η)), (58)

for all n> N1. We further boundPn(k̂n 6= k) by conditioning on the eventBc
n. Thus, forη > 0,

Pn(k̂n 6= k)≤ Pn(k̂n 6= k|Bc
n)+Pn(Bn)

≤ Pn(k̂n 6= k|Bc
n)+exp(−n(KP−η)), (59)

for all n > N2. The upper bound result follows by combining (58) and (59). The lowerbound
follows by the chain

Pn(An)≥ Pn(k̂n 6= k)≥ Pn({k̂n 6= k}∩Bc
n)

= Pn(k̂n 6= k|Bc
n)P

n(Bc
n)≥ (1−η)Pn(k̂n 6= k|Bc

n),

which holds for alln > N3 sincePn(Bc
n) → 1. Now the claims in (25) and (26) follow by taking

N := max{N1,N2,N3}.

15. We can easily remove the constraintzT1 in (43) by a simple change of variables to only consider those vectors in the
subspace orthogonal to the all ones vector so we ignore it here for simplicity. To obtainCPe, suppose the matrixWe

diagonalizesHe, that is,He = WT
e DeWe, then one can, for example, chooseCPe = mini:[De]i,i>0[W

T
eΠeWe]i,i .
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Appendix C. Proof of Corollary 4

Proof This claim follows from the fact that three errors (i) Chow-Liu error (ii) underestimation
error and (iii) overestimation error behave in exactly the same way as in Theorem 3. In particular,
the Chow-Liu error, that is, the error for the learning the topk edges in the forest projection modelP̃
decays with error exponentKP. The underestimation error behaves as in (34) and the overestimation
error as in (50).

Appendix D. Proof of Theorem 5

Proof Given assumptions (A1) and (A2), we claim that the underestimation exponent LP(d) , defined
in (34), is uniformly bounded away from zero, that is,

L := inf
d∈N

LP(d) = inf
d∈N

min
e∈E

P(d)

L(P(d)
e ;0) (60)

is positive. Before providing a formal proof, we provide a plausible argument to show that this
claim is true. Recall the definition ofL(Pe;0) in (31). Assuming that the jointPe = Pi, j is close to a
product distribution or equivalently if its mutual informationI(Pe) is small (which is the worst-case
scenario),

L(Pe;0)≈ min
Q∈P(X2)

{D(Pe||Q) : I(Q) = 0} (61)

= D(Pe||Pi Pj) = I(Pe)≥ Iinf > 0, (62)

where in (61), the arguments in the KL-divergence have been swapped. This is because when
Q≈Pe entry-wise,D(Q||Pe)≈D(Pe||Q) in the sense that their difference is small compared to their
absolute values (Borade and Zheng, 2008). In (62), we used the fact that the reverse I-projection of
Pe onto the set of product distributions isPiPj . SinceIinf is constant, this proves the claim, that is,
L > 0.

More formally, let

Bκ′ := {Qi, j ∈ P(X2) : Qi, j(xi ,x j)≥ κ′,∀xi ,x j ∈ X}

be the set of joint distributions whose entries are bounded away from zero byκ′ > 0. Now, consider
a pair of joint distributionsP(d)

e , P̃(d)
e ∈ Bκ′ whose minimum values are uniformly bounded away

from zero as assumed in (A2). Then there exists a Lipschitz constant (independent ofd) U ∈ (0,∞)
such that for alld,

|I(P(d)
e )− I(P̃(d)

e )| ≤U‖vec(P(d)
e )−vec(P̃(d)

e )‖1, (63)

where‖ · ‖1 is the vectorℓ1 norm. In fact,U := maxQ∈Bκ′ ‖∇I(vec(Q))‖∞ is the Lipschitz constant

of I(·) which is uniformly bounded because the joint distributionsP(d)
e andP̃(d)

e are assumed to be
uniformly bounded away from zero. Suppose, to the contrary,L = 0. Then by the definition of the
infimum in (60), for everyε > 0, there exists ad ∈ N and a correspondinge∈ EP(d) such that ifQ∗

is the optimizer in (31),

ε > D(Q∗ ||P(d)
e )

(a)
≥

‖vec(P(d)
e )−vec(Q∗)‖2

1

2log2

(b)
≥

|I(P(d)
e )− I(Q∗)|2

(2log2)U2

(c)
≥

I2
inf

(2log2)U2 ,
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where (a) follows from Pinsker’s inequality (Cover and Thomas, 2006,Lemma 11.6.1), (b) is an
application of (63) and the fact that ifP(d)

e ∈ Bκ is uniformly bounded from zero (as assumed in
(14)) so is the associated optimizerQ∗ (i.e., in Bκ′′ for some possibly different uniformκ′′ > 0).
Statement (c) follows from the definition ofIinf and the fact thatQ∗ is a product distribution, that is,
I(Q∗) = 0. Sinceε can be chosen to be arbitrarily small, we arrive at a contradiction. ThusL in (60)
is positive. Finally, we observe from (33) that ifn> (3/L) logk the underestimation error tends to
zero because (33) can be further upper bounded as

Pn(k̂n < k|Bc
n)≤ (n+1)r2

exp(2logk−nL)< (n+1)r2
exp

(
2
3

nL−nL

)
→ 0

asn→ ∞. TakeC2 = 3/L in (15).
Similarly, given the same assumptions, the error exponent for structure learning KP(d) , defined

in (24), is also uniformly bounded away from zero, that is,

K := inf
d∈N

KP(d) > 0.

Thus, if n > (4/K) logd, the error probability associated to estimating the topk edges (eventBn)
decays to zero along similar lines as in the case of the underestimation error. TakeC1 = 4/K in (15).

Finally, from (49), ifnεn > 2log(d−k), then the overestimation error tends to zero. Since from
(6), εn can take the formn−β for β> 0, this is equivalent ton1−β > 2log(d−k), which is the same as
the first condition in (15), namelyn> (2log(d−k))1+ζ. By (26) and (27), these three probabilities
constitute the overall error probability when learning the sequence of forest structures{EP(d)}d∈N.
Thus the conditions in (15) suffice for high-dimensional consistency.

Appendix E. Proof of Corollary 6

Proof First note thatkn ∈ {0, . . . ,dn − 1}. From (49), we see that forn sufficiently large, the
sequencehn(P) := (nεn)

−1 logPn(An) is upper bounded by

−1+
2

nεn
log(dn−kn−1)+

r2 log(n+1)
nεn

. (64)

The last term in (64) tends to zero by (6). Thushn(P) = O((nεn)
−1 log(dn− kn− 1)), where the

implied constant is 2 by (64). Clearly, this sequence is maximized (resp., minimized) whenkn = 0
(resp.,kn = dn−1). Equation (64) also shows that the sequencehn is monotonically decreasing in
kn.

Appendix F. Proof of Theorem 7

Proof We first focus on part (a). Part (b) follows in a relatively straightforward manner. Define

T̂MAP(xn) := argmax
t∈Td

k

P(TP = t|xn)
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to be the maximum a-posteriori (MAP) decoding rule.16 By the optimality of the MAP rule, this
lower bounds the error probability of any other estimator. LetW := T̂MAP((X

d)n) be the range of
the functionT̂MAP, that is, a forestt ∈W if and only if there exists a sequencexn such that̂TMAP = t.
Note thatW∪Wc = Td

k . Then, consider the lower bounds:

P(T̂ 6= TP) = ∑
t∈Td

k

P(T̂ 6= TP|TP = t)P(TP = t)

≥ ∑
t∈Wc

P(T̂ 6= TP|TP = t)P(TP = t)

= ∑
t∈Wc

P(TP = t) = 1− ∑
t∈W

P(TP = t) (65)

= 1− ∑
t∈W

|Td
k |

−1 (66)

≥ 1− rnd|Td
k |

−1, (67)

where in (65), we used the fact thatP(T̂ 6= TP|TP = t) = 1 if t ∈Wc, in (66), the fact thatP(TP = t) =
1/|Td

k |. In (67), we used the observation|W| ≤ (|Xd|)n = rnd since the function̂TMAP : (Xd)n →W

is surjective. Now, the number of labeled forests withk edges andd nodes is (Aigner and Ziegler,
2009, pp. 204)|Td

k | ≥ (d−k)dk−1 ≥ dk−1. Applying this lower bound to (67), we obtain

P(T̂ 6= TP)≥ 1−exp(ndlogr − (k−1) logd)> 1−exp((ρ−1)(k−1) logd) , (68)

where the second inequality follows by choice ofn in (17). The estimate in (68) converges to 1 as
(k,d) → ∞ sinceρ < 1. The same reasoning applies to part (b) but we instead use the following
estimates of the cardinality of the set of forests (Aigner and Ziegler, 2009, Ch. 30):

(d−2) logd ≤ log|Fd| ≤ (d−1) log(d+1). (69)

Note that we have lower bounded|Fd| by the number trees withd nodes which isdd−2 by Cayley’s
formula (Aigner and Ziegler, 2009, Ch. 30). The upper bound17 follows by a simple combinatorial
argument which is omitted. Using the lower bound in (69), we have

P(T̂ 6= TP)≥ 1−exp(ndlogr)exp(−(d−2) logd)> 1−d2exp((ρ−1)d logd), (70)

with the choice ofn in (18). The estimate in (70) converges to 1, completing the proof.

Appendix G. Proof of Theorem 8

Proof We assume thatP is Markov on a forest since the extension to non-forest-structuredP is
a straightforward generalization. We start with some useful definitions. Recall from Appendix B
thatBn := {Êk 6= EP} is the event that the topk edges (in terms of mutual information) in the edge
set Êd−1 are not equal to the edges inEP. Also defineC̃n,δ := {D(P∗ ||P) > δd} to be the event
that the divergence between the learned model and the true (forest) oneis greater thanδd. We will

16. In fact, this proof works foranydecoding rule, and not just the MAP rule. We focus on the MAP rule for concreteness.
17. The purpose of the upper bound is to show that our estimates of|Fd| in (69) are reasonably tight.
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Figure 10: InÊk̂n
(left), nodes 1 and 5 are the roots. The parents are defined asπ(i; Êk̂n

) = i − 1

for i = 2,3,4,6 andπ(i; Êk̂n
) = /0 for i = 1,5. In EP (right), the parents are defined as

π(i;EP) = i−1 for i = 2,3,4 butπ(i;EP) = /0 for i = 1,5,6 since(5,6),( /0,1),( /0,5) /∈EP.

see that̃Cn,δ is closely related to the event of interestCn,δ defined in (20). LetUn := {k̂n < k} be
the underestimation event. Our proof relies on the following result, which is similar to Lemma 11,
hence its proof is omitted.

Lemma 13 For everyη > 0, there exists a N∈ N such that for all n> N, the following bounds on
Pn(C̃n,δ) hold:

(1−η)Pn(C̃n,δ|B
c
n,U

c
n)≤ Pn(C̃n,δ) (71)

≤ Pn(C̃n,δ|B
c
n,U

c
n)+exp(−n(min{KP,LP}−η)). (72)

Note that the exponential term in (72) comes from an application of the union bound and the
“largest-exponent-wins” principle in large-deviations theory (Den Hollander, 2000). From (71)
and (72) we see that it is possible to bound the probability ofC̃n,δ by providing upper and lower

bounds forPn(C̃n,δ|B
c
n,U

c
n). In particular, we show that the upper bound equals exp(−nδ) to first

order in the exponent. This will lead directly to (21). To proceed, we rely on the following lemma,
which is a generalization of a well-known result (Cover and Thomas, 2006, Ch. 11). We defer the
proof to the end of the section.

Lemma 14 (Empirical Divergence Bounds) Let X,Y be two random variables whose joint dis-
tribution is PX,Y ∈ P(X2) and |X| = r. Let (xn,yn) = {(x1,y1), . . . ,(xn,yn)} be n independent and
identically distributed observations drawn from PX,Y. Then, for every n,

Pn
X,Y(D(P̂X|Y ||PX|Y)> δ)≤ (n+1)r2

exp(−nδ), (73)

whereP̂X|Y = P̂X,Y/P̂Y is the conditional type of(xn,yn). Furthermore,

liminf
n→∞

1
n

logPn
X,Y(D(P̂X|Y ||PX|Y)> δ)≥−δ. (74)

It is worth noting that the bounds in (73) and (74) are independent of thedistributionPX,Y (cf.
discussion after Theorem 8). We now proceed with the proof of Theorem 8. To do so, we consider
the directed representation of a tree distributionQ (Lauritzen, 1996):

Q(x) = ∏
i∈V

Qi|π(i)(xi |xπ(i)), (75)

whereπ(i) is the parent ofi in the edge set ofQ (assuming a fixed root). Using (75) and conditioned
on the fact that the topk edges of the graph ofP∗ are the same as those inEP (eventBc

n) and
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underestimation does not occur (eventUc
n), the KL-divergence betweenP∗ (which is a function of

the samplesxn and hence ofn) andP can be expressed as a sum overd terms:

D(P∗ ||P) = ∑
i∈V

D(P̂i|π(i;Êk̂n
) ||Pi|π(i;EP)), (76)

where the parent of nodei in Êk̂n
, denotedπ(i; Êk̂n

), is defined by arbitrarily choosing a root in

each component tree of the forestT̂̂kn
= (V, Êk̂n

). The parents of the chosen roots are empty sets.

The parent of nodei in EP are “matched” to those in̂Ek̂n
, that is, defined asπ(i;EP) := π(i; Êk̂n

) if

(i,π(i; Êk̂n
)) ∈ EP andπ(i;EP) := /0 otherwise. See Figure 10 for an example. Note that this can

be done becausêEk̂n
⊇ EP by conditioning on the eventsBc

n andUc
n = {k̂n ≥ k}. Then, the error

probabilityPn(C̃n,δ|B
c
n,U

c
n) in (72) can be upper bounded as

Pn(C̃n,δ|B
c
n,U

c
n) = Pn

(

∑
i∈V

D(P̂i|π(i;Êk̂n
)||Pi|π(i;EP))> δd

∣∣∣Bc
n,U

c
n

)
(77)

= Pn

(
1
d ∑

i∈V

D(P̂i|π(i;Êk̂n
)||Pi|π(i;EP))> δ

∣∣∣Bc
n,U

c
n

)

≤ Pn
(

max
i∈V

{
D(P̂i|π(i;Êk̂n

)||Pi|π(i;EP))
}
> δ
∣∣∣Bc

n,U
c
n

)
(78)

≤ ∑
i∈V

Pn
(

D(P̂i|π(i;Êk̂n
)||Pi|π(i;EP))> δ

∣∣∣Bc
n,U

c
n

)
(79)

≤ ∑
i∈V

(n+1)r2
exp(−nδ) = d(n+1)r2

exp(−nδ) , (80)

where Equation (77) follows from the decomposition in (76). Equation (78)follows from the fact
that if the arithmetic mean ofd positive numbers exceedsδ, then the maximum exceedsδ. Equa-
tion (79) follows from the union bound. Equation (80), which holds for alln∈ N, follows from the
upper bound in (73). Combining (72) and (80) shows that ifδ < min{KP,LP},

limsup
n→∞

1
n

logPn(C̃n,δ)≤−δ.

Now recall that̃Cn,δ = {D(P∗ ||P) > δd}. In order to complete the proof of (21), we need to swap
the arguments in the KL-divergence to bound the probability of the eventCn,δ = {D(P||P∗)> δd}.
To this end, note that forε > 0 andn sufficiently large,|D(P∗ ||P)−D(P||P∗)| < ε with high
probability since the two KL-divergences become close (P∗ ≈ P w.h.p. asn→ ∞). More precisely,
the probability of{|D(P∗ ||P)−D(P||P∗)| ≥ ε} = {o(‖P−P∗‖2

∞) ≥ ε} decays exponentially with
some rateMP > 0. Hence,

limsup
n→∞

1
n

logPn(D(P||P∗)> δd)≤−δ, (81)

if δ < min{KP,LP,MP}. If P is not Markov on a forest, (81) holds with the forest projectionP̃ in
place ofP, that is,

limsup
n→∞

1
n

logPn(D(P̃||P∗)> δd)≤−δ. (82)
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The Pythagorean relationship (Simon, 1973; Bach and Jordan, 2003) states that

D(P||P∗) = D(P|| P̃)+D(P̃||P∗) (83)

which means that the risk isRn(P∗) =D(P̃||P∗). Combining this fact with (82) implies the assertion
of (21) by choosingδ0 := min{KP,LP,MP}.

Now we exploit the lower bound in Lemma 14 to prove the lower bound in Theorem 8. The
error probabilityPn(C̃n,δ|B

c
n,U

c
n) in (72) can now be lower bounded by

Pn(C̃n,δ|B
c
n,U

c
n)≥ max

i∈V
Pn
(

D(P̂i|π(i;Êk̂n
) ||Pi|π(i;EP))> δd

∣∣∣Bc
n,U

c
n

)
(84)

≥ exp(−n(δd+η)), (85)

where (84) follows from the decomposition in (77) and (85) holds for every η for sufficiently large
n by (74). Using the same argument that allows us to swap the arguments of the KL-divergence as
in the proof of the upper bound completes the proof of (22).

Proof (of Lemma 14) Define theδ-conditional-typical set with respect to PX,Y ∈ P(X2) as

Sδ
PX,Y

:= {(xn,yn) ∈ (X2)n : D(P̂X|Y ||PX|Y)≤ δ},

where P̂X|Y is the conditional type of(xn,yn). We now estimate thePn
X,Y-probability of theδ-

conditional-atypical set, that is,Pn
X,Y((S

δ
PX,Y

)c)

Pn
X,Y((S

δ
PX,Y

)c) = ∑
(xn,yn)∈X2:D(P̂X|Y||PX|Y)>δ

Pn
X,Y((x

n,yn)) (86)

= ∑
QX,Y∈Pn(X2):D(QX|Y||PX|Y)>δ

Pn
X,Y(Tn(QX,Y)) (87)

≤ ∑
QX,Y∈Pn(X2):D(QX|Y||PX|Y)>δ

exp(−nD(QX,Y ||PX,Y)) (88)

≤ ∑
QX,Y∈Pn(X2):D(QX|Y||PX|Y)>δ

exp(−nD(QX|Y ||PX|Y)) (89)

≤ ∑
QX,Y∈Pn(X2):D(QX|Y||PX|Y)>δ

exp(−nδ) (90)

≤ (n+1)r2
exp(−nδ), (91)

where (86) and (87) are the same because summing over sequences is equivalent to summing over
the corresponding type classes since every sequence in each type class has the same probability
(Cover and Thomas, 2006, Ch. 11). Equation (88) follows from the method of types result in
Lemma 12. Equation (89) follows from the KL-divergence version of the chain rule, namely,

D(QX,Y ||PX,Y) = D(QX|Y ||PX|Y)+D(QY ||PY)

and non-negativity of the KL-divergenceD(QY ||PY). Equation (90) follows from the fact that
D(QX|Y ||PX|Y)> δ for QX,Y ∈ (Sδ

PX,Y
)c. Finally, (91) follows the fact that the number of types with

denominatorn and alphabetX2 is upper bounded by(n+1)r2
. This concludes the proof of (73).
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We now prove the lower bound in (74). To this end, construct a sequence of distributions
{Q(n)

X,Y ∈ Pn(X
2)}n∈N such thatQ(n)

Y = PY andD(Q(n)
X|Y||PX|Y) → δ. Such a sequence exists by the

denseness of types in the probability simplex (Dembo and Zeitouni, 1998, Lemma 2.1.2(b)). Now
we lower bound (87):

Pn
X,Y((S

δ
PX,Y

)c)≥ Pn
X,Y(Tn(Q

(n)
X,Y))≥ (n+1)−r2

exp(−nD(Q(n)
X,Y ||PX,Y)). (92)

Taking the normalized logarithm and liminf inn on both sides of (92) yields

liminf
n→∞

1
n

logPn
X,Y((S

δ
PX,Y

)c)≥ liminf
n→∞

{
−D(Q(n)

X|Y||PX|Y)−D(Q(n)
Y ||PY)

}
=−δ.

This concludes the proof of Lemma 14.

Appendix H. Proof of Corollary 9

Proof If the dimensiond = o(exp(nδ)), then the upper bound in (80) is asymptotically majorized
by poly(n)o(exp(na))exp(−nδ) = o(exp(nδ))exp(−nδ), which can be made arbitrarily small forn
sufficiently large. Thus the probability tends to zero asn→ ∞.

Appendix I. Proof of Theorem 10

Proof In this proof, we drop the superscript(d) for all distributionsP for notational simplicity but
note thatd = dn. We first claim thatD(P∗ || P̃) = Op(d logd/n1−γ). Note from (72) and (80) that by
takingδ = (τ logd)/n1−γ (for anyτ > 0),

Pn
(

n1−γ

d logd
D(P∗ || P̃)> τ

)
≤ d(n+1)r2

exp(−τnγ logd)+exp(−Θ(n)) = on(1). (93)

Therefore, the scaled sequence of random variablesn1−γ

d logdD(P∗ || P̃) is stochastically bounded (Ser-

fling, 1980) which proves the claim.18

Now, we claim thatD(P̃||P∗) = Op(d logd/n1−γ). A simple calculation using Pinsker’s In-
equality and Lemma 6.3 in Csiszár and Talata (2006) yields

D(P̂X,Y ||PX,Y)≤
c
κ

D(PX,Y || P̂X,Y),

whereκ := minx,yPX,Y(x,y) andc= 2log2. Using this fact, we can use (73) to show that for alln
sufficiently large,

Pn
X,Y(D(PX|Y || P̂X|Y)> δ)≤ (n+1)r2

exp(−nδκ/c),

that is, if the arguments in the KL-divergence in (73) are swapped, then the exponent is reduced by
a factor proportional toκ. Using this fact and the assumption in (14) (uniformity of the minimum

18. In fact, we have in fact proven the stronger assertion thatD(P∗ || P̃) = op(d logd/n1−γ) since the right-hand-side of
(93) converges to zero.
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entry in the pairwise jointκ > 0), we can replicate the proof of the result in (80) withδκ/c in place
of δ giving

Pn(D(P||P∗)> δ)≤ d(n+1)r2
exp(−nδκ/c) .

We then arrive at a similar result to (93) by takingδ = (τ logd)/n1−γ. We conclude thatD(P̃||P∗) =
Op(d logd/n1−γ). This completes the proof of the claim.

Equation (23) then follows from the definition of the risk in (19) and from thePythagorean the-
orem in (83). This implies the assertion of Theorem 10.
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