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Abstract

This thesis presents MATCHM AKER, a new synthesis tool that aims to help program-
mers use software frameworks by synthesizing source code needed to interact with
the framework.

Software engineers of today are constantly faced with the task of using or extend-
ing large software code bases. This proves to be a challenging endeavor, as object-
oriented frameworks tend to grow exceedingly intricate. Functionality is spread out
among numerous classes and tailoring it for a specific need requires knowledge of
exact components to extend and combine.

MATCHMAKER is presented to help programmers understand such complex be-
havior, especially, to help deal with one common task in using frameworks: connecting
two classes so that they can interact with each other. Taking as input two classes
that the programmer want to connect, MATCHMAKER observes many real runs of
the framework, aggregates relevant execution traces in which similar connections are
built by client-framework interactions, and synthesizes the necessary source code the
user needs to write to make the connection possible.

MATCHMAKER relies on the hypothesis that the logical connection between two
objects is fulfilled by a chain of pointer references linking them together, and the
earliest possible pointer reference chain (called Critical Chain) is critical to the logical
connection. MATCHMAKER employs a new program behavior data engine (called
DELIGHT) to find the critical chain, uses a special slicing algorithm to dig out the
relevant instructions which form the client-framework protocol from the critical chain,
and synthesize the client code from the slices.

In this thesis we also demonstrate MATCHMAKER’s capability on a range of pro-
gramming tasks using complex software frameworks such as Eclipse, and evaluate
MATCHMAKER’s usability and its improvement to programming efficiency by com-
prehensive user study.

Thesis Supervisor: Armando Solar-Lezama
Title: Assistant Professor
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Chapter 1

Introduction

Modern programming relies heavily on rich extensible frameworks that pack large
amounts of functionality for programmers to draw upon. The advent of these frame-
works has revolutionized software development, making it possible to write appli-
cations with rich functionality by simply piecing together pre-existing components.
But the productivity benefits come at a price: a steep learning curve as programmers
- struggle to master a complex framework with tens of thousands of components and
millions of lines of code. As this thesis will show, synthesis can alleviate this problem
by leveraging the programmer’s limited understanding of the system to generate code
that uses the framework correctly.

In order for synthesis to succeed in this domain, however, the synthesizer needs
to cope with the same challenges that stymie professional programmers: scale and
dynamic behavior. The Eclipse ecosystem, for example, has over 33 million lines of
code [1], and like many other frameworks, it achieves flexibility through aggressive use
of dynamic dispatch and reflection. Together, scale and dynamic behavior make de-
tailed semantic analysis impractical, limiting the applicability of traditional synthesis
methodologies [13]. On the other hand, the reusable nature of frameworks implies
that the same functionality is used in different combinations by different applications:
this suggests a more empirical approach to synthesis, where one can discover the cor-
rect usage of a component by analyzing how it has been used in different contexts.
This thesis explores this empirical approach to software synthesis in the context of a
well-defined programming challenge: establishing an interaction between two classes
in a framework.

1.1 The Matching Problem

The problem we are solving arises from the way object-oriented frameworks tend to
atomize functionality into large numbers of classes, each dealing with a very specific
aspect of a task. This atomization implies that functionality that should logically
require the interaction of two objects also requires a number of auxiliary objects that
have little intuitive meaning to the novice programmer. For example, a programmer
trying to implement syntax highlighting for an editor written on top of the Eclipse



framework will quickly discover that he needs to use a RuleBasedScanner to identify the
different lexical classes that need to be shown in different colors.

The problem, with matching the two classes is that the interaction between the ed-
itor and the scanner is mediated by a number of classes such as SourceViewerConfiguration,
PresentationReconciler and — most confusingly — DefaultDamagerRepairer; classes whose func-
tion can only be understood if one understands something about the internal work-
ings of Eclipse. As a result, even after the programmer knows she needs to write a
RuleBasedScanner and make it interact with the text editor, it still takes her a long time
to discover all the auxiliary classes that are needed to establish this interaction and
to figure out how to use them. Therefore, we can significantly increase programmer
productivity by automatically synthesizing the glue code that allows two classes to
interact with each other.

1.2 Technical Approach

The focus of this thesis is MATCHMAKER, the synthesis tool that automatically
generates the glue code to enable the interaction of two classes. The tool takes as
input the names of two classes that the user wants to use and produces the necessary
glue code, including any methods that need to be overridden, classes that need to be
instantiated and APIs that need to be called.

MATCHMAKER is based on DELIGHT, a data collection, management and analysis
engine. The data collector in DELIGHT allows us to build rich databases of program
behavior in real time. The database contains detailed information about control
transfer in the application, as well as information about the dynamic evolution of
the heap. Using a novel technique that uses abstraction as a mechanism for data
indexing, DELIGHT is able to efficiently answer the questions about the evolution of
heap connectivity, thus provide the basis for MATCHMAKER, the synthesizer.

1.3 Contributions

The most important contribution of this thesis is to demonstrate how synthesis can be
enabled by a new form of data-driven program analysis that is qualitatively different
from more traditional dynamic analysis. At the practical level, maintaining a database

‘of program behavior eliminates one of the main shortcomings of dynamic analysis: the

need for the user to be able to run the program before the analysis can yield any useful
results. Instead, programming tools that rely on the data driven model can offer push-
button responsiveness by tapping into shared data store such as DELIGHT. More
fundamentally, the feature that distinguishes data-driven analysis from traditional
dynamic analysis is that instead of analyzing the runtime behavior “live” as the
program executes, the execution data is stored and indexed to support deep queries
about the program behavior over time and across runs. The distinction is somewhat
akin to the difference between a journalist and a historian. Journalists provide a
direct view of the events of the day, but historians are able to piece together the



records of the past to provide a more complete view of events. In a similar way,
our system is able to use the program execution data to understand how connections
between different kinds of objects arise in the heap and what programmers need to
do to create them.

In order to achieve our goal, this thesis makes a number of important technical
contributions:

e We empirically show that one can infer the proper way to establish an interac-
tion between two objects by focusing on how chains of pointers are created be-
tween them, and introduce the concept of Critical Chain, as well as the method
to find critical chain efficiently.

e We propose a slicing algorithm based on thin slicing to dig out relevant instruc-
tions enabling the client-framework interaction.

e We explore algorithms for normalizing the slices to get the interesting instruc-
tions that form the protocol between client and framework for the interaction,
and propose a synthesis algorithm to generate necessary client code for the
client-framwork interaction from the normalized slices.

e We present MATCHMAKER, a new synthesis tool that can synthesize neces-
sary source code for using the framework to connect two classes together, and
demonstrate its usefulness.

e We give results of user study to evaluate the usability and effectiveness of
MATCHMAKER.

1.4 Organization of the thesis

In Chapter 2, we describe the overview of the MATCHMAKER through a running
example. Chapter 3 describes the preliminaries of MATCHMAKER, especially DE-
LIGHT, the data collection and query engine that MATCHM AKER based on. Chapter 4
introduces the concept of critical chain, and gives an algorithm to find it. Chapter 5
details the slicing algorithm that MATCHMAKER uses to dig out relevant instructions
from the critical chain to fulfill the client-framework protocol. Chapter 6 presents the
algorithms to normalize the slicing result and to synthesize the source code from the
normalized slice. Chapter 7 discusses various related works. Chapter 8 evaluates the
generality of MATCHMAKER. Chapter 9 presents user study results to demonstrate
the usability and improvement to programmers’ productivity of MATCHMAKER. Fi-
nally Chapter 10 concludes the thesis and discusses future work directions.



Chapter 2

Overview

In this chapter, we elaborate on the running example introduced earlier involving the
syntax highlighting functionality in Eclipse. We use this example to illustrate the
challenges introduced by object oriented frameworks and to describe how MATCH-
MAKER attacks this problem through a data driven approach to synthesis.

2.1 Example

Eclipse makes it easy to add syntax highlighting to a user-created editor by defining an
ITokenScanner interface. The framework is designed to apply the user’s implementation
of the scanner to identify different kinds of tokens in a text file and highlight them
in different colors. However, if you are new at creating Eclipse plugins, you may find
yourself struggling to understand how to get the framework to take your scanner and
use it in the context of your editor.

The problem is that the editor doesn’t use the scanner directly; the editor ac-
tually interacts with a component called the SourceViewer, which manages add-ons to
the editor. The SourceViewer in turn uses a PresentationReconciler to maintain a repre-
sentation of the document in the presence of changes. The PresentationReconciler uses
an IPresentationDamager to identify changes to a document, and an IPresentationRepairer
to incrementally scan those changes, and it is these two classes that interact di-
rectly with the scanner. If the programmer wants to get these classes to use a dif-
ferent scanner, she actually has to write her own SourceViewerConfiguration class and
override the getPresentationReconciler() method to return a PresentationReconciler whose
IPresentationDamager and IPresentationRepairer reference the new scanner. She then has to
register her SourceViewerConfiguration with the editor by calling setSourceViewerConfiguration
(myConfiguration) in the initializer of the editor. The code to do this is illustrated in
Figure 2-1.

If you found yourself struggling to follow the preceding paragraph, you are not
alone. The sheer number of classes involved makes it difficult, but things are made
worst because the names of auxiliary classes are outright cryptic to someone unfamil-
iar with Eclipse concepts (e.g. what does damage repairing have to do with syntax
highlighting?). The underlying problem is a basic tension between flexibility and us-
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// inside Framework
class TextEditor {
SourceViewerConfiguration fConfiguration;
ISourceViewer fSourceViewer;
createPartControl() {
fSourceViewer = createSourceViewer();
fSourceViewer.configure(fConfiguration);
}
setSourceViewerConfiguration(configuration) {
fConfiguration = configuration;

}
}

class SourceViewer {
IPresentationReconciler fPresentationReconciler;
configure(SourceViewerConfiguration configuration) {
fPresentationReconciler =
configuration.getPresentationReconciler();
}

}

// code by User
class MyConfiguration extends SourceViewerConfiguration {
IPresentationReconciler getPresentationReconciler() {
PresentationReconciler reconciler =
new PresentationReconciler();
RuleBasedScanner myScanner = new MyScanner();
DefaultDamagerRepairer dr =
new DefaultDamagerRepairer(myScanner);
reconciler.setRepairer(dr, DEFAULT_CONTENT_TYPE );

reconciler.setDamager(dr, DEFAULT_CONTENT_TYPE);

return reconciler;

}
}

class MyTextEditor extends TextEditor {
My TextEditor() {
MyConfiguration mySourceViewerConfiguration = new MyConfiguration();
setSourceViewerConfiguration(mySourceViewerConfiguration);

}
}

Figure 2-1: Code required to let an editor use a specific scanner. MATCHMAKER is
able to synthesize all the code above except for the part highlighted in gray.

11




ability. The design of Eclipse achieves flexibility by factoring functionality into large
numbers of components, each responsible for a very specific aspect of the function-
ality. This is a challenge for usability because it means that interactions that look
simple at the high level actually require the collaboration of large number of objects.
Synthesis offers a way around this basic tension by bridging the gap between the pro-
grammer’s high-level goal and the low-level component interactions that need to be
established in order to achieve it. In doing so, synthesis reduces the usability burden
created by highly modular framework designs.

2.2 The MatchMaker Approach

MATCHMAKER is able to synthesize code like the one in Figure 2-1 from a simple
query of the form: “How do I get an editor and a scanner to interact with each
other?”. More generally, given two object types A and B, MATCHMAKER identifies
what the user of the framework has to do in order for two objects of these types to
work together.

In order for a tool to do this, the first problem that has to be addressed is to give
semantic meaning to the query; i.e. what does it even mean for two objects to “work
together” or to “interact with each other”? Our system gives semantic meaning to
these concepts by exploiting a new hypothesis about the design of object oriented
frameworks.

Hypothesis 1 The MATCHMAKER hypothesis

In order for two objects to interact with each other, there must be a chain of
references linking them together. Therefore, the set of actions that led to the creation
of the chain is the set of actions that need to take place to enable the interaction.

The MATCHMAKER hypothesis does not always hold; sometimes, for example, two
objects can interact with each other by modifying the state of some globally shared
object, without the need of having a chain of references that connects them. Never-
theless, we have experimental evidence to suggest that the hypothesis is true often
enough that a tool based on this hypothesis can have a real impact on programmer
productivity (see Chapters 8 and 9).

The hypothesis is useful because it suggests a relatively simple algorithm to answer

the programmer’s query. In the case of the running example, the algorithm works
like this:

e Take a set of editors written on top of Eclipse that implement syntax highlight-
ing.

o Identify code in the implementation of these editors that contributes to the
creation of a chain of references from an editor to a scanner.

e Normalize the code to remove arbitrariness specific to individual example trace,
and present to the user the most general way to achieve the goal.

This is the basic algorithm behind our synthesis tool; the rest of this chapter will
elaborate more on the specific challenges that arise for each of the high-level steps

12
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Figure 2-2: Event 03.f « t establishes the critical link between s and ¢ and creates
two critical chains.

outlined above. The biggest challenge presented by the algorithm is that it requires
reasoning about the evolution of the heap with a level of precision that is arguably
unachievable by static analysis, particularly given the scale of the frameworks involved
and their aggressive use of reflection. The way around this problem is to follow a data-
driven approach: rather than try to reason statically about existing implementations
of different editors, we collect information about their execution, and organize it in
a way that allows one to efficiently answer even deep queries about the evolution of
the heap.

2.2.1 Finding Critical Chains with DeLight

The algorithm outlined above requires us to identify code in the implementation of
existing editors that leads to the creation of a chain of references from one object,
call it the source, to another object we call the target. Because we are following a
data-driven approach, we are going to be identifying these pieces of code by using
information collected from concrete executions of these editors.

The first step in this process is to find events in each execution where the source
and target objects become linked by a chain of references. In the specific case of the
editor and the scanner, we are looking for events in the execution such that before
this event, the scanner cannot be reached from the editor, but after the event it can.
We call the reference created by this event the critical link between the editor and
the scanner, and any chain of references from the source to the target object that was
created as a consequence of adding the critical link is called a critical chain. Note
that while the critical link is unique, there can be many critical chains as illustrated
in Figure 2-2.

Conceptually, we can find a critical link by running a depth-first-search on the
heap after every memory write operation. When the critical link is formed, DFS will
finally succeed in reaching the target object from the source and we will have found
the event we seek. Unfortunately, this naive strategy is as inefficient as it sounds;
the cost of running DFS over the entire heap after every memory update would be
prohibitively expensive for all but the shortest of traces. Instead, DELIGHT can
compute critical chains very efficiently because it uses sophisticated abstractions to
organize and index execution data, so MATCHMAKER just uses DELIGHT to compute
the critical chain.

13




2.2.2 Turning Critical Chains into Code

The critical chain computation gives us a set of events that created a chain of refer-
ences from the source to the target object, but these events are usually field updates
deep inside the framework, and have no real significance for the programmer. What
the synthesizer is looking for is the set of actions—including method overrides, API
calls, class instantiations, etc.—that the client code needs to effect in order for those
field updates deep inside the framework to take place.

Our algorithm for identifying the client code is described in Chapter 5 and is based
on a dynamic form of thin slicing [14]. An important feature of thin slicing is that
when a value is passed via a container—as is commonly done in a high-level language
like Java—the slice only contains the event that placed the value in the container, but
omits any events that simply manipulated the container. The resulting slice contains
the set of events relevant to the creation of the critical chain. By separating events
that took place in client code from those that took place inside the framework, the
algorithm identifies those events that are relevant from the point of view of the user.
Moreover, the slice provides information about relevant methods in the user’s code
that are called by the framework; these are methods that the user needs to override
so the framework can use them to invoke the client code.

The slices that result from each trace contain information about how the interac-
tion was established in that particular trace. Some of the information in the slices,
however, may be too specific to a particular use. Our system copes with this by nor-
malizing the traces to remove extraneous details about the structure of the different
clients. This exposes a large degree of similarity between clients, and allows us to
identify distinct patterns of interaction between the client and the framework.

After a small amount of post processing to make the code presentable and give
names to any new subclasses, the synthesizer produces code like the one shown in
Figure 2-1 (except for the highlighted portions; we explain why in Chapter 8).

14



Chapter 3

Preliminaries

This chapter gives the preliminaries of MATCHMAKER: the terminologies that we
will use throughout the thesis and the DELIGHT engine and its data model that
MATCHMAKER based on.

3.1 Terminology

This section gives some important terminologies that we will use hereafter.

3.1.1 Framework

An Object-oriented Framework (we will just call it Framework for short) is commonly
considered to be an abstraction in which common code providing generic functional-
ity can be selectively overridden or specialized by user code, thus providing specific
functionality [2]. The common functionalities provided by the framework are imple-
mented by a number of components, where each component is a class or a set of
closely-related classes, and the user can select the components she wants and piece
them together to form some feature, or extend and customize some components by
overriding the corresponding classes.

Frameworks are a special case of software libraries in that they are reusable ab-
stractions of code wrapped in a well-defined application programming interface (API),
yet they contain some key distinguishing features that separate them from normal
libraries:

Inversion of control In a framework, unlike in libraries or normal user applications,
the overall program’s flow of control is not dictated by the caller, but by the
framework.

Default behavior A framework has a default behavior. This default behavior must
actually be some useful behavior and not a series of no-ops.

Extensibility A framework can be extended by the user usually by selective overriding
or specialized by user code providing specific functionality.

15



Non-modifiable framework code The framework code, in general, is not allowed to
be modified. Users can extend the framework, but not modify its code.

3.1.2 Client

Client (or Client Code) is the source code written by the user to use the framework.
Usually the client contains two parts:

Task Code is the source code that overrides some components in the framework and
specialize the component to fulfill some special needs of the user for a specific
task.

Glue Code is the source code that pieces components in the framework together.
Glue code does not implement any customized feature for the task, but specifies
the way components interact with each other, and organizes the components to
form some feature.

3.2 DelLight and its Data Model

DELIGHT is a program behavior database management system that collects and stores
many execution traces of real world applications, and can answer queries related to the
execution traces very efficiently. DELIGHT is mainly developed by Kuat Yessenov [3]
in CSAIL.

The MATCHMAKER and the underlying DELIGHT data engine relies on three
complementary views of execution data that can be used in tandem to answer complex
questions about program behavior. The first is the call tree presentation, which
directly models the sequence of instructions executed by each thread and the nesting
of method calls. The advantage of this presentation is that for any point in the
execution, it provides detailed information focused around that point in time. This
representation is good for performing time-based analysis such as slicing, and will be
used in Chapter 5.

The main drawback of the call tree presentation is that it is hard to answer
global queries without looking at the entire trace. To address this problem, DELIGHT
provides a complementary graph-based presentation that provides a global view of
the evolution of the heap, called heap series. The two presentations are connected via
time stamps that are assigned to every program instruction. The graph presentation
makes it possible to answer heap connectivity queries by traversing objects via their
fields.

The heap series graph is massive since it has every object ever created as a node
and every reference ever updated as an edge. In order to make queries on this graph
more tractable, DELIGHT employed another representation called heap abstractions
that capture the essential domain information from the heap series and reduce its
size, and can be used to speed up heap queries like critical chain computations.

16



Here we will only describe the call tree presentation, because the other two repre-
sentations are solely used inside DELIGHT to answer critical chain computations and
not the focus of this thesis.

Call Tree Presentation is essentially a sequence of events. An event is triggered
for every state update and every transition across method boundaries:

Type Description

a+—b.f | Read of value a from field f of object b.
a«— f Read from a static field f.

a — bl7] | Read of value a from array b.

b.f < a | Write of value a into field f of object b.
f<a Write to a static field f.

bli] < a | Write of value a into array b.

call m(p) | Method enter.

return ¢ | Normal exit of a method.

throw e Exceptional exit of a method.

The sequence p in method enter events is the sequence of parameters to the
method call, starting with this for non-static methods. Values V in our model consist
of object instances, the special value null, and primitive values (integer, void, etc.)
type(a) denotes Java type of value a. Each event is assigned a unique timestamp (or
as we call it later, its time), which among other things allows us to assign a total
order to events executed by different threads. Conceptually, method enter and exit
events for a single thread form a call tree where the leaf nodes are the state reads
and writes. This presentation provides a pre-order traversal of the call tree, allowing
us to query information in the dynamic call scope of any given event.

17



Chapter 4

Critical Chain

This chapter formally defines the concept of critical chain introduced in Chapter 2.
Let H, denote the heap at time point ¢, where each H; is a directed graph in

which nodes are objects and edges are pointer references. An edge a Lbe ‘H; means
in H;, two objects a and b are connected by a pointer reference (a.f = b). Let H
denote the heap series derived by summing up all the heaps. H is a directed graph

in which nodes are objects and edges are pointer references labeled with their living

T — o .
time intervals. An edge a YD, peH (where T is a time interval) means that during

time interval T, a.f = b.

A chain is a simple path in the heap connecting objects via directed edges labeled
with fields. As the heap evolves over time, chains form and disappear, but with the
entire sequence of heaps at hand, we have the power to answer the following question:

what is the earliest moment when the two given objects got connected by
a chain?

We call the event corresponding to this moment a critical event, and any chain
between the two relevant objects created by the critical event is called a critical chain
(recall from Figure 2-2 that there can be more than one). Formally, a critical event
occurs at the minimal time ¢ for which there is a chain in heap H, connecting the
two objects of interest. Any chain in H; connecting the two objects will be a critical
chain.

The critical event query can be formulated as a data flow equation on H. Let us
denote the time interval during which objects a and b are connected via some viable
chain as viable(a,b). It is the union of lifetimes of all viable paths between a and b,
as described by the following inductive definition:

viable(a,b) = |J  (viable(a,c)NT)
ciT—)‘)be’I/—{\
(union is taken over incoming edges of b.)
The right hand side is monotonic in viable(a, -) and, thus, could be used for the
least fixed point computation with initial values viable(a,b) = L for a # b and
viable(a,a) = T. The minimal time in viable(a,b) is the critical time for a and b.

18



However, applying the equation directly to H is intractable due to the size of the graph
(millions of objects), the required number of iterations (long paths in the heap), and
complex time intervals (millions of field writes.)

Instead, MATCHMAKER builds on DELIGHT which can find critical events and
critical chains very efficiently. DELIGHT provides the query interface as follows:

Find a critical chain between two classes The user gives DELIGHT the names
of two endpoint classes, and pick the program execution trace to work on, then
DELIGHT returns a critical chain (in the form of all the heap events that create all
the links on the chain) between two objects of the two endpoint classes if there exists
one, or returns NotFound if there is no chain between the two classes.

19



Chapter 5
Slicing algorithm

The critical chain computation produces a set of references that connect the two
objects of interest. Each of these references has an associated event in the database
corresponding to the field update that created it. So in principle, if we want to know
what events led to the chain of references, these are the events. However, these events
are usually low-level events deep inside the framework; what the user really wants to
know is what code to write in the client in order to get the relationship between the
two classes established.

Intuitively, the solution to this problem is slicing. The idea would be to compute
a dynamic slice using as the slicing criterion each of the events that created the links
in the critical chain. Some of the events in the slice will be internal to the framework,
and some of them will be part of the client code. By focusing on the latter set, we
will be able to tell which events in the client code led to the creation of the critical
chain.

The main problem with this approach is that traditional slices tend to contain
too much unnecessary information. This is problematic for two reasons; the first
and most obvious is performance; the bigger the slice, the longer it takes to process.
But most importantly, as Sridharan et al. [14] have observed, slices contain a lot
of information that is not really useful for program understanding. For example, if
we care about an element that came out of a data-structure, the slice will contain
the event that inserted the element into the data-structure, but it will also contain
many other events that modified the data-structure, including many that added and
removed other elements.

The solution that Sridharan et al. offer to this problem is thin slicing. The basic
idea behind thin slicing is to ignore value flows to base pointers of heap accesses; for
example, if you have a field write b.f < a, thin slicing only follows value flows to a,
rather than also following value flows to b as a traditional slicing algorithm would.
Also, thin slicing doesn’t follow control dependence. In some cases, this may lose
important information, so in the original application of thin slicing, the programmer
was given the ability to explore some of these value flows to base pointers or follow
some of the control dependence to get a better understanding of the program behavior
(called expansions of thin slicing). In our case, we cannot rely on the programmer to
decide when it might be useful to follow value flows to base pointers, so instead we
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apply a set of simple heuristics to do automatic expansion based on the observation
that we care primarily about client code and not so much about what happens in
framework code:

e When we slice on value a and see b.f « a or a « b.f, we also follow the base
pointer b only if: (a) the statement is within a framework method, but the
value is of some client class; (b) the statement is within a client method, and
the producer statement and the consumer statement of the value are not in the
same method.

e When we consider each statement, we examine the call stack and for each dy-
namically dispatched call f(z,...) where z is the receiver object, if the caller is a
framework method and the callee is a client method (then = must be of a client
class), then we should also follow the receiver object z.

Note that when applying these heuristics, to determine whether an object is of frame-
work class or client class, the dynamic type information of the object at runtime is
used, rather than the static type definition.

Figure 5-1 shows an example code piece. In this example, we assume that U and
UX are client classes while F, M, N, FV, and FX are framework classes. The starting
point of the slicing is “F.bar(x); //e16”, which is supposed to create a critical link in a
critical chain. We only show the relevant code pieces to illustrate the slicing algorithm
and omit the full detail of the critical chain.

Figure 5-2 shows the instructions in the thin slice for the parameter x of “F.bar(x);
//e16”. Note the two places marked as “// ** do crazy things to m” in the source code:
in each case, m is the base pointer for m.n in the slice, but because n is of framework
class, the complex instructions to get m were excluded from the slice thanks to our
slicing heuristic.
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class F {
class N {
FV v;
N(FV u) {
thisv=u; //ed: nv—u
}

}
class M {

N n;

}
M m;

void main() {

a(); // el: call Fa(f)
b(); // €9: call F.b(f)

}

void a(...) {
FVu=.. [//e2: ..
N n = new N(u); // e3:call N.init(n,u)
Mm = .. //*x do crazy things to m

mn=n;, //esmmn—n
u.noo(); // e6: call U.noo(u)

}

void b(...) {
Mm = .. //*x do crazy things to m
Nn=mn;, //el0:n—mn
FVu=nv, //ell:u«+nwv
u.foo(); // el2: call U.foo(u)

static void bar(FX x) { ... }
}
class U extends FV {
private UX f;
@Override void noo() {
UX x = new UX(); // e7: call UX.init(x)
this.f = x; //e8: uf—zx
}
@Override void foo() {
UX x = moo(); // el3: call U.moo(u)
[F.bar(x); // €16: call F.bar(x), this is the starting point for slicing]

}

private UX moo() {
UX x = this.f; //el4: z — u.f
return x; // €15: return x

}

}

Figure 5-1: Example code.
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N n = new N(u); /e3

Ju \tg _-'don t follow m

FVu=..; /e2 this m.n = n; //e5
0 \‘ \Q - don't follow m
»
(UX x = new UX(); #e7) | u.noo(); 66| | this.v=u; Je4| [ Nn=mn;se10

b

this.f = x: //esj FVu=nv: /el

Jo

u.foo(); /e12

Ithis

(UX x = moo(); /e13)

ﬁis

(Ux x = thisf; /ie14)

X

(re turn )’( Y/} 15)

X

(Fbar(x); 616)

Figure 5-2: Thin slice on x in the statement F.bar(x) in Figure 5-1. Grey boxes show

framework code, and white boxes show client code.
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Chapter 6

Synthesis Algorithm

The slice created by the algorithm in Chapter 5 contains all the statements that were
necessary to create the critical chain in a particular execution trace. However, a lot
of the code in the slice is code that belongs to the framework, and is therefore of no
interest to the user. Additionally, the slice contains many details that are too specific
to a particular example, such as transitive copies of objects through internal fields, or
calls to functions internal to the client code. MATCHMAKER addresses this problem
by computing a normalized slice that eliminates framework code as well as superfluous
details from the original slice. The normalized slice will also make it easier to compare
the results from many different traces; after normalization, many slices will become
identical, and those that remain different will correspond to different ways of using
the framework.

We use the example code shown in Figure 5-1 to illustrate the process. Note that
the instructions in the slice before normalization and the dependency relations among
them are shown in Figure 5-2. '

6.1 Calls between client and framework

The essence of the interaction between client and framework code is captured by calls
that cross the framework-client boundary. Calls from the framework to the client
are called Fc-calls, and calls from the client to the framework are called CF-calls. In
the example, e6 and el2 are FC-calls, while e16 is a CF-call; the rest of the calls, like
el3 are termed L-calls, because they stay local to either the framework or the client
(see Figure 6-1).

FC-calls and CF-calls describe the interaction between framework and client: FC-
calls tell us which classes to extend and which method to override, while CF-calls tell
us which APIs to call. The normalizing slice will preserve information about FC-calls
and cr-calls as well as relevant client code, but will simplify away the complexity and
arbitrariness of the specific sample code from which the program behavior database
was built. For our example, the normalizing slice will indicate that noo() must write
to f and foo() will pass the value of f to bar(), but the fact that this involves a call to
moo() is only a detail of this particular example and not relevant in the normalizing
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Figure 6-1: Client and framework interaction

slice.

6.2 Normalization algorithm

We first define some simple notation to allow us to describe the structure of calls.
Consider a call event ¢ (call m) and its enclosing call event ¢ (call m'), which we
denote as caller(c). Then we say FC(c¢) (¢ is an Fc-call) iff m’ is in framework code
and m is in client code, and we write CF(c) (¢ is a CF-call) iff m' is in client code and
m is in the framework; otherwise ¢ is an L-call and we write ¢ > ¢. When an event
e happens in the dynamic scope of a call event ¢ and all the calls on the call stack
from ¢ to e (except for ¢ and e themselves) are all L-calls, we say that ¢ covers e, or
formally ¢ >* e:

c>*e < c=acaller(e) V (3 - c > A d >*e)

For example, in the sample program e6 >* e7 and el2 >>* el5.

With this notation at hand, we are ready to define the notion of noermalized source
defined on a triple (¢, e,0), were ¢ is an FC-call, e is an event in client code that is
covered by that FC-call and o is an object used by event e. The normalized source is
the first event ¢’ that is also covered by ¢ and that produced object o. For example,
in the context of the call e12, the normalized source for object z in event e16 would
be event el4.

We will define a function ns(c,e,0) = (¢, E',T") that produces the normalized
source €' in addition to a set of events E’ and call-tree edges T’ to be added to the
normalized slice. The function is defined in terms of the dependence relation D from
the original slice we are trying to normalize, where D is a set of triples of the form
e’ % e, where event ¢’ produced object o consumed by event e.!

1. If there is no ¢ = e € D, then

ns(c,e,0) = (e,{e},{(c,e)})

1We use the notation from dependence analysis of drawing arrows from producer to consumer,
rather than the less intuitive notation, sometimes used in the slicing literature, of drawing arrows
backwards.
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2. Otherwise there’s some €/ 2 e € D, then

(a) If ¢ >* ¢ then ns(c,e,0) = ns(c, €, 0).
(b) Othwerise:
i. if some other FCc-call ¢ >* ¢’ then

ns(c,e,0) = (e, {e,e'}, {(c,e), (', €)})

ii. Otherwise €’ is in framework code, so it doesn’t need to be returned:

ns(c’ €, 0) = (e! {6}, {(C’ 6)})

Case 1 will arise when event e is the origin of an object, in which case e is itself the
normalized source. Case 2b is the most interesting; in both instances of 2b, the source
of the object lies outside the function, so the normalized source is e itself. However,
in 2bi, the origin is also in client code, but in an event that was covered by a different
FC-call. This means that the source event together with the other FC-call will also
have to be added to the slice, just like the case of €10 and e5 in the example code.

Given those definitions, the algorithm for the normalized slice itself is fairly simple.
For a slice s = (E,D,T), we generate its normalized slice § = (E, D, T) by the
following process:

1. For each Fc-call c € E, for each CF-call event e € E covered by ¢, (i.e. FC(c) A
CF(e) A ¢ >* €), put e in £ and (c,e) in T (inline e into ¢). When c has a
corresponding return event 7, also put 7 in £ and (¢, r) in 7.

2. For each e 2 ¢’ € D where € is in framework code and e is in client code, add
e to £ and (c,¢') to T, where ¢ >* ¢’.

3. For each event e € F and (c,e) € T, for each dependency 2% e € D, let
(¢, E',T") = ns(c,e,0), then put E' into E, ¢ % e into D (when ¢ # ),
well as T” into 7.

6.3 Example

We show the whole process of normalizing the slice for the example code in Figure 5-1:
1. In the thin slice shown in Figure 5-2, there is only one CF-call “F.bar(x); //e16”,

which is covered by the FC-call “u.foo(); //e12”. So as a starting point el6 is put into

E and (12, e16) is put into T', as Shown in Figure 6-2(1) (solid arrow labeled with z

or u indicates relation in D; dashed arrows labeled with T' indicates relation in 7).
2. ns(el2,el6,x) is computed as follows:

ns(el2,el6, )
= ns(el2,elb, ) // Rule (2a) applied
ns(el2,eld, x) // Rule (2a) applied
= (el4,{el4,e8},{(el12,el4), (e6,e8)}) // Rule (2bi) applied

So e14 and e8 are put into E, e14 5 €16 is put into D, and (e12, e14) and (6, 8) are
put into 7', as shown in Figure 6-2(2).
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Figure 6-2: Normalized Slicing Steps for the example code in Figure 5-1
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3. ns(e6,e8, x) is computed as follows:

ns(eb, €8, )
= ns(eb,e7, ) // Rule (2a) applied
= (7, {e7},{(e6,e7)}) // Rule (1) applied

So e7 is put into E, e7 % €8 is put into D, and (e6,€7) is put into T, as shown in
Figure 6-2(3).
4. ns(eb,e8,u) is computed as follows:

ns(eb, e, u)
= ns(e6,e6,u) // Rule (2a) applied
= (e6,{e6},0) // Rule (2bii) applied

So e6 is put into £ and e6 2, e8is put into D. Similarly, ns(el2, el4,u) = (el2, {el2},0),
so el2 is put into F and e12 = el4 is put into D. The final normalized slice is shown
in Figure 6-2(4).

6.4 Synthesis algorithm

It’s easy to synthesize source code from normalized slice: the FC-calls tell us which
method to override and the call tree relation 7' tells us what instructions to put
in these overridden method, while the dependency relation D glues the instructions
together by data dependency and gives a partial order on the instructions. In this
sense, normalized slice is as expressive as source code, and it is normalized to elide
low-level details such as reordering of independent instructions.

Just before synthesizing the code, MATCHMAKER has two more things to do.
First, MATCHMAKER finds for each client class A the most generic framework class
to extend from. For each FC-call method A.f(), let Ay indicate the original declaring
class of f(), then A must be a subclass of Ay; for each cr-call g(xo, 1, ..., Tx) Where
T, is the receiver and the rest z;’s are actual parameters, if the original type of the
j-th formal parameter (including 0-th, the receiver) is A; and z; = a where a is
an instance of A, then A must be a subclass of A;. MATCHMAKER extracts from
FC-calls and CF-calls all these subclass constraints, and computes the join of these
constraint to get a lower bound of class A, which is the most generic framework class
for A to extend from. In fact a similar process is employed to determine for each used
framework class B, the most generic class to use in place of B.

Second, MATCHMAKER gives each client class A a pretty name: if A is determined
to extend from A’, then A is called MyA’. MATCHMAKER names each variable of
type X as x where z is obtained by making the first letter X lower case (we add
numbers to avoid conflict names). MATCHMAKER also renames each field X.some f
of type Y as X.fY (again add numbers to avoid conflict field names). Some variables
might be unresolved to any value or instruction due to incompleteness of either the
database or the slicing algorithm, and they are named ??, the holes of the synthesis
result.
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class MyFV] extends FV { // the client class U in the example is renamed to MyFV
private UX fUX], // the field f in the example is renamed to fUX
©@Override void noo() {
UX ux = new UX();
this.fUX = ux;
}
©@Override void foo() {
UX ux = this.fUX;
F.bar(ux);

}
}

Figure 6-3: Synthesized client code for the example in Figure 5-1.

Then, for each interesting event in each Fc-call, MatchMaker generates the corre-
sponding statement, and it collects the statements of FC-calls together and put them
to the owner client classes, to form the final source code.

There can be multiple execution traces in the program behavior database that
contain critical chains between the two queried endpoint classes, and MatchMaker
produces multiple program slices from all the chains. Thanks to the normalization
step, many seemingly different program slices become one identical normalized slice,
so MatchMaker just output several representative synthesis results (which correspond
to several different representative ways of connecting two classes together) to the end-
user.

Figure 6-3 shows the synthesized client code for the example in Figure 5-1. Note
that the client class U is renamed to MyFV because the most generic class for client
classes U is computed to be FV; also the field U.f is renamed to MyFV.fUX.
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Chapter 7

Related work

7.1 Learning framework uses from examples

The idea of extracting useful information from existing examples to help programmers
learn and use large frameworks has been studied in various related works.

FUDA [5] is closely related in its goal of producing program templates from ex-
ample traces. It is developed to automate the “Monkey See/Monkey Do rule”, i.e.
use existing framework applications as a guide to develop new applications’. Like our
system, FUDA tries to turn the programmer’s high level idea of the concept that
needs to be implemented into low level template code (similar to the concept of glue
code in the thesis).

Unlike our system, FUDA is not fully automated: it is based on dynamic analysis,
and requires the user to find an existing example that implements the same concept
she wants, and furthermore, manually select a set of interesting events (instructions)
during the example execution as the starting point of information extraction, because
there is a gap between the user’s high level concept (implementing some feature in
the framework) and the elements that can be handled by FUDA (instructions). In
comparison, MATCHMAKER can automatically pick the interesting events because
the MatchMaker hypothesis gives a way to assign semantic meanings (critical chain
on the heap) to the high level concept (matching two classes) thus bridging the gap.

Starting from the interesting events picked by the user, FUDA uses a slicing algo-
rithm to find other relevant instructions that are related to implementing the concept.
The slicing algorithm used by FUDA is much more imprecise than ours: it uses shared
objects in argument list of calls to detect data dependencies among instructions, be-
cause of the lack of heap updates history. This approach produces results that contain
more unnecessary statements than ours, and may miss data dependencies that are
not directly achieved by sharing objects in argument lists.

Like our system, FUDA also leverages the distinction between client and frame-
work code to normalize slices, though they did not present a clearly defined rule to
perform the normalization.

Framework usage comprehension tools such as Strathcona [6] and FrUiT [9] use
static analysis to extract the relevant source code of sample applications and allow
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retrieving code snippets or usage rules for a particular API element. These tools can
be very helpful to understand API usage but require the user to at least know some
of the APIs. They are less helpful if the developer has only a high level idea of the
feature that needs to be implemented or if the implementation needs to deal with
multiple classes.

7.2 Using program data to help program under-
standing

The idea of using large corpus of data for program understanding has seen many
incarnations in the past few years.

Prospector [8], XSnippet [12], MAPO [16], PARSEWeb [15], and Strathcona [6]
mine source code repositories to assist programmers in common tasks: finding call
sequences to derive an object of one type from an object of another type, constructing
complex initialization patterns, and digging out frequent API usage patterns. They do
so by computing relevant code snippets as determined by the static program context
and then applying heuristics to rank them. Since they primarily utilize static analysis,
the context lacks heap connectivity information. These tools are geared towards code
assistance and do not produce full templates of the program that may span multiple
classes.

7.3 Concept location tools

Concept location concentrates on understanding how a certain concept or feature is
implemented in the source code of an application. Whyline [7] combines source code
analysis with dynamic analysis to assist debugging. It does so by tracing program
execution and input/output events, and suggesting questions that relate external
program observations to method calls. On the contrary, MATCHMAKER does not use
external observations (GUI or input events) to locate points of interest in the trace,
instead it uses internal heap configuration to identify important events in the trace.
DELIGHT could potentially serve as a common framework for tools like Whyline and
MATCHMAKER that need to query program executions.

7.4 Dynamic analysis to help program understand-
ing and debugging

PQL [10] is a query language for analyzing program execution statically or dynam-
ically. It is aimed at finding design defects in the code and as such requires full
knowledge of the code details. It is not suitable for program understanding tasks.
PTQL [4] uses its own relational query language to instrument a program and dy-
namically query live executions.
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Tools that rely on light-weight dynamic analysis require manual effort in formu-
lating queries in a specialized language or collecting traces specific to these queries.
MATCHMAKER attempts to reuse existing databases for answering many queries,
while keeping the query language very simple.

BugNet [11] and similar tools record the full program trace for deterministic replay
debugging. MATCHMAKER does not collect entire execution data. It uses just enough
information from the trace to be able to answer program synthesis-related queries
effectively.

7.5 Other Program Synthesis

Program synthesis systems such as SKETCH [13] can produce program text from a
slower version of the same program or its specification via a combinatorial search over
ASTs. The level of deep static reasoning about program that is needed by SKETCH
has not been achieved for the large scale software like Eclipse. Moreover, the dynamic
features that are prevalent in Eclipse and its scale make it very hard to employ any
static reasoning except for the very light-weight.
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Chapter 8

Generality Evaluation

We want to evaluate the generality of MatchMaker hypothesis. During the process
of developing MATCHMAKER we have used four motivating examples to test our
tool: Editor to Scanner, Editor to ICompletionProposal (the auto-completion choice
in Eclipse), Menu to Action, and Toolbar to Action. Usually the generated code is
very similar to the code written by human expert, but it may have two kinds of im-
perfections:

1. Some method call parameters may not resolve to a known name, so they are left
as “77” (holes). This can be because of two reasons: First, any primitive typed value
is not collected in the program behavior database, so any dependence to a primi-
tive value results in a hole; Second, there is incompleteness in the program behavior
database and our slicing algorithm, which may cause some dependence to be unre-
solved, leaving a hole in the resulting synthesized code. The user will need to look
up the documentation and tutorials to find out the exact value of these holes.

2. Some statements cannot be captured by the critical chain chosen by MATCH-
MAKER, because there can be multiple critical chains (see Figure 2-2) and currently
MATCHMAKER only arbitrarily pick one. In the Editor-Scanner example, the critical
chain chosen by MATCHMAKER goes through the link from reconciler to repairer,
but not through the link from reconciler to damager, so MATCHMAKER was unable
to find the call reconciler.setDamager(). The user needs to manually add the missing
statements. Note that this is not an inherent limitation: we envision that once we
improve MATCHMAKER to look at all critical chains, this problem should be fixed.

We think that the additional job is relatively easy for the user because she now
has the knowledge of all the necessary classes and most API calls, and by using them
as keywords to search the tutorials and documents, she can soon learn about the
missing calls and fill in the holes. In Figure 8-1 we show for each class pair the extra
changes the user needs to make.

In addition to the above mentioned four class pairs we also conduct an experiment
as follows: We pick the eclipse.jdt.internal.ui plugin, treat everything in eclipse.jdt.*
as client code, and extract all framework classes that are extended and used inside
this plugin. There are more than two hundred of these classes. We examined these
classes manually, and pick pairs of classes that seemed related with each other based
on the names. Many of these classes serve for completely different features, and we
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Source type Target type # holes | # missing
statements
Editor Scanner 1 1
Editor ICompletionProposal 1 0
Menu Action 1 0
Toolbar Action 1 0
ITextEditor IContentOutlinePage 0 1
MonoReconciler IReconcilingStrategy 1 0
[TextEditor Quick Assist Assistant 0 1
QuickAssist Assistant IQuickAssistProcessor 0 0
ITextEditor ITextHover 0 0
ISpellCheckEngine ISpellChecker 1 1
ITextEditor SelectionHistory 0 0
[TextEditor SemanticHighlighting 1 1
IContentAssistProcessor | ContentAssistInvocationContext 1 0
[TextEditor IAutoEditStrategy 0 0
ITextEditor ContextBasedFormattingStrategy 1 2
ITextEditor TextFileDocumentProvider 0 0

Figure 8-1: Generality evaluation table. First column gives the names of class pairs.
"# holes" and "# missing" counts the number of holes and missing statements in the
generated code.

were able to pick 16 pairs of classes that we thought were related to each other. Then
we run MatchMaker on each of these pairs, and examine the generated code to see
whether it’s reasonable glue code to make the interaction between the pair of classes,
and measure how far it is from the functionally correct version. For 12 out of these
16 pairs MatchMaker were able to generate reasonable code; for the other 4 pairs
MatchMaker didn’t generate code, but we have yet to find whether it’s because of
incompleteness of our program behavior database or because of failure of MatchMaker
hypothesis.

From Figure 8-1 we can see the pairs for which MatchMaker did generate solutions,
they are quite close to the correct answers. This suggests that the MatchMaker
approach can be generally applied to a wider range and not restricted to the Editor-
Scanner example we have shown.
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Chapter 9

User Study

We have conducted a user study to measure the effect of MATCHMAKER on program-
mer productivity. This chapter gives the result of the user study. Detailed analysis of
the behavior of the participants has provided us with some important insights about
the effects of MATCHMAKER on programmer behavior and about the relative effort
required to write glue code compared to the effort required to actually program a
task. In the following sections we describe the basic setup of the user study, and
provide a detailed analysis of the behavior of our subjects.

Task Description For our user study, subjects are asked to implement an editor
with Syntax Highlighting for a new language—the SKETCH language developed by
our group. Specificaly, subjects are asked to highlight two keywords in the language:
implements and the operator ??. They are given an incomplete RuleBasedScanner that
can already highlight the keyword implements, but they have to write task code to
complete the scanner and connect it to the editor by writing glue code like the one in
Figure 2-1.

Note that we have chosen this task to reveal different aspects of using MATCH-
MAKER, rather than to give a best show case. In fact MATCHMAKER may show
much greater productivity improvement on other tasks than this one, because of two
reasons:

First, there are many useful tutorials and examples on the web describing how
to write editors with syntax highlighting feature using Eclipse. Control subjects
relied heavily on the tutorials to finish the task. We could have chosen another
task like matching editor and IContentOutlinePage, for which there are no good
tutorials on the web. We believe that in that case most of the control subjects would
not even finish the task, but MATCHMAKER users would be less affected because
MATCHMAKER can still generate very good glue code.

Second, the code synthesized by MATCHMAKER for this task is imperfect: it
contains one hole (in the statement reconciler.setRepairer(dr, ??)) and misses one statement
(reconciler.setDamager(dr, DEFAULT_CONTENT_TYPE)), so the MATCHMAKER user needs
to look up the documentation and tutorials on the web to fill the hole and add
the missing statement. We observed that adding the missing statement is the most
time-consuming work item for MATCHMAKER users. We could have chosen another
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task like matching Toolbar and Action, for which MATCHMAKER synthesizes nearly
perfect code, and the MATCHMAKER users just need to copy and paste the generated
code and do simple editing. In that case, the MATCHMAKER users might perform
even better than the framework expert.

Methodology We have been recruiting participants through mass advertising around
campus with the promise of two free movie tickets for any participant that attends the
study. When participants arrive, they are randomly assigned to one of two groups:
those in the control group are simply given a description of the task and are told
they can use any information available on the internet to help them complete the
study; those in the experimental group are also given 15 minutes to review a tutorial
on MATCHMAKER. The subjects in the experimental group are advised to consult
both MatchMaker and the tutorials and documentation on the web because the result
given by MatchMaker may contain holes or miss important statements. Subjects in
the control group do not know they are the control group, or even of the existence
of MATCHMAKER; they are led to believe that the purpose of the study is simply to
analyze programmer’s use of frameworks.

To help the subjects finish the task in reasonable time, we provide the two endpoint
classes (TextEditor and RuleBasedScanner) to use. Moreover, we give partial imple-
mentation of RuleBasedScanner so that it can scan one of the keywords and color it
correctly. The user just need to modify the partial implementation to scan the other
keyword, which is much easier than implementing a RuleBasedScanner from scratch,
but still not trivial because the user must modify two internal classes WordRule and
WordDetector used by the RuleBasedScanner. Providing the partial implementation
significantly reduced the time subjects spent writing task code (as can be seen in
Section 9.1, the time spent on task code is much less than on glue code for almost
every subject), but should not have much effect on the time spent on glue code. We
know that in a real life development scenario, the user may need to figure out the
two endpoint classes to fit her own needs by herself, and implement the customized
endpoint classes completely by herself, but we guess that the way she connects the
two endpoint classes should not differ too much from our user study.

The programmers work environment is a virtual machine created with VirtualBox
that has been set up to do screen-captures at 1 frame per second; this, together with
Eclipse’s local history and the subject’s browsing history give us a very complete
picture of the programmer’s actions during the user study.

Subjects Of the seven subjects who have responded our ads and completed the
study, four were randomly assigned to the experimental group (we’ll call them Alice,
Chuck, David, and Earl), and three subjects (we’ll call them Bob, Frank, and Gary)
were assigned to the control group. Another two subjects responded to our ads
and did part of the study, but were distracted by phone calls and had to quit the
study before finishing, so we exclude them from the analysis: one is a control subject
who spent around 40 minutes and still did not finish the glue code; the other one
is a MATCHMAKER user who have established partial connection (see Section 9.2)
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Figure 9-1: Time spent on the task, split to individual work items.

between editor and scanner within 20 minutes and then quit. So we guess that these
two subjects who have quit wouldn’t differ too much from their groups, and excluding
them should not introduce much bias.

Chuck is a special case because he turned out to be highly experienced in writing
Eclipse plugins; in fact, it is safe to say that he knows significantly more about the
subject than we do. Thus, even though he was assigned to the experimental group and
given the MATCHMAKER tutorial, he never used it, as he was extremely comfortable
writing eclipse code without the aid of the tool.

David, on the other hand, had very limited Java experience, and had never writ-
ten any code using big frameworks. The remaining five subjects have similar Java
experiences and overall, all of them were very competent programmers.

9.1 Aggregate Results

Figure 9-1 shows for each subject time consumption on the task; the total time
consumption is split to individual work items:

Glue Coding The time spent writing and debugging glue code to match the Editor
class with the Scanner class.

Web Browsing 1 The time spent browsing the web (including searching and read-
ing the documentation, tutorials, etc.) to find out how to write glue code.
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Task Coding The time spent writing task code to complete the Scanner.
‘Web Browsing 2 The time for browsing the web to find out how to write task code.

It is hard to completely separate the web pages that are related to glue code from
those related to task code, so we use a simple criterion here: we can easily tell
whether the programmer was writing glue code or task code, so any web browsing
immediately before writing glue code is considered Web Browsing 1, and any web
browsing immediately before writing task code is considered Web Browsing 2.

Figure 9-1 also shows two aggregate results: MatchMaker Users Average and
Control Subjects Average, which were computed by taking arithmetic average of the
experimental group and the control group, respectively. The time consumptions on
web browsing 1 and glue coding together form the time consumption on matching
problem (connecting two classes, Editor and Scanner, together). From the figure we
can see that MatchMaker greatly improves productivity by reducing the time spent
on glue code: For users new to the framework, it takes 75 minutes on average to
match Editor with Scanner, and MatchMaker reduces this number to 41 minutes on
average, a 45% improvement.

We can also see that the difference of time consumptions on task code (web brows-
ing 1 plus task coding) between experimental and control group is insignificant: both
groups spent around 16 minutes on average to finish the task code, only slightly slower
than the expert who spent 15 minutes. This suggests that:

1. MatchMaker can help with writing glue code, but not task code. Because task
code only involves one particular component, not relations between components.

2. The expert knows more than novice users about the overall structure of the
framework and the way components interact with each other, but not much on
the details of how to use one specific component.

9.2 Observations from Representative Subjects

We pick a representative MATCHMAKER user Earl to observe in detail the whole
process of using MATCHMAKER to solve the task. The process is naturally split into
four phases:

Phase 1: Earl started by entering a query “TextEditor — RuleBasedScanner” into
MATCHMAKER, and got the synthesized code after 1 minute. Then he just copied
and pasted the code to his project, and organized them to several class files. Now
he was facing a hole in the statement “reconciler.setRepairer(dr, ??)”, and he didn’t know
that there is a missing statement “reconciler.setDamager” at this point.

Phase 2: Earl then spent around five minutes browsing the web to find out the
value for the hole, and then he was able to connect the editor with the scanner
and made the program run. Because “setDamager” was missing, this is only a partial
connection: with only repairer but no damager set, the editor implements a static
form of syntax highlighting; that is, it will highlight the keywords when it loads the
document, but it will not change their color when you edit the document.
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Phase 3: Earl quickly realized that his editor can only do static syntaz highlighting
when he was testing his program, and he spent a little more than 25 minutes browsing
the web to find out why. After he found that this was because the missing setDamager,
he fixed it immediately and got the glue code correct.

Phase 4: Earl spent another 25 minutes to get the task code, including browsing
the web and writing and debugging the code.

This is a very typical usage of MATCHMAKER. The other users, Alice and David,
both showed similar phases, with only slight differences: First, Alice and David both
did Phase 4 (task code) immediately after Phase 2 (partial connection). After we
pointed to them that the highlighting did not refresh with editing, they realized the
problem of partial connection, and then they did Phase 3. Second, Alice and David
both spent less than 15 minutes on Phase 4 (task code), much better than Earl.
Actually Earl was the slowest to finish task code among all 7 subjects, but thanks to
MATCHMAKER, he finished glue code very fast, so his overall performance still beats
every control subject.

The control subjects, on the other hand, struggled with glue coding. For example,
Bob browsed the web for 22 minutes before he started to write the first line of glue
code, and spent a total of one hour to get the glue code correct. The other two control
subjects Frank and Gary both spent more than an hour writing glue code.

It is worth pointing out that there are actually a number of tutorials on the web
that describe how to implement syntax highlighting, several of which were visited
by all three control subjects. However, these tutorials are either poorly written or
contain too much or too little information, so it took them a significant amount of
time to extract the relevant facts from these tutorials.

The framework expert Chuck, on the other hand, knew exactly what he was
looking for on the web and found it very quickly, so he could finish glue code in 16
minutes.

9.3 Conclusions

Overall, comparison of the aggregate results and observations from individual subjects
allow us to venture some preliminary conclusions.

e The matching problem is indeed a significant problem when writing code on top
of complex frameworks. This is particularly true for people who are new to the
framework, and less so for experts.

e Tutorials and documentation available online are not enough to close the gap be-
tween novices and experts. The class-by-class documentation available through
JavaDoc is particularly unhelpful because it fails to describe multi-object inter-
actions. Tutorials, in turns, can be unreliable because of errors and omissions,
but the most important problem is the sheer amount of data that a novice has
to read before beginning to understand the framework.

e MATCHMAKER has a significant impact on programmer productivity by show-
ing programmers the object interactions that are necessary to achieve a task.
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This is true even when the tool fails to give a complete solution to the task in
question. It is worth pointing out that the missing setDamager() could actually
have been found by MATCHMAKER simply by tuning the heuristics it uses to
determine which critical chains to choose. However, not tuning the heuristics
this way allowed us to observe how programmers cope with incomplete results.
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Chapter 10

Conclusions and Future Work

This thesis presented a new approach to synthesis based on the analysis of very large
amounts of program execution data. The approach is made possible by the DELIGHT
system, which allows for the efficient collection, management and analysis of this data.
DELIGHT uses abstraction to support detailed queries about how the heap evolves as
the program executes, which are necessary to support our synthesis algorithm.

Our synthesis algorithm focuses on the problem of generating the glue code nec-
essary for two classes to interact with each other. This glue code often involves
instantiating new classes, making API calls, and even overriding methods in specific
classes, and our tool MATCHMAKER can support all of these actions.

Our empirical evaluation shows that writing this glue code is especially time con-
suming for novice programmers, and that MATCHM AKER can significantly improve
their productivity. It also shows that MATCHMAKER is general enough to handle
many interesting queries, and produces code that can be used by programmers with
very few changes.

As our future work, an interesting research problem is to generalize the Match-
Maker Hypothesis so that it can capture other forms of the programmer’s high level
idea of using the framework. Another important research topic is how to combine the
knowledge learned from the program behavior database to invent new knowledge not
in the existing examples and help programmers devise completely new ways of using
the frameworks.
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