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Abstract. Deriving flood hazard maps for ungauged basins

typically requires simulating a long record of annual max-

imum discharges. To improve this approach, precipitation

from global reanalysis systems must be downscaled to a spa-

tial and temporal resolution applicable for flood modeling.

This study evaluates such downscaling and error correction

approaches for improving hydrologic applications using a

combination of NASA’s Global Land Data Assimilation Sys-

tem (GLDAS) precipitation data set and a higher resolution

multi-satellite precipitation product (TRMM). The study fo-

cuses on 437 flood-inducing storm events that occurred over

a period of ten years (2002–2011) in the Susquehanna River

basin located in the northeastern United States. A validation

strategy was devised for assessing error metrics in rainfall

and simulated runoff as function of basin area, storm sever-

ity, and season. The WSR-88D gauge-adjusted radar-rainfall

(stage IV) product was used as the reference rainfall data

set, while runoff simulations forced with the stage IV pre-

cipitation data set were considered as the runoff reference.

Results show that the generated rainfall ensembles from

the downscaled reanalysis product encapsulate the reference

rainfall. The statistical analysis consists of frequency and

quantile plots plus mean relative error and root-mean-square

error statistics. The results demonstrated improvements in

the precipitation and runoff simulation error statistics of the

satellite-driven downscaled reanalysis data set compared to

the original reanalysis precipitation product. Results vary by

season and less by basin scale. In the fall season specifically,

the downscaled product has 3 times lower mean relative er-

ror than the original product; this ratio increases to 4 times

for the simulated runoff values. The proposed downscaling

scheme is modular in design and can be applied on any grid-

ded satellite and reanalysis data set.

1 Introduction

Flooding is one of the costliest natural hazards, occurring re-

peatedly around the globe (e.g., Sampson et al., 2014; Ha-

gen and Lu, 2011). Flood vulnerability analysis provides es-

sential information to support decisions for policy and pre-

paredness against catastrophic flood consequences and for

quantifying risk for coping with this hazard (Sampson et al.,

2014). However, flood frequency maps are not available for

most regions around the world (Hagen and Lu, 2011) due

to limited economic resources to support long-term observa-

tions; this results in lack of knowledge and data (e.g., ground-

based rain gauge measurements). Developing global-scale

flood maps (Porter and Demeritt, 2012) is of increasing inter-

est in the scientific community with great applicability in the

(re)insurance industry. Global gridded precipitation data sets

from satellites and reanalysis data sets derived from data as-

similation systems are two main sources for deriving global

flood hazard maps (Cloke et al., 2013; Kappes et al., 2012).

Global reanalysis products can provide long-term pre-

cipitation data sets for frequency analyses of hydrologic

extremes (e.g., floods, droughts). Widely used reanalysis

products include the JRA-25 (Onogi et al., 2005), ERA-

40 (Bosilovich et al., 2008; Uppala et al., 2005), ERA-

Interim (Dee et al., 2011), GLDAS (Global Land Data As-
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similation System; Rodell et al., 2004), GDAS (Kalnay et

al., 1996), and global reanalysis dataset (Sheffield et al.,

2006). These reanalysis products are available at coarse spa-

tial resolution (100 to 250 km2) and suffer from model biases

(Gottschalck et al., 2005; Peña-Arancibia et al., 2013). On

the other hand, satellite-based rainfall products are associated

with relatively higher spatial resolutions (10–25 km2) and

improved accuracy but significantly shorter temporal cov-

erage. The most widely used high-resolution, near-global,

multi-sensor precipitation products include the 8 km/half-

hourly National Oceanic and Atmospheric Administration

CMORPH data set (Joyce et al., 2004); the 25 km/3-hourly

US Naval Research Laboratory NRLBLD (Turk and Miller,

2005); the 4 km/15 min National Environmental Satellite,

Data, and Information Service Hydro-Estimator (Scofield

and Kuligowski, 2003); the 10 km/1-hourly Japan Aerospace

Exploration Agency GSMaP (Ushio and Kachi, 2009; Kub-

ota et al., 2007); the 25 km/3-hourly Center for Hydrometeo-

rology and Remote Sensing, University of California, Irvine,

PERSIANN (Sorooshian et al., 2000); and the 25 km/3-

hourly NASA TRMM3B42 (Huffman et al., 2007). Depend-

ing on the algorithm and the purpose of the product, each

data set utilizes various combinations of information from

microwave (MW) and geostationary infrared (IR) sensors.

Characterizing the uncertainty in existing global gridded

precipitation products is vital for the purpose of hydrolog-

ical applications. Syed et al. (2004) showed that rainfall

is responsible for nearly 70–80 % of the variability in the

land surface hydrology. Therefore, precipitation uncertainty

would critically affect the predicted variability in hydrologic

simulations. Several validation studies have investigated un-

certainties related to satellite rainfall remote sensing over di-

verse geographic and hydroclimatic regimes (Adler et al.,

2001; AghaKouchak et al., 2009; Brown, 2006; Dinku et

al., 2007; Ebert et al., 2007; Krajewski et al., 2000; Mc-

Collum et al., 2002; Seyyedi et al., 2014a; Stampoulis et

al., 2013; Su et al., 2008; Tang et al., 2010). These studies

have shown that the precision of satellite rainfall products

depends on precipitation type (e.g., deep convection vs. shal-

low convection), as well as terrain and climatological factors

(AghaKouchak et al., 2011; Demaria et al., 2011; Turk and

Miller, 2005; Seyyedi et al., 2014a). Gottschalck et al. (2005)

evaluated precipitation products from global models, satel-

lite and radar data against ground-based gauge measurements

over the continental United States (CONUS) for a period

of 14 months. They demonstrated that some of the reanal-

ysis precipitation products (ECMWF, GEOS, and GDAS)

can generally perform better than satellite precipitation data

sets (TRMM3B42RT and PERSIANN). Peña-Arancibia et

al. (2013) assessed daily detection and accuracy metrics for

reanalysis and satellite precipitation data sets against gauge

data. They argued that no product could demonstrate supe-

rior performance relative to the other, e.g., ERA-Interim is

better in southern and northern Australia, JRA-25 performs

better in southern and eastern Asia, and TRMM3B42 and

CMORPH are better during monsoon periods. Therefore,

combined use of different data sets (including satellite and re-

analysis) is expected to perform better than any single prod-

uct, especially for hydrological applications.

Substantial efforts have been devoted to assessing the fea-

sibility of utilizing global-scale precipitation data sets de-

rived from satellite or models on land surface hydrological

modeling (Behrangi et al., 2011; Beighley et al., 2011; Hong

et al., 2006, 2007; Hossain and Anagnostou, 2004, 2005; Ni-

jssen and Lettenmaier, 2004; Su et al., 2008; Bitew and Ge-

bremichael, 2011; Wu et al., 2014). Some of these studies

have highlighted the effect of product resolution (Gourley

et al., 2011) and catchment size (Vergara et al., 2013) on

the precipitation error propagation in hydrological simula-

tions. Seyyedi et al. (2014b) recently utilized gridded precip-

itation data sets from the TRMM3B42V7 (25 km, 3 h) and

GLDAS reanalysis (100 km, 3 h) to conduct a more in depth

assessment of the effect of resolution and data type (satel-

lite vs. reanalysis product) on streamflow simulations at sub-

daily scale. The study was based on a multiyear (2002–2011)

and multiscale approach considering 1006 sub-basins (36–

71 000 km2) of the Susquehanna River basin in the northeast-

ern United States. They demonstrated that statistical scores in

both rainfall and runoff simulations improve with increasing

basin size. However, the satellite data set (TRMM3B42V7)

was shown to perform significantly better than the reanaly-

sis (GLDAS) in the simulated runoff values. The mean rel-

ative error in runoff simulations based on GLDAS was up

to 7 times higher than that of TRMM3B42V7, which was

attributed to the product resolution and associated under-

estimation of heavy precipitation. Results from that study

suggest the use of downscaling and error correction for the

GLDAS reanalysis precipitation data set before implement-

ing it for runoff simulations. Bastola and Misra (2014) also

evaluated two reanalysis precipitation data sets (ERA-40

and NCEP-R2) for hydrologic simulations over 28 small to

midsize basins in the southeastern United States. Their re-

sults demonstrated that ER-40 tends to underestimate while

NCEP-R2 tends to overestimate relative to the reference data.

They also concluded that downscaling the reanalysis pre-

cipitation products would significantly increase their perfor-

mance in terms of runoff simulations.

The critical role of high-resolution gridded rainfall data

sets for hydrological simulations has led to the development

of several rainfall disaggregation algorithms (e.g., Brussolo

et al., 2008; Ferraris et al., 2003; Fowler et al., 2007; Frei

et al., 2006; Maraun et al., 2010; Ning et al., 2011; Park,

2013; Rahman et al., 2009; Ramírez et al., 2006; Tao and

Barros, 2010). The main assumption for some recently de-

veloped downscaling methods for satellite-based products is

the relationship between spatial variability of rainfall and

environmental factors such as topography and land surface

conditions. Immerzeel et al. (2009) improved average annual

TRMM3B43 from 25 to 1 km grid resolution by establishing

an exponential relationship between TRMM3B43 and nor-
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malized difference vegetation index (NDVI). Jia et al. (2011)

developed a statistical downscaling scheme based on the rela-

tionship between rainfall, terrain elevation, and NDVI. They

disaggregated TRMM3B43 from 25 to 1 km grid resolution

by forming a multiple linear regression model between pa-

rameters. The final products of both aforementioned meth-

ods are mean annual rainfall values. Duethmann et al. (2013)

downscaled ERA-40 with a horizontal resolution of 100 to

12 km grid size using the RCM Weather Research and Fore-

casting Model (WRF) over central Asia for hydrological

modeling. The downscaled data exhibited significant model-

ing improvement. Haas and Born (2011) introduced a two-

step probabilistic downscaling method for disaggregating

ERA-Interim using ground-based gauge data over a complex

terrain in southeastern Morocco. The technique is a combi-

nation of cumulative distribution function (CDF) transfor-

mation based on probability mapping and a multi linear re-

gression model to extrapolate observation data to a high-

resolution grid using digital elevation model data. The re-

sulting downscaled high-resolution precipitation data sub-

stantially outperformed the original ERA-Interim data. Al-

though downscaling is a widely studied topic, no studies have

implemented satellite precipitation data sets for downscal-

ing reanalysis precipitation data sets. Moreover, most down-

scaling schemes for reanalysis data sets are in the context

of regional climate focusing on producing consistent statis-

tics for downscaled precipitation values and corresponding

generated runoff. This work examines the value of satellite

data for improving the applicability of reanalysis precipita-

tion data sets in flood simulations and flood frequency anal-

ysis. The reason for using satellite data sets is that a great

deal of effort has been devoted to improving the accuracy

and resolution of satellite retrievals, which is paired with the

recent advent of satellite missions on precipitation (Hou et

al., 2014). Moreover, satellite products are globally available,

which leads to a globally consistent downscaling scheme for

reanalysis products that can be particularly useful over areas

lacking long-term ground-based observations.

This study is motivated by the challenges relating to pre-

cipitation applications due to the nonlinear error propagation

from rainfall to hydrological simulations and the vital need

for high-resolution and long-term gridded rainfall data for

deriving flood frequency statistics and corresponding flood

hazards maps. Specifically, we examine the hydrologic im-

pact of using the higher resolution and accuracy quasi-global

satellite precipitation product from TRMM3B42V7 to de-

rive finer scale and error-corrected precipitation maps from

the GLDAS reanalysis product. The methodology developed

for the satellite-driven error correction and downscaling of

GLDAS rainfall data is based on a stochastic error model

which was originally developed for modeling the satellite re-

trieval uncertainty and its error propagation in hydrological

applications (Hossain and Anagnostou, 2004; Maggioni et

al. 2012, 2013). The methodology is independent of ground-

based measurements, which makes it applicable over data-

Table 1. Number of basins for each basin-scale category.

Basin scales (km2) No. of basins

315–1000 154

1000–3150 77

3150–10 000 51

10 000–31 500 53

31 500–100 000 38

poor areas of the globe. Since GLDAS and other reanalysis

data sets are available over a relatively long period of time

(35–50 years), developing a proper methodology for down-

scaling and improving the accuracy of these products could

lead to a global gridded precipitation data source suitable for

global-scale water resources assessment and flood frequency

studies.

This paper is organized into six sections. After the intro-

duction, the study area and data sets are described, including

the model used for hydrological simulations. The third sec-

tion introduces the downscaling and error correction scheme,

including the experiment setup and parameter calibration.

The fourth section presents the error analysis methodology.

The fifth section describes the results of the error analysis

in rainfall and simulated runoff values. Finally, the conclu-

sions section discusses the main findings of this research and

provides recommendations for future studies.

2 Study area, data sets, and models

The study area is the Susquehanna River basin (39 to 43◦ N

and 75 to 79◦W, Fig. 1), which is the largest basin in the east-

ern United States. The highest peak (949 m above sea level)

is in the northwestern corner and the lowest point (22 m be-

low sea level) is in the southeastern corner with a general el-

evation gradient from north to southeast. The total area of the

Susquehanna River basin is 71 000 km2, of which 76 % is in

Pennsylvania, 23 % in New York, and 1 % in Maryland. The

Susquehanna River basin is subject to major floods occur-

ring once every 14 years with an average annual flood dam-

age on the order of USD 150 million dollars (Susquehanna

River Basin Commission, http://www.srbc.net/). Cumulating

the drainage areas along the river network at the outlet of

each individual catchment provides 373 unique watersheds

with drainage areas ranging from 315 to 71 000 km2. The

identified sub-basins were divided into five basin size cate-

gories (see Table 1) to study the effect of basin scale on the

precipitation and runoff simulation error.

The study focuses on 437 flood-inducing rainfall events

that occurred between 2002 and 2011. To investigate the ef-

fect of seasonality, the events were grouped by season. The

number of events per season is reported in Table 2. Sixty per-

cent of the events in each season were used for the downscal-

ing model calibration, and the remaining 40 % were kept for
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Figure 1. Study area (left panel) and precipitation product grids (right panel) over the Susquehanna River basin. The red grid indicates

GLDAS (100 km), yellow indicates TRMM3B42V7 (25 km) and black indicates the stage IV radar rainfall product (4 km).

Table 2. Number of flood events selected for each season.

Percentage of

Number of the total number

events Events of events (%)

Spring 94 21

Summer 74 17

Fall 157 36

Winter 112 26

Total 437 100

determining error statistics (results presented in this study).

Figure 2 shows the cumulative probabilities (CDF) of the

events randomly selected for inclusion in the calibration and

validation data sets per season. The figure indicates that the

probability distributions of calibration and validation rainfall

rates are very close to each other, which indicates that the cal-

ibration and validation periods have similar statistical prop-

erties in terms of rainfall rates. It is noted that the study is

based on time series of catchment average precipitation val-

ues from each data set. Catchment average is the weighted

average of all the data set’s pixel values contained within a

catchment’s boundary, where the weights are based on the

fraction of the catchment covered by each pixel.

2.1 Stage IV radar data

The radar-based NCEP stage IV precipitation data (Lopez,

2011) are utilized as high-accuracy, reference observation

data in this study. The data are originally on a 4 km× 4 km

grid and in polar-stereographic projection. Stage IV com-

bines estimates of precipitation from a network of 150

Doppler NEXRAD (Next Generation Weather Radar) with

approximately 5500 hourly rain gauge measurements over

the CONUS. NEXRAD is technically similar to the Weather

Surveillance Radar-1988 Doppler (WSR-88D). The data

benefit from the 12 CONUS RFCs (River Forecast Centers)

manual quality control (QC).

2.2 TRMM3B42V7

TRMM3B42V7 is a combined microwave–infrared precipi-

tation product (Huffman et al., 2007) with 25 km spatial reso-

lution and 3-hourly temporal resolution representing the lat-

est version at the time of this study. The TRMM3B42V7

blending algorithm uses passive microwave (PMW) from

TRMMs’ Microwave Imager (TMI) as well as low Earth

orbit (LEO) measurements from the Special Sensor Mi-

crowave/Imager (SSM/I) on the Defense Meteorological

Satellite Program (DMSP) satellites, Advanced Microwave

Scanning Radiometer-Earth Observing System (AMSR) on

Aqua, the Advanced Microwave Sounding Unit-B (AMSU-

B) on the National Oceanic and Atmospheric Administra-

tion (NOAA) satellite series, Microwave Humidity Sounders

(MHS) on later NOAA-series satellites, and the European

Operational Meteorological (MetOp) satellite (Kidd et al.,

2011). The TRMM3B42V7 combination scheme is based

on the Goddard profiling (GPROF) algorithm (Kidd et al.,

2011; Kummerow et al., 2001; Kummerow et al., 1996; Ol-

son et al., 1999; Wang et al., 2009; Gopalan et al., 2010)

for rainfall estimation from PMW imagers (TMI, SSM/I,

and AMSR). The PMW-calibrated infrared (IR) precipita-

tion products (Janowiak et al., 2001) from Geosynchronous

Earth Orbit (GEO) satellites are used to fill in the PMW

Hydrol. Earth Syst. Sci., 18, 5077–5091, 2014 www.hydrol-earth-syst-sci.net/18/5077/2014/
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Figure 2. Cumulative probability of radar rainfall rain rates in the

calibration and validation events selected for each season.

gaps. Specifically, the algorithm takes the value of the PMW-

calibrated IR precipitation products when the PMW is not

available in a 3-hourly time step. The algorithm uses monthly

ground precipitation gauge data extending between 50◦ N

and 50◦ S for bias removal and calibration.

2.3 GLDAS

The reanalysis precipitation data set is from GLDAS and has

100 km spatial and 3-hourly temporal resolution. The rea-

sons for selecting GLDAS are its global coverage, relatively

high temporal resolution, and long data record (since 1979).

The data are “observation based”, coming from a combina-

tion of reanalysis data from the Global Data Assimilation

System (GDAS) from the National Center for Environmen-

tal Prediction (NCEP), NOAA Climate Prediction Center’s

CMAP (CPC Merged Analysis of Precipitation) precipita-

tion (Xie and Arkin, 1997), and radiation data sets from

the US Air Force’s AGRicultural METeorological model-

ing system (AGRMET) (Rodell et al., 2004). GDAS assimi-

lates global meteorological observations. CMAP consists of

merged satellite-based IR and MW observations with rain

gauge analysis. AGRMET radiation fields are satellite ob-

servation based. GLDAS therefore represents merged, spa-

tially and temporally interpolated fields of GDAS, CMAP,

and AGREMET fields.

2.4 Hydrologic model simulations

Hillslope River Routing (HRR) (Beighley et al., 2009, 2011)

is the modeling framework used in this study. HRR integrates

a water balance model for the vertical fluxes and a routing

model for the horizontal fluxes of the surface and subsurface

runoff and streamflow. For each model unit, the landscape

is approximated as an open book with two planes draining

laterally to a main channel. Water and energy balance is used

to simulate the vertical fluxes and storages of water in and

through the soil layers on each plane. Flow routing is then

performed using variants of the kinematic wave method for

both the surface and subsurface runoff from hillslopes and

diffusion wave methodologies (i.e., Muskingum–Cunge) for

channels.

Seyyedi et al. (2014b) provided details about the model

implementation in the Susquehanna River basin and reported

model specifications, parameter calibration, and performance

results. In addition to the base model parameters (e.g., ver-

tical hydraulic conductivity, suction head, and soil depth),

three parameters were calibrated in Seyyedi et al. (2014b)

based on soil and land cover data: horizontal conductivity,

Kh, for the subsurface routing; overland flow roughness, N ,

for surface routing; and Manning’s roughness, n, for chan-

nel routing. These parameters are scale dependent in that

they capture both the hydraulic features (river reach and hill-

slope lengths) defined for a given model unit as well as

all sub-model unit features not represented at the defined

model scale (e.g., all tributaries not explicitly represented in

the defined river network). The calibration was performed

by systematically adjusting the three parameters (Kh, N ,

n) to achieve zero mean error (ME, m3 s−1) for the annual

maximum peak discharges at nine streamflow gauging sta-

tions shown in Fig. 1. As reported in Seyyedi et al. (2014b),

model performance after calibration includes zero mean er-

ror for the entire basin, while mean relative errors for in-

dividual gauges ranged between −16 and 23 %, and errors

for individual events ranged between −62 and 224 %. The

largest error is from the gauge draining one of the smallest

basin areas (1155 km2) during Tropical Storm Lee in 2011,

which caused significant flooding, especially in the north-

ern Susquehanna River basin. Overall, 86 % of the errors are

within ±50 %, and approximately half are within ±25 %.

3 Error correction and downscaling scheme

The stochastic space–time error model of Hossain and Anag-

nostou (2006), originally developed for satellite rainfall error

modeling (hereafter named SREM2D), was devised in this

study to disaggregate and error-correct GLDAS precipitation

data sets using reference data from the TRMM3B42V7 satel-

lite precipitation product. Specifically, SREM2D was applied

on the coarse (100 km) grid resolution GLDAS precipitation

fields to generate 20-member ensembles of error-adjusted

precipitation fields at 25 km grid resolution. Figure 3 illus-

trates the framework for the stochastic downscaling and er-

ror correction. First SREM2D parameters are determined for

each season using TRMM3B42V7 and GLDAS data from

the calibration data sets of each season. Then SREM2D

www.hydrol-earth-syst-sci.net/18/5077/2014/ Hydrol. Earth Syst. Sci., 18, 5077–5091, 2014
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Figure 3. Stochastic downscaling framework. It consists of two

main parts: the left side indicates required SREM2D parameters

and the right side shows GLDAS ensemble generation and quality

assessment with the absolute reference data (stage IV radar data).

was applied to the GLDAS data during the validation period

and evaluated against the reference stage IV gauge-adjusted

radar-rainfall fields. Details about the SREM2D model are

provided in Hossain and Anagnostou (2006), while below we

describe the model calibration results for the different sea-

sons.

SREM2D parameters calibrated in this study are (1) prob-

ability of rain detection (PODrain) (see Fig. 4e); (2) mean of

the log-transformed multiplicative error, where error is the

multiplicative factor “e=Rsensor/Rreference” – this param-

eter is represented in 2-D spatial fields for each season in

Fig. 4a–d; (3) missed mean rain rate; (4) probability of no-

rain detection (POD no-rain); (5) correlation length for the

retrieval error (CLrain-downscale) ; (6) correlation length for

the successful delineation of rain (CLrain det); and (7) corre-

lation length for the successful delineation of no rain (CLno-

rain det). The calculated values for parameters 3 to 7 are pre-

sented in Table 3 for the selected calibration events in each

season.

In terms of spatial patterns, the correlation lengths of rain

detection, no-rain detection, and downscaled rain for all sea-

sons are less than 83 km. The lower correlation length indi-

cates lower dependence between variables in space. Regard-

ing the random error, the range of standard deviation of log-

arithmic multiplicative errors is between 1.2 (fall) and 1.65

(winter). The values represent higher magnitude of variabil-

ity of error between reference and sensor data in winter rela-

tive to the other seasons. The PODno−rain takes its maximum

value during the summer season (0.98), while it drops to 0.85

for the winter season. The maximum mean rain rate of non-

detected values is 0.82 for the summer; the corresponding

value is 0.39 for the winter. Summer events are associated

with higher rain rates, which results in higher non-detected

rain rates from GLDAS.

The mean of the log-transformed multiplicative error for

each season is presented in 2-D spatial fields (Fig. 4a, b, c, d).

The negative mean logarithmic error indicates that GLDAS

is underestimating relative to the TRMM3B42V7. As we see

in Fig. 4a, b, c, d, GLDAS underestimates almost everywhere

and for all seasons. The magnitude of underestimation in the

summer is relatively higher than in the other seasons. The

probability of rain detection is presented as a function of

GLDAS rain rate (Fig. 4e). The summer events exhibit the

highest values, whereas fall and spring have lower POD val-

ues.

Figure 5 presents the accumulated values based on all val-

idation events for the different precipitation products and

the 20-member SREM2D-generated ensembles of GLDAS

downscaled precipitation, depicted by the shaded area in the

plot. GLDAS rainfall significantly underestimates the other

two precipitation data sets, especially in spring, fall, and

winter seasons, while the SREM2D-generated ensemble en-

velops well encapsulate the TRMM3B42V7 and, in most

cases, the ground-based reference accumulated rainfall. This

indicates that the disaggregated GLDAS precipitation data

are in agreement with the TRMM3B42V7 and the corre-

sponding ground-based radar rainfall data.

4 Error analysis methodology

The error analysis devised in this study, aimed to demon-

strate the degree of improvement due to downscaling, con-

sists of three main hydrologic components (Fig. 6): refer-

ence simulation, observation simulation, and downscaled and

error-corrected simulation. Reference simulation is based on

generating runoff values through forcing HRR with the ref-

erence radar rainfall data. Observation simulation refers to

forcing HRR with GLDAS or TRMM3B42V7 at the product

resolution. Downscaled and error-corrected simulation refers

to forcing HRR with the ensemble mean of the SREM2D-

downscaled GLDAS precipitation fields. There are two error

analysis steps associated with the three main components:

the rainfall error analysis and simulated surface runoff er-

ror analysis. Each error analysis component consists of three

statistical metrics: quantile–quantile (Q-Q) plots, mean scale

quantile relative error (QRE), and the quantile root mean

square of error relative to the mean of reference (QRMSE).

The Q-Q plots are used to compare basin-average quan-

tile rainfall and runoff values from the various data sources

(GLDAS at 100 km, TRMM3B42 at 25 km, mean GLDAS

downscaling ensemble at 25 km) against the reference data

source (radar at 4 km). The QRE is defined as the ratio of

the sum of differences between reference and sensor values

(precipitation or runoff) to the sum of reference values deter-

mined over the sub-basins for each quantile range:

QRE=

∑n
i=1

((
P s

Sensor|tj ≤ P
s
ref < tj+1

)
−
(
P s

ref|tj ≤ P
s
ref < tj+1

))∑n
i=1

(
P s

ref|tj ≤ P
s
ref < tj+1

) , (1)
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Table 3. SREM2D parameters determined for GLDAS downscaling for the four seasons using the calibration events.

SREM2D Parameter Spring Summer Fall Winter

Mean (µ Gaussian of log error) Fig. 4a, b, c, d Fig. 4a, b, c, d Fig. 4a, b, c, d Fig. 4a, b, c, d

PODrain Fig. 4, e Fig. 4e Fig. 4e Fig. 4e

σ (SD Gaussian of log error) 1.48 1.35 1.20 1.65

Missed mean rain rate (mm h−1) 0.58 0.82 0.48 0.39

POD no-rain 0.88 0.98 0.93 0.85

CLrain-downscale (km) 22 20 18 21

CLrain det (km) 43 40 48 40

CLno rain det (km) 49 15 67 83

Figure 4. SREM2D parameters, 2-D spatial mean of logarithmic error “e” for each season: (a) spring, (b) summer, (c) fall, and (d) winter.

(e) Probability of rain detection as a function of GLDAS rain rate.

where P s
Sensor is the sensor “basin-averaged” precipita-

tion/runoff value, P s
ref is the reference “basin-averaged” pre-

cipitation/runoff value over the sub-basin, t is the threshold

value which is based on the reference data quantiles, j is the

quantile index, and n is total number of value in a particu-

lar scale and quantile range. The perfect value for this metric

is zero, which means there is no difference between refer-

ence and the sensor values. The negative QRE value means

the sensor is underestimating, and the positive value means

overestimating.

QRMSE is the root mean square of the differences be-

tween reference and sensor; it is normalized to the mean of

reference values.

QRMSE=

2

√
1
n

∑n
i=1

((
P s

Sensor|tj ≤ P
s
ref < tj+1

)
−
(
P s

ref|tj ≤ P
s
ref < tj+1

))2
mean

(
P s

ref|tj ≤ P
s
ref < tj+1

) . (2)

QRMSE quantifies the spread between sensor and reference

data points.

To determine dependence of the error metrics on storm

severity, QRE and QRMSE statistics are categorized into two

groups according to the quantile values of rainfall and runoff,

namely, values between 75th and 90th percentile and greater

than the 90th percentile that represent moderate and extreme

events, respectively. To investigate the effect of seasonality

and basin-scale statistics, Q-Q plots are presented for the four

seasons and different basin scales.

5 Results

5.1 Rainfall error analysis

As mentioned above, the rainfall error analysis is divided

into two categories: frequency distribution and quantitative

statistics. The frequency distribution uses the Q-Q plots, and

the quantitative statistics include the QRE and QRMSE error

metrics. These are discussed next.

Frequency distribution

To assess the correspondence between sensor and refer-

ence rainfall data, we plotted the quantile values from

TRMM3B42V7, GLDAS, and downscaled ensemble-mean
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5084 H. Seyyedi et al.: Satellite-driven downscaling of global reanalysis precipitation products

Figure 5. Cumulative precipitation values of the validation events

in the four seasons; the shaded area indicates the 20 ensemble mem-

bers of downscaled and error-corrected GLDAS data.

GLDAS (sensor) against the corresponding quantile values

of the reference radar rainfall (Fig. 7). In each Q-Q plot the x

axis represents sensor values and the y axis represents radar

values in millimeters per hour. We show significant changes

in the Q-Q plots for the different basin scales (small to large)

and seasons.

GLDAS show a systematic underestimation at all sea-

sons and basin scales. The underestimation is most se-

vere at the smallest basin scales (top panels). During the

summer convective rainfall season, the underestimation re-

duces significantly for medium to large basin scales, and it

changes to slight overestimation for the small quantile val-

ues (< 1 mm h−1). On the other hand, the GLDAS down-

scaled ensemble-mean data exhibit much better agreement

with the reference radar rainfall data. The best agreement

is observed during the fall and summer seasons, while good

agreement is also depicted during the spring season. The win-

ter season exhibits a strong underestimation (overestimation)

of the low (high) quantile values. Overall, the downscaled

GLDAS precipitation data set exhibits similar performance

to the TRMM3B42V7 product in the fall, summer, and spring

seasons, while in the winter, the downscaled GLDAS shows

stronger underestimation than TRMM3B42V7 for the low

quantile values.

Quantitative statistics

The seasonal variation of the mean relative error and rela-

tive root-mean-square error statistics versus basin scale for

GLDAS, TRMM3B42V7, and the downscaled ensemble-

mean GLDAS are presented in Figs. 8 and 9, respectively.

Figure 6. Flow diagram for the error analysis methodology.

These statistics are based on precipitation values that exceed

the 90th percentile. The main point to note is that no data sets

show significant changes with basin scale. In spring, GLDAS

shows significant underestimation, while TRMM3B42V7 is

almost unbiased, and the downscaled GLDAS shows slightly

overestimation for all basin size categories. In summer all

data sets exhibit underestimation. The magnitude of under-

estimation in GLDAS is significantly higher than that of

TRMM3B42V7 or the downscaled ensemble-mean GLDAS.

In fall, GLDAS exhibits significant underestimation, while

the downscaled ensemble-mean GLDAS is almost unbiased,

in contrast to TRMM3B42V7, which exhibits slight overes-

timation. In winter, GLDAS shows underestimation, while

TRMM3B42V7 and downscaled ensemble-mean GLDAS

show overestimation. The magnitude of overestimation in the

downscaled ensemble-mean GLDAS is lower than the under-

estimation in GLDAS. For the random component of precipi-

tation error (relative RMSE), the three precipitation data sets

are performing similarly, with scores very close in the sum-

mer and fall seasons (scores ranging between 0.9 and 1.05).

Overall, GLDAS exhibits lower relative RMSE values than

the other two precipitation data sets, with this difference be-

coming more significant (range between 0.8 and 1.4) during

winter and spring seasons.

5.2 Simulated runoff error analysis

Time series of the simulated runoff for the entire basin

derived from forcing the HRR model with GLDAS (ob-

servation simulation), TRMM3B42V7 (product simulation),

downscaled ensemble-mean GLDAS (downscaled and error-

corrected simulation), and radar-rainfall data (reference sim-

ulation) for the validation data sample of each season are pre-

sented in Fig. 10. As shown in the time series plot, GLDAS

systematically underestimates runoff relative to the other

data sets, and particularly during the major hurricane events

in the fall. The downscaled ensemble-mean GLDAS per-

forms significantly better and is shown to be able to capture
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Figure 7. Quantile–quantile plots between sensor (TRMM3B42V7, GLDAS, and downscaled GLDAS) and radar precipitation values. Rows

indicate different basin-scale categories. Columns represent the different seasons.

Figure 8. QRE error metric determined conditional to reference

precipitation values exceeding their 90th percentile. The horizontal

axis indicates basin-scale categories presented in Table 2. Results

are presented for spring (upper left panel), summer (upper right),

fall (lower left), and winter (lower right) seasons.

the events and the overall flow patterns. In the case of the

high-flow fall events (associated with two hurricanes), the

downscaled ensemble-mean GLDAS simulated runoff seems

to be between TRMM3B42V7 and reference data. Below we

discuss Q-Q plots and QRE and QRMSE error metrics for

the runoff simulations.

Figure 9. QRMSE error metric determined conditional to reference

precipitation values exceeding their 90th percentile. The horizontal

axis indicates basin-scale categories presented in Table 2. Results

are presented for spring (upper left panel), summer (upper right),

fall (lower left), and winter (lower right) seasons.

5.2.1 Frequency distribution

The Q-Q plots of the simulated runoff values from the three

data sets (i.e., TRMM3B42V7, GLDAS, and downscaled

ensemble-mean GLDAS) against the reference simulations

are presented in Fig. 11. Similar to Fig. 7, GLDAS exhibits

a strong underestimation of runoff at all seasons and basin

scales. The underestimation is shown to be more signifi-

cant in the fall, spring, and winter seasons, while it reduces

significantly during the summer events. The ensemble-mean

downscaled GLDAS, on the other hand, exhibits very good
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Figure 10. Runoff time series driven by the different precipitation

products over the basin indicated in Fig. 1 and consisting of the

selected validation events of each season. GLDAS shows underes-

timation in all cases; meaningful improvement is shown in down-

scaled error-corrected GLDAS.

agreement with the reference values, particularly during fall

and spring seasons. This agreement is very similar to the

one exhibited for the TRMM3B42V7 data set, indicating that

downscaling causes GLDAS to perform similarly to the cor-

responding TRMM3B42V7 data set, which was used in the

calibration of the stochastic model parameters.

5.3 Quantitative statistics

Figures 12 and 13 show the two error metrics (QRE and

QRMSE) determined for the validation sample reference

runoff simulation values exceeding the 90th percentile value

for the different seasons. As shown in the QRE plots of

Fig. 12, GLDAS significantly underestimates in all seasons

(Fig. 12). The magnitude of underestimation is the strongest

in summer and fall seasons and the lowest in spring. Winter

season underestimation reduces with increasing basin scale.

The ensemble-mean downscaled GLDAS QRE values ex-

hibit significant bias reduction in runoff simulations, partic-

ularly in the fall and winter seasons. In spring, the down-

scaled GLDAS exhibits overestimation, which is still lower

in absolute magnitude than the underestimation of the orig-

inal GLDAS runoff simulations. The QRE values of the

TRMM3B42V7 product are consistently low, showing a pos-

itive bias of < 10 %.

For the random error component, downscaling consis-

tently improves the QRMSE statistic at all basin scales and

for all seasons. The greatest reduction on QRMSE is in the

summer and winter seasons, while spring exhibits the least

effect. The satellite product (TRMM3B42V7) shows consis-

tently lower QRMSE values than both GLDAS and down-

scaled GLDAS products for all basin scales and seasons. The

greatest difference is in the summer and fall seasons, which

are associated with more organized convective systems and

less snow/mixed-phase precipitation. The spring season also

exhibits a slight basin-scale dependence on QRMSE for

the downscaled GLDAS and TRMM3B42V7 product-driven

runoff simulations; no significant basin-scale dependence is

presented for the other seasons or products.

The above findings are in contrast with the increased ran-

dom error component shown in the downscaled GLDAS pre-

cipitation product (Fig. 9). To understand this aspect, we

present in Table 4 the QRMSE ratios between runoff and pre-

cipitation (error propagation) for the two products, seasons,

and basin scales. The downscaled GLDAS exhibits damp-

ening of the random error component from precipitation to

runoff simulations; this dampening seems to be less depen-

dent on basin scale and more related to season. For example,

winter and spring seasons exhibit the strongest dampening

of random error (ratios around 0.5), while in the summer the

ratio is around 1 (i.e., no change), and in the fall the ratio is

around 0.8 with a slight basin-scale dependence (i.e., rang-

ing from 0.86 for basins below 1000 km2 to 0.79 for basins

greater than 10 000 km2). On the other hand, the original

GLDAS product shows either an increase in the random er-

ror component from precipitation to runoff simulations dur-

ing summer and fall seasons or a weaker (about half) damp-

ening, compared to the downscaled product, in winter and

spring seasons. These differences in precipitation to runoff

error propagation convert the slightly increased random er-

ror of the downscaled GLDAS product in precipitation to a

significantly lower random error in runoff simulations, which

is consistent with our aim of improving the hydrologic use of

GLDAS products in flood modeling.

6 Conclusions

The aim of the study was to evaluate a stochastic downscal-

ing and error correction approach for improving the use of

a global reanalysis precipitation data set (GLDAS) in flood

simulations. GLDAS is available over a relatively long time

period (since 1979), which provides a good source of pre-

cipitation data for hydrological analyses and global flood

hazard mapping. However, it has been shown in Seyyedi

et al. (2014b) that the resolution and biases of this prod-

uct introduce significant runoff simulation errors, which

limit its applicability for flood modeling. In this study we

present the implementation of a two-dimensional stochas-

tic error model (SREM2D) to downscale and adjust GLDAS

precipitation data using the higher resolution and accuracy

TRMM3B42V7 satellite precipitation product as reference.

The study focused on a large basin (Susquehanna River

basin) in the northeastern United States subjected to 437 sig-

nificant rainfall events over a 10-year period (2002–2011),

which were grouped into four seasons. The hydrologic simu-

lations were performed with the HRR model, which was cali-

brated using radar-rainfall and observations from nine USGS

streamflow gauges.

The improvements from downscaling and adjusting the

GLDAS precipitation were evaluated in terms of both rain-
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Figure 11. Quantile–quantile plots between sensor (TRMM3B42V7, GLDAS, and downscaled GLDAS) and radar rainfall-driven runoff

simulations. Rows indicate different basin-scale categories. Columns represent the different seasons.

Table 4. The ratio of QRMSE in runoff to QRMSE in precipitation for GLDAS and ensemble-mean downscaled GLDAS data.

Scale < 1000 km2 3150 to 10 000 km2 > 10 000 km2

GLDAS downscaled GLDAS GLDAS downscaled GLDAS GLDAS downscaled GLDAS

Spring 0.83 0.55 0.80 0.57 0.80 0.53

Summer 1.36 0.96 1.39 1.06 1.29 0.95

Fall 1.19 0.86 1.13 0.81 1.12 0.79

Winter 0.78 0.46 0.81 0.47 0.81 0.46

Figure 12. QRE error metric determined conditional to reference

runoff values exceeding their 90th percentile. The horizontal axis

indicates basin-scale categories presented in Table 2. Results are

presented for spring (upper left panel), summer (upper right), fall

(lower left), and winter (lower right) seasons.

Figure 13. QRMSE error metric determined conditional to refer-

ence runoff values exceeding their 90th percentile. The horizontal

axis indicates basin-scale categories presented in Table 2. Results

are presented for spring (upper left panel), summer (upper right),

fall (lower left), and winter (lower right) seasons.
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fall and runoff simulations using frequency distributions and

quantitative error metrics. The effect of basin scale and sea-

sonality were considered in this analysis. For the precipi-

tation error analysis, the quantile–quantile (Q-Q) plots in-

dicated that GLDAS is meaningfully underestimating in all

seasons and on all basin scales, while the satellite-driven

downscaled GLDAS ensembles significantly reduced that

bias, reaching a performance similar to the TRMM3B42V7

precipitation product. This was confirmed by the mean rel-

ative error statistic, where downscaled GLDAS shows sub-

stantial reduction of the strong underestimation exhibited in

the original GLDAS product. The error analysis in simulated

runoff values gave similar bias patterns to those in the precip-

itation products. The downscaled ensemble-mean GLDAS

product has considerably reduced bias compared to the orig-

inal GLDAS product. There is a slight basin-scale effect on

the evaluated statistics, with slightly better runoff results for

larger basin sizes. The random error in the simulated runoff

values reduces for the downscaled ensemble-mean GLDAS

product relative to the original GLDAS. This was explained

by the properties of the random error propagation from pre-

cipitation to runoff simulations. The random error in the orig-

inal GLDAS is either increasing (summer and fall seasons)

or slightly decreasing (winter and spring) from precipitation

to runoff. On the other hand, the downscaled GLDAS prod-

uct showed a remarkable dampening (0.5–0.8) of the random

error from precipitation to runoff simulations. This can be at-

tributed to hydrologic processes (infiltration and runoff gen-

eration) that can average out the random precipitation error

component of the high-resolution products (e.g., downscaled

GLDAS), but make discharge errors worse for the strongly

underestimated GLDAS rainfall rates within the basin.

Overall, results presented in this study indicate that the

proposed satellite precipitation based downscaling and er-

ror correction method has the potential to improve the hy-

drological use of GLDAS precipitation reanalysis data sets.

The main advantage of this approach is that it uses high-

resolution global precipitation products from multi-sensor

satellite observations, which makes it flexible to implement

over areas with limited ground-based measurements. Fur-

thermore, the downscaling scheme is modular in design and

can be applied to any gridded data set.

The proposed scheme was demonstrated over the north-

eastern United States, which is a data-rich area. As stated

in the study area section, the TRMM3B42V7 technique uses

regional ground-based precipitation measurements from rain

gauges to adjust the precipitation retrieval. Although this ap-

proach is consistently applied globally, many areas of the

world do not have a gauge density as large as the US network.

As argued in studies reported in this paper, rain gauge ad-

justments in data-poor areas may worsen the accuracy of the

TRMM3B42V7 product. Therefore, future research should

evaluate this scheme on the basis of other satellite products

that do not use rain-gauge-based adjustments to more accu-

rately represent the conditions of data-poor areas. Another

extension of this research is to apply the SREM2D downscal-

ing scheme on the entire (35-year) record of GLDAS precip-

itation data to derive multiyear downscaled GLDAS reanaly-

sis ensembles, and use them through the hydrologic model of

this study to derive flood return periods for the Susquehanna

River basin. Finally, extending the downscaling methodol-

ogy to GLDAS as well as other reanalysis products, such as

ERA-40 and ERA-interim, at the global scale in conjunc-

tion with multiyear (1998–2014) high-resolution precipita-

tion products from satellite-only techniques (e.g., CMORPH,

PERSIANN) would allow for derivation of a high-accuracy

global satellite-driven water resources reanalysis indepen-

dent of ground measurements. Such products could be used

in many engineering and scientific applications, such as flood

and drought frequency analyses, design of hydraulic struc-

tures, or reservoir design and operation optimization.
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