

Endochrony of Distributed Systems
DIPLOMA THESIS

 Marlee Nathalie Basurto Macavilca

Tutor:

Prof. Dr. Klaus Schneider

M. Sc. Yu Bai

May 2014

 Embedded System group

Department of computer science

University of Kaiserslautern – Germany

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst,

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und die aus anderen Quellen

entnommenen Stellen als solche gekennzeichnet habe.

Kaiserslautern, den 26.05.2014

Marlee Basurto Macavilca

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 STRUCTURE ... 7

2 FOUNDATION .. 8

2.1 SYNCHRONOUS MODEL ... 8

2.1.1 QUARTZ [5] ... 11

2.2 ASYNCHRONOUS SYSTEM [5] .. 12

2.3 DESYNCHRONIZATION ... 13

2.4 ENDOCHRONOUS [4] .. 14

3 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS .. 21

3.1 DETAILED DISCUSSION FOR EACH ALGORITHM .. 21

3.1.1 JOSEPHINE’S PROBLEM ... 21

3.1.2 LEADER ELECTION IN A RING .. 28

3.1.3 LEADER ELECTION IN A GENERAL NETWORK .. 35

3.1.4 COORDINATE ATTACK ... 39

3.1.5 STOPPING FAILURE ... 42

3.1.6 DINNING PHILOSOPHER .. 46

3.1.7 BREADTH-FIRST SEARCH ... 49

3.2 SUMMARY OF EACH ALGORITHM ... 51

4 ENDOCHRONY AND SYNCHRONIZER .. 52

5 SUMMARY ... 55

BIBLIOGRAPHY ... 56

LIST OF FIGURES:

Figure 1.1.1. The Synchronous and the Asynchronous modal of computation... 2

Figure 1.1.2. Desynchronization of Synchronous system .. 3

Figure 1.1.3. Resynchronization of the .. 5

Figure 1.1.4. Two different resynchronizations from same input flow ... 7

Figure 2.4.1. Parallel ITE: 2 different resynchronizations from the same input flow .. 17

Figure 3.1.1 Josephine´s problem for one unfaithful man .. 22

Figure 3.1.2 Synchrony model for Josephine´s problem ... 25

Figure 3.1.3. Asynchronous model for Josephine´s problem .. 27

Figure 3.1.4. Ring network of components ... 28

Figure 3.1.5. Synchronous model of Leader elected ... 30

Figure 3.1.6. Asynchronous model of Leader Elected ... 33

Figure 3.1.7. Reliable synchronous communication between two generals ... 40

Figure 3.1.8. Unreliable synchronous communication between two generals ... 41

Figure 3.1.9. Asynchronous communication between 2 generals a) reliable links b) Unreliable links 41

Figure 3.1.10. The communication between peer to peer has failure processes. At the round 3, ,

all the process are affected. ... 45

Figure 3.1.11. Example of explicit resource specification ... 46

Figure 3.1.12. State machine of the philosopher and the arbitrator .. 48

Figure 3.1.13. Synchonous process to solve breadth-first search ... 50

Figure 3.1.14. Synchronous spanning tree.. 50

Figure 3.1.15. Aynchronous spanning tree ... 51

Figure 3.2.1. I/O User automaton... 52

Figure 3.2.2. Architecture of the Global Synchronizer system .. 53

Figure 3.2.3. Local synchronizer in the breadth-first search ... 54

1 INTRODUCTION

1.1 Motivation

Through the years the embedded system technologies have been developing and evolving, leading

to very complex systems. Due to the complexity of the embedded system and hardware design,

the designer split up the complex system into smaller systems. This is one of the reasons that we

nowadays have a great number of distributed systems.

Therefore, instead of having a larger design which requires time consuming simulation and

verification, the new design divides the complex system into simpler systems. The simpler systems

are called components in order to differentiate from the complex system. The advantage of those

systems is that as they can be placed in different locations, they can run independently from each

other.

The other advantage of working in an asynchronous environment of the distributed system is that

all the components do not have to wait for the . To understand the term

 , it is necessary to compare the two kinds of distributed systems in the network

depending on the computation model: the synchronous system and the asynchronous system.

The synchronous system is controlled by a unique global clock and the global clock is constrained

by the slowest component. All the others components of the system must wait to make the

communication to an external environment as well as other components, until the slowest

component ends its activity. After all the components have finished their activity, the whole

system can interact at one point of time to the others components and to the external

environment. On the other hand, we have the asynchronous system where every component runs

independently without controlled by a global clock. Then, each component communicates with

the environment or the other components at different points of time.

We see the Figure 1.1.1 where, it explains both models of computation. In the upper part there is

a synchronous system and its behaviour. The behaviour of the synchronous system consists of

three cycles. The system reads the input and writes the output when the global clock

ticks, it is every period cycle. In the lower part, there is an asynchronous system, where there is no

notion of clock. The behaviour of the asynchronous system consists of three cycles too, but in

different point of time as we see in the Figure 1.1.1.

Besides the complexity, the communication that used to play a second role in the technology plays

now the dominant part. We want to have a more efficient communication in terms of speed and

2 INTRODUCTION

less power consumption, leading to a lower communication cost. The asynchronous systems fit

those requirement explained.

Figure 1.1.1. The Synchronous and the Asynchronous modal of computation

However, we do not really want to remove or forget all the synchronous systems. We want to

reuse some of them and adapt to the new design. The reason is the synchronous systems have

been well researched for a long time and it is now well stated. Synchronous systems provide us

with many tools to analyse and to verify the correctness of the implementation of the design. On

the other hand, the distributed systems are difficult to design because they run asynchronously by

nature. For those reasons, we want to use synchronous technique to implement the asynchronous

distributed systems. Therefore, we reuse the synchronous system and make them work in an

asynchronous distributed system.

To this end we verify if synchronous designs can be reused in an asynchronous environment

without changing the origin behaviour. Is it easy to adapt synchronous systems into asynchronous

systems? and have a correct behaviour of the system at the end of the conversion? Let us see the

evolution of the synchronous system step by step.

From synchronous systems to the asynchronous systems:

We start from a synchronous system. The synchronous system reads all the inputs, updates the

local variables and writes all the outputs at one point of time. It is called one because it

the computation is does not consume any time. Therefore the computation in synchronous system

is instantaneous. As we see the in the behaviour of the synchronous systems in Figure 1.1.1.

Where:
Clock ticks
Process of reading the input:
Process of writing the output:

Chapter 1
INTRODUCTION

3

The second step is to divide the synchronous system into parts, called components. Each

component is able to do an activity or computation and all of them work together to fulfil the task

of the system. The computation of the whole system is done synchronously. The components

work in parallel to each other. Each component has its own input and output and each of them

have synchronous connections.

Now, it is time to convert the synchronous connection into FIFO (first input- first output) buffer

communication. This process is the third step that it is called desynchronization of the

synchronous system, see Figure 1.1.2.

Figure 1.1.2. Desynchronization of Synchronous system

The desynchronization is the relation between the synchronous system and the asynchronous

system. The synchronous connections are replaced by the FIFO buffer after making the

desynchronization, as we in Figure 1.1.2 . Then, each component and has its own input and

output and has its own clock. After the desynchronization, synchronous systems work in

asynchronous environment.

Besides that the synchronous system works in an asynchronous environment, the

desynchronization avoids processing irrelevant inputs values or to output irrelevant outputs

values.

Let us explain the process of desynchronization following the .

 -

The firing rule is a firing table and it is composed of rules . The rule fires one it fulfills inputs

conditions . Once the inputs conditions match, the system follows to write in the

output following the rules fired.

]

1

1

1

0

1

0

0

0

0

1

0

0

…

…

…

4 INTRODUCTION

 has two rules: and , where are the inputs; and is the

output. In order to fire the first rule : the first input channel must be 1 and any value in

input . After having both input values, it writes the value in output . The second fire fires

when it has 0 in its first input channel and any value in input channel . After having both

input values, it writes value in output . The firing rule explains the behaviour of the

 . As we can see on the right side of the table, the sequence of of the

logical component AND. Each coloured column represents one .

In one , the synchronous system reads one value in all the inputs and writes as well one

value all the outputs. Then, it reads in the first or round:

⇒

 Second :

⇒ Third :

⇒ and

so on. As we can see neither in the second or third , the system needs to read the input

 to output . Therefore, the input is irrelevant to the computation when . Because of

it () does not participate in the computation. It can be replaced by other value, and the system

would behave as before.

We have seen that it is not necessary to read the input when the system reads in . If

then the input becomes irrelevant for the computation. On the other hand, the system still

needs the input for keeping the synchronization alive. For that reason, we replace the

irrelevant value by introducing the symbol

1

1

1

0

0

0

0

1

0

0

…

…

…

Now, we want to remove the and work in an asynchronous model.

1

1

1

0

0

0

0

…

0

1

0

…

…

The asynchronous model is not controlled by a global clock anymore. It means that each

component of the network has its own clock, called a local clock. The local clock permits each

component to run as fast as its own clock allows it. This model takes into account that the process

of sending/receiving the message as well as the computation may take time. We can see that this

]

]

Chapter 1
INTRODUCTION

5

model is more realistic. However, it is difficult to predict the behaviour of those systems due to

the asynchronous concurrency.

After the desynchronization of a synchronous system, the processes should be able to cooperate

and exchange messages independently with the other components and at the same time be able

to behave as a unique synchronous single system. It is called the resynchronization or the

 of the desynchronization.

The resynchronization reconstructs an asynchronous sequence of into a synchronous

sequence of . Informally speaking, endochrony is the criterion to decide whether a

synchronous system is able to work in an asynchronous environment in a correct way or not.

Intuitively, endochrony ensures that there is a unique way to resynchronize the input flows of the

synchronous system in order to fire a unique output value in each reaction. As a result, the

resynchronization has the same as the original synchronous system. A sequence of

reaction form a stream or flow and it is the of the system.

Let us build the resynchronization of : One

column does not necessarily mean one . One after the desynchronization

means: read only the input value that permit to fire a specific rule . The rest inputs are

blocked until they are needed for the computation.

The system waits to read first. The first : It reads in and waits to read the value

in , it is

⇒ . The second : then, the system does not

read the value in and outputs directly . The third : , therefore it outputs

 and it does not consume the value in The input is locked to read again. The fourth

 : , then the input is necessary to read =>

⇒ . The

construction of the is chowed in the Figure 1.1.3.

Figure 1.1.3. Resynchronization of the

As we have seen the system must know when an input it is necessary to read or not. This is why it

is necessary to have an interface program that tells the system when to read an input value. The

interface program is called . There is a in each component and it decide to lock

the reading of an input or to permit the reading.

 (1)

 (2)

 ()

1

1

1

0

0

0

0

…

0

1

0

…

…

 (1)

 (2)

 ()

1

1

1

0

0

0

0

1

0

0

…

…

…

6 INTRODUCTION

The fulfils the endochronous property because, it is able to model the same

synchronous behaviour as the original one. Therefore, it is able to work in an asynchronous

environment while having the same synchronous output flow. However, it is not always the case.

Let us see : The first rule does not need to read the input to fire the output .

The fire – input and the fire – input are same as fire – input . In each rule, one

input value is not needed to fire one specific rule. Therefore, they are removed in the firing rule of

the desynchronization.

 :

]

 []

]

 []

The following step it to analysis the resynchronization. Let us see if there is a unique way to

resynchronize the input flow after the desynchronization:

If the input is read first and is , then the system waits to

read input to fire rule . Otherwise is and the system

waits to read to fire rule . The problem comes when the

first read input is or .

First : The input =0 is read first, then the system waits until read and fires the rule

 . It output . However, if the input =1 is read first, there are two possibilities. The

first possibility is: the input =1 is read second and the system fires rule . The second possibility

is: the input =1 is read second and the system fires rule . The first and the second is

show in Figure 1.1.4. As we see, it is a problem. Having the same input flow, the resynchronization

system can fire different rules.

Depending on the arrival time of the input , the flow of the rules is different. As a result we have

a different output flows. The resynchronization is not successful. The is not

endochronous.

We show here the importance to analyse whether a synchronous system is endochronous or not.

It is not trivial to remove the if the synchronous system is not endochronous. Finally, the aim of

the thesis is to differentiate the distributed algorithms that are endochronous from those that are

not.

0

1

1

?

0

2

2

?

1

4

3

?

1

6

5

?

1

8

7

?

0

10

9

?

…

…

…

…

Chapter 1
INTRODUCTION

7

Figure 1.1.4. Two different resynchronizations from same input flow

1.2 Structure

The second chapter explains the theory of the two computation models of distributed systems:

the synchronous model and the asynchronous model. It also explains the relation between the

synchronous model and the asynchronous model of computation, called desynchronization. Finally

the foundation chapter focus on the endochronous property.

The third chapter faces the desynchronization of many distributed algorithms. Those distributed

algorithms have many applications in the real life, therefore it is important to analyse in detail

whether they could desynchronize in a correct way or not. Most of them assume the

communication and the behaviour of the process to be reliable while the rest take into account

that there can be communication errors/mistakes. In each of them, we discuss whether it fulfils

the endochronous property or not. At the end of this chapter, we will view in the all the

distributed algorithms in order to determine which fulfil the endochronous property.

In case the distributed algorithms do not fulfil the endochronous property, the algorithms need an

additional implementation. It is called the synchronizer, explained in chapter four. The

synchronizer is able to make the synchronous design work in an asynchronous environment.

Finally, we summarize the entire thesis in chapter 5.

…

I

…

2

It

2

Where:

< : the input arrives at seconds

2 FOUNDATION

Distributed algorithms are algorithms designed to run on hardware consisting of many

interconnected processors. There are two kinds of distributed systems that depend on the model

of computation: the Synchronous model and the Asynchronous model. See in more detail in [2,

12]. The synchronous model, the processors are completely synchronous, performing

communication and computation in perfect lock-step synchrony. On the other hand, the

asynchronous system works completely asynchronously, taking steps at arbitrary speeds and in an

arbitrary order.

Whereas we are working in a synchronous model or asynchronous model there is a notion of

rounds /steps. The notion of round or step is defined as the action of reading the inputs, updating

to the actual state and the local variables, and writing the output every certain time. In the case of

synchronous system, it occurs always every certain time and all of its components do their

computation at the same time. In contrast, all the components that belong to the asynchronous

system has different clocks, therefore the action of reading, updating and writing occurs at

different periods of time. Due to that, each of them has a round or step differently.

2.1 Synchronous model

Before explain in detail this model, let us show some examples of synchronous model in the

nature.

- Synchronous of menstrual periods of group of women [8]

- Synchronization of heart pace-maker cells [11]

- Flashing of fireflies and shirping of cicadia [10]

- Self-organization of hand-clapping [9]

- Synchronization of metronomes [5]

Those examples show us that the nature tends to follow a synchronous model without introducing

any external help.

On the other hand, the technologies have been trying to pursuit the synchrony and integrity in

each devise, in order to have under control each component before communicating to an external

device. Due to the long-time research, the synchronous system is a well know model.

It simplifies programming, since developers do not have to take care about low-level detail like

timing, synchronization and scheduling. However, it has some consequences that make the

compilation of synchronous program not at all straightforward. All the signals of the program

Chapter 2
FOUNDATION

9

should have a well-defined temporal behaviour, the clock consistency. Another important issue is

the causality analysis. We assume that both characteristics are fulfilled by the problems in this

thesis.

Coming back to the model of computation, the principal characteristic of the synchronous model is

the notion of a global clock and the synchronous concurrency. The communication and the

computation of the system are carried out synchronously, in each round, controlled by a unique

global clock.

Let us see how the synchronous computations model works. Equation system:

{

 ()

Where:

 Input

 Output

 State variable

Besides, It is defined as (input, local and output variable). The input

 , the output and the local variable .

Explanation of the syntax:

Before starting the first round, the system establishes the actual state according to the type of

variable the default value . In each period of time , the system update the actual state

based on previous state and default input value and write on the output is a function of the

actual input and the actual state. In each cycle or each reaction the system must read one input

value and write one output value, because the synchronous system is deterministic.

The equation systems essentially correspond to hardware circuits. And the synchronous circuit use

the synchronous model of computation (MoC). Therefore, it is possible to generate efficient

software and hardware from the same synchronous program. One clear example is hardware

description languages like VHDL or Verilog.

The following step is to make clear about the system and the components:

Where:

Synchronous system is

Component of the synchronous system { }

The synchronous system is composed by components and all of them work in parallel.

10 FOUNDATION

Another characteristic of the synchrony circuit design is that every component of the system is

controlled by a global clock. Moreover, the global clock is determined by the worst case execution

time of all the components. The clock of all entire system is imposed by the slowest components;

therefore the rest of the components are forced to wait until the slowest one finishes its

computation. It is designated the component as the slowest component because it needs more

time than the rest to finish its computation.

 Because, it has to permit all the signals propagate through the circuit before the next clock arrives

and all of them must be ready to communicate. It is explained in more detail in [14].

Synchronous connection

In order to work with communication between components, we pay attention to the synchronous

connection between every component in the system. We have seen that the synchronous system

has its inputs and output, however if we see inside of the synchronous system we find its

component has its own inputs and outputs.

We notice that the component work in parallel with the other. The computation and the

communication is done synchronously. Whenever the global clock ticks all the components make

the instantaneous communication and computation in zero time.

Example of Synchronous modal of computation:

Let´s see the following example, Sequential ITE (if then else)

1

1

0

1

0

3

2

2

1

3

2

3

1

5

6

5

…

…

…

…

It has 3 inputs () and 1 output each of them are indexed by a global clock. The input

is a Boolean value and the others, are natural values.

In each cycle we consume one value of each input stream and generate one output value.

If , otherwise .

Let us see the computation in detail: We consume three values from the input but we use only

two of them. The first cycle, we eat , we know if

and we do not use the input , however it is consumed. For the second cycle is the same, we do

not to have to read the imput and so on. We realize that we are reading some values that are

]

Chapter 2
FOUNDATION

11

not interesting for the computation. Those values are called irrelevant values that does not affect

to the flow output stream of the system. On the other hand, we have to evaluate if they are crucial

for the synchronization of the system. We evaluate it in the section of desynchronization.

To this aim, we desynchronize the synchronous system and analyse its behaviour. The behaviour is

formally defined as evaluate the input and fire the rule in each step. Each output value in

considered as one step more or one more cycle.

The main conclusion to be drawn from the synchronous system is that it is well developed and it

allows us to program, compile and verified the correctness of the implementation. Due to that, we

try to keep the synchronous system and try to reuse it in a more efficient design, i.e. asynchronous

environment.

2.1.1 QUARTZ [5]

There are various types of synchronous programs like ESTEREL, LUSTRE, SIGNAL and QUARTZ.

ESTEREL can make an implementation and verification of reactive real-time systems, however it

cannot make some modern verification methods as e.g. abstraction from certain data types that it

yields in nondeterministic systems.

In order to solve it, the Group of Embedded System have developed a new “synchronous”

language called QUARTZ that is very similar to ESTEREL [5]. In particular, QUARTZ added

statements for asynchronous parallel execution of threads, and for explicitly implementing non

determinism.

There are also some differences in the semantics of the data values that are used in QUARTZ and

ESTEREL: it is the inmediate assignment and the delayed assignment, it is explained later.

In chapter 3, we use some the semantic and syntax of QUARTZ datatype:

Storage

mem Memorized variable (store last value

event Event variable (store last values)

Information flow

? Input variable (only readable)

! Output variable (only writable)

 Inout variable (readable and writable)

Data types

bool Booleans

nat Unbounded unsigned integers

int Unbounded signed integers

It is fully explained in [3]

12 FOUNDATION

2.2 Asynchronous system [5]

In contrast to the synchronous model, in the asynchronous model each component of the system

has its own clock. In other words they can perform the communication and computation

controlled by its own clock. There is still notion of round, however, each of them have its own

counter round.

The component is not controlled by the worst-case execution time component as the

synchronous model, therefore is not forced to wait to the lowest component.

Define as asynchronous environment:

Where:

Asynchronous system is

Component of the asynchronous system { }

Each component runs independently and without a specific order, but all together cooperates to

achieve the specific objective or task of the asynchronous system.

It seems natural to have an asynchronous system but it is really complex to evaluate the

correctness of the implementation due to the asynchronous concurrency. Then, we want to take

full advantages of the synchronous systems. First, we reuse the synchronous system and adapt

them in the new interface i.e. the asynchronous environment. With this intention, we

desynchronize the synchronous system.

In order to work with communication between components, we generate DPN of synchronous

systems. The Dataflow process network (DPN) is a model of computation where a number of

concurrent processes communicate through unidirectional FIFO channels [7].

First, we view the system as a `hardware circuit´. Then, we construct a DPN of the `circuit´ by:

- Considering each component as a single node of the DPN

- Replace the connection between the components by FIFO buffers

- When there is a fork on the connection, it must be implemented with Duplication nodes

Now, we see that it is essentially an asynchronous hardware, if we replace the connections as FIFO

buffers.

Chapter 2
FOUNDATION

13

See the example: –

The system must necessarily wait to read first the input . If is , it waits to

read and fires rule . Then, it outputs . If is , it waits to read and it fires rule .

Then, it outputs . As we see, we avoid to read one irrelevant input value in each rule . The

sequence of computations (stream) occurs by FIFO. Each read value is consumed value too.

2.3 Desynchronization

The desynchronization is the link between the synchronous system and the asynchronous system

[13]. So after having found the irrelevant value in the computation, the next step is removed

them. Then, the objective consists on removing the irrelevant value and the synchronization

boundaries of the reactions. Let us see better in the following example.

 -

1

1

0

1

0

3

2

2

1

3

2

3

1

5

6

5

…

…

…

…

Because of being a synchronous model, all the inputs must read one value and write one value in

the output in each round. The round of system is represented by one entire column of the

 .

It is time to recognize the irrelevant value and replace then by .

The meaning of :

- We still working synchronously. We label the irrelevant values that are not used for

computation.

]

1

1

2

1

0

3

…

2

1

5

3

1

…

5

…

…

]

14 FOUNDATION

1

1

1

0

2

2

1

3

3

1

5

5

…

…

…

…

 (the first firing rule): the value is needed for the synchronization, but not computation =>

then it are replaced by . For , is replaced by .

The next step is to remove the irrelevant values .

 :

After the desynchronization (removing the irrelevant value), the system is able to work in the

new interfade i.e. asynchronous enviroment. In fact, each reaction depends only on the values

needed for the computation. It means, in each reaction they just consume the relevant values.

We see the stream desynchronized and they are still working properly, because the output stream

is the same as the output stream of the synchronous version. It let us state that the node can

resynchronize the stream. Therefore, it is endochronous.

On the other hand, there are some algorithms that could not transform into asynchronous system.

They cannot resynchronize after the desynchronization.

2.4 Endochronous [4, 15]

Until now, it has been explained the process of desynchronization. However, we need to know

whether it is a desynchronization or not. We have to see if it is possible to reconstruct a

unique synchronous behaviour after the desynchronization. Besides that, we see if the

communication behaviour between synchrony and asynchrony are equivalent. For this reason, we

]

]

1

1

2

1

0

3

…

2

1

5

3

1

…

5

…

…

Chapter 2
FOUNDATION

15

see the endochronous property. Informally speaking, endochrony is the property to resynchronize

the asynchronized inputs deterministically.

Important definitions:

 : It is a flow data values. It can be an input data, local data or output data.

 : In order to define the behaviour of the system or component, we need

streams. The stream of inputs data, local data and output data and the special value .

The symbol is used in synchronous model to replace the irrelevant value.

In order to formalize the definition, there are some notations. Consider behaviour that map

variables to streams:

Clock equivalence: , it is clock equivalence if after removing all the irrelevant values

() from each stream at a point of time, they became to have the same streams.

Flow equivalence: , it is flow equivalence if after removing the irrelevant values

from a particular stream they became to have the same stream.

The
 means that and were obtaining by inserting arbitrarily in the input stream from

the same stream.

Definition 1 (Endochrony)

A synchronous system is called endochronous if for all with
 we also

have . In other words, the input flow equivalence implies clock equivalence.

Example :

The last table show the result of the desynchronization of the synchronous system

 . Now, it is time to reconstruct the input streams into synchronous reactions – it is

called resychronization. The resynchronization of is able reconstruct a

synchronous behaviour as we see in Table 2.1.

]]]

16 FOUNDATION

The synchronous streams after the deynchronization and resynchronization, respectively:

Table 2.1. Behaviour after the desynchronization and resynchronization of

We clearly see that
 and it fits also , therefore it is endochronous .

Let us see one other example:

]

 []

 :

]

 []

]

 []

Given the inputs we could produce the three different stream outputs :

It is assumed to have this flow of inputs after the

desynchronization. Let us see if there is a unique way to

resynchronize to synchronous flow of outputs.

Let see in detail the first reactions. They are controlled by the firing rule of the Desynchronization:

]

 []

We show in the following figure that: Depending on the arrival time of the input, it fires a different

firing rule. The system does not have a unique way to resynchronize the input flow. In the figure,

0

1

1

0

0

0

1

1

1

1

…

1

1

1

0

1

...

…

0

1

1

0

0

0

1

1

1

1

1

1

0

1

1

...

…

…

0

1

1

?

0

2

2

?

1

4

3

?

1

6

5

?

1

8

7

?

0

10

9

?

…

…

…

…

Chapter 2
FOUNDATION

17

we explain the arrival time by . The consumed values are inside of the pipe and the other is

locked for reading. We represent just two consecutive reactions from the same input flow.

Figure 2.4.1. Parallel ITE: 2 different resynchronizations from the same input flow

We have showed that after the resynchronization, it has 3 different synchronous behaviours. See

the following:

First behaviour:

0

1

1

0

2

2

1

1

1

 2

2

1

4

4

0

3

3

…

…

…

…

Firing rule fired

Second behaviour:

1

1

1

0

2

2

0

3

3

1

2

2

1

4

4

1

6

6

…

…

…

…

Firing rule fired

Third behaviour:

…

I

…

2

It

2

Where:

< : the input arrives at seconds

1

1

1

2

2

2

0

3

3

0

5

5

1

4

4

1

6

6

…

…

…

…

Firing rule fired

18 FOUNDATION

From the same inputs streams we have different outputs streams. There are three behaviour:

 1 2 1 2 4 3

Firing rule fired

 1 2 3 2 4 6 3

Firing rule fired

 1 2 3 5 4 6

Firing rule fired

Therefore the system could not divide into smaller component. It does not fit the

endochrony. Besides, there is another option to check whether it is endochronous or not. It is by

checking the firing rules.

The second way to ensure the correctness of the desynchronization is the following.

Endochronous by Firing rules:

A synchronous node is endochronous if and only if its desynchronized version does not have

overlapping firing rules. It means, they have a unique way to fire or to react after reading the input

or imputs.

The firing rule and are overlapping to each other, because it depends on the arrival time of

inputs. If arrives first, then second and , and , the system is confuse to whether

fire consume the inputs and and output , or fire consume the inputs

and and output .

The same situation happens with and , they are overlapping rules too. As a result Parallel ITE

is not endochronous.

Endochronous modules in Asynchronous systems

The endochronous systems wait for a uniquely defined next input and can then determine a

synchronous reaction. We can take into advantage of this characteristic to construct an

endochronous wrapper of the synchronous module .

]

Chapter 2
FOUNDATION

19

The wrapper:

- observes the arriving inputs of

- triggers when enough input values arrived

- inserts for irrelevant values that have not been sent

Afterward, we can say that endochronous module can be used in an asynchronous setting, it

means that it can be used in asynchronous networks.

Endochronous wrappers are also called clock generators.

Examples of endochronous wrappers for Sequential ITE:

The wrapper waits until value arrives, second:

If , then it waits the value at input port , as soon as comes the wrapper sends

 to the local synchronous module and trigger it.

Otherwise, and the wrapper waits until arrives at input port and send

 to the local synchronous module and trigger it.

Afterwards, the endochronous module can be triggered by its endochronous wrappers in an

asynchronous environment. A further step is to check if the endochrony is compositional or not.

Endochrony is not compositional?

Consider a synchronous system where the module is endochronous. The

following step is to check whether it is or not equivalent to
 , the

asynchronous compositions of the endochronous components with their wrappers.

Example of :

Wait to read the value and write it. It is endochronous as there is no other firing

rule to react.

Now, if and they run in parallel.

 and are endochronous, then each of them can

run in an asynchronous environment. However, we want to

check if all the system together is endochronous.

]

20 FOUNDATION

) in an asynchronous network. See in detail it:

 it considers copy1 has a different clock from copy2,

and copy2 is faster than copy1.

 The clock of copy2 is slower than copy1

 The clock of copy2 and copy1 is the same

There are two forms to prove the system copy in not endochronous.

- The firing rules: and are overlapping to each other and and as well.

- By checking the forma definition of endochrony:
 implies

 We see that
 but not it is not endochronous.

It has been proved by the example that Endochrony is not compositional.

Finally, the endochronous property allows the components work in an asynchronous environment.

The behaviour of the synchronous system is the same as the resynchronization.

Then, in the next chapter we are going to introduce in detail a set of distributes algorithms and to

analyse their behaviour in synchronous system and after the process of desynchronization. If it is

the case that both models share the same behaviour the components of the distributed algorithm

are endochronous.

] []

1

1

0

0

0

0

1

1

5

8

5

8

2

2

0

2

0

2

...

…

…

…

0

1

0

1

5

0

5

0

1

2

1

0

8

0

8

…

2

…

2

…

…

3 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

This chapter explains in detail each problem that matters in the field of distributed algorithms.

Those small numbers of problem help us to cover the principal problem that we have to deal after

the desynchronization and they have many different applications. Firstly, we consider working in

the synchronous system and then, we desynchronize them and check if they are endochronous or

not.

3.1 Detailed discussion for each algorithm

3.1.1 JOSEPHINE’S PROBLEM

We assume to have women, each woman has one husband. They live in a village with their king.

The king is honest and every people can trust on his information.

One day the king tells to couples that there is at least one unfaithful man in the village. The king

gives the order to kill the unfaithful man with a shot. The unfaithful man is killed by her wife at the

end of the day. Every woman knows the fidelity of every husband except her own husband;

however she is not allowed to designate the unfaithful husband in front of his wife. Moreover, she

always listens to the shot.

The problem

The woman has to figure out if her husband is unfaithful or not.

In order to resolve the problem, we make some assumption:

- The king tells the truth.

- Every woman is: clever, thinks in the same way as the other women and obeys to her

King. The woman , { } and the woman ´s husband,

 { }

- Any woman shot her husband unless she certainly know her husband is unfaithful

- There are unfaithful men.

- Every woman known the faithfulness of women´s husband except her own husband

Solution for 1 unfaithful man

Let´s start with one unfaithful man, , we assume that is the unfaithful man. The woman ,

 , knows there is no unfaithful husbands. As a result, she instantaneously realizes her husband

 must be the unfaithful man. Consequently, she shoots her husband at the end of first day.

22 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

On the other hand, the woman , , knows is unfaithful, but is not

sure if her own husband is faithful or not. Eventually, listens to the shot and confirms her

husband is faithful.

In order to receive the information “listen to the shot at the day´s end” we make two suggestions:

the first one, where every women receives the data at the same time, called synchronous

model. And the second one, where the woman does not necessary receives the data at the

same time as the others women is the asynchronous model.

The case : has enough information to kill her husband. To be clearer, let see the

following Figure 3.1.1.

Figure 3.1.1 Josephine´s problem for one unfaithful man

The algorithm works in both models. For the synchronous model, the is emitted on the

first day, same as number of unfaithful husband, . On the other hand, for

asynchronous model, the is emitted instantaneously, however the wife will receives it at

another point of time. It is show in the figure 1.

However, what happen if there are more than 1 unfaithful men, ?

If there are more than one unfaithful man, the solution before explained does not work anymore.

Then, we need to add other input as example the clock time, it is used in the Synchronous model.

…

Days number

W
o

m
en

n

u
m

b
er

gunshot







 : receives there is at least one unfaithful men
 : expects to listen to
 : known her husband is unfaithful
 : listen to t - her husband is faithful
gunshot : kills her unfaithful husband,

woman ,

time

W
o

m
en

n

u
m

b
er

gunshot








…

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

23

Synchronous model

The process of receiving and sending the information is at the same time, in other words there is

no a delay between any two processes, the communication is done instantaneously. Based on this

model, every woman listens to the shot at the same clock time “clock time”. The king said to kill

the unfaithful husband at the end of the day, and then we consider each day as clock time.

Every day we synchronize all the inputs and the outputs of the woman .

 : At the end of day, the woman knows if her husband is faithful

or not. Then the unfaithful husbands are shot at the end of

Then, the woman needs the clock time to keep a tally of number of days.

 By induction

I. There are unfaithful husbands are shot at the end of . Each end of the day is

counted as a clock time, step.

a. The unfaithful husband:

1. trust on her husband and she also knows there is at least

unfaithful husband, then expects to listen to at least shot

2. At the end of , any women listen the shots:

Explanation:

 waits to listen to shot emitted from , and at the same time waits to listen

to shot emitted from . Both women wait to listen to each other the first day

but they do not.

3. no listen to shot at the end of , therefore, there must be

one more unfaithful husband left. The unique option is: her husband is unfaithful. She

shoots her husband the next day, . Then, are the unfaithful

husbands

4. makes the shot at the end of . After the woman makes the

shot, there are no unfaithful husbands left

b. The faithful husband:

1. knows there are at least unfaithful husbands, then She expects

to listen to at least shots

2. makes some assumptions about the ´s information

has:

- waits to listen shot and waits to listen shot

- realizes her husband is unfaithful after not listening shot at the

end of the . She shoot her husband the next day,

- At the end of , every woman knows is unfaithful.

24 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

We prove this information before: shoots her husband at the end of

3. } waits to listen shots at the end of and She does.

Afterwards She confirms her husband is faithful

c. The unfaithful husbands are shot at the end of the same day, , and the

shots are listened instantaneously by

Then, we probe the number of unfaithful husbands is equal to the number of days:

II. We assume true for: At the end of day, the woman knows there are

unfaithful husbands. It implies the following:

a. Unfaithful husband:

 trust on her husband and knows there are at least unfaithful

husbands, then She waits to listen to shots.

 waits to listen to shots at the end of but She

does not. As a result, she realizes her husband is the unfaithful husband left. She make the

shot at the end of next day, .

b. Faithful husband:

 knows there are at least unfaithful husbands, then She

waits to listen shots.

She expects to listen shots at the end of and effectively she does. It allow her

to confirm her husband is faithful

c. makes the shot to respectively at the end of

 . Listen to the shots, let the women know there are unfaithful husband

and all of them are shot at the same time

d. , listen to the shots instantaneously at the end of the day,

III. After assuming is correct. Let´s prove is also correct.

a. Unfaithful husband:

1. trusts on her husband and she also knows there are at least

 unfaithful husbands. Then she expects to listen to shots.

2. makes some assumptions from the information that

 has:

It is assumed true for . It implies:

 listens to the shots at the at the end of

3. expects to listen shots at the end of but she does

not. Then, she realizes her husband is the one unfaithful left. She makes the shot the

next day

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

25

4. The unfaithful husband , , is shot at the end of

by his wife respectively. There is no unfaithful husband left.

b. Faithful husband:

1. trusts on her husband and she also knows there are at

least unfaithful husbands. Then she expects to listen to shots from

2. makes some assumptions about the

 ´s information has:

- is the wife of the unfaithful husband and We proved

before that waits days to listen the shots

3. waits to listen shots at the end of

and She does. It allows her confirm her husband is faithful

c. shoots her unfaithful husband at the end

of . In other words, The unfaithful husbands are shot at the same day

d. , listen to the shots instantaneously at the end of

We prove by induction that the number of days is equal to the number of unfaithful husbands:

The following figure explains how the synchrony algorithm works for Josephine´s problem.

Figure 3.1.2 Synchrony model for Josephine´s problem

 : receives there is at least one unfaithful man
 : expects to listen to
 : does not listen to - her husband is unfaithful
 : listen to - her husband is faithful
gunshot : kills her own unfaithful husband

Where:
woman ,
unfaithful men number ,

…

…

…

…

…

…

…

Days number









gunshot

26 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

We prove also that number of days is an important variable. It allows the women to keep a tally

synchronously of the number of days and lets her realize the fidelity of her husband. The variable

 works as an input. It is predictable when the input comes and when the

Josephine´s problem finishes.

Desynchronization of the problem – Asynchronous model

We have proved that the number of day is considered as an input variable that is needed for find

out the unfaithful man. Therefore, we cannot remove it. As a result we can say that the

Josephine´s problem does not work anymore after the desynchronization.

 : Eventually, waits forever to listening to the shot.

 :

I. There are unfaithful husbands. The assumption of the woman is equal

as in the synchronous model

a. The unfaithful husband:

1. knows there is at least unfaithful husband and

expects to listen to at least shot

2. The shot is not emitted by the woman

Explanation:

 waits to listen to shot emitted from , but at the same time waits to

listen to shot emitted from . There is no more information to let her know that

her husband is the unfaithful husband left.

3. Finally, never emit the shot to her unfaithful husband

4. could never know her husband is unfaithful.

b. The faithful husband:

1. knows there are at least unfaithful husband. Then,

 expects to listen to shots.

2. makes some assumptions about the ´s information

has:

- waits to listen shot from ,and waits to listen shot from

- does not shoot her husband unless she is certainly sure he is

unfaithful, then she does not shoot

- is unfaithful husband but there are not shoot

3. keep waiting

c. , never listens to the shot and keeps waiting for ever. The

is never emitted.

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

27

The algorithm does not work for unfaithful husbands. In general, it does not work for

 unfaithful husbands.

From the case I , there is not possibility to know if the husband is faithful or

not. Let see the following picture.

Figure 3.1.3. Asynchronous model for Josephine´s problem

After removing the notion of clock, the woman does not have the perception of a deadline time

that let her count. If the woman cannot count, she cannot figure out if her husband is faithful.

Therefore, the system does not work after the desynchronization.

However, there is another solution to make it work asynchronously. We implement an artificial

input in each woman , .

The means:

The woman blows a whistle to the woman in order to tell

 .

The variable allows to the woman to have a counter, because each

time she blows she make the end of her day. The variable is equivalent to the end of day

that we have in the synchrony version.

At the end, at different points of time every woman knows if their husband is faithful or not.

…

…

…

… time

W
o

m
en

n

u
m

b
er

gunshot

 : receives there is at least one unfaithful man
 : does not listen to , She keeps waiting
gunshot : kills her own unfaithful husband

Where:
woman ,
unfaithful men number ,

…

…

…

…

…









…

…
…

28 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Endochronous

Without the notion of step, Josephine´s problem does not work. Therefore, it has not the

endochrony property.

3.1.2 LEADER ELECTION IN A RING

We assume a ring network of nodes. Every node has the same characteristics, except its

identifier token UID: . Each node knows its clockwise neighbour, the node can communicate

through their token to the next node . As a result, the token can move through the network

in an unidirectional way.

 Another specific characteristic is the identifier token must be an integer number and different

from any other token. The identifier token is allowed to be manipulated by comparison.

The formal semantic we use is presented in the following figure:

Figure 3.1.4. Ring network of components

The Problem

We have to figure out who is the leader node.

The assumptions are:

- The ring is unidirectional and the token is manipulated by comparison as an integer

number

- Each token is unique, there are not two igual tokens

- All the nodes know the number of nodes: nodes

- The leader node is the node that has the biggest token : and its token

Where:
Node with their respective token .
Token
Leader node . If .
Non-leader node . If

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

29

- Eventually, the non-leader node must know they are not the leader:

The general solution

In each node we make the comparison of the income token to its own token till get the leader:

- If the income UID token is greater than its own UID value, it keeps passing the token to the

next node.

- If the income UID token is lower than its own UID value, it discards and does nothing.

- If the income UID token is equal than its own UID value, it means it is the .

During the next sentences, we use two words that they are necessary to highlight:

Cycle: A cycle means a point of time where the node receives the token and sends the token to

his neighbour (Synchronous version).

Round: A round is when the token has passed through all the nodes of the network, from

 to .

Firstly we are going to solve synchronously, then we are going to see if it works correctly in an

asynchronous model. Finally, we explain which of both model suits better to the physical

implementation. Let do the first model.

Synchronous model

Applying the general solution to the synchronous model, we have the following description:

All the nodes are indexed to the same clock time, being more precisely, the communication of

every token is updated synchronously, in each cycle.

The process of receiving and sending is doing at the same time, which means when node receive

the token from the predecessor node , it computes the comparison and sends

instantaneously the result to the node . In other words, the process of sending and

receiving does not take time, it is immediate.

The behaviour of the synchronous model in the leader election is plotted in Figure 3.1.5.

As we explain before, the comparison between nodes give back three possible results. One of the

results is “does nothing”, it informs the absence of a message and we treat as value during the

rest of leader election problem.

30 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Figure 3.1.5. Synchronous model of Leader elected

 : After rounds , node knows node is the leader.

 : Case distinction:

I. The node is assumed to be the leader is the biggest token in the ring network.

Consequently, . knows himself it is the leader after rounds.

a. There are nodes. Therefore the token takes cycles to reach to himself.

b. In each comparison , then it keeps passing to the next node till the number round

 , when it compares to himself. Then, with rounds the token comes back to the node

 .

We deduce from both, the token is the greatest identifier token, as a result the node is

the leader.

II. The node is assumed to be the non-leader node, . First we assume takes cycle to reach

 The value of depend on and as we see in the following ecuation:

 cycle {

}

a. At the cycle , receives and pass it to .

b. After the cycle , round , only receives the token .The token 0 is treated as

nothing.

 : receives the token from its predecessor neighbour ,
compares and sends the result to its successor

 : knows is the leader.

Where:
node network
non-leader node

leader node ,

…

…

…

… Rounds number

N
o

d
es

n

u
m

b
er

Leader
elected

…
…







Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

31

c. keeps receiving token 0 after cycle till the cycle .

d. If there is reachs in rounds. However it is not possible .

We deduce knows is the leader after the round .

Pulling together the first and the second case, , knows is the leader after rounds.

During the last proof, we assume that each node know how many nodes there are in the problem

(nodes), then each node knows if it is the leader or not after rounds. However, if it is unknown

by . How can the non-leader node realize that it is a non-leader node? How can we fit this

requirement?

Implement a special input to every node when n is unknown

Implement a counter token in every node, the counter of the node counts the number of

times the same token pass through its own . In each comparison, the node is able to save in its

memory the highest token, . Consequently, at the end of the first round, it has in its memory the

highest token, .

We choose the special input because it needs less implementation: First, the leader node

realizes after receiving its own token. Second, it has to inform to every node in order to let

them know, otherwise would never realize it. More precisely, send to a special token

 in the second round.

Finally, the node knows the node is the leader after , due to the ring

network.

The first round let the leader node knows it is the leader and the second round, , let

the node knows it is not the leader. The leader node sends a special token

to every node , it will take more cycles clock.

We have programmed in Quatz the LeaderElection in a ring of 3 nodes: The First program is for

one node and the second program is the main program.

macro NoNodes = 3;

module Node(nat ?incomeUID, ?myUID,event LeaderReady,nat !send) {

 while(!LeaderReady) {// wait for leader elected

 if(incomeUID==myUID)

 emit next(LeaderReady);//is the LeaderELective

 else if(incomeUID<myUID)

 nothing;

 else

 next(send)=incomeUID;

 pause; } }

32 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

macro NoNodes = 3; // number of nodes

module RingLeaderElected(event LeaderReady) {

 [NoNodes]nat arrayUID;

 [NoNodes]nat channelSend;

 arrayUID[0] = 5;

 arrayUID[1] = 2;

 arrayUID[2] = 1;

 for(i=0..NoNodes-1)

 channelSend[i] = arrayUID[i];

 for(i=0..NoNodes-1) do || let(i2 = (i==0 ? NoNodes-1 :i-1))

 Node(channelSend[i2],arrayUID[i],LeaderReady,channelSend[i]);

 pause;

 emit(LeaderReady);

}

drivenby { await(LeaderReady); }

Desynchronization of the problem – Asynchronous model

Instead of having a global clock, every node has its own clock time. We remove Each node works

independently, the communication and computation are done asynchronously.

In synchronous model we use the time to keep synchronously updating the process. In each clock

time, the node receives and sends the token. However in asynchronous model, the node

sends the token to the next node , but the node receives it at time .

 : Eventually, the node knows the node is the leader.

 : Case distinction:

I. The node is assumed to be the leader is the biggest token in the ring. Consequently

 . Knows himself it is the leader after the time .

a. In each comparison then, it keeps passing to the next node till the time .

b. After the time comes back to .

We deduce is the greatest identifier token, as a result is the leader.

II. Eventually, the non-leader node knows is the leader. knows it is not the leader by

receiving the special token

a. If takes cycles to reach . After the cycle , the node keeps receiving the

token 0. This information is not significant.

b. Since there is no deadline, clock time, does not known when the leader is elected.

Therefore, must inform to every node the leader is already elected.

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

33

c. The node receives the token from the node , .

We deduce must inform to every node the leader is already elected.

Let see the Figure3, which show the behaviour of Leader Election in asynchronous model.

Figure 3.1.6. Asynchronous model of Leader Elected

From the case distinctions, , eventually knows is the leader .

 does not need to have information about the number of nodes of the network, it is an

advantage from the synchronous model. However, need to receive the special token

 .

Endochronous

We have proved that the leader elected can be described in synchronous model and asynchronous

model as well. Both of them suits, therefore Leader Elected has the endochronous property. Let us

see in detail the computation:

In each node:

- It is assume , where

- The stream of is for Non-Leader node and is for leader node

- The inputs: and are the income token and my token respectively

- The outputs: and are the higher token value and the leader token of the system

 : receives the token from his predecessor
 : knows is the leader

Where:
node network ,
non-leader node ,

leader node ,

…

…

time

N
o

d
es

n

u
m

b
er

Leader
elected

…
…







34 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

 :

We can see that after the desynchronization the behaviour of the stream does not differ from the

synchronous system. Therefore, it is endochronous.

The synchronous model in the leader election is based on the comparison process which is

instantaneous, it takes time . The process of receiving and sending the token is

done every clock time by every node, , there is no notion of delay between the process of

receiving and sending, it is ideal. However, it could not be implemented physically in real world.

]

2

5

0

0

7

5

7

0

0

5

0

0

8

5

8

0

…

…

…

…

2

8

8

0

7

8

8

0

0

8

8

0

8

8

0

1

…

…

…

…

2

5

7

5

7

5

8

5

8

…

…

…

…

2

8

8

7

8

8

8

8

8

8

1

…

…

…

…

2

5

…

7

5

8

5

…

…

5

…

2

8

8

7

8

8

8

8

…

8

…

…

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

35

Now we can take the advantage of endochrony and work in an asynchronous environment. It

makes the system to run as fast as each node clock allow it, we could say that we improve the

efficiency of the system. The leader peer transfers the token among the non-leader nodes

without taking care the non-leader time clock . It means does not depend on any specific time

clock.

3.1.3 LEADER ELECTION IN A GENERAL NETWORK

We have proved in the last problem that leader election has the same behaviour before and after

the desynchronization, therefore here we are going to see if it works in a general network too.

Now, the network is arbitrary and strongly connected and we figure out the shortest path to know

the leader of the system.

Problem

The processes have a unique UID (identifier token) and they communicate to its neighbour in each

step by sending first its own identifier and after the second round, make the same computation as

leader lection in a ring network. Eventually, one process should be the leader by changing a special

status component to the value Leader.

After that, there are several versions in the detail:

- It might be required that all non-leader process eventually output the fact they are not the

 , by changing their status components to

- The number of node, , and the diameter, can be either known or unknown to the

processes.

Our algorithm requires that all the processes know , but it is not necessary the number of

nodes of the network, . The show us the maximum number of steps until get to know the

 .

The computation is:

- If the income UID token is greater than its own UID value, it keeps passing the token to the

next node.

- If the incomes UID token ist lower than its own UID value, it discards and does nothing.

- If the incomes UID token is equal than its own UID value, it means it is the .

- In each step, each node stores in its local variable the maximum token,

- After rounds, all the processes store the , then each of them know

who the leader is. Due to that, they output the state of or

36 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Synchronous model

We consider the same semantic as in the leader election in a ring network.

 : After rounds , node knows node is the leader.

Case distinction

I. The node is assumed to be the leader is the biggest token in the network.

Consequently, .

a. In each comparison , then it keeps passing to the next node till the number round

 .

b. At the round , the node check the value stored in the variable . If it is

the same as its token, it is the .

We deduce, the token is the greatest identifier token, as a result the node is the leader.

II. The node is assumed to be the non-leader node, . First we assume takes cycle to reach

 The value of depend on and as we see in the following ecuation:

 cycle {

}

a. At the cycle , receives and pass it to its outgoing node or nodes.

b. After the cycle , round , has already stored in the maximum token in its local

variable . Therefore, during the next cycles until the cycle round it keeps

sending the token 0.

c. If there is reachs in rounds. However it is not possible

d. At the round , the node check the value stored in the variable . If it is

not the same as its token, it is the

We deduce knows is the leader after the round

From both cases, we probe that all the processes know their state (or) after

round .

An example: nodes, the UID are and the .

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

37

The program in QUARTZ is: generalNet is the main program, it has 4 nodes. The node D has three

inputs and three outputs. The rest have one input and one output channel:

macro NoNodes = 4;

macro diam = 2;

module generalNet(event LeaderReady,event Lead) {

 [NoNodes]nat arrayUID;

 [NoNodes]nat channelSend;

 arrayUID[0] = 5; arrayUID[1] = 2; arrayUID[2] = 1; arrayUID[3] = 10;

 for(i=0..NoNodes-1) { //initialization for channel sent

 channelSend[i] = arrayUID[i]; //max value sent to the neighbour

 }

 NodeA(channelSend[3],arrayUID[0],channelSend[0],LeaderReady);

 ||NodeA(channelSend[3],arrayUID[1],channelSend[1],LeaderReady);

 ||NodeA(channelSend[3],arrayUID[2],channelSend[2],LeaderReady);

 ||NodeD(channelSend[0],channelSend[1],channelSend[2],arrayUID[3],channelSend[3],LeaderReady,

Lead);

 pause;

 emit(LeaderReady);

}

drivenby { await(LeaderReady); }

Node A, B and C:

//send: send the max value

//maxUID:Store the maxUID in each round

//LeaderReady: show the elective Leader is ready

macro NoNodes = 4;

macro diam = 2;

macro max(x1,x2) = (x1<x2 ? x2 : x1);

macro maxIncome(m,k) = (k==0 ? max(m,income[0]) : maxIncome(max(m,income[k]),k-1));

module NodeA(nat ?incomeUID, ? myUID,nat !send, event Leader) {

38 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

 int i;

 [2]nat income; int maxUID; income[0] = incomeUID; income[1] = myUID;

 pause;

 while(i<=diam) {

 next(i)=i+1;

 maxUID = maxIncome(0,1);

 next(send) = maxUID; //send maxUID

 if(i==diam & maxUID==myUID)//output leader

 { emit next(Leader); }

 pause; //step

 } }

Node D:

macro NoNodes = 4;

macro diam = 2;

macro max(x1,x2) = (x1<x2 ? x2 : x1); // compute maximum of m and income[0..k]

macro maxIncome(m,k) = (k==0 ? max(m,income[0]) : maxIncome(max(m,income[k]),k-1));

module NodeD(nat ?incomeUID1, ?incomeUID2,?incomeUID3,?myUID,!send,event Leader, event! Lead) {

 int i;

 [4]nat income;

 int maxUID;

 income[0] = incomeUID1; income[1] = incomeUID2; income[2] = incomeUID3; income[3] = myUID;

 // in each round, the algorithm sends the maximum value: maxUID,

 // and in each round i must be incremented

 while(i<=diam) {

 next(i) = i+1;

 maxUID = maxIncome(0,3); // compute maximum of income[0..2]

 next(send) = maxUID; //send max

 if(i==diam & maxUID==myUID)//output leader

 { emit next(Leader); emit next(Lead);}

 wwhile:pause;

 } }

Desynchronization -Asynchronous model

The difference between being in a ring network and being in the general network is that: In the

general network we have a local variable where it saves the maximum value after the

computation. And the other difference is that each node can have more than one inputs/outputs

variable.

Each node compute:

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

39

- The inputs: the income tokens and my own token.

- It is assumed that , where . Consider the variables:

 ,

- The local input variable

- The outputs: and are the higher token value and the leader token of the system

respectively

- The stream of is for Non-Leader node and is for leader node

After having explained the computation, it will be analogous to the leader election in a ring

network.

Therefore the leader election in a general network is endochronous.

3.1.4 COORDINATE ATTACK

We explain here the importance of having a reliable communication between any two peers,

without it the communication in the network does not work anymore. Therefore, we study a basic

consensus problem based on the presence of communication failures called the coordinate attack

problem.

The Coordinated attack problem is a fundamental problem of reaching consensus in a setting

where messages may be lost.

The problem

There are several generals, who are located in different places. They want to attack a common

known objective. They know that the only way to succeed is if all generals attack at the same time.

Therefore, they have to reach a consensus of attack or not.

The generals can communicate with each other only by messengers who travel on foot. The

messenger carries the information about the time attack or no time attack. However, the

messenger may be captured or lost during the route and then the message may be lost. As there is

no other way to communicate between the generals, they have to handle in order to get an

agreement on whether to attack or not. The last statement is to attack if it is possible.

We suppose the following:

- There are generals, { }, and each general has messengers who

carries the message

- The communication is undirected and connected

 : If there is at least one failure during the communication, the communication is

broken whether it is synchronous or asynchronous.

40 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

It is assumed that each general plans to attack, therefore each general send to the other generals

the message: I am planning to attack at point . Moreover, each general is considered as node or

processor , and the message as links.

Synchronous model

As each general is controlled by the same global clock, they wait to receive something at the end

the clock time, even if it is not reliable.

We analyse the communication between 2 generals, and , see the following figure:

Figure 3.1.7. Reliable synchronous communication between two generals

 We realize that if there is no communication failure, every general would attack the objective at

the point and being successful.

On the other hand, what happens if there is at least one message lost or manipulated? See the

following figure. The first round is done correctly, but in the second round there is a

communication failure, there are two possibilities:

- The messenger has been lost, does not received the message. realize that the

messenger must be captured and the communication is broken

- The messenger has been captured and the message would be manipulated, receives a

wrong message. In the third round, would receive a different message, it let the

general realize that the messenger must be captured, the communication is broken

Whether being any of them, goes into a conflict. The communication is broken between both

peers. See the following figure:

General

sends the message to and vice versa,
sends the message to

receives the information from and sends
the confirmation of having received it, so does

receives the confirmation from , and
respond of having received the confirmation, so does

keeps sending messages to the other

generals till the time of attack come up.

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

41

Figure 3.1.8. Unreliable synchronous communication between two generals

We showed that even one communication failure damages all the system.

Desynchronization

On the other hand, if each general have a different clock, our model behaves asynchronously. The

argumentation is the same as the synchrony.

If there is no communication failure, all the generals eventually have the same information and

attack the objective at the agreed time. However, if there is at least one failure during the

communication, there are two possibilities as in the synchronous model, the communication is

broken. See the following figure:

Figure 3.1.9. Asynchronous communication between 2 generals a) reliable links b) Unreliable links

General

42 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

We demonstrate that even the simpler communication between peer to peer could not be done

correctly if there is at least one communication failure. Henceforth, the communication is

supposed to be reliable.

3.1.5 STOPPING FAILURE

We have seen the failure during the communication of the message, but what happens if the

failure is founded in the process. Now, we analyse what happens if the process does not work

properly. Firstly, there are two failure models: the stopping failure problem, where the process

may stop without warning and the byzantine problem, where faulty process may exhibit

completely unconstrained behaviour.

We focus on the Stopping failure:

The problem

In the stopping failure model, at any point of time during the execution of the process, it may

simply stop. Even, it can stop in the middle of a message sending step. Then, the other processor

would receive part of the original message or nothing.

As in the coordinate attack problem, the nodes or processes want to reach a consensus

agreement. We assume that the links are perfectly reliable; all the messages that are sent are

delivered.

We have the following features:

- The network have nodes, connected undirected graph with the other nodes

- Each process, { }, knows the entire graph

- { } starts with an input from a fixed value set { }. Each

set is composed by at least one element

Synchronous model

 : If at least one node fails, it would propagate its message to the other nodes.

Eventually each process verifies if it has received the correct message by checking the special

variable, .

 :

Firstly, we explain the algorithm for the synchrony model and it make us to understand better and

prove informally the state before.

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

43

 :

In the initial state each node starts with an agreed value and a default value . If

node stop working, it sends a different value .

In each round, the process sends its own message to the other processor . At the

same time the processor receives the message and it stores it in a local variable after making

the comparison. If the income token value is the same as it has, it does not store it; otherwise if it

stores the element in the received set .

After) rounds, the process checks whether the messages is correct or not: If the received

set has more than 1 element, it outputs , otherwise it outputs .

The shows that any process fails during the communication.

If one node fails during a particular round, it would propagate its message to the other nodes.

After rounds, the other nodes would receive it and add to the set value . It makes us

realize that even one node fail, it will break the reliable communication.

We program the problem of Stopping failure with two nodes, A and B. It has two failures in 3

rounds. The main program is Stopping failure and Node A and B are subprograms:

macro NoNodes = 2;

macro failure = 2; //maximum number of failure

macro v0 = 8; //default value for all nodes

module stoppingfailure(event LeaderReady) {

 [NoNodes]nat arrayUID; [NoNodes]nat channel; [NoNodes]nat Decision;

 arrayUID[0] = 1; arrayUID[1] = 3;

 for(i=0..NoNodes-1) {

 channel[i] = arrayUID[i];

 Decision[i] = 0;

 }

 sfnodeA(channel[1],arrayUID[0],channel[0],Decision[0],LeaderReady);

 ||sfnodeB(channel[0],arrayUID[1],channel[1],Decision[1],LeaderReady);

 pause;

 emit(LeaderReady);

}

drivenby { await(LeaderReady);}

44 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Node A is called SFNODEA and Node B is called SFNODEB.

macro NoNodes = 2;
macro failure = 2; //maximum number of failure
macro v0 = 8; //default value for all nodes

module sfnodeA(nat ?income,nat ?myUID,nat
!outcome,nat !Decision, event !rdy) {
 int i;
 [NoNodes]nat storage1;
 next(i) = i+1;
 next(outcome) = myUID; //send
 storage1[0] = myUID;
 next(storage1[1]) = (income==myUID ? 0 :
income);
 pause;

 next(i) = i+1; pause;

 next(i) = i+1; // do not send pause;

 next(i) = i+1;
 if(i==failure+1) //end of the algorithm
 {
 next(Decision) = (storage1[1]==0 ? myUID : v0);
 emit next(rdy);
 }
 pause; //step

macro NoNodes = 2;
macro failure = 2; //maximum number of failure
macro v0 = 8; //default value for all nodes
//macro v = 1; //value of the node A
//macro singleton = 1;

module sfnodeB(nat ?income,nat ?myUID,nat
!outcome,nat !Decision, event !rdy) {

 int i;
 [NoNodes]nat storage;

 next(i) = i+1;
 next(outcome) = myUID; //send
 storage[0] = myUID;
 next(storage[1]) = (income==myUID ? 0 : income);
 pause;

 next(i) = i+1;
 next(outcome) = myUID;
 next(storage[1]) = (income==myUID ? 0 : income);
 pause;

 next(i) = i+1;
 next(storage[1]) = (income==myUID ? 0 : income);
 pause;

 next(i) = i+1;
 if(i==failure+1) //end of the algorithm
 {
 next(Decision) = (storage[1]==0 ? myUID : v0);
 emit next(rdy);
 }
 pause; //step
 }

As we see in Figure 3.1.10.There is no need that each process work synchronously, it received

and spread its message to the other processes. Eventually, after rounds, number of

sending/receiving token, the process analyses its set and output as in the synchrony

model.

We prove whether it is asynchrony or synchrony model, if the system has failure process in total,

each process would realize after the round.

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

45

Figure 3.1.10. The communication between peer to peer has failure processes. At the round 3, , all the

process are affected.

 The incorrect behavioural process misleads the other process about the information of the

message. Consequently, the communication of the entire system falls. For this reason, it is

important to have a correct behavioural process.

General

1 1

Channel[0]

Channel[1]

46 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

3.1.6 DINNING PHILOSOPHER

Informally, this problem deal with resources and users, the users need the resources at a certain

point of time and depend on the availability it could get it for a while. Now, let us go to the theory

and details of the problem.

The system has many resources that are shared among users. Here we explain how to use such

specification to define resource –allocation problems. There are two different ways to solve a

resource allocation: the explicit resource specification and exclusion specifications.

Example of explicit resource specification:

Consider 4 users: and the resources:

Figure 3.1.11. Example of explicit resource specification

It means, the needs exclusive the resource and to perform its work and for

the others is the same. We can see here that and need the same resource , it is

a conflict that we have to analyse, the same situation happens with the other users.

Example of exclusion specification:

It does not mention the resource, it count the users that are not allowed to use the

resource. There are 4 users and consider the exclusion specification of the two elements

sets and . We note that does not exclude , it means that they

can perform their work simultaneously and the same with and .

From both resource specifications, we choose the explicit resource specification because it is more

general.

Before describe the problem we highlight the following characteristic that it is assumed during the

solution of the problem: Resource allocation problem

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

47

We explain how to use the explicit resource specification into the resource-allocation, it is solved

by share memory systems. We use the combination of user automata and a shared memory

system automaton.

Besides that, we assume the trace properties: the well-formedness, exclusion, progress,

independent progress and lock-out freedom condition. Each of this trace properties has a

signature consisting of and . See the following book for more information in

chapter 10, 11 of LynchBook [2].

The problem

Related to the architecture we use a combination of user automata and share memory system

automata. The cycle of one process is thinking and critical () regions.

It will be formulated in terms of explicit resource specification. There are philosopher seated

around the table, between each pair of philosophers is a single fork (resource). There are

resources as well. The philosopher need to use two forks for having lunch, eating (). Therefore,

from time to time, the user asks for the availability of both resources (right and left fork). When

the philosopher becomes hungry, it seeks and it may attempt to eat. After eating the philosopher

relinquishes the two forks.

Synchronous system

Firstly, we can informally discuss that there is no symmetric solution for the Dinning philosopher

problem. If one user and its neighbour seek to have lunch at the same time, at least one of

them should eat () while the other must wait until the other release the shared fork. Besides

that, if all the users want to eat at the same time, each of them will take his left fork and the right

fork will be already taken by its neighbour. The system in deadlocked, and there is no way to

progress. Therefore, it is necessary to break the symmetry of the Dinning philosopher.

In order to resolve the conflict between two users, we implement an arbitrator. It will decide who

goes to the critical state or waits. We explain it by one example:

The users are controlled by the arbitrator, each of them have their own state machine.

The user eats when the arbitrator gives the order, otherwise it will keep thinking.

48 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Figure 3.1.12. State machine of the philosopher and the arbitrator

There is just one rule on the firing rule belongs to the philosopher, then just one way to compute,

therefore it is endochronous.

 :

 :

 :

 :

Arbit…

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

49

Moreover, the firing rule belong to the arbitrator have not any conflict between them too,

therefore it is endochronous.

With this example we informally prove that the Dining philosopher work properly after the

desynchronization.

3.1.7 BREADTH-FIRST SEARCH

The problem of Breadth-first search is motivated by the need to build structures suitable for

supporting efficient communication. Here, we perform how to establish a breadth-first spanning

tree for the digraph. The motivation for constructing such a tree comes from the desire to have a

convenient structure to use as a basis for broadcast communication.

The problem

We define a direct spanning tree of a direct graph to be rooted tree that consist

entirely of directed edges in . All the edges directed from parents to children in the tree, and that

contains every vertex of .

We assume that:

- The network is strongly connected and there is always a source node

- All the process except should have a parent process

- The communication is done over directed edges

 Synchronous model

First, we are going to explain what happens in each process :

There is some set of process that is marked, initially . Process sends a search message at

round 1, to all of its neighbours. At any round, if an unmarked process receives a search message,

it marks itself and chooses one of the processes from which the search message has arrived as its

parent. At the first round after a process gets marked, it sends a search message to all of its

outgoing neighbours.

We can see that this algorithm produce a tree. We can prove that after rounds, every process at

distance from in the graph has its parents pointer defined. We assume also a reliable

communication and non-suspicious behaviour in each node.

Let see with an example how works the algorithm. There are 4 nodes that are strongly connected

as shown in the figure:

50 DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

Figure 3.1.13. Synchonous process to solve breadth-first search

We want to broadcasts a search message to all the nodes. It needs 3 rounds to communicate the

message. Each node has its parent, except the source node . As we are working in the

synchronous model:

- has only receive one message and it is from . Then it is its parent. The same case for

 , even it will receive later another message from .

- has to choose from as its parent.

We have to stress the behaviour of the node , in synchrony system it receives from its

preprocessors the message at the same time. Afterward, it chooses between both nodes as

its parents. There are 2 kinds of spanning trees are:

Figure 3.1.14. Synchronous spanning tree

Desynchronization

The problem comes when the node has to choose between various predecessor nodes as its

parent. The node chooses between them in synchronous system, however not in an asynchronous

system. It means, that depend on the arrived time message to decide which of them its parent is.

Where:
message

:

:

Chapter 3
DESYNCHRONIZATION OF DISTRIBUTED ALGORITHMS

51

Therefore, we can see that if we desynchronize the system it will become an asynchronous

system. In the asynchronous system, we do not have the notion a global clock any more.

In the asynchronous system, the node does not have to choose between the predecessors

because one of them will arrive faster than the other. After making the resynchronization of the

asynchronous system, the spanning tree may be totally different from the synchronous system. In

fact, there is a new more design of the spanning tree.

Figure 3.1.15. Aynchronous spanning tree

Due to the breadth first search is not endochronous, we have to implement a new design to make

it work in an asynchronous network. See the next chapter Synchronizer.

3.2 Summary of each algorithm

After having all the problems in detail, let us make a table where we can point the endochrony

property out.

Problem Endochronous Synchronizer

Josephine´s problem  

Leader election in a ring network  Does not need
Leader election in a general network  Does not need
Stopping failure  Does not need
Dinning philosopher  Does not need
Breath-first search  

4 ENDOCHRONY AND SYNCHRONIZER

If the problem does not fulfil the endochronous property, we have to find a way to make the

components work in an asynchronous environment. Therefore, the Synchronizer is a good idea to

achieve this work. The synchronizer is a system module that transforms the synchrony model to

the asynchrony model. There are many types of synchronizers that are detailed explained in [2]

and all of these implementation involve synchronizing the system at every synchronous round, the

implementation allow to work for arbitrary synchronous algorithms.

We begin with the Global synchronizer that specified the correctness in term of I/O automata.

Then we define the local synchronizer abstractly and show that it implements the global

specification. Moreover, we assumed that there is no failure during the communication or during

the computation.

 :

In synchronous system each process is presented as a kind of state machine, with message

generation and transition functions. Here, we modified by representing each process as a “user

process” I/O automaton . We understand better with the example below.

Then, we define the tagged message to be pair , where and The user

automaton has output action of the form , where is a set of tagged

messages and , represent the round number, those are sent to its neighbours. Moreover,

 has input action of the form by which receives the message from its

neighbours. perform the when it has not any message to send at round .

Here, we module the inputs and the outputs of the user automata using input actions rather than

encoding them in states, see the following figure.

Figure 3.2.1. I/O User automaton

We explain the theory thought an example: and actions.

Where:
: indicate the message resource
: round number

Chapter 4
ENDOCHRONY AND SYNCHRONIZER

53

We suppose that we have 4 nodes, . Then the indicates

that at round 3, user sends message to user and to user and sends no other

messages. Also, indicate that at round 3, receives

message from user and message from user , and receives no other messages.

 is expected to preserve the well-formedness condition (see more detail in [2]) that the

 and actions alternate, starting with a action, and

that successive pairs of actions occurs in order of rounds. The sequence of such actions is a prefix

of an infinite sequence of the form:

The other action is the liveness condition. must eventually perform a at round

such that events for all previous rounds have already occurred. keeps

sending messages for infinite many rounds as long as the systems keeps responding.

Now, we are ready to describe the rest of the system as a . The job of the

global synchronizer is at each round collect all the messages that are sent by user automata at that

round in actions and deliver them to all the user automata in

actions. It synchronizes globally, after all the events and before all the

 events of each round.

The figure 4.1. shows the combination of user and automata, those

make the Global Synchronizer system.

Figure 3.2.2. Architecture of the Global Synchronizer system

We can see that any algorithm in synchronous network model can be described in this new style: a

composition of user automata and the automaton.

Finally, the implement the automaton with an

asynchronous network algorithm, with one process at each node of the graph and a reliable

FIFO send/receive channel in each direction on each edge of .

…

54 ENDOCHRONY AND SYNCHRONIZER

We could say finally that the user cannot note the difference between running in the

synchronous system and running in the system.

Local synchronizer

The involves synchronization among neighbours rather than among arbitrary

nodes. This advantage saves time and communication complexity. The only difference between

 and is in the action :

- It is not necessary to wait for messages form all users in the entire network as in

 . We just need to wait for the neighbour messages, as soon as in round

messages can be sent to it can receive from all its neighbours.

We have seen before that Josephine´s problem and Breath-First Search do not fulfill the

endochronous property. Therefore, we are going to implement in each of them a .

Here, we explain how would work the problem of Breath-First Search, because it is more intuitive

to understand than Josephine´s problem. The breadth-first search is a clear example for using a

 . Between each node and its outgoing processor there is a

 .

We use the same example that as before but introducing the new design:

Figure 3.2.3. Local synchronizer in the breadth-first search

We can intuitively see that makes the same spanning tree as the synchronous

system.

5 SUMMARY

In the past, we used to work with synchronous systems where all its components work together

and trigger at the same time. Those synchronous systems were not really complex. However, we

nowadays find really complex systems that make really difficult to control by just one global clock.

Therefore, instead of having one control clock the system were divide in simpler systems. Each

simpler system has its own local clock and communicates with the others simpler systems

asynchronously. When we speak system we are taking about embedded system and hardware

system design.

On the other hand, the synchronous system is well state due to the long time research. It has

many tools to verify the correctness of the design. It simplifies programming, since developers do

not have to take care about low-level detail like timing, synchronization and scheduling. The

distributed systems are asynchronous by nature and the asynchronous systems are difficult to

simulate and verified due to the asynchronous concurrency. Those are reason for not remove all

the synchronous system. Instead of removing, we are going to reuse them in an asynchronous

environment. Therefore, we need to adapt all the systems in the new interface. In order to reuse

the synchronous system in the asynchronous network (distributed system) we make the

desynchronization of the synchronous system. However, first we have to prove if the synchronous

system is able to desynchronize in a correct form, endochronous property.

Then, the endochronous property permits the components of a synchrony system work in an

asynchronous environment. In other words, those components take advantages of the

synchronous models for simulation and verification. Besides that, they communicate

independently to each other.

Finally, we have studied the endochrony of some distributed algorithms that have many

applications in real system for example finding a leader process in the network, making a

consensus agreement in the network, share the resource between the processes, broadcast a

message to other process in a short path, ... Moreover, we take into account the consequences of

having a failure during the communication or in the process.

After having studied distributed algorithms, some of them do not fit the endochronous property,

for example the Josephine´s problem and the Breadth first reach. Those algorithms need to

implement a synchronizer in order to make them work in an asynchronous system. In summary, all

the distributed algorithms explained are prepared to work in an asynchronous environment.

BIBLIOGRAPHY

[1] Klaus Schneider, “From synchrony to asynchrony” - Hardware and software system,

Department of Computer Science, University of Kaiserslautern, January 2014.

[2] Nancy A. Lynch, “Distributed algorithms”, Morgan Kaufmann Publishers. In San Francisco –

California – USA, 1996.

[3] Klaus Schneider, “The synchronous programming language Quartz”, A Model-Based

Approach to the Synthesis of Hardware-Software Systems, Department of Computer

Science, University of Kaiserslautern, 2010.

[4] D. Potop-Butucaru, B. Caillaud, and A. Benveniste, “Concurrency in synchronous system”,

In application of Concurrency to System Design (ACSD), pages 67-76, Hamilton, Ontario,

Canada, 2004. IEEE Computer Society.

[5] J. Pantaleone, “Synchronization of Metronomies”, American Association of Phisycs

Teachers, 70(10): 992-1000, October 2002.

[6] A. Benveniste, B. Caillaud, and P. Le Guernic, “From synchrony to asynchrony”, In J.C.M.

Baeten and S. Mauw, editors. Concurrency Theory (CONCUR), volume 1664 of LNCS, pages

162-177, Eindhoven, The Netherlands, 1999. Springer.

[7] Edward A. Lee, and Thomas M. Parks, “Dataflow process network”, IEEE volume 85,

number 5, 1995.

[8] M. K. McClintock. “Menstrual synchrony and suppression”, Nature, 229: 244-245, 1971.

[9] Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabasi, “Self-organization in the

concert hall: the dynamics of rhythmic applause”, Technical report arXiv: cond-

mat/0003001, arXiv.org, http:/arvix.org, 2000.

[10] J. Buck, “Synchronous rhythmic flashing of fireflies”, the Quarterly Review of Biology,

63(3):265-289, 1988.

[11] V. Torre, “A theory of Synchronization of two heart pacemaker cells”, Journal of

Theoretical Biology, 61:55-71, 1976.

[12] E.A. Lee and Santiovanni- Vicentelli. “Comparing models of computation”. In International

Conference on Computer-Aided Design (ICCAD), pages 234-241, San Jose, California, USA,

1996. ACM/IEEE Computer Society.

[13] Jens Brandt, Mike Gemünde and Klaus Schneider, “Desynchronizing synchronous

programns by modes“, Application of Concurrency to System Design (ACSD), 2009, IEEE

Computer Society.

[14] Brandt and K. Schneider and Y. Bai, “Passive Code in Synchronous Programs”, Transactions

on Embedded Computing Systems (TECS), 2014

[15] A. Benveniste, L.P. Carloni, P. Caspi, and A.L. Sangiovanni-Vincentelli, “Heterogeneous

reactive systems modeling and correct-by-construction deployment”, in R. Alur and I. Lee,

editor, Embedded Software (EMSOFT), volume 2855 of LNCS, pages 35-50, Philadelphia,

Pensylvania, USA, 2003. Springer.

